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Abstract Time series in the Earth Sciences are often characterized as self-affine long-

range persistent, where the power spectral density, S, exhibits a power-law dependence on

frequency, f, S(f) * f-b, with b the persistence strength. For modelling purposes, it is

important to determine the strength of self-affine long-range persistence b as precisely as

possible and to quantify the uncertainty of this estimate. After an extensive review and

discussion of asymptotic and the more specific case of self-affine long-range persistence, we

compare four common analysis techniques for quantifying self-affine long-range persis-

tence: (a) rescaled range (R/S) analysis, (b) semivariogram analysis, (c) detrended fluctu-

ation analysis, and (d) power spectral analysis. To evaluate these methods, we construct

ensembles of synthetic self-affine noises and motions with different (1) time series lengths

N = 64, 128, 256, …, 131,072, (2) modelled persistence strengths bmodel = -1.0, -0.8,

-0.6, …, 4.0, and (3) one-point probability distributions (Gaussian, log-normal: coefficient

of variation cv = 0.0 to 2.0, Levy: tail parameter a = 1.0 to 2.0) and evaluate the four

techniques by statistically comparing their performance. Over 17,000 sets of parameters are

produced, each characterizing a given process; for each process type, 100 realizations are

created. The four techniques give the following results in terms of systematic error

(bias = average performance test results for b over 100 realizations minus modelled b) and

random error (standard deviation of measured b over 100 realizations): (1) Hurst rescaled

range (R/S) analysis is not recommended to use due to large systematic errors. (2) Semi-

variogram analysis shows no systematic errors but large random errors for self-affine noises

with 1.2 B b B 2.8. (3) Detrended fluctuation analysis is well suited for time series with
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thin-tailed probability distributions and for persistence strengths of b C 0.0. (4) Spectral

techniques perform the best of all four techniques: for self-affine noises with positive

persistence (b C 0.0) and symmetric one-point distributions, they have no systematic errors

and, compared to the other three techniques, small random errors; for anti-persistent self-

affine noises (b\ 0.0) and asymmetric one-point probability distributions, spectral tech-

niques have small systematic and random errors. For quantifying the strength of long-range

persistence of a time series, benchmark-based improvements to the estimator predicated on

the performance for self-affine noises with the same time series length and one-point

probability distribution are proposed. This scheme adjusts for the systematic errors of the

considered technique and results in realistic 95 % confidence intervals for the estimated

strength of persistence. We finish this paper by quantifying long-range persistence (and

corresponding uncertainties) of three geophysical time series—palaeotemperature, river

discharge, and Auroral electrojet index—with the three representing three different types of

probability distribution—Gaussian, log-normal, and Levy, respectively.

Keywords Fractional noises and motions � Self-affine time series � Long-range

persistence � Hurst rescaled range (R/S) analysis � Semivariogram analysis �
Detrended fluctuation analysis � Power spectral analysis � Random and systematic errors �
Root-mean-squared error � Confidence intervals � Benchmark-based improvements �
Geophysical time series

1 Introduction

Time series can be found in many areas of the Earth Sciences and other disciplines. After

obvious periodicities and trends have been removed from a time series, the stochastic

component remains. This can be broadly broken up into two parts: (1) the statistical

frequency-size distribution of values (how many values at a given size) and (2) the cor-

relations between those values (how successive values cluster together, or the memory in

the time series). In this paper, and because of their importance and use in the broad Earth

Sciences, we will compare the strengths and weaknesses of commonly used measures for

quantifying a frequently encountered type of memory, long-range persistence, also known

as long-memory or long-range correlations.

This paper is organized as follows. In this introduction section we introduce long-range

persistence and its importance in the Earth Sciences. We then provide in Sect. 2 a brief

background to processes and time series and in Sect. 3 a more detailed background to long-

range persistence. Section 4 describes the synthetic time series construction and presen-

tation of the synthetic noises (with normal, log-normal, and Levy one-point probability

distributions) that we will use for evaluating the strength of long-range persistence. This is

followed in Sect. 5 (time domain techniques) and Sect. 6 (frequency-domain techniques)

with a description of several prominent techniques (Hurst rescaled range analysis, semi-

variogram analysis, detrended fluctuation analysis, and power spectral analysis) for mea-

suring the strength of long-range persistence. Section 7 presents the results of the

performance analyses of the techniques, with in Sect. 8 a discussion of the results. In

Sect. 9, benchmark-based improvements to the estimators for long-range dependence that

are based on the techniques described in Sects. 5 and 6 are introduced. Section 10 is

devoted to applying these tools to characterize the long-range persistence of three geo-

physical time series. These three time series—palaeotemperature, river discharge, and

Auroral electrojet index—represent three different types of one-point probability
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distribution—Gaussian, log-normal, and Levy, respectively. Finally, Sect. 11 gives an

overall summary and discussion.

After the paper’s main text, five appendices give details of the construction of synthetic

noises used in this paper and the fitting of power laws to data. Additionally, to accompany

this paper, are four sets of electronic supplementary material: (1) 1,260 synthetic fractional

noise examples and an R program for creating them, (2) an R program for the user to run

the five types of long-range persistence analyses described in this paper, (3) an Excel

spread sheet which includes detailed summary results of the performance tests applied here

to 6,500 different sets of time series parameters, and a calibration spreadsheet/graph for

the user to do benchmark-based improvement techniques, and (4) a PDF file with the 41

figures from this paper at high resolution.

We now introduce the idea of long-range persistence in the context of the Earth Sci-

ences, with many of these ideas explored in more depth in later sections. Many time series

in the Earth Sciences exhibit persistence (memory) where successive values are positively

correlated; big values tend to follow big and small values follow small. The correlations

are the statistical dependence of directly and distantly neighboured values in the time

series. Besides correlations caused by periodic components, two types of correlations are

often considered in the statistical modelling of time series: short-range (Priestley 1981;

Box et al. 1994) and long-range (Beran 1994; Taqqu and Samorodnitsky 1992). Short-

range correlations (persistence) are characterized by a decay in the autocorrelation function

that is bounded by an exponential decay for large lags; in other words, a fixed number of

preceding values influence the next value in the time series. In contrast, long-range cor-

related time series (of which a specific subclass is sometimes referred to as fractional

noises or 1/f noises) are such that any given value is influenced by ‘all’ preceding values of

the time series and are characterized by a power-law decay (exact or asymptotic) of the

correlation between values as a function of the temporal distance (or lag) between them.

This power-law decay of values can be better understood in the context of self-similarity

and self-affinity. Mandelbrot (1967) introduced the idea of self-similarity (and subsequently

fractals) in the context of the coast of Great Britain where the same approximate coastal

shape is found at multiple scales. He found a power-law relationship between the total

length of the coast as a function of the segment length, with the power-law exponent

parameter called the fractal dimension. The concept of fractals to describe spatial objects

has become widely used in the Earth Sciences (in addition to other disciplines). Mandelbrot

and van Ness (1968) extended the idea of self-similarity in spatial objects to time series,

calling the latter a self-affine fractal or a self-affine time series when appropriately rescaling

the two axes produces a time series that is statistically similar.

In a self-affine time series, the strength of the variations at a given frequency varies as a

power-law function of that frequency. Thus, a large range of frequencies are influenced. In

other words, any given value in a time series is influenced by all other values preceding it,

with the values themselves forming a self-similar pattern and the self-affine time series

exhibiting, by definition, long-range persistence. The strength of long-range correlations

can be related to the fractal dimension (Voss 1985; Klinkenberg 1994) and influences the

efficacy and appropriateness of long-range persistent algorithms chosen.

Self-affine time series (long-range persistence) have been discussed and documented

for many processes in the Earth Sciences. Examples include river run-off and precipitation

(Hurst 1951; Mandelbrot and van Ness 1968; Montanari et al. 1996; Kantelhardt et al. 2003;

Mudelsee 2007; Khaliqet al. 2009), atmospheric variability (Govindan et al. 2002), temperatures

over short to very long time scales (Pelletier and Turcotte 1999; Fraedrich and Blender 2003),

fluctuations of the North-Atlantic Oscillation index (Collette and Ausloos 2004), surface wind
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speeds (Govindan and Kantz 2004), the geomagnetic auroral electrojet index (Chapman et al.

2005), geomagnetic variability (Anh et al. 2007), and ozone records (Kiss et al. 2007).

Although long-range persistence has been shown to be a part of many geophysical records,

physical explanations for this type of behaviour and geophysical models that describe this

property appropriately are less common. In one example, Pelletier and Turcotte (1997)

modelled long-range persistence found in climatological and hydrological time series with an

advection–diffusion model of heat and water vapour in the atmosphere. In another example,

Blender and Fraedrich (2003) modelled long-range persistent surface temperatures by coupled

atmosphere–ocean models and found different persistence strengths for ocean and coastal

areas. In a third example, Mudelsee (2007) proposed a hydrological model, where a super-

position of short-range dependent processes with different model parameters results in a long-

range persistent process; he modelled river discharge as the spatial aggregation of mutually

independent reservoirs (which he assumed to be first-order autoregressive processes).

Long-range persistent behaviour occurs also in a few (but not in all) models of self-

organized criticality (Bak et al. 1987; Turcotte 1999; Hergarten 2002; Kwapień and Dro _zd _z
2012); as an example the Bak–Sneppen model (Bak and Sneppen 1993; Daerden and

Vanderzande 1996) is a simple model of co-evolution between interacting species and has

been used to describe evolutionary biological processes. The Bak–Sneppen model has also

been extended to solar and geophysical phenomena such as X-ray bursts at the Sun’s

surface (Bershadskii and Sreenivasan 2003), solar flares (Meirelles et al. 2010), and for

Earth’s magnetic field reversals (Papa et al. 2012). Nagler and Claussen (2005) found that

cellular automata models (i.e. grid-based models with simple nearest-neighbour rules of

interaction) can also generate long-range persistent behaviour.

Physical explanations and models for long-range persistence are certainly a strong step

forward in the published literature, rather than ‘just’ documentation of persistence (based

on the statistical properties of measured data) itself. However, these physical explanations

in the community are often confounded by the following: (1) a confusion of whether

asymptotic or the more specific case of self-affine long-range persistence is being explored;

(2) in the case of some models, such as ‘toy’ cellular automata models and some ‘philo-

sophical’ models, a lack of sensitivity in the model itself, so that any output tends towards

some sort of universal behaviour; and (3) sometimes non-rigorous and visual comparison

of any model output (which itself is based on a simplification of the physical explanations)

with ‘reality’. As such, these physical explanations and models are welcome, but are often

met with a bit of scepticism by peers in any given community (e.g., see Frigg 2003).

Long-range correlations are also generic to many chaotic systems (Manneville 1980;

Procaccia and Schuster 1983; Geisel et al. 1985, 1987), for which a large class of models in

the geosciences has been designed. Furthermore, over the last decade it has become clear

that long-range correlations are not only important for describing the clustering of the time

series values (i.e. big or small values clustering together), but are also one of the key

parameters for describing the return times of and correlations between values in a series of

extremes over a given threshold (Altmann and Kantz 2005; Bunde et al. 2005; Blender

et al. 2008) and for characterizing the scaling of linear trends in short segments of the

considered time series (Bunde and Lennartz 2012).

Most empirical studies of self-affinity and long-range persistence compare different

techniques or discuss the minimal length of the time series to ensure reliable estimates of

the strength of long-range dependence. There are few (e.g., Malamud and Turcotte 1999a;

Velasco 2000) systematic studies on the influence of one-point probability distributions

(e.g., normal vs. other distributions) on the performance of the estimators. As many time

series in the geosciences have a one-point probability density that is heavily non-Gaussian,
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we will in this paper systematically examine different synthetic time series with varying

strengths of long-range persistence and different statistical distributions. By doing so, we

will repeat and review parts of what has been found previously, confirming and/or high-

lighting major issues, but also systematically examine non-Gaussian time series in a

manner previously not done, particularly with respect to heavy-tailed frequency-size

probability distributions. We will thus establish the degree of utility of common techniques

used in the Earth Sciences for examining the presence or absence, and strength, of long-

range persistence, by using synthetic time series with probability distributions and number

of data values similar to those commonly found in the geosciences.

2 Time Series

In this section we give a brief background to processes and time series, along with an

introduction to three geophysical time series examples that we consider in this paper.

Records of geophysical processes and realizations of their models can be represented by a

time series, xt, t = 1, 2, …, N, with t denoting the time index of successive measurements

of xt separated by a sampling interval D (including units), and N the number of observed

data points. The (sample) mean �x and (sample) variance r2
x of a time series are as follows:

�x ¼ 1

N

XN

t¼1

xt; r2
x ¼

1

N

XN

t¼1

xt � �xð Þ2: ð1Þ

The (sample) standard deviation rx is the square root of the (sample) variance. A table of

variables used in this paper is given in Table 1.

We distinguish here between a process and a time series. An example of a stochastic

process is a first-order autoregressive (AR(1)) process:

xt ¼ /1xt�1 þ et ð2Þ

with /1 a constant (-1 \/1 \ 1), et a white noise, and the value at time t (i.e. xt)

determined by the constant, white noise, and the value at time t–1 (i.e. xt–1). This is a very

specific process given by Eq. (2). An example of a time series would be a realization of this

process. We will discuss in more depth this AR(1) process in Sect. 3.1.

We can also have other processes which are not described by a simple set of equations,

for example, geoprocesses (e.g., climate dynamics, plate tectonics) or a large experimental

set-up where the results of the experiment are data; the process in the latter case is the

physical or computational interactions in the experiment. In the geosciences, often just a

single or a very few realizations of a process are available (e.g., temperature records,

recordings of seismicity), unless one does extensive model simulations, where hundreds to

thousands of realizations of a given process might be created. Each realization of a process

is called a time series. In the geosciences, with (often) just one time series, which is itself

one realization of a process, we then attempt to infer from that single realization (the time

series), properties of the process. The process can be considered to be the ‘underlying’

physical mechanism or equation or theory for a given system.

We now consider three diverse examples of time series from the Earth Sciences, which

after presenting here, we will return to in Sect. 10 as geophysical examples to which we

apply the long-range persistence techniques evaluated in this paper. The first time series

(Fig. 1a) is the bi-decadal d18O record of the Greenland Ice Sheet Project Two (GISP2)

data (Stuiver et al. 1995) for the last 10,000 years (500 values at 20 year intervals) and

shows the departure of the ratio of 18O to 16O isotopes in the core versus a standard, in
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Table 1 Notation and abbreviations

Symbol Description

% Parts per mil (parts per thousand)

| The vertical bar means ‘given’. For example, P bmeasuredjbmodelð Þ
would mean the distribution of measured values bmeasured given bmodel

a Power-law exponent of the fluctuation function

b Power-law exponent of the power spectral density, in other words,
the strength of the long-range persistence

bHu, bHa, bDFA, bPS Strength of long-range persistence, measured by using the following analyses
(indicated by a subscript): Hu (rescaled range (R/S)), Ha (semivariogram),
DFA (detrended fluctuation), and PS (power spectral)

b�Hu, b�Ha, b�DFA, b�PS Benchmark-based improvement of long-range persistence, where a given time
series’ strength of long-range persistence is measured, and then compared to
Monte Carlo simulations for the respective one-point probability distribution
and length of the time series

bmeasured Estimator of long-range persistence that are calculated using different
techniques, bmeasured = b½Hu;Ha;DFA; PS�, where Hu, Ha, DFA and

PS represent the technique applied

bmodel The modelled strength of long-range persistence of a constructed self-affine
time series (fractional noises and motions) using inverse Fourier filtering

c(s) Semivariogram depending on the time lag

D Sampling interval (including units)

e White noise

j Constant

l Mean value (parameter of normal and log-normal distributions)

r Standard deviation (parameter of normal and log-normal distributions)

rx Sample standard deviation of the time series x1, x2, …, xN

s Time lag

/1 First coefficient of an autoregressive (AR) process

w tð Þ Mother wavelet function

a Tail parameter (exponent) of the Levy distribution

Bias �bmeasured � bmodel

C(s) Autocorrelation function depending on the time lag

cv Coefficient of variation (parameter of the log-normal distribution)

c1, c2 Constants

D Fractal dimension

f Frequency

F Fluctuation function

FDFA(l) Fluctuation function for detrended fluctuation analysis depending
on the segment length l

Ha Hausdorff exponent (power-law exponent of the semivariogram)

Hu Hurst exponent (power-law exponent of the rescaled range (R/S))

i Imaginary number, i2 = –1

k Frequency index, 1 B k B N/2

l Segment length

L Likelihood function

L Time series length for the construction of fractional noises and motions
(see Appendices 1–4)
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Table 1 continued

Symbol Description

m Segment index

nt t-th element of a white noise, n1, n2, …, nN

N Number of values in a time series

P Non-cumulative probability density

PGaussian, Plog-normal, PLevy One-point probability density distributions with index giving
the family of distributions

P(A|B) Conditional probability of A given B

R/S Rescaled range (R/S); R = range, S = standard deviation

RMSE Root-mean-squared error (Eq. 30)

S( f ) Power spectral density depending on the frequency f

Sk Periodogram (estimator of the power spectral density) depending
on the index k

st Aggregated time series

t Time, where time is used as an index of the data points, 1 B t B N

wt Coefficients of the window function, w1, w2, …, wN

W Normalized window function (Eq. 26b)

xt Time series, x1, x2, …, xN

�x Sample mean of the time series, x1, x2, …, xN

Xk Fourier transform coefficients Xk (k = 1, 2, …, N/2) of the time series,
xt (t = 1, 2, …, N)

Abbreviation
or acronym

Description

ACF Autocorrelation function

AE Auroral Electrojet

AR Autoregressive

ARFIMA Autoregressive fractional integrated moving average

ARMA Autoregressive moving average

CRB Cramér–Rao bound

DARFIMA Discontinuous ARFIMA

DFA Detrended fluctuation analysis

DFAk DFA with polynomials of order k applied to the profile. For example,
DFA1 is a linear fit to the profile.

DMA Detrended moving average

FARIMA Fractional autoregressive integrated moving average

FGN Fractional Gaussian noise

FLevyN Fractional Levy noise

FLNNa Fractional log-normal noise, constructed by Box–Cox transform

FLNNb Fractional log-normal noise, constructed by the Schreiber–Schmitz
algorithm

FFT Fast Fourier transform

GISP2 Greenland Ice Sheet Project Two

h Hour

MA Moving average
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parts per mil (parts per thousand or %). This measure is considered a proxy for Greenland

air temperature (Stuiver et al. 1995). The second time series (Fig. 1b) is daily discharge

from the Elkhorn River (USGS 2012) in Nebraska at Waterloo (USGS station 06800500)

with a drainage area of 17,800 km2 and for the 73 year period 1 January 1929 to 30

December 2001. The third time series (Fig. 1c) is the geomagnetic auroral electrojet index

(AE index) sampled per minute (Kyoto University 2012), both the original series (Fig. 1c)

and the first difference (Fig. 1d), and quantifies variations of the auroral zone horizontal

magnetic field activity (Davis and Sugiura 1966) of the Northern Hemisphere.

For each of the three time series in Fig. 1a,b,d are given the data in time (left) and their

respective probability densities and underlying probability distributions (right). Each time

series is equally spaced in time, with respective temporal spacing as follows: palaeotem-

perature D = 20 years, river discharge D = 1 day, and AE index D = 1 min (minute).

However, the visual appearance when the three time series are compared is different. These

‘time impressions’ rely on the statistical frequency-size distribution of values (how many

values at a given size) and the correlation between those values (how successive values

cluster together, or the memory in the time series).

Visual examination of the probability distributions (Fig. 1, right) of the three time series

confirms that they capture what we see in the time series (left) and provides some insight

into their statistical character. The distribution of values in the time series xtemp (Fig. 1a) is

broadly symmetric—with a mean value at about -34.8 [per mil] and with few extremes

lower than -36 [per mil] or greater than -34 [per mil]. We see an underlying probability

distribution that is symmetric, and most likely Gaussian.

The river discharge series shown in Fig. 1b consists of positive values 0 B xdischarge B

2,656 m3 s-1. Note that two values are larger than 1,500 m3 s-1 and not shown on the

graph. Its underlying probability distribution shown to the right is highly asymmetric; in

other words, there are very few very large values (xdischarge [ 500 m3 s-1) and many

smaller values, a distribution with a long tail of larger values on the right-hand side. This

distribution can be approximated by a log-normal distribution.

The differenced AE index DxAE series presented in Fig. 1d has values between -120

and 140 [W min-2] and is approximately symmetric around zero. Despite its symmetry, its

underlying probability distribution is different from the Gaussian-like distributed palaeo-

temperature series xtemp presented in Fig. 1a. Here, the fraction of values in the centre and

at the very tails of the distribution is larger, showing double-sided power-law behaviour

of the probability distribution (Pinto et al. 2012). These probability densities can be

approximated by a Levy probability distribution.

While correlations within each of the three types of geophysical time series given in

Fig. 1 (left) are more difficult to compare visually, all three time series exhibit some

Table 1 continued

Abbreviation
or acronym

Description

max Maximum

min Minute (units)

min Minimum

MLE Maximum likelihood estimator or maximum likelihood estimation

PSA Power spectral analysis

Std Dev Standard deviation
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persistence: large values tend to follow large ones, and small values tend to follow small

ones. The relative ordering of small, medium, and large values creates clusters (or lack of

clusters) which we can make some attempts to observe visually. The palaeotemperature

series (Fig. 1a) appears to have small clusters, contrasting with the discharge series

(Fig. 1b) and the differenced AE index series (Fig. 1d), which appear to have larger

clusters. One might argue, although it is difficult to do this visually, that the latter two time

series therefore exhibit a higher ‘strength’ of persistence. Measures for quantifying per-

sistence strength will be introduced formally in Sect. 3.1. We can also look at the
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Fig. 1 Three examples of geophysical time series exhibiting long-range persistence. a Bi-decadal oxygen
isotope data set d18O (proxy for palaeotemperature) from Greenland Ice Sheet Project Two (GISP2) for the
last 10,000 years (Stuiver et al. 1995), with 500 values given at 20 year intervals. b Discharge of the Elkhorn
river (at Waterloo, Nebraska, USA) sampled daily for the period from 01 January 1929 to 30 December
2001 (USGS 2012). c The geomagnetic auroral electrojet (AE) index sampled per minute for the 24 h period
of 01 February 1978 (Kyoto University 2012). d The differenced AE index, DxAEðtÞ ¼ xAEðtÞ � xAEðt � 1Þ
from (c), with D = 1 min; note that the units of DxAE are the units of xAE divided by minutes. To the right of
each time series are given the normalized histograms of the data sets with best-fitting models for one-point
probability densities, with those probabilities corresponding to (a) and (b) on a linear axis, and (d) the
probability given on a logarithmic axis
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roughness or ‘noisiness’ of the time series. The palaeotemperature series (Fig. 1a) appears

to have the most scatter followed by the river discharge (Fig. 1b) and the differenced AE

index (Fig. 1d), although, again, it is difficult to compare these visually, between clearly

very different types of time series. These considerations show that it is sometimes difficult

to grasp the strength of persistence visually from the time series itself.

One method commonly used (e.g., Tukey 1977; Andrienko and Andrienko 2005) to

examine correlations between pairs of values at lag s for a given time series is to plot xt?s

on the y-axis and xt on the x-axis, in other words lagged scatter plots. In Fig. 2, we give

lagged scatter plots of the three geophysical time series shown in Fig. 1, each shown for

lag s = 1 (with units depending on the respective units of each time series). The resultant

graphs give a measure of the dependence on the preceding values, with overall positive

correlation given by a positive diagonal line. The ellipse-shaped scatter plots in Fig. 2b,c

indicate correlations, whereas the scatter in Fig. 2a,d indicates much less dependence of a

given value on its preceding value (i.e. less correlation for a lag s = 1). However, one

could consider other lags (e.g., instead of a lag of 1 day for the discharge, one might

consider a lag of 1 year) or consider a range of lags together, from short-range in time to

long-range. More quantitative techniques for considering the strength of correlations

(persistence) will be introduced in the next section (Sect. 3), where we formally define

persistence and persistence strength.
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Fig. 2 Lagged scatter plots of the three geophysical time series shown in Fig. 1. a Bi-decadal oxygen isotope
data set d18O (proxy for palaeotemperature). b Discharge of the Elkhorn river. c The geomagnetic auroral
electrojet (AE) index. d The differenced geomagnetic auroral electrojet index. For each time series from Fig. 1,
on the y-axis are shown xt?1 values and on the x-axis xt, giving their dependence on the preceding values
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3 Long-Range Persistence

In this section we first introduce a general quantitative description of correlations in the

context of the autocorrelation function and with examples from short-range persistent

models (Sect. 3.1). We then give a formal definition of long-range persistence along with a

discussion of stationarity (Sect. 3.2), examples of long-range persistent time series and

processes from the social and physical sciences (Sect. 3.3), a discussion of asymptotic

long-range persistence versus self-affinity (Sect. 3.4), and a brief theoretical overview of

white noise and Brownian motion (Sect. 3.5) and conclude with a discussion and overview

of fractional noises and motions (Sect. 3.6).

3.1 Correlations

As introduced in Sects. 1 and 2, correlations describe the statistical dependence of directly

and distantly neighboured values in a process. These statistical dependencies can be

assessed in many different ways, including joint probability distributions between neigh-

bouring values that are separated by a given lag and quantitative measures for the strength

of interdependence, such as mutual information (e.g., Shannon and Weaver 1949) or

correlation coefficients (e.g., Matheron 1963). In the statistical modelling of time series

(realizations of a process), two types of correlations (persistence) can be considered:

1. Short-range correlations where values are correlated to other values that are in a close

temporal neighbourhood with one another, that is, values are correlated with one

another at short lags in time (Priestley 1981; Box et al. 1994).

2. Long-range correlations where all or almost all values are correlated with one another,

that is, values are correlated with one another at very long lags in time (Beran 1994;

Taqqu and Samorodnitsky 1992).

Persistence is where large values tend to follow large ones, and small values tend to

follow small ones, on average more of the time than if the time series were uncorrelated.

This contrasts with anti-persistence, where large values tend to follow small ones and small

values large ones. For both persistence and anti-persistence, one can have a strength that

varies from weak to very strong. We will consider in this paper models (processes) for both

persistence and anti-persistence.

One technique by which the persistence (or anti-persistence) of a time series can be

quantified is the autocorrelation function. The autocorrelation function C(s), for a given

lag s, is defined as follows (Box et al. 1994):

C sð Þ ¼ 1

r2
x

1

N � s

XN�s

t¼1

ðxt � �xÞðxtþs � �xÞ ð3Þ

where again �x is the sample mean, r2
x the sample variance (Eq. 1), and N the number of

values in the time series. Here one multiples a given value of the time series xt (mean

removed) with the value xt?s (mean removed), for s steps later (the lag), sums them up, and

then normalizes appropriately. The autocorrelation function of a process is the ensemble

average of the autocorrelation function applied to each of many time series (realizations of

the process).

For zero lag (s = 0 in Eq. 3), and using the definition for variance (Eq. 1), the auto-

correlation function is C(0) = 1.0. For processes considered in this paper, we find that as

the lag, s, increases, s = 1, 2, …, (N - 1), the autocorrelation function C(s) decreases and
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the correlation between xt?s and xt decreases. Positive values of C(s) indicate persistence,

negative values indicate anti-persistence, and zero values indicate no correlation. Various

statistical tests exist (e.g., the QK statistic, Box and Pierce 1970) that take into account the

sample size of the time series, and values of C(s) for those s calculated, to determine the

significance of rejecting the time series as being correlated. A plot of C(s) versus s is

known as a correlogram. A rapid decay of the correlogram indicates short-range corre-

lations, and a slow decay indicates long-range correlations.

A number of fields use time series models based on short-range persistence (e.g.,

hydrology, Bras and Rodriguez-Iturbe 1993). As an illustration of the autocorrelation

function, we will apply it to a short-range persistent model. Several empirical models have

been used to generate time series with short-range correlations (persistence) (Thomas and

Hugget 1980; Box et al. 1994). Here we use the AR(1) (autoregressive order 1) process

introduced in Eq. (2). In Fig. 3 we give four realizations of an AR(1) process for four

different values of the constant /1 = 0.0, 0.2, 0.4, 0.8. With increasing values of /1, the

persistence (and clustering) becomes stronger, as evidenced by large values becoming

more likely to follow large ones, and small values followed by small ones; we also observe

for increasing /1 that the variance of the values in each realization increases. We apply the

autocorrelation function C(s) (Eq. 3) to each time series given in Fig. 3 and give the

resulting correlograms in Fig. 4.

The absolute value of the autocorrelation function for short-range correlations is

bounded by an exponential decay (Beran 1994):

C sð Þj j �j0 exp �jsð Þ; ð4Þ
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parameter /1 changing from top to bottom as indicated in the figure panels. In each case, the white noise et

used in Eq. (2) has mean 0 and standard deviation 1
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where j0 and j are constants. For an AR(1) process (Eq. 2), if we let j0 = 1 and

exp �jð Þ ¼ /1 in Eq. (4), with -1 \/ \ 1 (a condition for the process to be stationary),

then, at lag s, the autocorrelation function of the AR(1) process can be shown to be (Box

et al. 1994; Swan and Sandilands 1995):

C sð Þ ¼ /s
1: ð5Þ

We plot this autocorrelation function of the AR(1) process (Eq. 5) in Fig. 4 (dashed lines)

and find excellent agreement with each of the four realizations.

Other examples of empirical models for short-range persistence in time series include

the moving average (MA) model and the combination of the AR and MA models to create

the ARMA model. Reviews of many of these models are given in Box et al. (1994) and

Chatfield (1996). There are many applications of short-range persistent models in the social

and physical sciences, ranging from river flows (e.g., Salas 1993), and ecology (e.g., Ives

et al. 2010) to telecommunication networks (e.g., Adas 1997).

As a further example of the autocorrelation function applied to time series, in Fig. 5, we

show the correlogram of the three geophysical time series discussed in Sect. 2 (see Fig. 1).

The autocorrelation functions shown in Fig. 5a (palaeotemperature) and Fig. 5b (river

discharge) decay slowly to zero over dozens of lag values and thus indicate correlations.

One potential indication of long-range versus short-range correlations is in its slow decay

rate. We will find later (Sect. 10) that these correlations are in fact long-range, but for the

moment, visually, this conclusion cannot be made. The autocorrelation function of the

river discharge time series shown in Fig. 5b shows additional periodic components which
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reflect the seasonal character of the time series. In Fig. 5c (differenced AE index) the

autocorrelation function does not show correlations; in Sect. 10 we will evaluate whether

there is any long-range anti-persistence in the time series, but again, visually, we cannot

make this conclusion at this point. We now introduce more formally and generally long-

range persistence.

3.2 Formal Definition of Long-range Persistence

Long-range persistence is a common property of records of the variation of spatially or

temporarily aggregated variables (Beran 1994). In contrast to short-range persistent pro-

cesses, a long-range persistent process exhibits a power-law scaling of the autocorrelation

function (Eq. 3) such that (Beran 1994, p. 64)

CðsÞj j � s�ð1�bÞ; s!1;�1\b\1; ð6Þ

holds for large time lags s. This is a formal definition of long-range persistence. The

parameter b is the strength of long-range persistence, with b = 0 a process that has no

long-range persistence between values, b [ 0 long-range persistence, and b\ 0 long-

range anti-persistence. We will discuss the parameter b in more detail in Sect. 3.4. The

autocorrelation function is, however, limited over the range with which it can evaluate the
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long-range persistence strength of a process (if it is long range), -1 \b\ 1. We therefore

turn to the spectral domain, for a definition which holds for a larger range of b.

In the spectral domain, the power spectral density, S, measures the frequency content of

a process. Over many realizations, approaching N very large, the average measured S at a

given frequency will approach the actual processes’ power at that frequency. To avoid a

detailed technical explanation here, we will discuss in depth the calculation of S, which is

based on the Fourier transform, in Sect. 6. A process can be defined as long-range per-

sistent if S (averaged over multiple realizations) scales asymptotically as a power law for

frequencies close to the origin ( f ? 0) (Beran 1994):

S fð Þ� f�b; ð7Þ

where the power-law exponent, b, measures the strength of persistence. Averaged over

many realizations, the power spectral density of the process will approach a scatter-free

power-law curve as the number of realizations increases to large numbers.

Another way to define long-range persistence is in terms of the square of the fluctuation

function, F2 (Peng et al. 1992):

F2 lð Þ ¼ 1

N=l½ �
XN=l½ ��1

i¼0

r2 xilþ1; xilþ2; . . .; xilþl½ � ð8Þ

obtained by dividing the time series xt into non-overlapping segments of length l (l \ N),

and for each successive segment calculating the variance of the xt values, r2
x , and then

taking the mean, r2
x . The square brackets in r2[ ] indicate taking the variance over the

terms in the bracket. The variables l and N are always integers. In the summation range, for

the case that N/l is non-integer, we take the largest integer that is less than N/l, which is

noted in Eq. (8) by [N/l]. For the cases of a long-range persistent time series with b[ 1 the

power-law shape of the power spectral density (Eq. 7) is equivalent to a power-law scaling

of the fluctuation function (Peng et al. 1992):

F lð Þ� lð Þa; ð9Þ

with a = 0.5. Equation (9) holds in the limit of large segment lengths l (and only for those

time series with b[ 1). The strength of long-range persistence, b, is related to the scaling

parameter of the fluctuation function, a, as b = 2a ? 1. To make this concept applicable

for time series with a strength of long-range persistence b\ 1, the aggregated series (also

known as the running sum or integrated series, see Sect. 3.5) of the time series can be

analysed, but this method works well only in the case of large number of values in the time

series, N (Taqqu 1975; Mandelbrot 1999). When aggregating a time series with ‘smaller’

N, which is the case for most time series being examined in the Earth Sciences, then one

must take care that the one-point probability distribution is quasi-symmetrical (e.g.,

Gaussian, Levy) (Mandelbrot and van Ness 1968; Samorodnitsky and Taqqu 1994).

One important aspect of a time series is the stationarity of its underlying process (Witt

et al. 1998). A process is said to be strictly stationary if all moments (e.g., mean value, �x;

variance, r2
x ; kurtosis) over multiple time series realizations do not change with time t and,

in particular, do not depend on the length of the considered time series. Second-order or

weak stationarity (Chatfield 1996) requires that the means and standard deviations for

different sections of a time series—again taken over multiple realizations (i.e. the process)

and for different section lengths—have autocorrelation functions that are approximately

the same.
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3.3 Long-Range Persistence in the Physical and Social Sciences

As discussed in the introduction (Sect. 1), long-range persistence has been quantified and

explored for many geophysical time series and processes. However, it is an important and

well-studied attribute for time series and processes in many other disciplines where per-

sistence-displaying patterns have been identified, for example:

• The 1/f behaviour of voltage and current amplitude fluctuations in electronic systems

modelled as a superposition of thermal noises (Schottky 1918; Johnson 1925; van der

Ziel 1950).

• Trajectories of tracer particles in hydrodynamic flows (Solomon et al. 1993) and in

granular material (Weeks et al. 2000).

• Condensed matter physics (Kogan 2008).

• Neurosciences (Linkenkaer-Hansen et al. 2001; Bédard et al. 2006).

• Econophysics (Mantegna and Stanley 2000).

In biology, long-range persistence has been identified in:

• Receptor systems (Bahar et al. 2001).

• Human gait (Hausdorff et al. 1996; Delignieres and Torre 2009).

• Human sensory motor control system (Cabrera and Milton 2002; Patzelt et al. 2007) and

human eye movements during spoken language comprehension (Stephen et al. 2009).

• Heart beat intervals (Kobayashi and Musha 1982; Peng et al. 1993a; Goldberger et al.

2002).

• Swimming behaviour of parasites (Uppaluri et al. 2011).

Furthermore, long-range persistence is typical for musical pitch, rhythms, and loudness

fluctuations (Voss and Clarke 1975; Jennings et al. 2004; Hennig et al. 2011; Levitin et al.

2012) and for dynamics on networks such as internet traffic (Leland et al. 1994; Willinger

et al. 1997). Long-range dependence is an established concept in describing stock market

prices (Lo 1991).

However, with the widespread identification of long-range persistence in physical and

social systems has come a concern by those (Rangarajan and Ding 2000; Maraun et al.

2004; Gao et al. 2006; Rust et al. 2008) who believe that long-range persistence has often

been incorrectly identified in time series, and who believe instead that many time series are

in fact short-range persistent. One part of the confusion surrounding the issue of short-

range versus long-range persistence is that of a frequent lack of knowledge as to the

process involved that drives the persistence. This can take the form of lack of knowledge of

underlying driving equations, physical process, or even a lack of understanding of the

variables in the system being studied.

Another major issue, which we explore in more detail in the following section, is the

semantics as to what we call long-range persistence. There are at least two ways of

thinking about long-range persistence, which we will call asymptotic long-range persis-

tence and self-affine long-range persistence. These are simply called ‘long-range persis-

tence’ in much of the literature and interchanged without the reader knowing which is

being addressed.

3.4 Asymptotic Long-Range Persistence Versus Self-Affinity

Asymptotic long-range persistence is the general case where the power-law scaling in

Eq. (7) holds in the limit f ? 0. Self-affine long-range persistence is the more specific
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case, where the scaling in Eq. (7) holds for all f, the power spectral density is now scale

invariant, and we call this a self-affine time series. In Fig. 6, we have drawn five cartoon

examples of the frequency-domain signature of time series, where power spectral density

S (Eq. 7) is given as a function of frequency f, on logarithmic axes. Self-affine behaviour

(i.e. power-law scaling over the entire frequency range) is presented by the black straight

line (a perfect power-law dependence). The other four curves demonstrate very different

examples of the power spectral densities scaling asymptotically with a power-law for small

frequencies (i.e. f ? 0). The orange dashed line demonstrates two scaling ranges and is

characterized by two corresponding power-law exponents.

In both the more general case of asymptotic long-range persistence (i.e. scaling only in

the limit f ? 0) and the less general case of self-affine time series (scaling for all f),

positive exponents b in Eq. (7) represent positive (long-range) persistence and negative

ones (b\ 0) anti-persistence. For the specific case of self-affine long-range persistence, a

value of b = 0 is an uncorrelated time series (e.g., a white noise), and a value of b = 1 is

known also as a 1/f or pink or flicker noise (Schottky 1918; Mandelbrot and van Ness 1968;

Keshner 1982; Bak et al. 1987). Various colour names are used to refer to different

strengths of long-range persistence, with some confusion in both the grey (e.g., internet)

and peer-reviewed literature as to (1) whether the names referred to for some specific

strengths of persistence are for asymptotic long-range persistence or the more specific self-

affine case and (2) the specific colour names used for a given strength of persistence. A

general survey gives the following colour names for different strengths of long-range

persistence (� = generally accepted terms in established literature sources or standards,

e.g., see ATIS 2000):
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Fig. 6 Cartoon sketch of power spectral densities of a self-affine and four other long-range persistent
processes. Self-affine behaviour (i.e. power-law scaling over the entire frequency range) is presented by the
black straight line (identified by equation and arrow). The other four examples (blue, red, orange, and green
dashed lines) represent cartoon examples of power spectral densities that scale asymptotically with a power
law for small frequencies, with the red dashed line (second from top) an asymptotic example superimposed
by a periodicity, and the orange dashed line (third from top) demonstrating two scaling ranges that are
characterized by two corresponding power-law exponents
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Brown noise is the result of a Brownian motion process which we discuss further below

and which we have referred to as simply ‘Brownian motion’ in this paper.

For the general asymptotic case (scaling in the limit f ? 0), a value of b = 0 stands for

short-range persistence (Beran 1994). This type of persistence is typical for such linear

stochastic processes as moving average (MA) or autoregressive (AR) processes (Priestley

1981) and is also known under the names of blue, pink, or red noise (Hasselmann 1976;

Kurths and Herzel 1987; Box et al. 1994). However, there is different usage of colour

names by different authors in the literature as to the specific type of short-range persistence

being referred to. In addition, colours like ‘pink’ and ‘red’ have one meaning for short-

range persistence (e.g., any increase in power in the lower frequencies) and another for

long-range (a strength of long-range persistence of b = 1 and 2, for pink and red,

respectively). This has caused a bit of confusion between different groups of researchers in

terms of false assumptions as to the specific kind of process (e.g., short-range vs. long-

range) being explored based on the terminology used. We now discuss white noises and

Brownian motion.

3.5 White Noises and Brownian Motions

A Gaussian white noise is a classic example of a stationary process, with a mean �x and a

variance r2
x of the values specified. A realization of a Gaussian white noise is shown in

Fig. 7a. In this time series, the values are uncorrelated with one another, with an equal

likelihood at each time step of a value being larger or smaller than the preceding value. The

autocorrelation function (Eq. 3) for a Gaussian white noise is C(s) = 0 for all lags s [ 0.

Other one-point probability distributions can also be considered. For example, in Fig. 7b,c,

respectively, are given a realization of a log-normal and a Levy-distributed white noise. In

Sect. 4 we will examine in more detail the Gaussian, log-normal, and Levy one-point

probability distributions. These uncorrelated time series (white noises) will provide the basis

for the construction of fractional noises and motions that we will use as benchmarks for this

paper. Uncorrelated time series can also be created by many computer programs (e.g., Press

et al. 1994), using ‘random’ functions, but care must be taken that the time series are truly

uncorrelated and that the frequency-size distribution is specified. An example where these

issues are discussed in the context of landslide time series is given by Witt et al. 2010.

The classic example of a non-stationary process is a Brownian motion (Brown 1828;

Wang and Uhlenbeck 1945), which is obtained by summing a Gaussian white noise with

zero mean. Einstein (1905) showed that, for the motion of a molecule in a gas which

follows a Brownian motion, the mean square displacement grows linearly with the time of

observation. This corresponds to a scaling parameter of the fluctuation function (Eq. 9) of

a = 0.5 and consequently to a strength of long-range persistence of b = 2. Therefore, the

value b = 2 corresponds to Brownian motion and the theory of random walks (Brown

1828; Einstein 1905; Chandrasekhar 1943) and describes ‘ordinary’ diffusion. A Brownian

motion is an example of a self-affine long-range persistent process that has a strength of

b = -2.0 violet, purple

b = -1.0 blue�

b = 0.0 white�

b = 1.0 pink�, flicker�

b = 2.0 brown�, red�

b[ 2.0 black
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persistence that is very strong. Persistence strength b with b = 2 characterizes ‘anoma-

lous’ diffusion with 1 \b\ 2 related to subdiffusion and b [ 2 to superdiffusion (Metzler

and Klafter 2000; Klafter and Sokolov 2005).

A Brownian motion process is given by multiple realizations of the aggregated time

series, st:

st ¼
Xt

i¼1

xi; ð10Þ

where xi is (in this case) our white (uncorrelated) noise, ei. These aggregated series are also

known as running sums, integrated series, or first profiles. The white noises illustrated in

Fig. 7a,b,c have been summed to give the Brownian motions in Fig. 7d.

The variance of a Brownian motion created from Gaussian or log-normal white noises,

after t values, is given by

r½st� ¼ rxtð Þ0:5; ð11Þ

where rx is the standard deviation of the white noise sequence. In Fig. 8a, we show the

superposition of 20 Brownian motions, each created from a realization of a Gaussian white

noise with mean zero and variance one. The fluctuations around zero grow with the time

index of the aggregated time series. The relation from Eq. (11) is included in the figure, as

the dashed line parabola, illustrating the drift of the Brownian motions. Brownian motions
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have no origin defined, and successive increments are uncorrelated. Shown in Fig. 8b,c,

respectively, are the multiple realizations of aggregates for log-normal and Levy-distrib-

uted white noises. For aggregated log-normal white noises, the fluctuations scale, on

average, following Eq. (11), but the same is not true for Levy noises, because a Levy noise

has no defined variance (discussed in more depth in Sect. 4). The heavy tails of the Levy

distribution in Fig. 7 lead in Fig. 8 to ‘jumps’ of the aggregated series.

3.6 Fractional Noises and Fractional Motions

In the last section we considered white noises and Brownian motions. Here, we consider

fractional noises and fractional motions. Applying our definition of (weak) stationarity

given in Sect. 3.2, an asymptotic long-range persistent noise (scaling in the limit f ? 0)

is a (weakly) stationary time series if the strength of persistence b\ 1 (Malamud and

Turcotte 1999b). We will refer to these long-range persistent weakly stationary (b \ 1)

time series as fractional noises. For stronger values of long-range persistence (b [ 1), the

means and standard deviation are no longer defined since they now depend on the length of

the series and the location in the time series. We will refer to these long-range persistent
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non-stationary (b [ 1) time series as fractional motions. The value b = 1 represents a

crossover value between (weakly) stationary and non-stationary processes, and between

fractional noises and motions; this value is sometimes considered a fractional noise or

motion, depending on the context. For very small values of the strength of long-range

persistence (b\ -1), the corresponding processes are unstable (Hosking 1981); these

processes cannot be represented as AR models (generalization of the process in Eq. 2 to

processes that incorporate more lags). In Sect. 4.2 we will construct and give examples

of both fractional noises and motions, but intuitively, as the value of b increases, the

contribution of the high-frequency (short-period) terms is reduced.

Just as previously we summed a Gaussian white noise with b = 0.0 to give a Brownian

motion with b = 2.0 (Fig. 7), one can also sum fractional Gaussian noises (e.g., b = 0.7)

to give fractional Brownian motions (e.g., b = 2.7), so that the running sum will result in a

time series with b shifted by ?2.0 (Malamud and Turcotte 1999a). This relationship is true

for any symmetrical frequency-size distribution (e.g., the Gaussian) and long-range per-

sistent time series. Analogous results hold for differencing a long-range persistent process

(e.g., the first difference of a fractional motion with b = 1.5 will have a value of b =

-0.5). However, for self-affine processes the aggregation and differencing results in

processes that are asymptotic long-range persistent but not self-affine (Beran 1994),

although our studies show that they are almost self-affine.

Another way of constructing long-range persistent processes is the superposition of

short-memory processes with suitably distributed autocorrelation parameters (Granger

1980). This has been used to give a physical explanation of the Hurst phenomenon of long

memory in river run-off (Mudelsee 2007). Eliazar and Klafter (2009) have applied two

similar approaches, the stationary superposition model and the dissipative superposition

model, to describe the dynamics of systems carrying heavy information traffic. The

resultant processes are Levy distributed and long-range persistent.

Both the general case of asymptotic long-range persistence (e.g., temperature records,

Eichner et al. 2003, see also Sects. 3.3 and 3.4 of this paper) and the more specific case of

self-affine long-range persistence (many examples will be given in subsequent sections) are

commonly identified in the Earth Sciences. In this paper, because self-affine time series are

commonly found in the Earth Sciences and many other disciplines, and widely examined

using a variety of techniques, we will restrict our analyses to them.

We will call the self-affine time series that we work with in this paper fractional noises.

We have above classified fractional noises as a process that is asymptotic long-range

persistent with b\ 1, and fractional motions as those with b [ 1. However, often in the

literature, the term fractional noises or noises is used more generically, referring to an

asymptotic long-range persistent time series with any value of b. We will try to take care to

distinguish in this paper between fractional noises (b\ 1) and motions (b [ 1), but

occasionally will use the more generic term ‘noises’ (or even sometimes ‘fractional

noises’) to indicate the more general case (all b).

Several techniques and their associated estimators or measures for evaluating long-

range persistence in a time series have been proposed. Most of them exploit the properties

of long-range dependent time series as described in this section (in particular Eqs. 6, 7, 9).

However, these techniques often do not perform hypothesis tests for or against long-range

persistence (see Davies and Harte 1987 for an example where hypothesis tests are per-

formed). Rather, all the techniques that will be discussed in this paper assume that the

considered time series is long-range persistent, then they proceed to determine the strength

of persistence. In this paper, we propose to provide a more rigorous grounding for the
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quantification of self-affine long-range persistence in time series and will use both existing

‘conventional’ techniques and benchmark-based improvement techniques.

In examining some of the different techniques and measures for quantifying long-range

persistence, we will distinguish between techniques in the time domain (Sect. 5) and the

frequency domain (Sect. 6). Five techniques will be discussed in detail: (1) (time domain

techniques) Hurst rescaled range (R/S) analysis, semivariogram analysis, and detrended

fluctuation analysis; and (2) (spectral domain techniques) power spectral analysis using

both log-linear regression and maximum likelihood. To measure the performance of these

techniques, we will apply them to a suite of synthetic fractional noise time series, the

construction of which we now describe (Sect. 4).

4 Synthetic Fractional Noises and Motions

In this section we will first describe common techniques for the construction of fractional

noises and motions that are commonly found in the literature (Sect. 4.1), and then intro-

duce the extensive fractional noises and motions that we use in this paper (Sect. 4.2). We

will conclude with a brief presentation of the fractional noises and motions that we include

in the supplementary material, both as text files and R programs (Sect. 4.3). Accompanying

this section are Appendices 1–4 which give more detailed specifics as to construction of

our synthetic fractional noises and motions.

4.1 Common Techniques for Constructing Fractional Noises and Motions

There are different approaches for creating long-range dependent time series with and

without short-range correlations and also with and without distinct periodic components. In

each case, however, the time series come from a model or process with known properties

and defined strengths of persistence. We will use the subscript ‘model’ (e.g., bmodel) to

indicate that the process has given properties, and thus, the realizations of this process can

be used as ‘benchmark’ time series.

Three of the most commonly used models for constructing fractional noises are the

following:

(1) Self-affine fractional noises and motions (Schottky 1918; Dutta and Horn 1981;

Geisel et al. 1987; Bak et al. 1987). These are popular in the physical sciences

community and are constructed to have an exact power-law scaling of the power

spectral density (i.e. Eq. (7) holds for all f). These are constructed by inverse Fourier

filtering of a white noise (briefly explained in Sect. 4.2). In Appendix 1–4, we give a

detailed description about how to create realizations of this model, as used in this

paper. For this type of construction, the autocorrelation and fluctuation functions are

not self-affine, and instead scale asymptotically (Eqs. (6) and (9) hold asymptotically

for s ? ? and l ? ?, respectively).

(2) Self-similar processes (Mandelbrot and van Ness 1968; Embrechts and Maejima

2002). These constructed noises exhibit an exact power-law scaling of the fluctuation

function for Gaussian one-point probability distributions so that Eq. (9) holds for

all l. They exhibit an asymptotic scaling of the power spectral density (i.e. Eq. (7)

holds asymptotically for f ? 0), and have an autocorrelation function that scales

asymptotically with a power law (Eq. (6) holds for s ? ?).
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(3) Fractionally differenced noises (Granger and Joyeux 1980; Hosking 1981). These are

commonly used in the stochastic time series analysis community and are based on

infinite-order moving average processes whose coefficients can be represented as

binomial coefficients of fractal numbers. These fractional noises have an autocor-

relation function, power spectral density, and fluctuation function which scale

asymptotically with a power law (i.e. Eq. (6) as s ? ?, Eq. (7) as f ? 0, Eq. (9) as

l ? ?).

There are a variety of more complex models for creating a time series with long-range

persistence. These models depend on more parameters than just the strength of long-range

persistence. We describe some of these models below.

• Models which capture short- and long-range correlations (ARFIMA or FARIMA)

(Granger and Joyeux 1980; Hosking 1981; Beran 1994; Taqqu 2003). These can be

constructed as finite order moving average (MA) or autoregressive (AR) process with a

fractional noise as input.

• Models for time series which exhibit long-range persistence and ‘seasonality’ (i.e.

cyclicity) (Porter-Hudak 1990) or ‘periodicity’ (Montanari et al. 1999). These are based

on fractional differencing of noise elements which are lagged by multiples of the

assumed seasonal period.

• Generalized long-memory time series models (e.g., Brockwell 2005) where the

stochastic processes have time-dependent parameters and these parameters are long-

range dependent.

• Models for long-memory process with asymmetric (e.g., log-normal) one-point

probability distributions. Two examples of such models that describe long-range

persistence have been done for (1) varve glacial data (Palma and Zevallos 2011) and

(2) solar flare activity (Stanislavsky et al. 2009).

• Models for deterministic nonlinear systems at the edge between regularity and chaos

(onset of chaos, Schuster and Just 2005; intermittency, Manneville 1980), and

dynamics in Hamiltonian systems (Geisel et al. 1987). In this model class it is very

difficult to find examples with a broad variety and continuity of strengths of long-range

dependence, and the long-range persistence is true for only certain values of the

parameters.

• Multifractals (Hentschel and Procaccia 1983; Halsey et al. 1986; Chhabra and Jensen

1989) which depend on a continuum of parameters.

• Alternative constructs of stochastic fractals such as cartoon Brownian motion

(Mandelbrot 1999) and Weierstrass–Mandelbrot functions (Mandelbrot 1977; Berry

and Lewis 1980). These have three properties that make them unsuitable for the

performance tests applied in our paper (Sects. 5 and 6): (1) a complicated one-point

probability distribution, (2) non-equally spaced time series, and (3) multifractality.

• Alternative approaches for constructing time series which are approximately self-

similar and discussed by Koutsoyiannis (2002): multiple time scale fluctuations,

symmetric moving averages, and disaggregation.

For this paper, the only models of long-range persistence considered are self-affine

fractional noises and motions. These processes are constructed to model a given (1)

strength of long-range dependence and (2) one-point probability distribution. As previously

mentioned, these types of processes are discussed in detail in Schepers et al. (1992),

Gallant et al. (1994), Bassingthwaighte and Raymond (1995), Mehrabi et al. (1997), Wen

and Sinding-Larsen (1997), Pilgram and Kaplan (1998), Malamud and Turcotte (1999a),
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Heneghan and McDarby (2000), Weron (2001), Eke et al. (2002), Xu et al. (2005), and

Franzke et al. (2012).

Self-affine fractional noises and motions are characterized by their strength of persis-

tence and by their one-point probability distribution. In order to model time series with

symmetric distributions, the generated fractional noises and motions should be constructed

as realizations of linear stochastic processes and based on Gaussian or Levy-distributed

white noises, resulting in fractional noises and motions with different persistence strengths

which are also Gaussian or Levy distributed (Kolmogorov and Gnedenko 1954). In order

to model time series with asymmetric distributions (e.g., log-normal), one first generates

fractional Gaussian or Levy noises/motions, and then these need to be transformed. This is

accomplished with either of the following:

(1) Box–Cox transformation (Box and Cox 1964) which is applied to each element

of the fractional Gaussian or Levy noise/motion, that is, one transforms xt to f(xt),

t = 1, 2, …, N (for details, see Appendix 3).

(2) The Schreiber–Schmitz algorithm (Schreiber and Schmitz 1996) is an iterative-set

operation applied to the entire data series (for details, see Appendix 4).

Both of the above transformations change the one-point probability distribution of the

fractional noise or motion being considered; the Box–Cox transform keeps the rank order

of the elements, while the Schreiber–Schmitz algorithm maintains the linear correlations

(i.e. the power spectral density). The Schreiber–Schmitz algorithm is well known and

accepted in the physics and geophysics community whereas, in the hydrology community,

the Box–Cox transform is a preferred estimation since the resultant series appear more

visually similar to river discharge series.

4.2 Sets of Synthetic Fractional Noises and Motions Used in this Paper

To ‘benchmark’ the five estimation techniques described in Sects. 5 and 6, we have

constructed time series of length N = 64, 128, 256, ..., 131,072 with Gaussian, log-normal,

and Levy one-point probability distributions. Examples of these three theoretical distri-

butions are given in Fig. 9, and the equations for their probability densities as well as the

main properties are summarized in Table 2. These distributions were chosen for the fol-

lowing reasons:

(1) Gaussian distributions are symmetric, thin tailed, and the most commonly used basis

for synthetic fractional noises in the literature; they are also the base for the derivation

of fractional noises with other thin-tailed probability distributions.

(2) Log-normal distributions are asymmetric, thin-tailed, but like many natural time

series (e.g., river flow, sediment varve thicknesses) have only positive values.

(3) Levy distributions are symmetric and heavy-tailed (i.e. the one-point probability

distribution approaches a power law for large negative and positive values). Such

heavy-tailed distributions are good approximations for the frequency-size statistics of

a number of natural hazards (Malamud 2004). These include asteroid impacts

(Chapman and Morrison 1994; Chapman 2004), earthquakes (Gutenberg and Richter

1954), forest fires (Malamud et al. 1998, 2005), landslides (Guzzetti et al. 2002;

Malamud et al. 2004; Rossi et al. 2010), and volcanic eruptions (Pyle 2000). Floods

(e.g., Malamud et al. 1996; Malamud and Turcotte 2006) have also been shown in

many cases to follow power-law distributions.
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The fractional noises and motions that we have constructed and used in our analyses are

as follows:

• One-point probability distributions: Gaussian, log-normal (coefficient of variation,

cv ¼ rx=�x ¼ 0:0; 0:2; . . .; 2:0), and (symmetric and centred) Levy distributions

(exponent a = 1.0, 1.1, …, 2.0). The log-normal and Levy distributions reduce to

Gaussian for cv = 0 and a = 2, respectively. The log-normal distributions were

constructed using two different techniques, Box–Cox transform and Schreiber–Schmitz

algorithm. The parameter cv is a measure of the skewness of a distribution, but only

where that distribution is asymmetrically distributed, such as a log-normal distribution.

One can compare the cv of one distribution to another, but only if that distribution has

the same underlying statistical family.

• Strengths of long-range persistence: -1.0 B bmodel B 4.0, step size of 0.2 (i.e. 26

successive values of bmodel).

• Length of time series: The time series were realized 100 times for a given bmodel and

constructed with N = 4,096 and then subdivided to also have N = 2,048, 1,024, and

512. These four time series lengths are focussed on in the main body of this paper.
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However, a further eight noise and motion lengths (N = 64, 128, 256, 8,192, 16,384,

32,768, 65,536, and 131,072) were also constructed, with results presented in the

supplementary material.

For each set of 100 time series consisting of (distribution type, modelled persistence

strength bmodel, time series length N), we applied three time domain and two frequency-

domain techniques, introduced in Sects. 5 and 6, respectively, to obtain an estimate of the

strength of long-range persistence. The time domain techniques applied are (1) Hurst

rescaled range (R/S), (2) semivariogram, and (3) detrended fluctuation analysis. The

frequency-domain techniques applied are (1) power spectral analysis using log-periodo-

gram regression and (2) power spectral analysis using a maximum likelihood estimator

(MLE), the Whittle estimator.

All fractional noises and motions with Gaussian or Levy one-point probability density

have been constructed by inverse Fourier filtering of white noises (Appendices 1 and 2)

(Theiler et al. 1992; Timmer and König 1995; Malamud and Turcotte 1999a), which for

-1 B b B 1 and large N results in fractional noises with the same one-point probability

distribution as the white noise. Inverse Fourier filtering requires the multiplication of the

Fourier image of a white noise with a real-valued filter function (in our case a power law)

followed by an inverse Fourier transform. The construction of synthetic log-normal

distributed fractional noises and motions is more complicated because of the asymmetric

Table 2 Table of one-point probability distributions and their properties used for the construction of
fractional noises and motions

Probability
distribution

Gaussian Levy Log-normal

One-point
probability
distribution

PðxÞ ¼ 1ffiffiffiffiffiffiffiffi
2pr2
p e

� x�lð Þ2

2r2
Closed expressions are only known for

(Zolotarev 1986): a = 1.0 (Cauchy
distribution), 1.5 (Holtsmark
distribution), 2.0 (Gaussian
distribution, see previous column)

PðxÞ ¼ 1

x
ffiffiffiffiffiffiffiffi
2pr2
p e

� ln x�lð Þ2

2r2

Range –?\ x \? –?\ x \? 0 B x \?

Parameters l: mean value
(–?\ l\?)
r: standard

deviation (r[ 0)

a: exponent
(1 B a B 2)

l: mean value of the
logarithm of the time
series values xt,
1 B t B N
(–?\l\?)

r: standard deviation of
the logarithm of the time
series values (r[ 0)

Mean value �x ¼ l �x ¼ 0 �x ¼ elþ1
2
r2

Standard
deviation

rx ¼ r Not defined rx ¼ elþ1
2
r2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er2 � 1
p

Symmetry
properties

Symmetric with
respect to x = l

Symmetric with respect to x = 0 Asymmetric with the
coefficient of variation:

cv ¼ rx

�x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
er2 � 1
p

Tail
properties

Thin-tailed Heavy-tailed: P xð Þ� 1

xj jaþ1 for

|x| ? ?, the smaller the exponent a,
the heavier the tail

Thin-tailed

Comments Collapses to a Gaussian for
a ? 2

Collapses to a Gaussian for
cv ? 0
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one-point probability distribution (Venema et al. 2006). We put two approaches into

action: (1) fractional Gaussian noises and motions were Box–Cox transformed (Appendix

3), and (2) an iterative algorithm (Schreiber–Schmitz algorithm, Appendix 4) was applied

that allows us to prescribe the power spectral density and the one-point probability dis-

tribution. Realizations with 512 values each are presented for synthetic fractional Gaussian

noises and motions (FGN, Fig. 10), synthetic fractional Levy noises and motions (FLevyN,

Fig. 11), synthetic fractional log-normal noises and motions using the Box–Cox transform

(FLNNa, Fig. 12), and synthetic fractional log-normal noises and motions using the

Schreiber–Schmitz algorithm (FLNNb, Fig. 13). Note that all fractional noises and motions

are normalized to have a mean value of zero and a standard deviation of one.

In Figs. 10, 11, 12, 13, each figure represents a different one-point probability distri-

bution, and b (the strength of long-range persistence) increases from -1.0 to 2.5, reducing

the contribution of the high-frequency (short-period) terms. For b\ 0 (anti-persistence),

the high-frequency contributions dominate over the low-frequency ones; adjacent values

are thus anti-correlated relative to a white noise (b = 0). For these realizations of anti-

persistent processes, a value larger than the mean tends to be followed by a value smaller

than the mean. With b = 0 (white noise), high-frequency and low-frequency contributions

are equal, resulting in an uncorrelated time series; adjacent values have no correlations

with one another, and there is equal likelihood of a small or large value (relative to the
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Fig. 10 Examples of synthetic fractional Gaussian noises and motions (FGN) (Sect. 4.2) (see Appendix 1)
with different modelled strengths of long-range persistence, bmodel. The presented data series, which have
N = 512 elements each, are normalized to have a mean value of zero and a standard deviation of one
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mean) occurring. For b [ 0, and as b gets larger, the low-frequency contributions

increasingly dominate over the high-frequency ones; the adjacent values become more

strongly correlated, and the time series profiles become increasingly smoothed. The

strength of persistence increases, and a value larger than the mean tends to be followed by

another value larger than the then mean. As the persistence increases, the tendency for

large to be followed by large (and small to be followed by small) becomes greater,

manifesting itself in a clustering of large values and clustering of small values. In Sect. 5

we explore different techniques for measuring the strength of long-range persistence.

4.3 Fractional Noises and Motions: Description of Supplementary Material

As an aid to the reader, we provide the following in the supplementary material:

(1) Sample fractional noises and motions in tab-delimited text files. A zipped file which

contains three folders:

• FGaussianNoise contains fractional Gaussian noises.

• FLogNormalNoise contains fractional log-normal noises constructed using the

Box–Cox transform.

• FLevyNoise contains fractional Levy noises.
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Fig. 11 Examples of synthetic fractional Levy noises and motions (FLevyN) (Sect. 4.2) (see Appendix 2)
with different modelled strengths of long-range persistence, bmodel. The presented data series, which have
N = 512 elements each, are normalized to have a mean value of zero and a standard deviation of one
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The folders FLogNormalNoise and FLevyNoise have further subfolders for coefficient

of variation cv = 0.2, 0.5, 1.0 that characterizes the log-normal shape, or for the exponent

a = 0.85, 1.50 that characterizes the shape of the heavy tails of Levy distributions. Each

file is related to a certain strength of persistence, b, and to a certain parameter setting for

the 1D probability distribution. The strength of persistence ranges from b = –1.0 to 3.0

with sampling steps of Db = 0.2. The parameters that characterize the fractional noise or

motion are identified in the name of each file. Each file contains ten realizations of

fractional noises with N = 4,096 elements each in accordance with the parameter settings.

All fractional Gaussian and log-normal noises are constructed from the single set of ten

Gaussian white noises, and all fractional Levy noises are constructed from the single set of

ten white Levy noises. There are 126 files contained within all the subfolders, in other

words 1,260 ‘short’ (N = 4,096 values) fractional noises and motions.

(2) R program. We give a commented R program that we use to create the synthetic

noises and motions in this paper.
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Fig. 12 Examples of synthetic fractional log-normal noises and motions (FLNNa) (Sect. 4.2) (constructed by
Box–Cox transform (see Appendix 3)) with different modelled strengths of long-range persistence, bmodel.
The presented data series have N = 512 elements each
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5 Time Domain Techniques for Measuring the Strength of Long-Range Persistence

There are a variety of time domain techniques for quantifying the strength of long-range

persistence in self-affine time series. Here, we first discuss two broad frameworks within

which these techniques are based (this introduction). We then discuss three techniques

that are commonly used, each based on a scaling behaviour of the dispersion of values in

the time domain as a function of different time length segments: (1) Hurst rescaled range

(R/S) analysis (Sect. 5.1); (2) semivariogram analysis (Sect. 5.2); and (3) detrended

fluctuation analysis (DFA) (Sect. 5.3). After this, we discuss (Sect. 5.4) other time

domain techniques.

Time domain techniques typically exploit the way that the statistical properties of the

original time series xt or the aggregated (summed) time series st (Eq. 10) vary as a function

of the length of different time series segments, l. A commonality to these techniques is that

they are all based on either (A) the mean correlation strength of lagged elements as a

function of the lag or (B) a power-law scaling of the dispersion of segments of the

aggregated series as a function of the segment length l. We can broadly group these
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techniques into the following subclasses based on A (correlation strength) and B (scaling).

We also note aggregation and non-aggregation of the original time series (h = technique

itself does not do any aggregation of the original time series, � = technique itself

aggregates the original time series):

(A) Autocorrelation functionh and (semi-)variogram analysish. These evaluate the

average dependence of lagged time series elements.

(B1) Methods which rely on the scaling of the variance of fractional noises and motions.

These are called variable bandwidth methods, scaled windowed variance methods,

or fluctuation analysis. The most common techniques in this class are Hurst

rescaled range analysis (R/S)� (Hurst 1951) and detrended fluctuation analysis

(DFA)� (Peng et al. 1994; Kantelhardt et al. 2001). We mention here three less

commonly used other techniques:

• The roughness-length techniqueh originally developed for use in the Earth

Sciences (Malinverno 1990) is identical to DFA where linear fits are applied to

the profile (called DFA1). In the roughness length, the ‘roughness’ is defined as

the root-mean-squared value of the residual on a linear trend over the length of

a given segment; since it is based on a ‘topographic’ profile, aggregating of the

time series is not needed.

• The detrended scaled windowed variance analysis� (Cannon et al. 1997) is

similar to DFA1; the absolute values of the data from aggregated time series

have been used in place of the variance, and the corresponding dependence on

the segment length is studied.

• Higuchi’s methodh (Higuchi 1988) evaluates the scaling relationship between

the mean normalized curve length of the coarse-grained time series (i.e. values

xkt are considered for a fixed value of k and t = 1, 2, …, N/k) and the chosen

sampling step (here k).

(B2) Dispersional analysish (Bassingthwaighte and Raymond 1995) analyses the scaling

of the variance of a time series that is coarse grained (averages of segments of equal

length are considered) as a function of the segment length. This is very similar to

relative dispersion analysish (Schepers et al. 1992) which describes the scaling of

the standard deviation divided by the mean.

(B3) Average extreme value analysish (Malamud and Turcotte 1999a) examines the

mean value of the extremes (minimum, maximum) as a function of segment length.

Although some techniques involve aggregation of the original time series as part of the

technique itself, and other techniques involve no aggregation of the time series, any of

the techniques can be applied to an aggregated (or first differenced) time series, as long

as the time series has a symmetrical one-point probability distribution. We saw this in

Sect. 3.6 that if one begins with a time series that has a symmetric one-point probability

distribution and a given b, then aggregation or the first difference of the original time series

results in a new time series with b shifted by ?2 (aggregation) or -2 (first difference).

However, care must be taken not to confuse aggregation of the original time series ‘before’

a technique has been applied (pre-processing the data) with aggregation that is done as a

standard part of the technique itself. Some of the techniques above are generally effective

(for the time series considered) only over a given range of strengths of long-range

persistence (Malamud and Turcotte 1999a; Kantelhardt et al. 2001):
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• autocorrelation (-1 B b B 1) (Sect. 3.1).

• Hurst rescaled range analysis (R/S) (-1 B b B 1) (Sect. 5.1).

• semivariogram analysis (1 B b B 3) (Sect. 5.2).

• detrended fluctuation analysis (DFA) (all b) (Sect. 5.3).

• [frequency-domain technique]: power spectral analysis (all b) (Sect. 6).

We will in Sect. 7 explore further the ranges for all of these techniques except the first one

(autocorrelation). One can always aggregate (or first difference) a time series to ‘place’ it

into a specific range of b where a given technique is effective, but as discussed above only

if that time series has a one-point probability distribution that is (close to) symmetrical.

Therefore, as part of pre-processing, a time series should not be aggregated (or differenced)

if it is, for example, log-normal distributed. The aggregation of time series has resulted in

confusion for some scientists who have aggregated a time series first, when it was not

appropriate, and then miscalculated their strength persistence in either direct by ?2 or -2.

In the next three sections (Sects. 5.1–5.3) we introduce the most common time domain

techniques in more detail.

5.1 Hurst Rescaled Range (R/S) Analysis

Historically, the first approach to the quantification of long-range persistence in a time

series was developed by Hurst (1951), who spent his life studying the hydrology of the Nile

River, in particular the record of floods and droughts. He considered a river flow as a time

series and determined the storage limits in an idealized reservoir. To better understand his

empirical data, he introduced rescaled range (R/S) analysis. The concept was developed at

a time (1) when computers were in their early stages so that calculations had to be done

manually and (2) before fractional noises or motions were introduced. Much of Hurst’s

work inspired later studies by Mandelbrot and others into self-affine time series (e.g.,

Mandelbrot and Van Ness 1968; Mandelbrot and Wallis 1968, 1969a, b, c). The use of

Hurst (R/S) analysis (and variations of it) is still popular and often applied (e.g., human

coordination, Chen et al. 1997; neural spike trains, Teich et al. 1997; plasma edge fluc-

tuations, Carreras et al. 1998; earthquakes, Yebang and Burton 2006; rainfall, Salomão

et al. 2009).

The Hurst (R/S) analysis first takes the original time series xt, t = 1, 2, …, N, and

aggregates it using the running sum (Eq. 10) to give st. This series is then divided into non-

overlapping segments of length l (l \ N). The mth segment contains the time series ele-

ments sðm�1Þlþt0 , t0 = 1, 2, …, l. The range Rm,l is used to describe the dispersion of these

values, looking at the maximum and minimum st values within each segment m of length l,

and is defined as:

Rm;l ¼ max s m�1ð Þlþ1; s m�1ð Þlþ2; . . .; s m�1ð Þlþl

� �
�min s m�1ð Þlþ1; s m�1ð Þlþ2; . . .; s m�1ð Þlþl

� �
:

ð12Þ

For each segment m of length l, the variance of the original xt values in that segment is

computed giving the standard deviation used in the (R/S) analysis:

Sm;l � rx x m�1ð Þlþ1; x m�1ð Þlþ2; . . .; x m�1ð Þlþl

� �
: ð13Þ

The square brackets rx[ ] indicate taking the standard deviation over the terms in the

bracket. Mean values of the range Rm,l and the standard deviation Sm,l for segments of

length l are determined:

572 Surv Geophys (2013) 34:541–651

123



Rl ¼ �Rm;l ¼
1

N=l½ �
XN=l½ �

m¼1

Rm;l and Sl ¼ �Sm;l ¼
1

N=l½ �
XN=l½ �

m¼1

Sm;l ð14Þ

where as we did in Eq. (8), if N/l is non-integer, we take the largest integer less than N/l,

noted here by [N/l]. For a fractional noise, the ratio, Rl/Sl, exhibits a power-law scaling as a

function of segment length l, with a power-law exponent called the Hurst exponent, Hu:

Rl

Sl

� �
� l

2

� �Hu

: ð15Þ

Although in the literature it is common to denote the Hurst exponent with the symbol H,

we use Hu here to avoid confusion with the Hausdorff exponent (also commonly called H,

but which we will denote by Ha and introduce in Sect. 5.2). Rescaled range analysis is

illustrated for a fractional log-normal noise with bmodel = 1.0 in Fig. 14a, where we have

plotted (R/S) as a function of (l), on logarithmic axes. The Hurst exponent Hu is related to

the strength of long-range persistence b as b = 2Hu-1 (Malamud and Turcotte 1999a).
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Fig. 14 Long-range dependence analysis of a fractional log-normal noise with a persistence strength
of bmodel = 1.0, a coefficient of variation of cv = 0.5 and N = 4,096 elements. The panels represent a
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In this paper, the Hurst exponent Hu is derived by computing the rescaled range for

segment lengths l = 8, 9, 10, 11, 12, 13, 14, 15, [24.0], [24.1], [24.2], [24.3], …, [N/4], where

the square bracket symbol [ ] denotes rounding down to the closest integer and N is the

length of the time series. The power-law exponent Hu from Eq. (15) is estimated by linear

regression of log(Rl/Sl) versus log(l/2). The errors here (fluctuations around the best-fit

line) are multiplicative and, therefore, we use linear regression of the log-transformed data

(vs. ordinary nonlinear regression of the data itself) as an unbiased estimate of the power-

law exponent. In Appendix 5 we discuss the choice of fitting technique used along with

simulations of the resultant bias when different techniques are considered. In addition to

Hurst (R/S), for three other techniques used in this paper (semivariogram, detrended

fluctuation, and power spectral analyses), we estimate the best-fit power law to a given set

of measured data by using a linear regression of the log-transformed data.

Hurst (R/S) analysis has been examined in many investigations (e.g., Bassingthwaighte

and Raymond 1994, 1995; Taqqu et al. 1995; Caccia et al. 1997; Cannon et al. 1997;

Pilgram and Kaplan 1998; Malamud and Turcotte 1999a; Weron 2001; Eke et al. 2002;

Mielniczuk and Wojdyłło 2007; Boutahar 2009). Through these studies, it has become

apparent that rescaled range analysis can lead to significantly biased results. In order to

diminish this problem, several modifications have been proposed, including the following:

• Anis–Lloyd correction (Anis and Lloyd 1976) is a correction term for Hu (see Eq. 15)

that compensates the bias caused by small values of the time series length N. It is

optimized for white noises (b = 0).

• Lo’s correction (Lo 1991) which incorporates the autocovariance.

• Detrending (Caccia et al. 1997).

• Bias correction (Mielniczuk and Wojdyłło 2007).

We will quantify the bias using rescaled range analyses, under a variety of conditions, in

our results (Sect. 7).

5.2 Semivariogram Analysis

In Sect. 3 we discussed that, in the case of a stationary fractional noise (-1 \b\ 1), there

is a power-law dependence of the autocorrelation function on lag, C(s) * s-m (Eq. 6),

with power-law coefficient m = 1 - b. However, it is difficult to use the autocorrelation

function for estimating the strength of long-range dependence b. This is because there are a

considerable number of negative values for the autocorrelation function C, and therefore, a

linear regression of the logarithm of autocorrelation function C(s) versus the logarithm of

the lag s is not possible. Finding the best-fit power-law function for C(s) as a function of s
comes with some technical difficulties (particularly compared to linear regression) such as

how to choose good initial values for m, and choosing appropriate weights and convergence

criteria for the nonlinear regression. Because our focus is on less technical methods, we did

not use the autocorrelation function to gain information about b.

For non-stationary fractional times series, in other words, fractional motions (b [ 1), it

is inappropriate to use the autocorrelation function, because C(s) (Eq. 3) has the mean, �x,

in its definition. An alternative way to measure long-range correlations is the semivario-

gram (Matheron 1963). The semivariogram, c(s), is given by

c sð Þ ¼ 1

2 N � sð Þ
XN�s

t¼1

xtþs � xtð Þ2; ð16Þ
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where s is the time lag between two values. Note that neither the sample mean, �x, nor the

sample variance, r2
x , is used in defining the semivariogram. For a fractional motion

(b[ 1), the semivariogram, c(s), scales with s, the lag,

c sð Þ� s2Ha; ð17Þ

where Ha is the Hausdorff exponent and Ha = (b - 1)/2 (Burrough 1981; Burrough 1983;

Mark and Aronson 1984). The Hausdorff exponent, Ha, is a measure of the strength of

long-range persistence for fractional motions for which 0 B Ha B 1. Semivariogram

analysis is illustrated for a fractional log-normal motion with bmodel = 1.0 in Fig. 14b.

Semivariogram analysis is widely applied in the geoscientific and ecologic communi-

ties; examples include the following:

• Landscapes (Burrough 1981).

• Soil variations (Burrough 1983).

• Rock joint profiles (Huang et al. 1992).

• Advective transport (Neuman 1995).

• Evaluation of different management systems on crop performance (Eghball and Varvel

1997).

In this paper, we have chosen for our semivariogram analysis values for lag s that are the

same as those used for lengths l in (R/S) analysis, as described in the previous section. This

is done to facilitate comparison between the different techniques. The Hausdorff exponent,

Ha, is the power-law exponent in Eq. (17) and derived by linear regression of the logarithm

of the semivariogram, log(c(s)), versus the logarithm of the lag, log(s) (see Appendix 5 for

discussion of the type of technique used for power-law fitting). General discussions of

methods used to estimate Ha and other persistence measures for time series have been

given by Schepers et al. (1992) and Schmittbuhl et al. (1995).

5.3 Detrended Fluctuation Analysis (DFA)

Detrended fluctuation analysis, like (R/S) analysis, is based on examining the aggregate

(running sum, Eq. 10) of the time series as a function of segment length and was intro-

duced as fluctuation analysis by Peng et al. (1994) for studying long-term correlations

in DNA sequences. Kantelhardt et al. (2001) improved on this technique by generalizing

the function through which the trend is modelled from linear to polynomial functions.

Detrended fluctuation analysis is very popular and has been applied to characterize long-

term correlations for time series in many different disciplines. Examples include the

following:

• DNA sequences (Peng et al. 1993b, 1994).

• Solar radio astronomy (Kurths et al. 1995).

• Heart rate variability (Peng et al. 1993a; Penzel et al. 2003).

• River run-off series (Koscielny-Bunde et al. 2006).

• Long-term weather records and simulations (Fraedrich and Blender 2003).

Fluctuation analysis (Sect. 3.3) is based on analyses of the original time series xt and

exploits the scaling properties of the fluctuation function (Eq. 9). Detrended fluctuation

analysis is based on analyses of the aggregate (running sum) st, and the idea is that there is

a trend superimposed on a given self-affine fractional noise or motion that must be taken

out (i.e. the signal should be detrended). For each segment, this trend is modelled as the
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best-fitting polynomial function with a given degree k. Then, the values in the mth segment

with length l, s m�1ð Þlþt0 ; t0 ¼ 1; 2; . . .; l, are detrended by subtracting the best-fit

polynomial function for that segment, p½k� m�1ð Þlþt0 ; t0 ¼ 1; 2; . . .; l. The detrended values

are ~s m�1ð Þlþt0 ¼ s m�1ð Þlþt0 � p½k� m�1ð Þlþt0 ; t0 ¼ 1; 2; . . .; l; and the square of the fluctuation of

the detrended segments of length l is evaluated in terms of their mean variance; similar to

Eq. (8) this gives:

F2
DFA lð Þ ¼ l

½N=l�
X½N=l��1

i¼0

r2 ~silþ1; ~silþ2; . . .; ~silþl½ �: ð18Þ

For Gaussian-distributed fractional noises and motions, the fluctuation function, FDFA, has

been mathematically shown (Taqqu et al. 1995) to scale with the length of the segments, l, as

F2
DFA lð Þ� lð Þ2a; ð19Þ

if the following conditions are fulfilled: (1) the segment length l and the time series length

N go to infinity, (2) the quotient l/N goes to zero, and (3) the polynomial order of

detrending is k = 1 (i.e. linear trends are subtracted). Hence, if the fluctuation is averaged

over all segments and if this averaged fluctuation is considered as a function of the segment

length l, for large segment lengths l the fluctuation approaches a power-law function with a

power-law scaling coefficient of a. Taqqu et al. (1995) further showed that the power-law

exponent in Eq. (19) is equivalent to (b ? 1), so that

a ¼ bþ 1ð Þ=2:
ð20Þ

The outcome of detrended fluctuation analysis depends on the degree of the polynomial

that models the underlying trend. If polynomials of order k are considered, then the

resultant estimate of the long-range dependence is called DFAk (e.g., DFA1, DFA2, and

DFA3). Detrended fluctuation analysis (DFA1 to DFA4) is illustrated for a fractional log-

normal noise with bmodel = 1.0 in Fig. 14c.

Several authors have discussed potential limitations of detrended fluctuation analysis

when applied to observational data that have attributes additional to that of just a ‘pure’

fractional noise or motion and a superimposed polynomial trend. For example, Hu et al.

(2001) showed that an underlying linear, periodic, or power-law trend in the signal leads to

a crossover behaviour (i.e. two scaling regimes with different exponents) in the scaling of

the fluctuation function. Chen et al. (2002) discussed properties of detrended fluctuation

analysis for different types of non-stationarity. In other studies, Chen et al. (2005) studied

the effects on detrended fluctuation analysis of nonlinear filtering of the time series.

Guerrero and Smith (2005) have proposed a maximum likelihood estimator that provides

confidence intervals for the estimated strength of long-range persistence. Marković and

Koch (2005) demonstrated that periodic trend removal is an important prerequisite for

detrended fluctuation analysis studies. Gao et al. (2006) and Maraun et al. (2004) have

discussed the misinterpretation of detrended fluctuation analysis results and how to avoid

pitfalls in the assessment of long-range persistence. Kantelhardt et al. (2003) have gen-

eralized the concept of detrended fluctuation analysis such that multifractal properties of

time series can be studied. Detrended moving average (DMA) analysis is very similar to

detrended fluctuation analysis, but the underlining trends are not assumed to be polynomial.

Within this paper, we restrict our studies to DFA2; in other words, quadratic trends are

removed. Further, we have applied the same set of segment lengths as for Hurst rescaled

range analysis (R/S): l = 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, [24.0], [24.1], [24.2], [24.3], …, [N/4],

where [ ] denotes rounding down to the closest integer and N is the length of the time series.
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This set of segment lengths was chosen carefully and optimized for DFA2, by balancing the

number of segment lengths to be (1) as high as possible to have a precise estimate for bDFA

and (2) as few as possible to have low computational costs. To further explore the segment

length set chosen, we contrasted analyses using our chosen set (l = 8, 9, 10, 11, 12, 13, 14,

15, [24.0], [24.1], [24.2], [24.3], …, [N/4]) versus a ‘complete’ set (l = 3, 4, 5, …, N/4). We

applied DFA2, using these two sets of segment lengths, on a fractional noise with strength of

long-range persistence b = 0.5 and time series lengths N = 512, 1,024, 2,048, or 4,096. We

found that the random error of the results from DFA2 using the segment length set chosen

was as small as for the complete set of segment lengths. In our final analyses, ordinary linear

regression (see Appendix 5) has been applied for the associated values of log(F2) versus

log(l), and the slope of the best-fit linear model gives a from which we obtain the long-range

persistence.

5.4 Other Time Domain Techniques for Examining Long-Range Persistence

Here we discuss two other time domain methods that can be used to examine long-range

persistence: (1) first-return and multi-return probability and (2) fractal geometry.

(1) First-return and multi-return probability methods. The timings of threshold crossings

are another feature sensitive to the strength of long-range dependence. The first-return

probability method (Hansen et al. 1994) considers a given ‘height’ of the y-axis,

which we will call h. It is based on the probability, conditional on starting at h, of

exceeding h after a time s (with no other crossing between t and t ? s). This

probability scales with h as a power law. Alternatively, a multi-return probability

(Schmittbuhl et al. 1995) can be studied (crossings between t and t ? s are allowed),

which also results in a power-law scaling for the dependence on the height h. Both

power-law exponents are related to the strength of long-range persistence, b. These

return probability methods work for the stationary case, that is, –1 \b \ 1, and for

thin-tailed one-point probability distributions. For heavy-tailed, one-point probability

distributions, the power-law exponent depends also on the tail parameter.

(2) Fractal geometry methods. These techniques are based on describing the fractal

geometry (fractal dimension) of the graph of a fractional noise. By definition, a self-

affine, long-range persistent time series (fractional noises and motions) has self-affine

fractal geometry, with fractal dimensions constrained between D = 1.0 (a straight

line) and 2.0 (space filling time series) (Mandelbrot 1985). The oldest of fractal

geometry methods is the divider/ruler method (Mandelbrot 1967; Cox and Wang

1993) that measures the length of the graph of a fractal curve either at different

resolutions or by walking a given length stick along the curve. The evaluated curve

length depends on the resolution/stick length, and the shorter the length of the stick

used, the longer the curve. The resultant power-law relationship of curve length as a

function of stick length results in a power-law exponent which is the fractal dimension

D or the strength of persistence b, respectively. However, appropriate care must be

taken, as the vertical and horizontal coordinates can scale differently (e.g., different

types of units). See Voss (1985) and Malamud and Turcotte (1999a) for discussion.

After appropriately adjusting the vertical and horizontal coordinates of the time series,

other fractal dimensions that are determined directly using geometric methods include

the box counting dimension, the correlation dimension (Grassberger and Procaccia

1983; Osborne and Provenzale 1989), and the Kaplan–Yorke dimension (Kaplan and

Yorke 1979; Wolf et al. 1985). Note that the application of different types of fractal
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dimensions to a time series leads to quantitatively different results: for instance, for a

fractional motion (1 \b\ 3), the divider/ruler dimension is Ddivider/ruler = (5 – b)/2

(Brown 1987; De Santis 1997), while the correlation dimension is Dcorr = 2/(b – 1)

(Theiler 1991), so one must be careful about ‘which’ dimension is being referred to. It

might be necessary to embed the time series into a higher-dimensional space (Takens

1981) in order to extract the dimension of the time series, which in this context is the

dimension of the attractor of the system from which the time series was measured. A

number of the fractal dimension estimate techniques that have been discussed in this

paragraph require very long and stationary time series.

We have in this section explored time domain techniques for measuring the strength of

long-range persistence. The major relationships between b and other power-law scaling

exponents (autocorrelation, rescaled range, semivariogram, and fluctuation function) are

summarized in Table 3. We will now consider frequency-domain techniques.

6 Frequency-domain Techniques for Measuring the Strength of Long-Range
Persistence: Power Spectral Analysis

It is common in the Earth Sciences and other disciplines to examine the strength of long-

range persistence in self-affine time series by first transforming the data from the time

domain into the frequency (spectral) domain, using techniques such as the Fourier, Hilbert,

or wavelet transforms. Here we will use the Fourier transform with two methods of

estimation.

6.1 The Fourier Transform and Power Spectral Density

The Fourier transformation Xk, k = 1, 2, …, N, of an equally spaced time series xt,

t = 1, 2, …, N, results in an equivalent representation of that time series in the frequency

domain. It is defined as:

Xk ¼ D
XN

t¼1

xte
2pitk=N ; k ¼ 1; 2; . . .;N; ð21Þ

where D is the length of the sampling interval (including units) between successive xt

and i is the square root of -1. The resultant Fourier coefficients Xk are complex numbers.

They are symmetric in the sense that Xk is the conjugate complex of XN-k. The Fourier

coefficients Xk, k = 1, 2, …, N, are associated with frequencies fk = k/(ND).

Table 3 Table of scaling exponents

Name and variable of the scaling
exponent

Function that exhibits power-law
scaling

Functional relationship
to b

m Autocorrelation function,
CðsÞj j � s�m

b = 1– m

Strength of long-range persistence, b Power spectral density, P(f) * f-b b = bPS

Hurst exponent, Hu Rescaled range, (R/S) * (l/2)Hu b = 2Hu – 1

Hausdorff exponent, Ha Semivariogram, c(l) * l2Ha b = 2Ha ? 1

a Fluctuation function, F2
DFA lð Þ * l2a b = 2a – 1
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The linear correlations of xt will be represented by the periodogram S (Priestley 1981):

Sk ¼
2 Xkj j2

ND
; k ¼ 1; 2; . . .;

N

2
; ð22Þ

with the complex coefficients Xk resulting from the discrete Fourier transform (Eq. 21) and

| | denoting the modulus. The periodogram is a frequently used estimator of the power

spectral density of the underlying process; in this paper we will not distinguish between the

terms ‘power spectral density’ and ‘periodogram’ and will use both synonymously. By

using fast Fourier transform (FFT) implementations such as the Cooley–Tukey algorithm

(Cooley and Tukey 1965), the power spectral density S can be computed with little

computational cost.

For a fractional (self-affine) noise, the power spectral density, Sk, has a power-law

dependence on the frequency for all fk (Beran 1994)

Sk � f
�b
k ; k ¼ 1; 2; . . .;

N

2
: ð23Þ

This is the same as Eq. (7) but for all f, not just the limit as f ? 0. The graph of S vs f is

also known as the periodogram (and sometimes called a spectral plot).

6.2 Detrending and Windowing

The discrete Fourier transform as defined in Eq. (21) is designed for ‘circular’ time series

(i.e. the last and first values in the time series ‘follow’ one another) (Percival and Walden

1993). In order to reduce non-desirable effects on the Fourier coefficients caused by the

large values of the absolute difference of the first and the last time series element, |xN – x1|,

which typically occurs for non-stationary time series and in particular for fractional

motions (b [ 1), detrending and windowing can be carried out. One example of these non-

desirable effects is spectral domain leakage (for a comprehensive discussion, see Priestley

1981; Percival and Walden 1993). Leakage is a term used to describe power associated

with frequencies that are non-integer k in Eq. (22) becoming distributed not only to their

own bin, but also ‘leaking’ into other bins. The resultant leakage can seriously bias the

resultant power spectral density distribution. To reduce this leakage we will both detrend

and window the original time series before doing a Fourier analysis.

Many statistical packages and books recommend removing the trend (detrending) and

removing the mean of a time series before performing a Fourier analysis. The mean of a

time series can be set equal to 0 and the variance normalized to 1; this will not affect the

resulting Fourier coefficients. However, detrending is controversial and, therefore, care

should be taken. One way of detrending (which we use here before applying Fourier

analysis) is to take the best-fit straight line to the time series and subtract it from all the

values. Another way of detrending is to connect a line from the first point and the last point

and subtract this line from the time series, forcing x0 = xN. If a time series shows a clear

linear trend, where the series appears to be closely scattered around a straight line, the

trend can be safely removed without affecting any but the lowest frequencies in the power

spectrum. However, if there is no clear trend, detrending can cause the statistics of the

periodogram (in particular the slope) to change.

Windowing (also called tapering, weighting, shading, and fading) involves multiplying

the N values of a time series, xt, t = 1, 2, …, N, by the N values of the ‘window’, wt,

t = 1, 2, …, N, before computing the Fourier transform. If wt = 1 for all t, then wt is a
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rectangular window and the original series is left unmodified. The window is normally

constructed to change gradually from zero to a maximum to zero as t goes from 1 to N.

Many books discuss the mechanics of how and which windows to use, including Press

et al. (1994) and Smith and Smith (1995). We apply a commonly used window, the Welch

window:

wt ¼ 1� t � ðN=2Þ
N=2

� �2

; t ¼ 1; 2; . . .;N: ð24Þ

An example of the Welch window applied to a fractional log-normal noise with a coef-

ficient of variation of cv = 0.5 and bmodel = 2.5 is given in Fig. 15. In Fig. 15a we show

the original time series and in Fig. 15b the Welch window (grey area) and the time series

after normalization (subtracting out the mean and dividing by the variance, to give mean

0 and variance 1) and application of the Welch window.
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Fig. 15 Pre-processing of a time series and the effect of windowing. a The original time series, a fractional
log-normal noise with a coefficient of variation of cv = 0.5 and bmodel = 2.5. Also shown (horizontal
dashed line) is the mean of the values. b Time series shown in (a) after normalizing (to sample mean �x ¼ 0
and sample standard deviation rx = 1) and application of a Welch window (grey area) (Eq. 24). We then
apply power spectral analysis to both (a) and (b). In (c) are shown the power spectral densities as a function
of frequency for the original time series and in (d) the same for the normalized and windowed time series,
both on logarithmic axes. For both periodograms are given the best-fit power-law exponents: (c) original
time series bPS = 1.86; (d) time series with Welch window applied: bPS = 2.43. The overall shapes of the
two periodograms are very similar, while the individual values differ
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The Fourier coefficients (Eq. 21) are then given by:

Xk ¼ D
XN

t¼1

wtxte
2pitk=N ; k ¼ 1; 2; . . .;N: ð25Þ

Windowing significantly reduces the leakage when Fourier transforms are carried out on

self-affine time series, particularly for those with high positive b values (i.e. above b = 2).

See Percival and Walden (1993) for a discussion of windowing, and Malamud and Turcotte

(1999a) for a discussion of windowing applied to fractional noises and motions.

The variance of xt will be different from the variance of (wt xt); this will affect the total

power (variance) in the periodogram, and the amplitude of the power spectral density

function will be shifted. One remedy is to normalize the time series xt so it has a mean of 0,

calculate the Fourier coefficients Xk based on (Eq. 25), and then calculate the final Sk using

Sk ¼
1

W2

2 Xkj j2

ND

" #
; k ¼ 1; 2; . . .;

N

2
ð26aÞ

where

W2 ¼ 1

N

XN

t¼1

wtð Þ2: ð26bÞ

This will normalize the variance of (wt xt) such that it now has the variance of the original

unwindowed time series xt.

In the next two sections, we describe two techniques commonly found in the time series

analysis literature for finding a best-fit power law to the power spectral density (in our case,

the strength of long-range persistence b in Eq. 23) and will also present the result of the

power spectral analysis applied to the windowed and unwindowed time series examples

discussed above.

6.3 Estimators Based on Log-regression of the Power Spectral Densities

The strength of long-range persistence can be directly measured as a power-law decay of

the power spectral density (Geweke and Porter-Hudak 1983). Robinson (1994, 1995)

showed that the performance of this technique is similar for non-Gaussian and Gaussian

distributed data series. However, in the case of non-Gaussian one-point probability dis-

tributions, the uncertainty of the estimate might become larger (depending on the distri-

bution), compared to Gaussian distributions.

If the power spectral density S (Eqs. 22, 26a) is expected to scale over the entire

frequency range (and not just for frequencies f ? 0) with a power law, Sð f Þ� f�b, then

the power-law coefficient, b, can be derived by (non-weighted) linear regression of the

logarithm of the power spectral density, log(S), versus the logarithm of the frequency,

log(f). Although this estimator appears simplistic (at least in comparison with the MLE

estimator presented in the next section), it nevertheless has small biases in estimating b,

along with tight confidence intervals, and is broadly applicable to time series with

asymmetrical one-point probability distributions (Velasco 2000). In Appendix 5 we discuss

in detail the use of ordinary linear regression of the log-transformed data versus nonlinear

least-squares regression of the non-transformed data. Power spectral analysis, using linear

regression of the log-transformed data, is illustrated for a fractional log-normal noise with

bmodel = 1.0 in Fig. 14d; the corresponding estimator is called bPS(best-fit).
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We return to the effect of windowing on spectral analysis and in Fig. 15c show the

results of power spectral analysis applied to a realization of an original log-normal frac-

tional motion (cv = 0.5, bmodel = 2.5) and in Fig. 15d on the windowed version of this

realization (time series). The power spectral analysis of the unwindowed time series results

in a best-fit power-law exponent (using linear regression of log(S) vs. log( f )) of

bPS = 1.86, and for the windowed time series bPS = 2.43. The power spectral analysis of

the windowed time series has significantly less bias than power spectral analysis of the

unwindowed time series.

Above, we are using detrending and windowing to reduce the leakage in the Fourier

domain. For the purposes of this paper, we are interested in finding the estimator for a

‘single’ realization of the process, that is, producing the power spectral densities for a

given realization, and finding the best estimator for these (we will discuss this in Sect. 6.4).

If one is more interested in the spectral densities of the process (i.e. the average over an

ensemble of realizations), then other techniques are more appropriate. For example, some

authors take a single realization and break it up into smaller segments, then compute the

power spectral densities for each segment, and average over them, thus resulting in less

scatter of the densities, but not covering the same frequency range as for the single

realization considered as a whole (see for instance Pelletier and Turcotte 1999). Other

versions include not breaking up the single realization into orthogonal segments, but rather

non-orthogonal (overlapping) segments (e.g., Welch’s Overlapped Segment Averaging

technique, Mudelsee 2010). Another method includes taking a single realization of a

process and binning the frequency range into octave-like frequency bands where linear

regression is done for the mean of the logarithm of the power (per octave) versus the mean

logarithm of the frequency in that band. Taqqu et al. (1995), however, have shown that this

binning-based regression dramatically increases the uncertainties (random error) of the

estimate of b.

6.4 Maximum Likelihood Estimators

Maximum likelihood estimators (MLEs) (Fisher 1912) have been developed for parametric

models of the power spectral density or autocorrelation function (Fox and Taqqu 1986;

Beran 1994). For Eq. (23), an MLE equation that depends on the parameters of the power

spectral density is required, with maximum likelihood giving the best-fit estimators. These

techniques assume Gaussian or Levy-distributed time series and, in particular, a one-point

probability distribution that is symmetrical. Maximum likelihood estimators have the

advantage when compared with log-periodogram regression to not only output an estimate

of the strength of long-range persistence, but also result in a confidence interval based on

the Fisher information (the expected value of the observed information) of the estimated

parameter. The Whittle estimator (Whittle 1952) is a maximum likelihood estimator for

deriving the strength of long-range persistence from the power spectral density.

In our analyses, we applied an approximation of the Whittle maximum likelihood

function (Beran 1994). This likelihood function L depends on the following:

(1) The power spectral density, Sk (Eqs. 22, 26a), versus the frequency fk (k = 1, 2, …, N/2)

of the original time series xt (t = 1, 2, …, N).

(2) The MLE model chosen; here, ~Sc;bðf Þ ¼ c f�b is used as a model for the power

spectral density Sk (k = 1, 2, …, N/2) and has two parameters: the strength of long-

range persistence, b, and a factor c, both of which will be evaluated by the MLE.
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The maximum likelihood function L, which evaluates our power-law model of the

power spectral density, Sc,b, has a dependence on the two parameters, c and b, and is given

by Beran (1994):

L c; bð Þ ¼ 2
XN=2

j¼1

log ~Sc;b fj

� �� �
þ
XN=2

j¼1

Sj=~Sc;b fj

� �� �
 !

: ð27Þ

The function L needs to be minimized as a function of the parameters c and b. In other

words, L (Eq. 27) is calculated for one set of values for (c, b), and then for other pairs of

(c, b) that are systematically chosen, and the minimum value of L is obtained. The cor-

responding bmin is the estimated strength of long-range dependence bPS(Whittle). This

function minimization is illustrated in Fig. 16a, where the maximum likelihood function, L

(Eq. 27), is calculated for four realizations of a process created to have a log-normal

probability distribution (cv = 0.5, Box–Cox transform), bmodel = 0.8, and four different

time series lengths, N = 512, 1,024, 2,048, and 4,096. The value b where the minimum

occurs is bPS(Whittle) = 0.74. As a lower bound of the random error r(bPS(Whittle)), the

Cramér–Rao bound (CRB) (Rao 1945, Cramér 1946) is obtained by evaluating the second

derivative of the likelihood function L (Eq. 27):

CRB bPSðWhittleÞ

	 

¼ d2L

db2
bPSðWhittleÞ

	 
� ��0:5

: ð28Þ

This is illustrated in Fig. 16b, where the CRB from Eq. (28) is calculated as a function of

long-range persistence strength, b. The value at bPS(Whittle) allows for the calculation of the

Cramér–Rao bound that is a lower bound for the standard deviation of the estimated

strength of long-range dependence. We have discussed here the case of a best-fit power-

law exponent using a MLE and the assumption that the original time series is self-affine
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Fig. 16 Whittle estimator and its corresponding maximum likelihood function. a Maximum likelihood
function, L (Eq. 27), given as a function of persistence strength, b. The function L is based on the power
spectral density of four realizations of a process created to have a log-normal probability distribution
(cv = 0.5, Box–Cox transform), bmodel = 0.8, and four different time series lengths, N = 512, 1,024, 2,048,
and 4,096. The value b where the minimum occurs is bPS(Whittle) = 0.74. b The second derivative, d2L/db2,
of the maximum likelihood function (shown in a) is presented, a function of persistence strength, b. The
value of d2L/db2 at bPS(Whittle) = 0.74 allows for the calculation of the Cramér–Rao bound (CRB) (Eq. 28)
that is a lower bound for the standard error

Surv Geophys (2013) 34:541–651 583

123



(where Eq. (7) holds for all f ). There are also MLE techniques (Geweke and Porter-Hudak

1983; Beran 1994; Guerrero and Smith 2005) for fitting power spectral densities when the

time series shows asymptotic power-law behaviour (i.e. as f ? 0).

7 Results of Performance Tests

We have been interested in how exactly the considered techniques measure the strength of

long-range persistence in a time series. We have applied these techniques to many real-

izations of fractional noises and motions with well-defined properties, and after discussing

systematic and random errors in the context of a specific example (Sect. 7.1) and confidence

intervals (Sect. 7.2), we will present the overall results of our performance tests and the

results of other studies (Sect. 7.3), along with reference to the supplementary material which

contains all of our results. We will then give a brief summary description of the results of

each performance test: Hurst rescaled range (R/S) analysis (Sect. 7.4), semivariogram

analysis (Sect. 7.5), detrended fluctuation analysis (Sect. 7.6), and power spectral analysis

(Sect. 7.7).

7.1 Systematic and Random Error

We now discuss systematic and random error in the context of an example of applying a

given technique to our benchmark time series. We apply the fluctuation function (resulting

from DFA2, see Sect. 5.3) to 1,000 realizations of fractional log-normal noises (coefficient

of variation of cv = 0.5, time series length N = 1,024, bmodel = 0.8, Box–Cox transform

construction). Ten examples of these are given in Fig. 17a, where we see that the ten DFA

fluctuation functions are similar but not identical. For the 1,000 realizations, the normal-

ized histogram of the resultant estimates of the strength of long-range persistence, bDFA, is

given in Fig. 17b. We observe the normalized histogram can be well approximated by a

Gaussian distribution with mean value �bDFA and standard deviation r(bDFA). These DFA
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Fig. 17 Illustration of systematic and random errors using detrended fluctuation analysis. a Detrended
fluctuation analysis with quadratic trend removed (DFA2) for ten realizations of fractional log-normal noises
with a coefficient of variation of cv = 0.5 and N = 1,024 elements. The modelled strength of long-range
persistence is bmodel = 0.8. b Normalized histogram of bDFA obtained from 1,000 realizations of fractional

log-normal noises (same parameters as for a). The systematic error is the sample mean �bDFA minus the
persistence strength of the process, bmodel. The random error r(bDFA) is given by the horizontal arrow
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performance test results from Fig. 17 can be considered in the context of systematic error

(bias) and random error (standard deviation); in Sect. 7.2 we will also consider these DFA

results in the context of confidence intervals.

The systematic error in this DFA example is the difference between the modelled

strength of persistence and the mean value of the Gaussian distribution, �bDFA � bmodel.

The systematic error of a particular technique in general is given by the bias:

bias ¼ �b½Hu;Ha;DFA; PS� � bmodel: ð29Þ

The bias or systematic error of the technique does not only depend on bmodel but also on the

technique, the one-point probability distribution, and the time series length N.

The performance of a technique is further described by the random error of the con-

sidered technique. In our DFA example (Fig. 17) we have used the standard deviation

rx(bDFA) of the sample values around the mean for quantifying the fluctuations of bDFA. In

this paper we will measure the random error of a technique by the standard deviation

rx(b½Hu;Ha;DFA; PS�), which is called in the statistics literature the standard error of the

estimator (Mudelsee 2010). The random error can be determined from many realizations of

a process modelled to have a set of given parameters. If, however, just a single realization

of the process is given, the random error rx(b½Hu;Ha;DFA; PS�) can be derived in various ways,

such as bootstrapping and jackknifing (Efron and Tibshirani 1993; Mudelsee 2010), or in

case of a maximum likelihood estimator by the Cramér–Rao bound (Rao 1945; Cramér

1946). In this paper we will, in most cases, calculate the random error from an ensemble of

model realizations, but we will also consider Cramér–Rao bounds (Sect. 6.4) and apply a

benchmark-based improvement technique (Sect. 9).

A good measure of the persistence strength should have both of the following prop-

erties: very small systematic error (i.e. a bias approaching zero) and small random error

(i.e. deviations around �b½Hu;Ha;DFA; PS� which are small). One can use both the systematic

and random error to come up with a measure for the total error, the root-mean-squared

error (RMSE) which is given by (Mudelsee 2010):

RMSE ¼ systematic errorð Þ2þ random errorð Þ2
	 
0:5

¼ �b½Hu;Ha;DFA; PS� � bmodel

	 
2

þ rx b½Hu;Ha;DFA; PS�

	 
	 
2
� �0:5

:

ð30Þ

For a detailed discussion of bias, standard error, standard deviation, RMSE, and confidence

intervals, see Chapter 3 of Mudelsee (2010).

Realizations of a process created to have a given strength of long-range persistence and

one-point probability distribution can be contrasted with the underlying behaviour of the

process itself where the parameter of a process is bmodel, in other words the desired b for

the process. This process has realizations (the time series) which will have a distribution of

their ‘true’ b values because of the finite-size effect (Peng et al. 1993b). We then measure

these with a given technique, which itself has its own error, giving b½Hu;Ha;DFA; PS�. We are

assuming the systematic error that is discussed here is based on the realizations having a

Gaussian distribution and that we can get some handle on their ‘true’ distribution. We are

also assuming that the techniques we are using reflect this, in addition to the bias in the

techniques themselves. We will never know (except theoretically, if we have closed form

equations) the true value of b for each realization of the process, just the parameter that we

designed it for (i.e. bmodel), unless the realizations are taken for an infinite number of
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values, in which case they will asymptote to the true value of b. In other words, there will

always be a finite-size effect on individual realizations. Given this finite-size effect, we can

never know the exact true b for each realization, but instead what we are measuring is a

measure of the technique and the finite-size effect of going from process to realization (i.e.

the synthetic noises and motions we have created). We will now discuss confidence

intervals within the framework of our DFA example.

7.2 Confidence Intervals

Returning to Fig. 17, with our example of DFA applied to a log-normal noise (cv = 0.5,

N = 1,024, bmodel = 0.8), we find that approximately 95 % of the values of bDFA lie in the

interval �bDFA � 1:96 rx bDFAð Þ; �bDFA þ 1:96 rx bDFAð Þ
� �

, in other words, the 95 % con-

fidence interval. In general, for confidence intervals, there must be a sufficient number of

values from which to make a valid estimation, for which 95 % of those values are within

the confidence interval boundaries. Some authors take this as 1,000 values or more (Efron

and Tibshirani 1993). However, if the values follow a Gaussian distribution, the confidence

interval boundaries can be computed directly from �bmeasured 	 1:96 rx bmeasuredð Þ. Efron

and Tibshirani (1993) have determined that, for Gaussian-distributed values, confidence

intervals can be constructed from just 100 realizations. We note that there are a number of

different ways of constructing confidence intervals for bmeasured, both theoretical (e.g.,

based on knowledge of the one-point probability distribution) and empirical (e.g., actual

examining how many values for a given set of realizations of a process lie in a given

interval, such as 95 %). The latter is known as the empirical coverage and is discussed in

detail, along with various methods for the construction of confidence intervals by Mudelsee

(2010), who also discusses the use of empirical coverage studies in the wider literature.

Here we do not determine the empirical coverage, but rather take the approach of first

evaluating the normality of a given set of realizations of bmeasured (relative to a given

bmodel), and then by using this assumed normality calculate the theoretical confidence

interval.

Because we would like to calculate confidence intervals for our performance test results,

based on only 100 realizations, we first need to determine whether the values are Gaussian

(or close to) distributed. We begin with three types of process constructed with Gaussian,

log-normal, and Levy-distributed time series, and bmodel = 1.0. For each one-point

probability distribution, and for time series lengths N = 256, 1,024, 4,096, and 16,384, we

create 105 realizations, in other words, overall, 3 9 4 9 105 realizations. For each process

created and time series length, we perform three analyses: PS(best-fit) (Fig. 18), DFA

(Fig. 19), and rescaled range (R/S) (Fig. 20). Shown in each figure, for the three types of

processes (a: Gaussian, b: log-normal, cv = 0.5, c: Levy, a = 1.5), and each of the time

series lengths, are the results (shown in grey dots) of 5,000 of the 105 realizations. We

show, using box and whisker plots (coloured boxes and symbols), the mean, mode, and

percentiles of the values within each set of realizations, along with the best-fit Gaussian

distributions (solid black line).

Visually, we see that for normal and log-normal noises (Figs. 18a,b, 19a,b, 20a,b), the

realizations are reasonably close to a Gaussian distribution. For the Levy realization results

(Figs. 18c, 19c, 20c), these are only approximately Gaussian, although are reasonably

symmetric. In Figs. 18d, 19d, 20d is given the skewness for each of the distributions from

panels (a) to (c) in each figure. For the normal and log-normal results, and four lengths of

time series considered, the skewness g is small (DFA: |g| \ 0.10, R/S: |g| \ 0.15); for Levy
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results, there are strong outliers in Fig. 19c (DFA) and Fig. 20c (R/S), resulting in large

skew (DFA: |g| \ 3; R/S: |g| \ 0.8), although this is not the case for Fig. 18c (PS(best-fit))

where in Fig. 18d |g| \ 0.15. A Shapiro–Wilk test of normality (Shapiro and Wilk 1965) on

the different sets of realizations shows that for the smaller values of skewness, in many

cases, a Gaussian distribution cannot be rejected at the 0.05 level, whereas for the larger

values of skewness (FLevyN using DFA and R/S) it is rejected. Although we recognize that

some of our results are only approximately Gaussian, we will use a value of 100 total

realizations for a given process created and technique applied, to calculate confidence

intervals based on �bmeasured 	 1:96 rx bmeasuredð Þ. The size of the 95 % confidence interval

of the technique is 3.92 times the standard deviation (random error) of the technique.
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Fig. 18 Distribution of the estimated strength of long-range persistence using power spectral analysis
(bPS(best-fit)) applied to realizations of fractional noises created with bmodel = 1.0, time series lengths
N = 256, 1,024, 4,096, and 16,384, and three types of one-point probability distributions: a fractional
Gaussian noises (FGN), b fractional log-normal noises (FLNN) (coefficient of variation cv = 0.5),
c fractional Levy noises (FLevyN) (tail parameter a = 1.5). For each probability distribution type, 105

realizations of time series are created for each time series length N. In each panel (a) to (c), and for each
length of time series N, are given box and whisker plots and best-fit Gaussian distributions for 105 analyses
results of bPS(best-fit) for the 105 realizations. Also shown (grey dots) are 5,000 of the 105 realizations. Each
of the box and whisker plots gives the mean of the bPS(best-fit) values (white circle), the median (horizontal
line in middle of the box), 25 and 75 % (box upper and lower edges), 5 and 95 % (ends of the vertical lines,
i.e. the whiskers), 1 and 99 % (upper and lower triangles), and the minimum and maximum values (upper
and lower horizontal bars). In (d) is given the skewness g for each of the distributions from (a) to (c)
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7.3 Summary of Our Performance Test Results and Those of Other Studies

The benchmarks we carried out are extensive as they are based on fractional noises and

motions which differ in length, one-point probability distribution, and modelled strength

of persistence. The performance of the different techniques has been studied here for

their dependence on the modelled persistence strengths (26 different parameter values,

bmodel = -1.0 to 4.0, step size 0.2), the noise and motion lengths (4 different parameters,

N = 512, 1,024, 2,056, and 4,096), and the type of the one-point probability distribution

(three different types: Gaussian, log-normal—two different types of construction, and

Levy). These will be presented graphically in this section, with a further eight noise and

motion lengths (N = 64, 128, 256, 8,192, 16,384, 32,768, 65,536, and 131,072) presented

in the supplementary material (discussed in this section further below). Furthermore, in this

section we present results for a fixed value of long-range dependence bmodel, and the

parameters that characterize the corresponding distribution parameters have been varied

(11 values of the exponent of the Levy distribution a = 1.0 to 2.0, step size 0.1; 21

different coefficients of variation for two different log-normal distribution construction

types, cv = 0.0 to 2.0, step size 0.1). Overall, we have studied fractional noises and
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Fig. 19 Distribution of the estimated strength of long-range persistence using detrended fluctuation
analysis (bDFA) applied to realizations of fractional noises created with bmodel = 1.0, time series lengths
N = 256, 1,024, 4,096, and 16,384, and three types of one-point probability distributions: a fractional
Gaussian noises (FGN), b fractional log-normal noises (FLNN) (coefficient of variation cv = 0.5),
c fractional Levy noises (FLevyN) (tail parameter a = 1.5). In (d) is given the skewness g for each of the
distributions from (a) to (c). See Fig. 18 caption for further explanation
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motions with about 17,000 different sets of characterizing parameters, of which the results

for a subset of these (6,500 different sets of parameters) have been included in the sup-

plementary material. For each set of parameters, 100 realizations have been created, and

their persistence strength has been evaluated by the five techniques described above.

The results of these performance tests are presented in Figs. 21, 22, 23, 24, 25 where the

measured strength of long-range persistence, b½Hu;Ha;DFA; PS�, is given as a function of the

‘benchmark’ modelled value, bmodel. Each of the panels in Figs. 21, 22, 23, 24, 25 shows

mean values (diamonds) and confidence intervals (error bars) based on the 100 fractional

noises and motions run for that particular distribution type, length of series, and modelled

strength of persistence. The 95 % confidence intervals for each specific technique are
�b½Hu;Ha;DFA; PS� 	 1:96 rxðb½Hu;Ha;DFA; PS�Þ, where the standard deviation rx is based on the

100 realizations for a given process. The four colours used represent four fractional noise

and motion lengths, N = 512, 1,024, 2,048, and 4,096. Also shown in each graph is a

dashed diagonal line, which represents the bias-free case, �b½Hu;Ha;DFA; PS� ¼ bmodel. Whereas
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Fig. 20 Distribution of the estimated strength of long-range persistence using Hurst rescaled range (R/S)
analysis (bHu) applied to realizations of fractional noises created with bmodel = 1.0, time series lengths
N = 256, 1,024, 4,096, and 16,384, and three types of one-point probability distributions: a fractional
Gaussian noises (FGN), b fractional log-normal noises (FLNN) (coefficient of variation cv = 0.5),
c fractional Levy noises (FLevyN) (tail parameter a = 1.5). In (d) is given the skewness g for each of the
distributions from (a) to (c). See Fig. 18 caption for further explanation
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Figs. 21, 22, 23, 24, 25 show the systematic and random error of b½Hu;Ha;DFA; PS� as a

dependence on bmodel, Fig. 26 gives the performance of b½Hu;Ha;DFA; PS� as a function of the

log-normal distribution coefficient of variation (cv = 0.0 to 2.0, step size 0.1), and Fig. 27

the performance of b½Hu;Ha;DFA; PS� as a function of the Levy distribution tail parameter

(a = 1.0 to 2.0, step size 0.1).

We give in Tables 4 and 5 a tabular overview, summarizing the ranges of the systematic

error (bias ¼ �b½Hu;Ha;DFA; PS� � bmodel) and the random error (standard deviation of

b½Hu;Ha;DFA; PS�, rx(b½Hu;Ha;DFA; PS�)) for the five techniques when applied to fractional noises

(Table 4) and fractional motions (Table 5). These two tables are summaries for three

probability distributions (Gaussian, log-normal with cv = 0.5 and two types of construc-

tion, Levy with a = 1.5) and where the number of elements is N = 4,096.

A first inspection of Figs. 21, 22, 23, 24, 25, 26, 27, and Tables 4 and 5 shows that

different techniques perform very differently. These differences will be summarized, for

each technique, in Sects. 7.4–7.7.

As a resource to the user, we include in the supplementary material the following:

(a) (b)

(c) (d)

Fig. 21 Performance of Hurst rescaled range (R/S) analysis (bHu) applied to realizations of fractional noises
and motions (Sect. 4.2) created with long-range persistence -1.0 B bmodel B 4.0 and time series lengths
N = 512, 1,024, 2,048, and 4,096. Mean values (diamonds) and 95 % confidence intervals (error bars,
based on ±1.96 rx) of bHu are presented as a function of the long-range persistence strength bmodel.
Different colours indicate different lengths N of the analysed time series as specified in the legend. The
black dashed line indicates the bias-free case of bHu = bmodel. The one-point probability distributions
include the following: a fractional Gaussian noises and motions (FGN), b fractional Levy noises and
motions (FLevyN) with tail parameter a = 1.5, c fractional log-normal noises and motions (FLNNa,
constructed by Box–Cox transform of fractional Gaussian noises) with cv = 0.5, d fractional log-normal
noises and motions (FLNNb, constructed by Schreiber–Schmitz algorithm) with cv = 0.5
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(1) An Excel Spreadsheet of a subset of our results for all of our different analyses.

For each set of 100 realizations of fractional noises or motion parameters for which

the process was designed (one-point probability distribution type, number of elements

N, bmodel) and technique applied, we give the mean �b½Hu;Ha;DFA; PS�, systematic error

(bias = �b½Hu;Ha;DFA; PS� � bmodel), random error (standard deviation rx(b½Hu;Ha;DFA; PS�)),

and root-mean-squared error ðRMSE ¼ ð systematic errorð Þ2þ random errorð Þ2Þ0:5Þ: In

addition, for each set of 100 realizations, we give the minimum, 25 %, mode, 75 %,

and maximum b½Hu;Ha;DFA; PS�. The analyses applied include those discussed in this

paper (Hurst rescaled range analysis, semivariogram analysis, detrended fluctuation

analysis, power spectral analysis [best-fit], and power spectral analysis [Whittle]) and

the discrete wavelet transform (DWT, results not discussed in this paper, but

‘presented’ in the supplementary material; see Appendix 6 for a discussion of the

DWT applied). These analyses results are provided for 6,500 parameter combinations

(out of the 17,000 examined for this paper). See also Sect. 9.5 where the supplementary

(a) (b)

(c) (d)

Fig. 22 Performance of semivariogram analysis (bHa) applied to realizations of fractional noises and
motions (Sect. 4.2) created with long-range persistence -1.0 B bmodel B 4.0 and time series lengths
N = 512, 1,024, 2,048, and 4,096. Mean values (diamonds) and 95 % confidence intervals (error bars,
based on ±1.96 rx) of bHa are presented as a function of the long-range persistence strength bmodel.
Different colours indicate different lengths N of the analysed time series as specified in the legend. The
black dashed line indicates the bias-free case of bHa = bmodel. The one-point probability distributions
include the following: a fractional Gaussian noises and motions (FGN), b fractional Levy noises and
motions (FLevyN) with tail parameter a = 1.5, c fractional log-normal noises and motions (FLNNa,
constructed by Box–Cox transform of fractional Gaussian noises) with cv = 0.5, d fractional log-normal
noises and motions (FLNNb constructed by Schreiber–Schmitz algorithm) with cv = 0.5

Surv Geophys (2013) 34:541–651 591

123



Excel spreadsheet is described in more detail in the context of benchmark-based

improved estimators for long-range persistence.

(2) R programs. We give the set of R programs that we use to perform the tests.

Various other studies have been conducted that simulate self-affine long-range persis-

tent time series and examine the results of performance techniques. For a selection of these,

in Table 6 we give a review of 12 of these studies (including this one), where for each

study we give: (1) the type of fractional noise or motion used (the one-point probability

distribution, technique used to create the fractional noises and motions, and the fractional

noise or motion length), (2) the technique used to evaluate the long-range persistence, and

(3) any comments. Our study complements and extends existing studies in terms of the

range of fractional noises and motions constructed—including the range of bmodel, addition

of Levy-distributed noises and motions which are rarely studied but representative of

heavy-tailed processes in nature, and a wide range of lengths of time series—and the

performance techniques used. For completeness, although our performance techniques are

for self-affine noises and motions, in Table 7 we give a summary of 14 selected studies that

(a) (b)

(c) (d)

Fig. 23 Performance of detrended fluctuation analysis (bDFA) applied to realizations of fractional noises
and motions (Sect. 4.2) created with long-range persistence -1.0 B bmodel B 4.0 and time series lengths
N = 512, 1,024, 2,048, and 4,096. We apply DFA2 here (quadratic trends removed). Mean values
(diamonds) and 95 % confidence intervals (error bars, based on ±1.96 rx) of bDFA are presented as a
function of the long-range persistence strength bmodel. Different colours indicate different lengths N of the
analysed time series as specified in the legend. The black dashed line indicates the bias-free case of
bDFA = bmodel. The one-point probability distributions include the following: a fractional Gaussian noises
and motions (FGN), b fractional Levy noises and motions (FLevyN) with tail parameter a = 1.5,
c fractional log-normal noises and motions (FLNNa, constructed by Box–Cox transform of fractional
Gaussian noises) with cv = 0.5, d fractional log-normal noises and motions (FLNNb constructed by
Schreiber–Schmitz algorithm) with cv = 0.5
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simulate asymptotic long-range persistent time series to examine the performance of long-

range dependence techniques. We now discuss each performance technique individually.

7.4 Hurst Rescaled Range Analysis Results (bHu)

Here we summarize (and will do the same for the other techniques in the three subsequent

sections) the following for the performance technique results applied to our fractional

noises and motions: (a) range of theoretical applicability of the performance technique;

(b) dependence on bmodel; (c) dependence on the one-point probability distribution; (d) a

brief discussion; and (e) overall ‘short’ conclusions.

(a) Range of theoretical applicability: As Hurst rescaled range analysis can be applied to

stationary time series only, it is theoretically appropriate only for fractional noises,

–1.0 \bmodel \ 1.0.

(b) Dependence on bmodel: The results of the Hurst rescaled range analysis are given in

Fig. 21 where we see that the performance test results bHu deviate strongly from the

(a) (b)

(c) (d)

Fig. 24 Performance of power spectral analysis (bPS(best-fit)) applied to realizations of fractional noises
and motions (Sect. 4.2) created with long-range persistence -1.0 B bmodel B 4.0 and time series lengths
N = 512, 1,024, 2,048, and 4,096. Mean values (diamonds) and 95 % confidence intervals (error bars,
based on ±1.96 rx) of bPS(best-fit) are presented as a function of the long-range persistence strength bmodel.
Different colours indicate different lengths N of the analysed time series as specified in the legend. The
black dashed line indicates the bias-free case of bPS(best-fit) = bmodel. The one-point probability distributions
include the following: a fractional Gaussian noises and motions (FGN), b fractional Levy noises and
motions (FLevyN) with tail parameter a = 1.5, c fractional log-normal noises and motions (FLNNa,
constructed by Box–Cox transform of fractional Gaussian noises) with cv = 0.5, d fractional log-normal
noises and motions (FLNNb constructed by Schreiber–Schmitz algorithm) with cv = 0.5
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dashed diagonal line (bmodel = bHu) and that only over (approximately) the range

0.0 \ bmodel \ 1.0 do the largest 95 % confidence intervals (for N = 512) intersect

with some part of the bias-free case (bmodel = bHu); as the number of elements

N increases, the 95 % confidence intervals for bHu decrease in size, and therefore

there are fewer cases where the 95 % confidence intervals for bHu overlap with

bmodel. In terms of the bias, unbiased results are found only for fractional noises with

a strength of persistence of bmodel & 0.5. For less persistent noises, bmodel \ 0.5, the

strength of persistence is overestimated, and for more persistent noises, bmodel [ 0.5,

it is underestimated. Apart from the poor general performance, the random error

(confidence intervals) of bHu are rather small (Tables 4, 5).

(c) Dependence on the one-point probability distribution: In Fig. 26a we see that at

bmodel = 0.8 the systematic error (bias) increases with the asymmetry (cv = 0.0 to

2.0) of the one-point probability distribution while the random error (which is

proportional to the 95 % confidence interval size) stays constant. In contrast

(Fig. 27a), at bmodel = 0.8, both the systematic error (bias) and random error

(confidence interval sizes) are very robust (they do not vary a lot) to changes of the

tail parameter (a = 1.0 to 2.0) of the fractional noise.

(a) (b)

(c) (d)

Fig. 25 Performance of power spectral analysis (bPS(Whittle)) applied to realizations of fractional noises and
motions (Sect. 4.2) created with long-range persistence -1.0 B bmodel B 4.0 and time series lengths
N = 512, 1,024, 2,048, and 4,096. Mean values (diamonds) and 95 % confidence intervals (error bars,
based on ±1.96 rx) of bPS(Whittle) are presented as a function of the long-range persistence strength bmodel.
Different colours indicate different lengths N of the analysed time series as specified in the legend. The
black dashed line indicates the bias-free case of bPS(Whittle) = bmodel. The one-point probability distributions
include the following: a fractional Gaussian noises and motions (FGN), b fractional Levy noises and
motions (FLevyN) with tail parameter a = 1.5, c fractional log-normal noises and motions (FLNNa,
constructed by Box–Cox transform of fractional Gaussian noises) with cv = 0.5, d fractional log-normal
noises and motions (FLNNb, constructed by Schreiber–Schmitz algorithm) with cv = 0.5
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(d) Discussion: Our results presented in Figs. 21 and 26a show that the systematic error

(bias) gets smaller as the time series length N grows from 512 to 4,096. If we consider

a broader range of time series lengths (supplementary material), this can be seen more

clearly. For example, consider a FGN with bmodel = -0.8, and then our simulations

result in �bHu = -0.42 (N = 4,096), -0.45 (N = 8,192), -0.47 (N = 16,384), -0.49

(N = 32,768), -0.51 (N = 65,536), and -0.53 (N = 131,072), and thus, the value of

bmodel = -0.8 is very slowly approached. The bias of Hurst rescaled range analysis is

a finite-size effect; Bassingthwaighte and Raymond (1995) and Mehrabi et al. (1997)
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Fig. 26 Performance of three techniques for evaluating long-range persistence, b½Hu;DFA; PS�, applied to

realizations of processes created to have fractional log-normal noises (cv = 0.0 to 2.0, Sect. 4.2) with
strength of long-range persistence bmodel = 0.8 and time series lengths N = 512, 1,024, 2,048, and 4,096.
The three techniques applied are: a Hurst rescaled range (R/S) analysis (bHu), b detrended fluctuation
analysis (bDFA), c power spectral analysis (bPS(best-fit)). We do not consider semivariogram analysis here as it
is only appropriate to apply over the range of -1.0 \ b\ 1.0. Fractional log-normal noises are constructed
using the Box–Cox transform (FLNNa) (left panels) and the Schreiber–Schmitz algorithm (FLNNb) (right
panels). For each set of process parameters, 100 realizations are done. For each panel, mean values
(diamonds) and 95 % confidence intervals (error bars, based on ±1.96 rx) of b½Hu;DFA; PS� are presented as a

function of the coefficient of variation, cv = 0.0 to 2.0, step size 0.1. cv = 0.0 corresponds to symmetric
one-point probability distributions (Gaussian distribution), while large values of cv correspond to highly
asymmetric one-point probability distributions. Different colours indicate different lengths of the analysed
time series (N = 512, 1,024, 2,048, 4,096) as specified in the legend. The black horizontal dashed line
indicates the bias-free case of b½Hu;DFA; PS� = bmodel = 0.8
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have shown for fractional Gaussian noises and motions that for very long sequences,

the correct value of bmodel will be approached by bHu.

(e) Rescaled range (R/S) analysis brief conclusions: For most cases, it is inappropriate to

use Hurst rescaled range (R/S) analysis for the types of self-affine fractional noises

and motions (i.e. Gaussian, log-normal, and Levy distributed) considered in this

paper, and correspondingly many of the time series found in the Earth Sciences.

7.5 Semivariogram Analysis Results (bHa)

(a) Range of theoretical applicability: The range of bHa is the interval 1.0 \bmodel \ 3.0,

so semivariogram analysis is appropriate for fractional motions only.

(b) Dependence on bmodel: Fig. 22a,b,c and Tables 4 and 5 demonstrates that for

fractional Gaussian noises (FGN), fractional Levy noises (FLevyN), and fractional

log-normal noises constructed with the Box–Cox transform (FLNNa), unbiased

results are found over much (but not all) of the interval 1.0 \bmodel \ 3.0, with

larger values of the bias at the interval borders; larger biases also occur for short time

series. For persistence strength bmodel [ 2.0 (more persistent than Brownian motion),

semivariograms applied to realizations of log-normal noises and motions based on

the Schreiber–Schmitz algorithm (Fig. 22d, FLNNb) result in values of bPS & 2.0,
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Fig. 27 Performance of four techniques for evaluating long-range persistence, b½Hu;Ha;DFA;PS�, applied to

realizations of processes created to have fractional Levy noises (tail parameter, a = 1.0 to 2.0) with strength
of long-range persistence bmodel = 0.8 and time series lengths N = 512, 1,024, 2,048, and 4,096. The four
techniques applied are: a Hurst rescaled range (R/S) analysis (bHu), b semivariogram analysis (bHa), c
detrended fluctuation analysis (bDFA), d power spectral analysis (bPS(best-fit)). For each panel, mean values
(diamonds) and 95 % confidence intervals (error bars, based on ±1.96 rx) of b½Hu;Ha;DFA; PS� are presented

as a function of the tail parameter a = 1.0 to 2.0, step size 0.1. A value of a = 2.0 corresponds to a Gaussian
distribution, while values close to a = 1.0 correspond to very heavy tails of the one-point probability
distribution of the fractional noise. Different colours indicate different lengths of the analysed time series
(N = 512, 1,024, 2,048, 4,096) as specified in the legend. The black horizontal dashed line represents the
bias-free case of b½Hu;Ha;DFA; PS� = bmodel = 0.8
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reflecting a failure of this algorithm for this particular setting of the parameters. Our

simulations indicate that the Schreiber–Schmitz algorithm does not work for

constructing noises that are asymmetric and non-stationary; thus, we cannot discuss

the corresponding performance.

(c) Dependence on the one-point probability distribution: For FGN, FLevyN, and

FLNNa, Fig. 22, the confidence interval size depends on the strength of long-range

persistence: they are small around bmodel & 1.0, increase up to bmodel & 2.5, and

Table 4 Performancea of five techniquesb that evaluate long-range persistence for self-affine fractional
noises (i.e. -1.0 \bmodel \ 1.0) with N = 4,096 elements and different one-point probability distributions

Techniqueb

Distribution of the noise
Systematic error (bias)
�bmeasured � bmodel

Random error
rx bmeasuredð Þ

bHu

Gaussian -0.49 to 0.02 0.02 to 0.05

log-normal (Box–Cox), cv = 0.5 -0.80 to 0.02 0.03 to 0.05

log-normal (Schreiber–Schmitz), cv = 0.5 -0.54 to 0.02 0.02 to 0.04

Levy, a = 1.5 -0.85 to 0.02 0.03 to 0.05

bHa

Gaussian -2.00 to -0.16 0.00 to 0.04

log-normal (Box–Cox), cv = 0.5 -2.00 to -0.15 0.00 to 0.04

log-normal (Schreiber–Schmitz), cv = 0.5 -2.00 to -0.15 0.00 to 0.02

Levy, a = 1.5 -2.00 to -0.16 0.03 to 0.05

bDFA

Gaussian -0.26 to 0.03c 0.01 to 0.06

log-normal (Box–Cox), cv = 0.5 -0.60 to 0.05c 0.04 to 0.07

log-normal (Schreiber–Schmitz), cv = 0.5 -0.27 to 0.03c 0.02 to 0.06

Levy, a = 1.5 -0.27 to 0.02c 0.07 to 0.09

bPS(best-fit)

Gaussian 0.00 to 0.01d 0.03 to 0.03

log-normal (Box–Cox), cv = 0.5 -0.37 to 0.03d 0.03 to 0.04

log-normal (Schreiber–Schmitz), cv = 0.5 0.00 to 0.01d 0.03 to 0.04

Levy, a = 1.5 0.00 to 0.00d 0.02 to 0.03

bPS(Whittle)

Gaussian 0.00 to 0.01d 0.03 to 0.03

log-normal (Box–Cox), cv = 0.5 -0.37 to 0.03d 0.02 to 0.03

log-normal (Schreiber–Schmitz), cv = 0.5 0.00 to 0.00d 0.02 to 0.03

Levy, a = 1.5 0.00 to 0.00d 0.02 to 0.02

a The performance is measured in terms of the systematic error (bias = absolute value of the difference
between bmodel and the mean value of b½Hu;Ha;DFA; PS�) and the random error (standard deviation of

b½Hu;Ha;DFA; PS�) of the considered technique. The presented values are achieved by evaluating the compu-

tational results of the corresponding technique with regard to 100 different realizations of the noise
b Hurst rescaled range analysis [Hu], semivariogram analysis [Ha], detrended fluctuation analysis [DFA],
power spectral analyses using log-periodogram regression [PS(best-fit)] and Whittle estimator [PS(Whittle)]
c Note that for DFA, other standard examples of constructing long-range persistent noises (e.g., self-similar
or fractionally summed noises) would result in smaller biases
d Note that for the power spectral techniques, other standard examples for constructing long-range persistent
noises (e.g., self-similar or fractionally summed noises) would result in slightly larger biases
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then decrease for larger values of the persistence strength. It appears plausible to

increase the range of applicability of semivariogram analysis to fractional noises

(–1.0 \bmodel \ 1.0) by analysing their aggregated series, but only if the original

series has a symmetric (or near-symmetric) probability distribution. In Fig. 27b, we

see that at bmodel = 0.8 changes of the heavy-tail parameter of fractional Levy noises

from a = 0.0 to 1.0 impact the systematic error (bias) in a complex way, while the

random error remains almost constant and very large.

(d) Discussion: Gallant et al. (1994), Wen and Sinding-Larsen (1997), and Malamud and

Turcotte (1999a) have discussed the bias of Ha for time series and came to very

similar conclusions. Wen and Sinding-Larsen (1997) pointed out (1) that longer lags s
lead to more accurate estimates of Ha (consequently, we have used here long lags up

to N/4) and (2) that semivariogram analysis is applicable to incomplete (i.e. gap

containing) measurement data. For time series that are incomplete (i.e. values in an

otherwise equally spaced time series are missing), only lagged pairs of values which

are not affected by the gaps are considered in the summation of (Eq. 16).

(e) Semivariogram analysis brief conclusions: Semivariogram analysis is appropriate for

1.0 \b\ 3.0, introduces little bias, but the resulting estimates are rather uncertain. It

is appropriate for time series with asymmetric one-point probability distributions, but

should not be applied if that distribution is heavy tailed.

Table 5 Performancea of five techniquesb that evaluate long-range persistence for self-affine fractional
motions (i.e. 1.0 \bmodel \ 3.0) with N = 4,096 elements and different one-point probability distributions

Techniqueb

Distribution of the noise
Systematic error (bias)
�bmeasured � bmodel

Random error
rx bmeasuredð Þ

bHu

Gaussian 0.20 to 1.98 0.01 to 0.05

log-normal (Box–Cox), cv = 0.5 0.21 to 1.98 0.01 to 0.05

log-normal (Schreiber–Schmitz), cv = 0.5 0.11 to 1.78 0.00 to 0.04

Levy, a = 1.5 0.20 to 1.99 0.01 to 0.05

bHa

Gaussian -0.16 to 0.14 0.04 to 0.15

log-normal (Box–Cox), cv = 0.5 -0.14 to 0.15 0.04 to 0.15

log-normal (Schreiber–Schmitz), cv = 0.5 -0.92 to 0.04 0.02 to 0.26

Levy, a = 1.5 -0.16 to 0.06 0.05 to 0.22

bDFA

Gaussian 0.03 to 0.03c 0.06 to 0.09

log-normal (Box–Cox), cv = 0.5 0.03 to 0.04c 0.07 to 0.09

log-normal (Schreiber–Schmitz), cv = 0.5 -0.79 to 0.01c 0.06 to 0.52

Levy, a = 1.5 0.01 to 0.02c 0.09 to 0.10

bPS(best-fit)

Gaussian 0.00 to 0.01d 0.03 to 0.03

log-normal (Box–Cox), cv = 0.5 0.01 to 0.02d 0.03 to 0.04

log-normal (Schreiber–Schmitz), cv = 0.5 -1.05 to 0.00d 0.03 to 0.48

Levy, a = 1.5 0.00 to 0.00d 0.03 to 0.03
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Table 5 continued

Techniqueb

Distribution of the noise
Systematic error (bias)
�bmeasured � bmodel

Random error
rx bmeasuredð Þ

bPS(Whittle)

Gaussian 0.00 to 0.01d 0.03 to 0.03

log-normal (Box–Cox), cv = 0.5 0.00 to 0.02d 0.03 to 0.03

log-normal (Schreiber–Schmitz), cv = 0.5 -0.95 to 0.00d 0.03 to 0.48

Levy, a = 1.5 0.00 to 0.00d 0.02 to 0.03

a As in Table 4 the performance is measured in terms of the systematic error (bias = absolute value of the
difference between bmodel and the mean value of b½Hu;Ha;DFA; PS�) and the random error (standard deviation of

b½Hu;Ha;DFA; PS�) of the considered technique. The presented values are achieved by evaluating the compu-

tational results of the corresponding technique with regard to 100 different realizations of the noise
b Hurst rescaled range analysis [Hu], semivariogram analysis [Ha], detrended fluctuation analysis [DFA],
power spectral analyses using log-periodogram regression [PS(best-fit)] and Whittle estimator [PS(Whittle)]
c Note that for DFA, other standard examples of constructing long-range persistent noises (e.g., self-similar
or fractionally summed motions) would result in smaller biases
d Note that for the power spectral techniques, other standard examples for constructing long-range persistent
noises (e.g., self-similar or fractionally summed motions) would result in slightly larger biases

Table 6 Review of selected studies that simulate long-range persistent time series to examine the per-
formance of techniques that quantify long-range dependence

Reference Noises used
(i) probability distribution
(ii) technique to create
(iii) Number of values, N

Techniques useda Commentsa

Schepers et al. (1992) (i) Gaussian distributed
(ii) Self-affine noises; successive

random additions
(iii) N = 29, 213, 215

ACF, PSA, R/S,
relative dispersional
analysis

Best-performing
technique: power
spectral analysis

Gallant et al. (1994) (i) Gaussian distributed
(ii) Self-affine noises; successive

random additions; Weierstrass–
Mandelbrot functions

(iii) N = 210

PSA (standard and
maximum entropy
power spectrum),
roughness length,
semivariogram

Best-performing
technique:
maximum entropy
power spectrum

Bassingthwaighte
and Raymond
(1995)

(i) Gaussian distributed
(ii) Self-affine noises; successive

random additions
(iii) N = 26, …, 220

Dispersional analysis Dispersional analysis
is biased for short
time series

Mehrabi et al. (1997) (i) Gaussian distributed
(ii) Self-affine noises; successive

random additions; Weierstrass–
Mandelbrot functions

(iii) N = 3 9 102, 3 9 103,
3 9 104, 3 9 105, 3 9 105

PSA (including
MLE), roughness
length, R/S,
covariance analysis,
wavelet analysis,
Levy method

Wen and Sinding–
Larsen (1997)

(i) Gaussian distributed
(ii) Self-affine noises; successive

random additions; superposition
of self-affine time series;
superposition of self-affine time
series and white noise

(iii) N = 210

PSA (averaged over
equally sized
windows of the time
series), variogram
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Table 6 continued

Reference Noises used
(i) probability distribution
(ii) technique to create
(iii) Number of values, N

Techniques useda Commentsa

Pilgram and Kaplan
(1998)

(i) Gaussian distributed
(ii) Self-affine noises
(iii) N = 28, …, 213

R/S, PSA (standard
and for power
averages in
logarithmically
spaced frequency
bands), MLE of the
ACF, DFA

Best-performing
technique: DFA

Malamud and
Turcotte (1999a)

(i) Gaussian and log-normal
distributed

(ii) Self-affine noises
(iii) N = 212

PSA, wavelet
analysis,
semivariogram, R/S,
average extreme
value analysis

Heneghan and
McDarby (2000)

(i) Gaussian distributed
(ii) Self-affine noises
(iii) N = 215

DFA, PSA Discusses how to
distinguish between
fractional Gaussian
noise and motion in
physiological time
series

Weron (2001) (i) Gaussian distributed
(ii) white noise
(iii) N = 28, …, 216

R/S (standard and
Anis–Lloyd
corrected), DFA,
PSA

Construction of
confidence intervals

Eke et al. (2002) (i) Gaussian distributed
(ii) Self-affine noises and their

aggregated series; method of
Davies and Harte (1987)

(iii) N = 28, …, 218

R/S (standard and
Anis–Lloyd
corrected),
autocorrelation
analysis, scaled
windowed variance
analysis,
dispersional
analysis, PSA, DFA,
fractal wavelet
analysis

Best-performing
technique: PSA,
dispersional
analysis, scaled
windowed variance
analysis

Xu et al. (2005) (i) Gaussian distributed
(ii) Self-affine noises
(iii) N = 220

DFA, DMA Best-performing
technique: DFA for
time series with
bmodel [ 0.0, DMA
for time series with
bmodel B 0.0

Witt and Malamud
(2013) (this paper)

(i) Gaussian, log-normal
(cv = 0.0 to 2.0), and Levy
(a = 1.0 to 2.0) distributed

(ii) Self-affine noises and
motions

(iii) N = 26, …, 218

R/S, semivariogram
analysis, DFA, PSA
(Whittle estimator
and log-
periodogram
regression)

Best-performing
technique: Whittle
estimator for the
power spectral
density

a (ACF) autocorrelation function, (DFA) detrended fluctuation analysis, (DMA) detrended moving average,
(MLE) maximum likelihood estimator, (PSA) power spectral analysis, (R/S) Hurst rescaled range analysis
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Table 7 Review of selected papers that simulate asymptotic long-range persistent time series to examine
the performance of techniques that quantify long-range dependence

Reference Noises useda

(i) Probability distribution
(ii) Technique to create
(iii) Number of values, N

Techniques useda Commentsa

Taqqu et al.
(1995)

(i) Gaussian distributed
(ii) Self-similar noises;

FARIMAb

(iii) N = 105

Aggregated variance,
differenced variance,
absolute values of the
aggregated series, Higuchi’s
method, DFA,
R/S, PSA (standard,
modified, Whittle estimator)

Best-performing
technique: Whittle
estimator, DFA

Caccia et al.
(1997)

(i) Gaussian distributed
(ii) Self-similar noises and

their aggregated series
(iii) N = 26, …, 217

Several types of dispersional
analysis, R/S (standard
and detrended)

Dispersional analysis
outperforms R/S

Cannon et al.
(1997)

(i) Gaussian distributed
(ii) Self-similar noises and

their aggregated series
(iii) N = 26, …, 217

Scaled windowed variance
methods, R/S

Scaled window
variance is the same
as DFA, minimal
time series length to
get confidence
intervals of size
smaller than 0.2 is
N = 215

Taqqu and
Teverovsky
(1998)

(i) Gaussian and Levy
distributed; FARIMA based
on exponential, log-normal,
Levy-, and Pareto-
distributed noises

(ii) Self-similar noises;
FARIMAb

(iii) N = 105

Aggregated variance,
differenced variance,
absolute values of the
aggregated series,
Higuchi’s method, DFA,
R/S, PSA (standard,
modified, Whittle
estimator)

DFA and absolute
values of the
aggregated series
are sensitive to the
distributions, short-
term correlations
can strongly bias the
results

Velasco (2000) (i) Gaussian distributed and
ARFIMA based on log-
normal, uniform,
exponential, and t5
distributed noises

(ii) ARFIMAb

(iii) N = 29

Several types of PSA
(including MLE)

Audit et al. (2002) (i) Gaussian distributed
(ii) FARIMAc

(iii) N = 26, …, 214

DFA, several types of
wavelet analysis

WTMM outperforms
the other estimators

Whitcher (2004) (i) Gaussian distributed
(ii) Seasonal long-memory

processes
(iii) N = 27, 29, 210

Several types of wavelet
analysis (including MLE)

Delignieres et al.
(2006)

(i) Gaussian distributed
(ii) Self-similar noises and

their aggregated series, with
and without added white
noises

(iii) N = 26, …, 211

R/S, PSA, DFA, dispersional
analysis, MLE of the ACF,
scaled window variance

Best-performing
technique: MLE of
the ACF; the paper
focuses on short
time series
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7.6 Detrended Fluctuation Analysis Results (bDFA)

(a) Range of theoretical applicability: Detrended fluctuation analysis (here performed

with the quadratic trend removed, i.e. DFA2) can be applied to all persistence

strengths considered in our synthetic fractional noises and motions (Sect. 4.2).

(b) Dependence on bmodel: For fractional Gaussian, Levy, and log-normal noises and

motions, detrended fluctuation analysis is just slightly biased (Fig. 23; Tables 4, 5). It

Table 7 continued

Reference Noises useda

(i) Probability distribution
(ii) Technique to create
(iii) Number of values, N

Techniques useda Commentsa

Stadnytska and
Werner (2006)

(i) Gaussian distributed
(ii) ARIMA, ARFIMAd

(iii) N = 100, 200,
300, …, 2500

PSA (exact maximum
likelihood technique),
conditional sum of squares
for estimating short and
long-range parameters

Both techniques are
comparable

Boutahar et al.
(2007)

(i) Gaussian distributed
(ii) Self-similar noises;

ARFIMAb,d

(iii) N = 3 9 101, 2 9 102,
103, 104

R/S, Higuchi’s method,
several PSA incl. Whittle
(for ARFIMA)

Best-performing
technique: Whittle
estimator

Mielniczuk and
Wojdyłło
(2007)

(i) Gaussian distributed
(ii) Self-similar noises;

FARIMAb

(iii) N = 29, …, 215

DFA, R/S (standard and
adjusted), wavelet analysis,
PSA(Whittle estimator)

Boutahar (2009) (i) Gaussian distributed
(ii) AR, ARMA, ARFIMAb

(iii) N = 1 9 102, 5 9 102,
103

R/S (standard and modified),
several PSA including
Whittle (for ARFIMA)

For short time series,
a modified R/S
statistics performs
best, PSA is
recommended for
longer time series

Faÿ et al. (2009) (i) Gaussian distributed,
Box–Cox transforms of
ARFIMA time series

(ii) ARFIMAf; DARFIMAf,g

(iii) N = 29, 212

Several types of PSA and
wavelet analysis including
MLE

Fourier and wavelet
techniques are
found to be
comparable

Stroe-Kunold
et al. (2009)

(i) Gaussian distributed
(ii) ARFIMAb

(iii) N = 28, …, 211

Several types of PSA incl.
MLE, R/S, DFA, Higuchi’s
method

Best-performing
technique: Whittle
estimator

a (ACF) autocorrelation function, (AR) autoregressive, (ARFIMA) autoregressive fractional integrated
moving average, (ARMA) autoregressive moving average, (DARFIMA) discontinuous (ARFIMA), (DFA)
detrended fluctuation analysis, (DMA) detrended moving average, (FARIMA) fractional autoregressive
integrated moving average, (MLE) maximum likelihood estimation, (PSA) power spectral analysis,
(R/S) Hurst rescaled range analysis, (WTMM) wavelet transform modulus maxima
b Coefficients are (0, d, 0)
c Coefficients are (0, d, q)
d Coefficients are (1, d, 1)
e Coefficients are (1, d, 0)
f Coefficients are (0, d, 0), (0, d, 0.5), (0.5, d, 0), (0.5, d, 0), (1, d, 1), (0.3, d, 0.7), or (–0.3, d, –0.7)
g DARFIMA is a ARFIMA-like process with a discontinuity in its spectral density (Andrews and Sun 2004)
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shows a weak overestimation for the strongly anti-persistent noises (-1.0 \bmodel \
-0.7) in particular for the very short time series (N = 512, N = 1,024). For

fractional log-normal noises and motions created by Box–Cox transforms (FLNNa),

bDFA overestimates the strength of persistence for anti-persistent noises (bmodel \ 0.0)

and slightly underestimates for fractional noises and motions with 0.5 \bmodel \ 1.5

(Fig. 23c). For fractional log-normal noises and motions created by the Schreiber–

Schmitz algorithm (FLNNb, Fig. 23d), our simulations show large values of the bias

for bmodel C 2.0. This bias is a consequence of the construction of the FLNNb rather

than a limitation of detrended fluctuation analysis.

The random error (which is proportional to the 95 % confidence interval size) of

detrended fluctuation analysis (Fig. 23) depends on the correlations of the investigated

time series: for fractional noises and motions of all considered one-point probability

distributions, the sizes of the confidence intervals increase with the persistence

strength. For thin-tailed fractional noises and motions (i.e. Gaussian and log-normal),

the confidence intervals for fractional Brownian motions (bmodel = 2.0) are twice as

big as for white noises (bmodel = 0.0) (Fig. 23; Tables 4, 5). So, the stronger the

strength of persistence in a times series, the more uncertain will be the result of

detrended fluctuation analysis.

(c) Dependence on the one-point probability distribution: For fractional log-normal

noises (constructed by Box–Cox transform), the negative bias and the random error

(proportional to the confidence interval size) are increasing gradually for increasing

coefficients of variations (Fig. 26b, FLNNa). If the fractional log-normal noises are

created by the Schreiber–Schmitz algorithm (Fig. 26b, FLNNb) and have positive

persistence and a moderate asymmetry (0.0 \ cv B 1.0), bDFA is unbiased. However,

for fractional noises and motions with strongly asymmetric one-point probability

distribution (1.0 \ cv \ 2.0) and data sets that have a small number of total values,

detrended fluctuation analysis underestimates bmodel (Fig. 26b). The corresponding

95 % confidence intervals grow with increasing asymmetry. They are bigger than

those of bDFA for fractional log-normal noises constructed by the Box–Cox transform

(Fig. 26b, Table 4). Detrended fluctuation analysis is unbiased for fractional Levy

noises with positive persistence strength and different tail exponents, a (Fig. 27c).

The corresponding confidence intervals grow with decreasing tail exponent, a.

(d) Discussion: It is important to note that the random error of bDFA which arises from

considering different realizations of fractional noises and motions is different from

(and in case of positive persistence, bmodel [ 0.0, much larger than) the regression

error of bDFA gained by linear regression of the log(fluctuation function) versus

log(segment length). The very small regression error originates in the statistical

dependence of the difference between the fluctuation function of a particular noise

and the average (over many realizations of the noise) fluctuation function. As a

consequence, the regression error should not be used to describe the uncertainty of the

measured strength of persistence.

In the case of fractional Levy noises with very heavy tails (a 
 2) (Fig. 27c), we

do not recommend the use of detrended fluctuation analysis, as the error bars become

very large with increasing a (Fig. 27c). In this case, the modified version of detrended

fluctuation analysis suggested by Kiyani et al. (2006) which has not been

‘benchmarked’ in our paper might be an option.

The performance of detrended fluctuation analysis (DFA) has been studied

extensively (Taqqu et al. 1995; Cannon et al. 1997; Pilgram and Kaplan 1998; Taqqu

and Teverovsky 1998; Heneghan and McDarby 2000; Weron 2001; Audit et al. 2002;
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Xu et al. 2005; Delignieres et al. 2006; Mielniczuk and Wojdyłło 2007; Stroe-Kunold

et al. 2009) for different types of fractional noises and motions and asymptotic long-

range persistent time series (Tables 6, 7). In some of these studies (Taqqu et al. 1995;

Pilgram and Kaplan 1998; Xu et al. 2005), it was demonstrated to be the best-

performing technique. In other studies, DFA has been found to have low systematic

error (bias) and low random error (confidence intervals) but was slightly

outperformed by maximum likelihood techniques (Taqqu and Teverovsky 1998;

Audit et al. 2002; Delignieres et al. 2006; Stroe-Kunold et al. 2009).

(e) Detrended fluctuation analysis brief conclusions: Detrended fluctuation analysis is

almost unbiased for fractional noises and motions, and the random errors (propor-

tional to the confidence interval sizes) are small for fractional noises. It is inap-

propriate for time series whose one-point probability distributions are characterized

by very heavy tails.

7.7 Power Spectral Analyses Results bPS(best-fit) and bPS(Whittle)

(a) Range of theoretical applicability: Power spectral-based techniques bPS(best-fit) and

bPS(Whittle) can be applied to all persistence strengths considered in our fractional

noises and motions (Sect. 4.2).

(b) Dependence on bmodel: Symmetrically distributed (i.e. Gaussian- and Levy-distributed

fractional noises) power spectral-based techniques used for evaluating the strength of

long-range persistence perform very well (Figs. 24, 25; Tables 4, 5). They are (1)

unbiased (�bPS ¼ bmodel), and (2) the size of confidence intervals of bPS depends on the

length of the fractional noise or motion but not on the strength of long-range

persistence, bmodel. For fractional Levy noises, power spectral techniques are very

exact as the related confidence intervals are very tight. For fractional Levy motions

with a bmodel C 3.0, the bPS becomes slightly biased; the strength of persistence is

overestimated in particular for the shorter time series. Looking specifically at

fractional Levy noises with different strong heavy tails (Fig. 27d), we find (1) an

unbiased performance of bPS and (2) that heavier tails cause smaller systematic error.

(c) Dependence on the one-point probability distribution: For the fractional noises and

motions with asymmetric distributions, namely the two types of fractional log-normal

noises, the performance depends on how these noises and motions are created

(Figs. 24c,d, 25c,d, 26c, 27d; Tables 4, 5): if they are constructed by applying a

Box–Cox transform to a fractional Gaussian noise (Figs. 24c, 25c; Tables 4, 5), we

find for the anti-persistent noises considered here, -1.0 \bmodel \ 0.0, the strength of

long-range persistence, bPS, is overestimated while for 0.0 \bmodel \ 1.0, it is

underestimated. Because the systematic (bias) and random error is very small compared

to bmodel, the underestimation is somewhat hard to see on the figures themselves, but

becomes much more apparent in the supplementary material. This effect of under- and

overestimation of bmodel is stronger if fractional log-normal noises with a more

asymmetric one-point probability distribution (larger coefficients of variations, cv) are

considered. One can also see (Fig. 26c), for fractional log-normal noises and motions,

the confidence interval size gradually grows with increasing asymmetry (increasing cv).

If the fractional log-normal noises are constructed by the Schreiber–Schmitz

algorithm (Figs. 24d, 25d), then power spectral techniques perform fairly convincingly

in the range of persistence -1.0 \bmodel \ 1.8. For persistence strength bmodel [ 2.0

(more persistent than Brownian motion), spectral techniques result in values of
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bPS & 2.0, reflecting a failure of the Schreiber–Schmitz algorithm for this particular

setting of the parameters. The confidence intervals are equally sized for the entire

considered range of persistence strength, but they are approximately 10 % larger than

the confidence intervals of fractional Gaussian noises (Figs. 24a, 25a). For a fixed

bmodel, the error bar sizes rise with growing asymmetry (larger coefficients of

variations, cv) (Fig. 26c). For highly asymmetric noises (cv [ 1.0), the strength of long-

range persistence is underestimated.

For the fractional Levy noises, we find that the performance does not depend on the

heavy-tail parameter. Figure 27d presents the performance test result for a persistence

strength of bmodel = 0.8; the power spectral technique is unbiased, and the random error

(proportional to the confidence intervals) is about the same across all considered values

of the exponent a.

(d) Discussion: If the performance of the maximum likelihood estimator, bPS(Whittle), is

compared to the performance of the log-periodogram regression, bPS(best-fit), we find

that both techniques perform very similarly, except that bPS(Whittle) represents a

slightly more exact estimator (Tables 4, 5). The real advantage, however, is that the

Whittle estimator also gives the random error, r(bPS(Whittle)), for any single time

series considered.

In Fig. 28a we give the random error (standard deviation of the Whittle estimator,

r(bPS(Whittle)), also called the standard error of the estimator, see Sect. 7.1) as a

function of the long-range persistence of 100 realizations (each) of FGN processes

created to have -1.0 B bmodel B 4.0 and four time series lengths N = 256, 1,024,

4,096, and 16,384. In Fig. 28b we give r(bPS(Whittle)) of 100 realizations (each) of

four probability distributions (FGN, FLNN cv = 0.5, FLNN cv = 1.0, FLevyN

a = 1.5) with bmodel = 0.5, as a function of time series length N = 64 to 65,536.

For both panels and each set of process parameters in Fig. 28, we also give the

maximum likelihood estimate, the Cramér–Rao bound (CRB) (Sect. 6.4, Eq. 28), for

each set of 100 realizations. Both y-axes in Fig. 28 are logarithmic, as is the x-axis

for Fig. 28b.

In Fig. 28a we observe that the random error of the Whittle estimator,

r(bPS(Whittle)), slightly increases as a function of persistence strength, bmodel, for

-1.0 \bmodel \ 2.8. In contrast, the CRB is slightly increasing as a function of bmodel

over the range -1.0 \bmodel \ 0.0 and then decreases by an order of magnitude, over

the range 0.0 \bmodel\ 2.0, after which it remains constant. The general shape of the

four curves for CRB and the four curves for r(bPS(Whittle)) do not depend on the

length of the time series, N. The CRB is systematically smaller than the random

error, (bPS(Whittle)). The ratio CRB/r(rbPS(Whittle)) changes significantly for different

ranges of bmodel. Therefore, knowing only the CRB value will not give knowledge

about the magnitude of the random error. We therefore do not recommend using the

CRB as an estimate of the random error.

All eight curves in Fig. 28b show a power-law dependence on the time series

length N (and scale with N-0.5). The Cramér–Rao bound measure is a lower bound for

the random error and depends very little on the one-point probability of the fractional

noise or motion. We see here that the Cramér–Rao bounds are systematically smaller

than the standard errors, in other words the standard deviations of bPS(Whittle)

calculated for many realizations, r(bPS(Whittle)). The mean standard error is smallest

for the fractional Levy noises and largest for the fractional log-normal noises, with

the largest r(bPS(Whittle)) for the higher coefficient of variation. The ratio CRB/
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r(bPS(Whittle)) changes with the one-point probability distribution but not with the

time series length N.

If the performance of these power spectral techniques is considered for time series

with N = 4,096 elements, we find (Tables 4, 5):
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Fig. 28 Standard error of the Whittle estimator r(bPS(Whittle)) (dashed lines) and Cramér Rao bounds (CRB)
(solid lines) are given as a function of the following: a long-range persistence strength -1.0 B bmodel B 4.0
of fractional Gaussian noises (FGN) and time series length N = 256, 1,024, 4,096, and 16,384; b Time
series length N = 26, 27, 28, …, 216 (i.e. from N = 64 to 65,536) and fractional noise realizations with
bmodel = 0.5 and four types of probability distribution, Gaussian (FGN, diamonds), log-normal (FLNN:
circles, cv = 0.5; diamonds, cv = 1.0, created using Box–Cox transform), and Levy (FLevyN, a = 1.5). For
both (a) and (b), the standard error r(bPS(Whittle)) and CRB are on a logarithmic axis. Each individual symbol
represents 100 realizations for a given length of time series N, one-point probability distribution, and
modelled long-range persistence strength bmodel. The standard error of the Whittle estimator results
(r(bPS(Whittle)) and the average CRB are taken over all 100 realizations, except for the FLevyN, where for
CRB the two smallest and two largest values (of each set of 100 realizations) are taken out before averaging
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(1) Power spectral techniques are free of bias for fractional noises and motions with

symmetric distributions and they expose a significant bias for time series with

strong asymmetric probability distributions.

(2) The random error (proportional to the confidence interval sizes) is rather small,

as in the case of symmetrically distributed time series, 95 % of the bPS occupy

an interval of length 0.2 or smaller.

For fractional noises and motions with an asymmetric probability distribution, power

spectral techniques are less certain. The more asymmetric the time series is, the more

uncertain is the estimated strength of long-range persistence. Spectral techniques that

estimate the strength of long-range persistence are common in statistical time series

analysis, particularly in the econometrics and physics communities, and their

performance has been intensively investigated (Schepers et al. 1992; Gallant et al.

1994; Taqqu et al. 1995; Mehrabi et al. 1997; Wen and Sinding-Larsen 1997; Pilgram

and Kaplan 1998; Taqqu and Teverovsky 1998; Heneghan and McDarby 2000;

Velasco 2000; Weron 2001; Eke et al. 2002; Delignieres et al. 2006; Stadnytska and

Werner 2006; Boutahar et al. 2007; Mielniczuk and Wojdyłło 2007; Boutahar 2009;

Faÿ et al. 2009; Stroe-Kunold et al. 2009; see also Tables 6 and 7). The most common

approach in the literature is to fit models using MLE to time series that are

characterized by short- and long-range dependence. In most cases, the considered time

series have a Gaussian one-point probability distribution.

(e) Power spectral analysis brief conclusions: Power spectral techniques have small

biases and small random errors (tight confidence intervals).

8 Discussion of Overall Performance Test Results

8.1 Overall Interpretation of Performance Test Results

The performance test results presented in Sect. 7 for measures of long-range persistence have

shown that some techniques are more suited than others in terms of systematic and random

error. In Figs. 29 and 30 we give, respectively, a visual overview of the systematic error

(bias = �b½Hu;Ha;DFA; PS� � bmodel) and random error (standard deviation of b½Hu;Ha;DFA; PS�,

rx(b½Hu;Ha;DFA; PS�)) for the five techniques applied to fractional noises and motions con-

structed with -1.0 B bmodel B 4.0 and three probability distributions: Gaussian (FGN),

log-normal (FLNNa) with 0.2 B cv B 2.0 using Box–Cox, and Levy (FLevyN) with

1.0 B a B 1.9. For each type of fractional noise and motion, 100 realizations were created

each with 4,096 elements. Note that a FGN is the same as FLNNa with cv = 0.0 and FLevyN

with a = 2.0. In Fig. 31 for the same 2,730 processes considered in Figs. 29 and 30, we give

a visual overview of the root-mean-squared error RMSE (Eq. 30) which is a measure for the

overall performance of a technique.

A comparison of the systematic error (bias) of the five techniques (Fig. 29) shows that

DFA (Fig. 29c) and spectral techniques (Fig. 29d,e) have small biases (green cells in the

panels) over most of the range of bmodel considered, that is, for most fractional noises and

motions. Large biases for DFA and spectral techniques (red or purple cells in Fig. 29c,d,e

panels) indicate over- or underestimation of the persistence strengths and occur only for

anti-persistent fractional log-normal noises (FLNNa, bmodel \ -0.2) and for a minority of

highly persistent fractional Levy motions (FLevyN, 1.0 \ a \ 1.2). In contrast, Hurst

rescaled range analysis (Fig. 29a) leads to results with small biases only for fractional
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noises with 0.0 \ bmodel \ 0.8, and semivariogram analysis (Fig. 29b) has small biases

only if the persistence strength is in the range 1.2 \bmodel \ 2.8 and the one-point

probability distribution does not have too heavy a tail (i.e. FLevyN with a [ 1.2). Overall,

when examining the five panels in Fig. 29, one can see (green cells) that DFA and the

spectral analysis techniques are generally applicable for all bmodel, whereas rescaled range

analysis (with limitations) is appropriate for -1.0 \bmodel \ 1.0, and semivariogram

analysis (again, with limitations) is appropriate for 1.0 \bmodel \ 3.0.

If the random errors (rx(b½Hu;Ha;DFA; PS�)) of the five techniques are compared (Fig. 30),

the smallest overall random errors (horizontal bars that are very thin or zero) are found for

rescaled range analysis (Fig. 30a), and then spectral techniques (Fig. 30d,e) with the

Whittle estimator having slightly smaller overall random errors. DFA (Fig. 30c) has

overall the largest random error when considering all strengths of persistence (bmodel) and

variety of probability distributions and increases gradually as bmodel increases. In contrast,

when examining semivariogram analysis (Fig. 30b), it shows the largest variation of

random errors of all the techniques, particularly large for 1.0 \bmodel \ 3.0.

The overall performance of the techniques is given by the root-mean-squared error,

RMSE = ((systematic error [Fig. 29])2 ? (random error [Fig. 30])2)0.5 (Eq. 30) which is

displayed graphically in Fig. 31. In this figure, the length of the horizontal bar in each

panel cell represents RMSE on a scale of 0.0 to 3.0, where (as above) each of the 546 cells

in the panel is a combination of process parameters (-1.0 \bmodel \ 4.0; 21 different

one-point probability distribution parameter combinations) for which 100 realizations were

produced. To highlight different magnitudes of RMSE, each cell has been coloured, such

that green represents ‘low’ values of RMSE (0.0 to 0.1), yellow ‘medium’ values of RMSE

(0.1 to 0.5), and red ‘high’ values of RMSE (0.5 to 3.0).

Figure 31 illustrates that the performance of the best-fit and Whittle spectral techniques

(Fig. 31d,e) generally performs the best (compared to the other three techniques) across a

large range of bmodel and one-point probability types (FLevyN, FGN, and FLNNa) as

evidenced by the large ‘green’ regions (i.e. 0.0 B RMSE B 0.1). However, one also can

observe for these spectral techniques (Fig. 31d,e, yellow [0.1 \ RMSE B 0.5] and red

[RMSE [ 0.5] cells) that care should be taken for very heavy-tailed fractional noises with

large persistence values (FLevyN, 1.0 B a B 1.3, and bmodel [ 2.0), and for fractional log-

normal noises (FLNNa) that are anti-persistent (bmodel \ 0.0) or with weak persistence

(0.0 \ bmodel \ 1.0) and cv [ 0.8. DFA (Fig. 31c), although it is in general applicable

over all bmodel, does not perform as well as the spectral analysis techniques (Fig. 31d,e) as

evidenced by a large number of yellow cells (0.1 \ RMSE B 0.5) and a few red cells

(RMSE [ 0.5), particularly for FLevyN across most bmodel. Semivariogram analysis

(Fig. 31b) has large RMSE (red cells) for bmodel B 0.4 and bmodel C 3.6 (across FLevyN,

FGN, and FLNNa), whereas rescaled range analysis (Fig. 31a) has large RMSE (red cells)

for bmodel B -0.6 and bmodel C 1.6. The other cells for both semivariogram (Fig. 31b) and

Fig. 29 Visual overview of the systematic error (bias = �b½Hu;Ha;DFA; PS� � bmodel) of five techniques for

evaluating long-range persistence: a Hurst rescaled range (R/S) analysis (bHu), b semivariogram analysis
(bHa), c detrended fluctuation analysis (bDFA), d power spectral analysis best-fit (bPS(best-fit)), e power
spectral analysis Whittle (bPS(Whittle)). For each panel are shown the biases resulting from 100 realizations
each of processes created to have N = 4,096 elements and 546 different sets of parameters: [panel rows]
strengths of long-range persistence -1.0 B bmodel B 4.0; [panel columns] three probability distributions:
(1) Levy (FLevyN) with 1.0 B a B 1.9, (2) Gaussian (FGN), (3) log-normal (FLNNa) with 0.2 B cv B 2.0
using Box–Cox. Note that a FGN is the same as FLNNa with cv = 0.0 and FLevyN with a = 2.0. The
colour coding within each panel (see legend) ranges from large negative biases (red), ‘small’ biases (green),
to large positive biases (purple)
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rescaled range analysis (Fig. 31a) mostly exhibit medium RMSE (yellow cells) except for

narrow bands of 0.2 \bmodel \ 0.6 (rescaled range analysis) and 1.2 \bmodel \ 1.6

where the cells exhibit low RMSE (green cells).

We believe, based on the results shown in Figs. 29, 30, 31, that power spectral analysis

techniques (best-fit and Whittle) are acceptable for most practical applications as they are

almost unbiased and give tight confidence intervals. Furthermore, based on these figures,

detrended fluctuation analysis is appropriate for fractional noises and motions with positive

persistence and with non-heavy-tailed and near-symmetric one-point probability distribu-

tions; it is not appropriate for asymmetric or heavy-tailed distributions. Semivariogram

analysis was unbiased for 1.2 \bmodel \ 2.8 and might be used for double-checking

results, if needed, for an aggregated series, but the large random errors for parts of the

range over which results are unbiased need to be considered. We do not recommend the

use of Hurst rescaled range analysis as it is only appropriate either for very long sequences

(with more than 105 data points) (Bassingthwaighte and Raymond 1994) or for fractional

noises with a strength of long-range persistence close to bmodel & 0.5.

If we focus on the performance of bPS(best-fit) and bDFA for fractional noises and motions

with N = 4,096 data points (Figs. 29, 30; Tables 4, 5), we find (1) biases of comparable

size and (2) confidence interval sizes which are bmodel independent for bPS(best-fit) and

bmodel dependent for bDFA. For a pink fractional noise (bmodel = 1.0), we calculate the

absolute magnitude of the confidence intervals as 2 9 1.96 9 (rx(b[DFA, PS])). We find the

following confidence intervals for [(bPS(best-fit)), (bDFA)]:

[0.12, 0.24] (Gaussian distribution)

[0.16, 0.27] (log-normal distribution with moderate asymmetry, cv = 0.6, constructed

by Box–Cox transform)

[0.10, 0.34] (Levy distribution with a = 1.5)

The size of the confidence intervals for bDFA is a factor of 1.7 to 3.4 times the confidence

intervals for bPS(best-fit). Therefore, we recommend the use of detrended fluctuation analysis

only for fractional noises and motions with a ‘well-behaved’ one-point probability distri-

bution, in other words for distributions which are almost symmetric and not heavy-tailed.

For anti-persistent noises (b\ 0.0), we find a systematic overestimation of the modelled

strength of long-range persistence. Rangarajan and Ding (2000) showed that a Box–Cox

transform of an anti-persistent noise with a symmetric one-point probability distribution is

not just changing the distribution (to an asymmetrical one); the Box–Cox transform

effectively superimposes a white noise on the anti-persistent noise, which causes a weak-

ening of the anti-persistence (i.e. b becomes larger). This implies that, for applications, if

anti-persistence or weak persistence is identified for an asymmetrically distributed time

series, values of long-range persistence that are more negative might be needed for

appropriately modelling the original time series. In this situation, we recommend applying a

complementary Box–Cox transform to force the original time series to be symmetrically

Fig. 30 Visual overview of the random error (rxðb½Hu;Ha;DFA; PS�Þ (abbreviated Std Dev in the figure) of five

techniques for evaluating long-range persistence: a Hurst rescaled range (R/S) analysis (bHu), b semivari-
ogram analysis (bHa), c detrended fluctuation analysis (bDFA), d power spectral analysis best-fit (bPS(best-fit)),
e power spectral analysis Whittle (bPS(Whittle)). For each panel is shown the random error (standard deviations,
abbreviated in the panel as std dev) resulting from 100 realizations each of processes created to have
N = 4,096 elements and 546 different sets of parameters: [panel rows] strengths of long-range persistence
-1.0 B bmodel B 4.0; [panel columns] three probability distributions: (1) Levy (FLevyN) with
1.0 B a B 1.9, (2) Gaussian (FGN), (3) log-normal (FLNNa) with 0.2 B cv B 2.0 using Box–Cox. The
random error for each of the 546 process sets within each panel is represented by the size of the bar for that
process (see legend)
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distributed. Then, one should consider the strength of long-range persistence for both the

original time series and the transformed time series, discussing both in the results. If a given

time series (or realization of a process) has a symmetric one-point probability distribution,

one can always aggregate the series and analyse the result (see Sects. 3.5 and 3.6).

With regard to log-normal distributed noises and motions, the results of our perfor-

mance tests are sensitive to the construction technique used (Box–Cox vs. Schreiber–

Schmitz). In this sense, our ‘benchmarks’ seem to confront the construction of the noises or

motions rather than to evaluate the techniques used to estimate the strength of long-range

dependence. Nevertheless, both ways of constructing fractional log-normal noises and

motions are commonly used. If a log-normal distributed natural process like river run-off is

measured, either the original data (in linear coordinates) can be examined, or the logarithm

of the data can be taken. Our simulations show that the strength of long-range dependence

can alter when going from the original to log-transformed values and vice versa. The

Schreiber–Schmitz algorithm creates log-normal noises and motions that have a given

power-law dependence of the power spectral density on frequency, whereas the Box–Cox

transform creates log-normal noises and motions based on realizations of fractional

Gaussian noises and motions with a given bmodel. The Box–Cox transform will slightly

change the power-law dependence (for the FGN) of the power spectral densities on fre-

quency, leading to values of bPS that are systematically (slightly) different from bmodel.

8.2 The Use of Confidence Interval Ranges in Determining Long-Range Persistence

From an applied point of view, it is important to discuss the size of the uncertainties (both

systematic and random errors) of the estimated strength of long-range persistence. If a

Gaussian-distributed time series with N data points is given that is expected to be self-affine,

then the power spectral techniques have a negligible systematic error (bias) and a random

error (rx(bPS)) of approximately 2N-0.5. If we take as an actual example power spectral

analysis (best-fit) applied to 100 realizations of a fractional Gaussian noise with bmodel = 0.2

and three lengths N = 32,768, 4,096, and 256, the average result (supplementary material)

of the applied technique is, respectively, �bPSðbest�fitÞ ¼ 0:201; 0:192; 0:204 giving biases =

0.001, 0.008, and 0.004. The random errors for bPS(best-fit) at N = 32,768, 4,096, and 256 are,

respectively, rx(bPS(best-fit)) = 0.011, 0.030, 0.139, compared to the theoretical random error

of 2 N-0.5 = 0.011, 0.031, 0.125. The actual random error and the theoretical error are closer

as N gets larger, with for N = 32,768 a negligible percentage difference between the two

values, N = 4,096 a 3 % difference, and N = 256 a 11 % difference. For power spectral

analysis (Whittle), this same behaviour of the random error (2 N-0.5) can be seen in Fig. 28b,

where there is a power-law dependence of (rx(bPS)) on time series length N (dashed lines,

blue triangle).

Fig. 31 Visual overview of the root-mean-squared error (RMSE, Eq. 30) of five techniques for evaluating
long-range persistence: a Hurst rescaled range (R/S) analysis (bHu), b semivariogram analysis (bHa),
c detrended fluctuation analysis (bDFA), d power spectral analysis best-fit (bPS(best-fit)), e power spectral
analysis Whittle (bPS(Whittle)). For each panel is shown the RMSE (i.e. ((systematic error)2 ? (random
error)2)0.5) resulting from 100 realizations each of processes created to have N = 4,096 elements and 546
different sets of parameters: [panel rows] strengths of long-range persistence -1.0 B bmodel B 4.0; [panel
columns] three probability distributions: (1) Levy (FLevyN) with 1.0 B a B 1.9, (2) Gaussian (FGN), (3)
log-normal (FLNNa) with 0.2 B cv B 2.0 using Box–Cox. Note that a FGN is the same as FLNNa

(cv = 0.0) and FLevyN (a = 2.0). The RMSE for each of the 546 process sets within each panel is
represented by the size of the bar for that process (see legend) and colour shading behind that bar (green:
0.0 B RMSE B 0.1; yellow: 0.1 \ RMSE B 0.5; red: RMSE [ 0.5)
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Confidence intervals (Sect. 7.2) are constructed as �bPS 	 1:96 rx bPSð Þ. Therefore, if

we take the example given above for 100 realizations of a FGN constructed to have

bmodel = 0.2 and N = 16,384, the 95 % confidence intervals are �bPSðbest�fitÞ 	 1:96

rxðbPSðbest�fitÞÞ ¼ 0:201	 ð1:96� 0:011Þ; giving (within the 95 % confidence intervals)

0.179 \bPS(best-fit) \ 0.223. If we do the same for the two other lengths, then for

N = 4,096, 0.132 \bPS(best-fit) \ 0.252, and for N = 512, -0.074 \bPS(best-fit) \ 0.482.

The confidence interval sizes grow rapidly as the number of elements N decreases, such

that, for N = 256, we are unable to confirm (within the 95 % confidence interval) that

long-range persistence is in fact present—the confidence interval contains the value

bPS = 0.0. Values of bPS that are closer to or at zero are likely to occur for short-term

persistent and white (uncorrelated) noises. Thus, if we want to use this analysis technique

for showing that a time series with N = 256 elements is long-range persistent (and not

b = 0.0), the confidence interval must not contain zero, requiring either bPS [ 0.25 or

bPS \ -0.25, where we have used 1.96 9 (2 N-0.5) to derive these limits. In the case of

non-symmetric one-point probability distributions, the larger systematic errors (biases)

shift the confidence intervals even more for bPS, leading to other (sometimes larger)

thresholds for identifying long-range persistence.

Similar considerations can be made for the other three techniques (b½Hu;Ha;DFA; PS�).

Since these techniques are less reliable, the resultant thresholds will be larger and the two

thresholds will not be symmetric with respect to zero due to biases. In such cases long-

range persistence can only be identified if bmodel has a very high or very low value. In

summary, it might become difficult to identify long-range persistence for non-Gaussian or

rather short or non-perfect fractional noises or motions.

Another important aspect of our analysis is stationarity, in other words to decide

whether a given time series can be appropriately modelled as a fractional noise (b \ 1.0)

or a fractional motion (b[ 1.0). The value of b = 1.0 is the strength dividing (weakly)

stationary noises from non-stationary motions. For this decision, essentially the same

technique as described above can be applied where we inferred whether a time series is

long-range persistent (b [ 0.0) or anti-persistent (b \ 0.0). However, the analysis is now

restricted to confidence intervals for bDFA, bPS(best-fit), and bPS(Whittle). Hurst rescaled range

(R/S) and semivariogram analysis cannot be applied because the critical value of b = 1.0 is

at the edge of applicability for both techniques. For investigating whether a time series is a

fractional noise (stationary) or motion (non-stationary), one can check all three confidence

intervals as to whether they contain b = 1.0 within their lower or upper bounds. If this is

the case, the only inference one can make is that the time series is either a noise or a

motion, but not specifically one or the other. If all three confidence intervals have an upper

bound that is less than b = 1.0, then one can infer that the time series is a fractional noise

(and not a motion).

9 Benchmark-Based Improvements to the Measured Persistence Strength of
a Given Time Series

9.1 Motivation

In the previous sections, we have studied how the different techniques that measure long-

range persistence perform for benchmark time series. These time series are realizations of

processes modelled to have a given strength of persistence (bmodel), a prescribed one-point
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probability distributions and a fixed number of values N. Our studies have shown that the

measured strength of long-range persistence of a given time series realization can deviate

from the persistence strength of the processes underlining the benchmark fractional noises

and motions due to systematic and random errors of the techniques. Therefore, using these

benchmark self-affine time series, we can have a good idea—based on their bmodel, one-

point probability distribution and N—about the resultant distribution of b½Hu;Ha;DFA; PS� for

each different technique, including any systematic errors (biases) and random errors. To

aid a more intuitive discussion in the rest of this section, we will use the subscript word

‘measured’ for the estimators of long-range persistence that are calculated using different

techniques, bmeasured = b½Hu;Ha;DFA; PS�, where, as before, Hu, Ha, DFA, and PS represent

the technique applied.

In practice, we are often confronted with a single time series and want to state whether

or not this time series is long-range persistent and, if so, how strong this persistence is and

how accurately this strength has been measured. As we have seen already, different

techniques can be applied for analysing this single time series, with each technique having

its own set of systematic and random errors. Thus, the inverse problem of that discussed in

the preceding two sections must be solved: the strength of long-range persistence of what

would be the best-modelled fractional noise or motion, bmodel, is sought, based on the time

series length N, its one-point probability distribution, and the bmeasured persistence strength

results of the technique applied. From this, assuming that the time series is self-affine, we

would like to infer the ‘true’ strength of persistence bmodel (and corresponding confidence

intervals). To explore this further, we will use in Sect. 10 the data sets presented in Fig. 1

as case examples. If they are analysed to derive parameters for models, then the 95 %

confidence intervals of the persistence strength bmodel have to be obtained from the

computed bmeasured and from other parameters of the time series such as the one-point

probability density and the time series length.

As discussed in Sect. 7.1, the variable bmodel is a measure of the process that we have

designed to have a given strength of long-range persistence (and one-point probability

distribution); the time series (our benchmarks) are realizations of that process. These

benchmark time series have a distribution of bmeasured, but with systematic and random

errors within that ensemble of time series, due to (1) finite-size effects of the time series

length N and (2) inherent biases in the construction process itself (e.g., for strongly

asymmetric one-point probability distributions). These biases in the construction are dif-

ficult to document, as most research to date addresses biases in the techniques to estimate

long-range persistence, not in the construction. For symmetric one-point probability dis-

tributions (Gaussian, Levy), each realization of the process, if N were very large (i.e.

approaching infinity), would have a strength of long-range persistence equal to bmodel, in

other words equal to the value for which the process was designed (e.g., Samorodnitsky

and Taqqu 1994; Chechkin and Gonchar 2000; Enriquez 2004).

One can never know the ‘true’ strength of long-range persistence b of a realization of a

process. Therefore, an estimate of b is introduced based on a given technique, which itself

has a set of systematic and random errors. The result of each technique performed on a

synthetic or a real-time series is bmeasured, which therefore includes both any systematic

errors within the realizations and the technique itself. Given a time series with a given

length N and one-point probability distribution, we can perform a given technique which

gives bmeasured. If we believe that long-range persistence is present, we can improve on our

estimate of bmeasured by using (1) the ensemble of benchmark time series performance

results from Sect. 7 of this paper and (2) our knowledge of the number of values N and one-
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point probability of the given time series. This benchmark-based improvement is using the

results of our performance techniques, which are all based on an ensemble of time series

that are realizations of a process designed to have a given bmodel, and which we now

explore. The rest of this section is organized as follows. We first provide an analytical

framework for our benchmark-based improvement of an estimator (Sect. 9.2), followed by

a derivation of the conditional probability distribution for bmodel given bmeasured (Sect. 9.3).

This is followed by some of the practical issues to consider when calculating benchmark-

based improved estimators (Sect. 9.4) and a description of supplementary material for the

user to do their own benchmark-based improved estimations (Sect. 9.5). We conclude by

giving benchmark-based improved estimators for some example time series (Sect. 9.6).

9.2 Benchmark-Based Improvement of Estimators

In order to solve the inverse problem described in Sect. 9.1, we apply a technique from

Bayesian statistics (see Gelman et al. 1995). This technique will incorporate the perfor-

mance, that is, the systematic and random error of the particular technique which is

discussed in Sect. 7 (see Figs. 21, 22, 23, 24, 25).

For this purpose, the joint probability distribution P bmodel; bmeasuredð Þ for fractional

noises and motions of length N and with a particular one-point probability distribution is

considered. This joint probability distribution now depends on both bmodel and bmeasured:
Because we will consider in this section probability distributions as functions of two

variables and/or fixed values, we will introduce bold (e.g., bmodel) to indicate the set of

values versus non-bold (e.g., bmeasured) to indicate a single value of the variable. In Fig. 32,

we give a cartoon example illustrating the different combinations: P bmodel; bmeasuredð Þ,
P bmodel; bmeasuredð Þ, P bmodel; bmeasuredð Þ, and P bmodel; bmeasuredð Þ. The probability of just one

measurement bmeasured of one given realization of a process created with bmodel is given by

P bmodel; bmeasuredð Þ, the single dot in Fig. 32. In Sect. 7 we considered one bmodel for a

given process, and the probability distribution of the resultant ensemble of bmeasured from a

series of realizations of the process; the range of P bmodel; bmeasuredð Þ is the blue vertical line

in Fig. 32. By contrast, the benchmark-based improvements to the persistence strengths

that we will explore in this Sect. 9 are one measurement bmeasured with a corresponding

probability of the ensemble of bmodel associated with it, P bmodel; bmeasuredð Þ, the red hori-

zontal line in Fig. 32. The yellow area in Fig. 32 represents the ensemble of multiple

measurements bmeasured of multiple processes each created with bmodel, and the probability

of the ensemble of bmodel associated with each bmeasured, that is, P bmodel; bmeasuredð Þ.
Applying Bayes rule (Bayes and Price 1763) to our two-dimensional probability dis-

tribution P bmodel; bmeasuredð Þ leads to:

P bmodel; bmeasuredð Þ ¼ P bmeasuredjbmodelð ÞP bmodelð Þ; ð31aÞ

P bmodel; bmeasuredð Þ ¼ P bmodeljbmeasuredð ÞP bmeasuredð Þ; ð31bÞ

where P bmeasuredjbmodelð Þ and P bmodeljbmeasuredð Þ are conditional probability distributions

with the vertical bar ‘|’ means ‘given’. In other words, P bmeasuredjbmodelð Þ (i.e. bmeasured

given bmodel) would mean the distribution of measured values bmeasured using a specific

technique [Hu, Ha, PS, DFA], performed on multiple realizations of a process that was

created to have a given strength of long-range persistence bmodel. The left-hand side of

Eq. (31a), P bmodel; bmeasuredð Þ; is the joint probability distribution. This is equal to the

right-hand side (Eq. 31a) where the conditional probability distribution P bmeasuredjbmodelð Þ
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is multiplied by P(bmodel), where P(bmodel) acts as a normalization such that

P bmeasuredjbmodelð Þ sums up (over bmeasured) to 1.0.

To illustrate Eq. (31a), we consider the joint probability distribution P bmodel; bmeasuredð Þ:
In Fig. 33 we take fractional log-normal noise benchmarks with coefficient of variation

cv = 0.5 and N = 1,024 data points and apply DFA. These were the same benchmarks

used to produce the performance test results shown in Fig. 23c, with 100 realizations

produced at each bmodel = -1.0, -0.8, -0.6, …, 4.0. In Fig. 33a we give a histogram of

the distribution of the estimated strength of long-range dependence bmeasured ¼ bDFA for

one given value of bmodel = 0.8, along with the best-fit Gaussian distribution to the

probabilities P bDFAjbmodel ¼ 0:8ð Þ. In Fig. 33b we show the results of performance tests

for multiple realizations of processes created to have an ensemble bmodel:This is shown

both as given in Fig. 23c (repeated as Fig. 33b) and a subsection of the results interpolated

and contoured (Fig. 33d). Thus, the joint probability density P bmodel; bDFAð Þ (the contour

lines) is constructed by placing side-by-side thin ‘slices’ of Gaussian distributions which

correspond to the distribution of bmeasured given various values of bmodel. For achieving

uniformly distributed values of bmodel, the virtual slices have to have equal thickness and

equal weight. The grey region with the contours in Fig. 33d represents the two-dimensional

(joint) probability distribution P bmodel; bDFAð Þ, whereas the vertical red line in Fig. 33d

represents the one-dimensional (joint) probability distribution P bmodel; bmeasuredð Þ, which is

equal to (see Eq. 31a) the conditional probability distribution P bDFAjbmodel ¼ 0:8ð Þ,
multiplied by P(bmodel).
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Fig. 32 Cartoon illustration of the joint probability distributions, using the measured persistence strength
(bmeasured) as a function of modelled persistence strength (bmodel). The bold notation (e.g., bmodel) indicates
the set of values versus non-bold (e.g., bmeasured) to indicate a single value of the variable. Shown are joint
probability distributions P bmodel; bmeasuredð Þ (yellow region), P bmodel;bmeasuredð Þ (red horizontal line),
P bmodel;bmeasuredð Þ (blue vertical line), and bmodel; bmeasuredð Þ (black dot)
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Fig. 33 Schematic illustration of the construction of the joint probability density P bmodel;bmeasuredð Þ for
realizations of a process created to have strengths of long-range persistence 0:0�bmodel� 1:5; log-normal
one-point probability distribution (cv = 0.5, Box–Cox transform), time series length N = 1,024, and using
DFA to evaluate the strength of long-range persistence. a A histogram of the distribution of the estimated
strength of long-range dependence bmeasured ¼ bDFA for one given value of bmodel = 0.8 is given, along with
the best-fit Gaussian distribution to the probabilities P bDFAjbmodel ¼ 0:8ð Þ: b Performance of detrended
fluctuation analysis (bDFA) using realizations of processes created to have different strengths of persistence
�1:0�bmodel� 4:0 and log-normal one-point probability distributions, cv = 0.5. The mean values
(diamonds) and 95 % confidence intervals (error bars) of bDFA are presented as a function of the long-
range persistence strength bmodel. This is a reproduction of Fig. 23c. c Enlarged version of (a). d The inset
for (b) is enlarged here. Using the best-fitting Gaussian distributions for bmodel ¼ 0:0; 0:2; 0:4; . . .; 1:6, and
N = 1,024, these Gaussian distributions are interpolated using a spline fit, to create a contour map (diagonal
grey region in d) of the joint probability distribution P bmodel;bDFAð Þ: Shown also are the interpolations

of the �bDFA (diagonal thick purple dashed line), their 95 % confidence interval borders (diagonal purple

dotted lines), which are constructed as �bDFA	1:96 rxðbDFAÞ; and the function bDFA = bmodel (diagonal
solid yellow line). Illustrated in (d) is an example of one value bmodel = 0.8 (vertical red line). This
translates to the Gaussian distribution in (c) (an enlarged version of a), where the Gaussian distribution is a
vertical cut of the two-dimensional joint probability distribution P bmodel;bDFAð Þ at bmodel = 0.8. Also given

in (c) is the interval corresponding to �bDFA	1:96 rxðbDFAÞ (vertical dark red line with arrows) that
correspond to the bmodel = 0.8
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In Fig. 33 we have shown an example of the joint probability distribution

P bmodel; bmeasuredð Þ. We now consider (Eq. 31b) the joint probability distribution

P bmodel; bmeasuredð Þ ¼ P bmodeljbmeasuredð ÞP bmeasuredð Þ; in other words, given a value for

bmeasured, what is the corresponding result for an ensemble of bmodel: In Fig. 34, we give a

schematic illustration of the construction of the conditional probability distribution

P bmodeljbmeasuredð Þ for the same example as in Fig. 33, which was based on a log-normal

distribution (cv = 0.5, N = 1,024) and using DFA to evaluate the strength of long-range

persistence. Figure 34a gives the two-dimensional probability distribution P bmodel; bDFAð Þ
as constructed in Fig. 33d. This is now cut horizontally at three values of

bDFA ¼ 0:30; 0:86; 1:65; these horizontal lines are now representing the ranges of the

joint probability distributions P bmodel; bmeasuredð Þ: In Fig. 34b, the three conditional prob-

ability distributions P bmodeljbDFA ¼ 0:30; 0:86; 1:65ð Þ are obtained by normalizing

P bmodel; bmeasuredð Þ such that the integral of P bmodel; bmeasuredð Þ is equal to 1.0.

In the framework of Bayesian statistics, the distribution of persistence strengths bmodel

given the measured persistence strength bmeasured is called the posterior. In this paper, we
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Fig. 34 Schematic illustration of the construction of the conditional probability distribution
P bmodeljbmeasuredð Þ, in other words the distribution of bmodel given a single value of bmeasured, for the
same example as in Fig. 33 (log-normal distribution, cv = 0.5, time series length N = 1,024, and using DFA
to evaluate the strength of long-range persistence). This illustrates the adjustment to bmeasured based on the
benchmark performance results introduced in Sect. 7. a The two-dimensional probability distribution
P bmodel;bDFAÞð as constructed in Fig. 33d is cut horizontally at three values of bDFA ¼ 0:30; 0:86; 1:65:
The x-axis here is from 0.0 B bmodel B 2.2; whereas Fig. 33d is 0.0 B bmodel B 1.5. b The conditional
probability distributions P bmodeljbDFAð Þ are then derived with Eq. (36), which incorporates the performance
(the systematic and random errors) of the technique used. The vertical lines indicate the benchmark-based
improved estimator b�DFA (Eq. 37), which is the mean value of the adjusted probability distribution. These

are slightly greater than the mode as the distributions are skewed
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will use this ‘posterior’ to derive a benchmark-based improvement of the estimator and

indicate the improved estimator by a superscript *. The mean value for our improved

estimator for the strength of long-range persistence is given by:

b�measured ¼
Zbmax

bmin

bmodel P bmodeljbmeasuredð Þ dbmodel; ð32Þ

where b�measured is the benchmark-based improved estimate of bmeasured based on our

benchmark time series results.

In practice, performing the procedure as schematically illustrated in Fig. 34 (i.e. with a

two-dimensional histogram) is doable, but requires a sufficiently small bin size for bmodel

and many realizations, such that an interpolation can be made in both directions. Therefore,

we would like to derive an equation for P bmodeljbmeasuredð Þ; and, from this, derive b�measured;

a benchmark-based improvement to a given bmeasured. We do this in the next section.

9.3 Deriving the Conditional Probability Distribution for bmodel Given bmeasured

How can the distribution of persistence strength P bmodeljbmeasuredð Þ be obtained? Two

special properties of our estimators allow a manageable mathematical expression:

• For fixed bmodel, the distribution P bmeasuredjbmodelð Þ can be approximated by a Gaussian

distribution.

• The mean value of P bmeasuredjbmodelð Þ is monotonically growing as a function of bmodel.

These two properties approximately hold for each of the four techniques applied in this

paper, and we will now use them. Our results presented in Sects. 7 and 8 provide evidence

that the conditional probability P bmeasuredjbmodelð Þ follows a Gaussian distribution (see

Figs. 18, 19, 20):

P bmeasuredjbmodelð Þ�Gaussian �bmeasuredjmodel;r
2
bmeasuredjmodel

	 

; ð33Þ

with �bmeasuredjmodel the mean value of bmeasured for a given bmodel, and r2
bmeasuredjmodel

the

variance of bmeasured for a given bmodel. Furthermore, we have found (Figs. 21, 22, 23, 24,

25) that �bmeasuredjmodel is monotonically (sometimes nonlinearly) increasing as a function of

bmodel, except for the log-normal noises constructed by the Schreiber–Schmitz algorithm in

the non-stationary regime (bmodel [ 1.0) where �bmeasuredjmodel decreases with bmodel.

With Eq. (31a) we can derive the joint probability P bmodel; bmeasuredð Þ: An assumption is

that bmodel is uniformly distributed over the interval bmin B bmodel B bmax, where bmin and

bmax are the minimum and maximum values, respectively. We have chosen bmodel = -1.0,

-0.8, -0.6, …, 4.0, and an equal number of realizations for each bmodel. The one-

dimensional probability distribution of bmodel is P(bmodel) = 1/(bmax - bmin) = c1.

Substituting P(bmodel) into Eq. (31a) allows us to write the joint probability distribution as:

P bmodel; bmeasuredð Þ ¼ c1 P bmeasuredjbmodelð Þ: ð34Þ

Using the assumption that bmodel is uniformly distributed and that Dbmodel is small enough

to give results that are smooth enough to be interpolated, along with Eqs. (33) and (34),

then the joint probability distribution P bmodel; bmeasuredð Þ is given by:
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P bmodel; bmeasuredð Þ ¼ c1ffiffiffiffiffiffi
2p
p

rbmeasuredjmodel

exp �
bmeasured � �bmeasuredjmodel

	 
2

2 r2
bmeasuredjmodel

0
B@

1
CA: ð35Þ

This particular form of P bmodel; bmeasuredð Þ can be considered for multiple values of bmodel,

and the required calibrated probability distribution P bmodeljbmeasuredð Þ can be derived by

rearranging Eq. (31b):

P bmodeljbmeasuredð Þ ¼ P bmodel; bmeasuredð Þ
P bmeasuredð Þ

¼ c2 exp �
bmeasured � �bmeasuredjmodel

	 
2

2 r2
bmeasuredjmodel

0
B@

1
CA:

ð36Þ

The constant c2 is based on integrating the final result of Eq. (36) such thatR bmax

bmin
P bmodeljbmeasuredð Þdbmodel ¼ 1: Combining Eq. (36) with Eq. (32) gives:

b�measured ¼ c2

Zbmax

bmin

bmodel exp �
bmeasured � �bmeasuredjmodel

	 
2

2 r2
bmeasuredjmodel

0
B@

1
CA dbmodel: ð37Þ

We now have a general equation for our improved estimator, b�measured, which has been

based on the conditional probability P bmodeljbmeasuredð Þ; in other words, an improvement

based on our benchmark-based results from Sects. 7 and 8. Three examples for b�measured are

given in Fig. 34 which schematically illustrates the construction of P bmodeljbmeasuredð Þ:

9.4 Practical Issues When Calculating the Benchmark-based Improved

Estimator b�measured

For practical applications we are interested in deriving the benchmark-based improved

estimator b�measured and associated 95 % confidence intervals. The approach presented

above allows us to do this with moderate computational costs in the following way:

(A) For the time series of interest, determine its one-point probability distribution and

note its time series length, N.

(B) Measure the strength of long-range dependence of the time series bmeasured using a

specific technique [Hu, Ha, DFA, PS].

(C) Construct benchmark fractional noises and motions which are realizations of

processes with different strength of long-range persistence, bmodel, but with length

N and one-point probability distributions equal to those of the analysed time series.

We have provided (supplementary material) files with fractional noises and motions

drawn from 126 sets of parameters and an R program to create these and other

synthetic noises and motions (see Sect. 4.3 for further description).

(D) Use the fractional noises and motions constructed in (C) and the technique used in

(B) to determine numerically �bmeasuredjmodel and r2
bmeasuredjmodel

, for a range of bmodel

from bmin to bmax, such that step size for successive bmodel results in �bmeasuredjmodel

and r2
bmeasuredjmodel

which are sufficiently smooth. Interpolation within the step size
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chosen (e.g., linear, spine) might be necessary. We have given these performance

results measures (supplementary material) for fractional noises and motions with

about 6,500 different sets of parameters (see Sect. 7.3 for further description).

(E) Apply Eq. 36 to determine the ‘posterior’ of the long-range persistence strength,

P bmodeljbmeasuredð Þ.
(F) Determine the benchmark-based improved estimator for the time series, b�measured, its

95 % confidence intervals from the mean and 95 % confidence intervals of the

distribution obtained in (E).

In the case of unbiased techniques, we find bmeasuredjmodel ¼ bmodel: If, in addition, the

variance r2
bmeasuredjmodel

does not depend on bmodel, then r2
bmeasuredjmodel

= r2 where r2 is now a

constant. An example of an unbiased technique where the variance does not depend on

bmodel is power spectral analysis applied to time series with symmetric one-point proba-

bility distributions. For this case, the distribution defined in Eq. (36) simplifies to a

Gaussian distribution with a mean value of bmodel and a variance of r2, giving

P bmodeljbmeasuredð Þ�Gaussian bmodel;r
2ð Þ: This implies, for this case, that (Eq. 37) the

benchmark-based improved estimator b�measured ¼ bmodel: However, in contrast, in power

spectral analysis applied to time series with asymmetric one-point probability distributions

and for the three other techniques considered in this paper for both symmetric and

asymmetric one-point probability distributions, either the techniques are biased or the

variance r2
bmeasuredjmodel

changes as a function of bmodel. In these cases the corresponding

distributions P bmodeljbmeasuredð Þ, as defined in Eq. (36), are asymmetric, and also any

confidence intervals (2.5 and 97.5 % of the probability distribution) are asymmetric with

respect to the mean of the probability distribution, b�measured.

9.5 Benchmark-based Improved Estimators: Supplementary Material Description

We have provided (supplementary material) an Excel spreadsheet which allows a user to

determine conditional probability distributions based on a user-measured bmeasured for a

time series, and the benchmark performance results discussed in this paper. In Fig. 35 we

show example of three Supplementary Material Excel Spreadsheet screenshots.

The first sheet ‘PerfTestResults’ (Fig. 35a) allows the user to see summary statistics of

the results of selected performance tests (Hurst rescaled range analysis, semivariogram

analysis, detrended fluctuation analysis, power spectral analysis best-fit, and power spectral

analysis Whittle) as applied to benchmark synthetic time series with modelled strengths of

long-range persistence (-1.0 \bmodel \ 4.0), given one-point probability distributions

(Gaussian, log-normal cv = 0.2 to 2.0, Levy a = 1.0 to 1.9), and time series lengths

Fig. 35 Example of three screen captures from Supplementary Material Excel Spreadsheet for a user to
determine conditional probability distributions based on a user-measured bmeasured for a time series, and the
benchmark performance results discussed in this paper. a Spreadsheet ‘PerfTestResults’ allows the user to
select summary statistics of the results of five different techniques applied to over 6,500 combinations of
parameters, as described in this paper. b Spreadsheet ‘InterpolSheet’ allows an input of a user-measured
bmeasured for their specific time series, and based on the closest match of their time series to benchmark
results given in ‘PerfTestResults’, the mean and standard deviation of the benchmark results for
-1.0 \bmodel \ 4.0. The spreadsheet linearly interpolates the performance test results and then calculates
bmeasured

* , the benchmark-based improvement to the user-measured value, along with the 97.5 and 2.5
percentiles (i.e. the 95 % confidence intervals). c The sheet ‘CalibratedProbChart’ shows the calibrated
probability distribution of bmodel conditioned on the user-measured value for beta (measure of the strength of
long-range persistence) and benchmark time series

c
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(N = 64, 128, 256, …, 131,072). For log-normal noises and motion, we give only the

results of those constructed with the Box–Cox transform (FLNNa). An example is shown in

Fig. 35a of a statistical summary of results for 100 realizations of a fractional log-normal

noise process constructed with Box–Cox (FLNNa), cv = 0.8, N = 512, with power

spectral analysis (best-fit) applied. Although the results are not discussed in the text of this

paper, we also give the results for discrete wavelet analysis in the supplementary material

(see Appendix 6 for details of how it was applied).

The second sheet ‘InterpolSheet’ (Fig. 35b) allows the user to input in the yellow box

the user-measured bmeasured for their specific time series, and then, based on the closest

match of their time series to the sheet ‘PerfTestResults’ parameters of one-point proba-

bility distribution type, number of values N, and technique used, to input the mean and

standard deviation of the benchmark results for -1.0 \bmodel \ 4.0. In this example, it is

assumed the user has a time series with the parameters given for Fig. 35a (FLNNa,

cv = 0.8, N = 512), has applied power spectral analysis (best-fit), and has user-measured

value of bmeasured = 0.75. The spreadsheet automatically interpolates the performance test

results, which have step size Dbmodel = 0.2, to Dbmodel = 0.01, using linear interpolation,

and then calculates bmeasured
* , the benchmark-based improvement to the user-measured

value, along with the 97.5 and 2.5 percentiles (i.e. the 95 % confidence intervals).

The third sheet ‘CalibratedProbChart’ (Fig. 35c) shows the calibrated probability dis-

tribution of bmodel conditioned on the user-measured value for beta (measure of the

strength of long-range persistence) and benchmark time series, P bmodeljbmeasured ¼ 0:75ð Þ;
showing graphically the mean of the distribution (this gives the value for bmeasured

* ) and the

97.5 and 2.5 percentiles of that distribution.

9.6 Benchmark-based improved estimators for example time series

Now we come back to the example of fractional log-normal noises discussed in Sect. 5 and

presented and pre-analysed in Fig. 14 and the properties of the corresponding bmeasured ¼
b Hu;Ha;DFA; PSðbest�fitÞ; PSðWhittleÞ½ � presented in Figs. 21, 22, 23, 24, 25 and Tables 4, 5. Take,

for example, a time series with N = 1,024 data points whose one-point probability dis-

tribution is a log-normal with a coefficient of variation of cv = 0.5 and created to have

bmodel = 1.0. The four functions—rescaled range, detrended fluctuation function, semi-

variogram, and power spectral density—result in a power-law dependence on the segment

length, lag, or the frequency. In other words, the analyses expose long-range persistence.

The corresponding power-law exponents are related to the strength of long-range persis-

tence as mentioned in Sects. 5 and 6 and given in Table 3. The measured strength of long-

range persistence has been determined as bHu = 0.78, bHa = 1.34, bDFA = 0.99, bPS(best-

fit) = 0.99, and bPS(Whittle) = 0.98. We now apply the scheme in Sect. 9.4 to obtain the five

calibrated distributions, P bmodeljbmeasuredð Þ, conditioned on the five bmeasured values for

each technique (see Fig. 34 for an illustration).

For example, bHu = 0.78 is put into Eq. (36) giving:

P bmodeljbHu ¼ 0:78ð Þ ¼ c2 exp �
0:78� �bHujmodel

	 
2

2 r2
bHujmodel

0
B@

1
CA: ð38Þ

The set of �bHujmodel and r2
bHujmodel

in Eq. (38) are the mean and standard deviation (i.e. the

standard error), respectively, of the set of bmodel for log-normal times series with cv = 0.5
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and N = 1,024. Each value of bmodel has its own associated mean (�bHujmodel) and standard

deviation (rbHujmodel
). For Hurst rescaled range (R/S) analysis, we can read this set of values

directly off of Fig. 21c, where the means are the green diamonds plotted and the error bars

represent ±1.96 standard deviations. However, as it is difficult to read precise numbers off

of the figures, a more accurate way is to go to the supplementary material Excel spread-

sheet, choose the appropriate parameters of the process, and read off (with appropriate

interpolation if necessary) bHujmodel and rbHujmodel
; and to either apply directly Eq. (38) or to

have the supplementary material Excel spreadsheet for calculating the appropriate values

(Sect. 9.5) and the resultant conditional distributions P bmodeljbmeasuredð Þ.
In Fig. 36 we give the conditional distributions P bmodeljbmeasuredð Þ, for each of the five

performance techniques, based on benchmark results and measured values for the tech-

niques bHu = 0.78, bHa = 1.34, bDFA = 0.99, bPS(best-fit) = 0.99, and b(PSWhittle) = 0.98.

The conditional distributions for bDFA, bPS(best-fit), and bPS(Whittle) have their modes

(maximum probability for each distribution) at the measured values of b, whereas the

modes of the calibrated distributions of bHu and bHa are shifted because the underlining

bmodel = 1.0 is at the edge of the range of applicability of these two techniques.

The calibrated strength of long-range persistence (i.e. the benchmark-based improved

estimators) leads for all techniques to values close to one: b�Hu ¼ 1:02; b�Ha ¼ 1:30; b�DFA ¼
1:05; b�PS best�fitð Þ ¼ 1:02; and b�PS Whittleð Þ ¼ 1:02: The 95 % confidence intervals (ranging

from the 2.5 to the 97.5 percentile), however, differ remarkably: 0.74 \ b�Hu \ 1.32,

1.05 \b�Ha \ 1.62, 0.83 \b�DFA \ 1.28, 0.88 \b�PS best�fitð Þ\ 1.14 and 0.90 \b�PS Whittleð Þ
\ 1.11. The improved estimator b�measured through use of the power spectral method is the
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Fig. 36 Conditional distributions Pðbmodeljb Hu;Ha;DFA; PS best�fitð Þ; PS Whittleð Þ½ �Þ of the strength of long-range

persistence of a log-normal noise (cv = 0.5, N = 1,024, bmodel = 1.0) for values of bmeasured obtained by
using: (1) Hurst rescaled range analysis (wine, solid line), (2) semivariogram analysis (green, long-dashed
line), (3) detrended fluctuation analysis (red, dotted line), (4) power spectral analysis (log-linear regression)
(blue, dash–dot–dot line), (5) power spectral analysis (Whittle estimator) (black, dashed line). Examples of
how these curves are constructed are given in Figs. 34 and 35
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most certain, followed by detrended fluctuation analysis. The confidence intervals resulting

from rescaled range analysis and semivariogram analysis are very wide. The confidence

interval sizes of b�Hu; b
�
Ha; and b�DFA; are larger than the confidence intervals of bHu, bHa,

and bDFA derived from the random errors, rx(b½Hu;Ha;DFA�). Nevertheless, all techniques are

appropriate to confirm the presence of long-range persistence, as no corresponding 95 %

confidence interval contains bmodel = 0.0.

We will now apply our benchmark-based improved estimators in the context of three

geophysical examples.

10 Applications: Strength of Long-Range Persistence of Three Geophysical Records

We now return to the three data series presented in Fig. 1 and apply the techniques

explored in this paper to them to investigate the long-range persistence properties of the

underlying processes.

The first data set, a palaeotemperature series based on GISP2 bi-decadal oxygen iso-

topes data for the last 10,000 years, contains N = 500 data points which are normally

distributed (see Fig. 1a). We apply the four functions, rescaled range, semivariogram,

detrended fluctuation, and power spectral density to this time series (see Fig. 37), and all

are found to have strong power-law dependence of the function on the segment lengths,

lags, and frequencies. The resultant persistence strengths are summarized in Table 8. The

four techniques (with two ways of fitting the power spectral densities, best-fit and Whittle)

lead to self-affine long-range persistence strengths of bHu = 0.42, bHa = 1.11, bDFA =

0.43, bPS(best-fit) = 0.46, and bPS(Whittle) = 0.54. The results of the benchmark-based

improved estimates of bmodel (Table 8) are b�Hu ¼ 0:37; b�Ha ¼ 0:66; b�DFA ¼ 0:47;

b�PSðbest�fitÞ ¼ 0:46 and b�PSðWhittleÞ ¼ 0:53: In all cases except for semivariogram analysis,

the improved estimator results are within 0.05 of the originally measured result. It is

reasonable that semivariograms are so far off, as semivariogram analysis is not appropriate

over the range -1.0 \ b\ 1.0, we thus exclude it from further consideration.

The benchmark-based improved values of the three remaining techniques (not con-

sidering confidence intervals) lie in the interval 0:37\b�½Hu;Ha; PSðbest�fitÞ; PSðWhittleÞ�\0:47:

The corresponding 95 % confidence intervals for each technique overlap, but they are

different in total size, ranging from 0.30 for the Whittle estimator (95 % confidence

intervals: 0:38\b�PSðWhittleÞ\0:68) to 0.57 for rescaled range analysis (0:08\b�Hu\0:65).

Since all of these confidence intervals do not contain b = 0.0, long-range persistence is

qualitatively confirmed. Another important aspect of our analysis is stationarity, that is, if

our time series can be modelled as a fractional noise (b\ 1.0) or a fractional motion

(b[ 1.0). As explained in Sect. 8.2, we have to determine or diagnose whether the values

in the confidence intervals just discussed are all smaller or all larger than b = 1.0. We find

that these confidence intervals are covered by the interval [0.0, 1.0]. Therefore, we can

conclude that the palaeotemperature series can be appropriately modelled by a fractional

noise (i.e. b\ 1.0).

For quantifying the strength of self-affine long-range persistence, one interpretation

would be to take the most certain estimator (based on the narrowest 95 % confidence

interval range) b�PS Whittleð Þ which says that with a probability of 95 %, the persistence

strength b ranges between 0.38 and 0.68. Another interpretation would be that based on the

results in this paper, the DFA, PS(best-fit), and PS(Whittle) techniques were much more

robust (small systematic and random errors) for normally distributed noises and motions
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compared to (R/S), and thus to state that this palaeotemperature series exhibits long-range per-

sistence with a self-affine long-range persistence strength b�DFA;PSðbest�fitÞ;PSðWhittleÞ½ � between

0.46 and 0.53, with combined 95 % confidence intervals for b�DFA;PSðbest�fitÞ;PSðWhittleÞ½ �
between 0.23 and 0.73. In other words, there is weak long-range positive self-affine

persistence.

The second data set is the daily discharge of Elkhorn River (Waterloo, Nebraska, USA)

for 1929–2001 (see Fig. 1b). This measurement series has N = 26,662 data points and is

log-normal distributed with a high coefficient of variation (cv = 1.68). Rescaled range,

semivariogram, and detrended fluctuation analyses reveal two ranges with power-law

scaling which are separated at l = 1.0 year (see Fig. 38). Dolgonosov et al. (2008) also

observed two scaling ranges of the power spectral density and modelled them by inte-

grating run-off and storage dynamics. In our own results, for the low-frequency scaling

range (l [ 1.0 year; f \ 1.0 year–1), the different performance techniques come up with

rather diverse results for the persistence strength: bHu = 0.66, bHa = 1.03, bDFA = 0.40,

bPS(best-fit) = 0.60, and bPS(Whittle) = 0.71 (see Table 8). As in the first data set above, we
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will exclude semivariogram analysis from further consideration as it is not appropriate over

the range -1.0 \ b \ 1.0.

The persistence strengths for the low frequency domain (Table 8) obtained by the

benchmark-based improvement techniques (b�Hu;DFA; PS½ �) range between 0.65 and 0.81. The

corresponding 95 % confidence intervals are very wide, ranging from the widest, 0.26 \
b�PSðbest�fitÞ\1.10, to the ‘narrowest’, 0:46\b�Hu\1:07; however, all of them do include a

‘common’ range for the persistence strength interval 0:46\b�Hu;DFA; PS½ �\0:84: These very

uncertain results are caused by both the very asymmetric one-point probability density and

the consideration of very long segments (l [ 1.0 year) or, respectively, very low fre-

quencies. Based on the performance results for realizations of log-normally distributed

fractional noises (Sect. 7), we believe that the best estimators are PS(best-fit) and

PS(Whittle). If we use the limits of both of these, then we can conclude that this discharge

series exposes self-affine long-range persistence with strength b�PSðbest�fitÞ; PSðWhittleÞ½ �
between 0.69 and 0.81, and 95 % confidence intervals for the two combined between 0.26

and 1.16. In other words, there is long-range positive persistence with a weak to medium
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Fig. 38 Long-range dependence analysis of the 1929–2001 daily discharge data set (Elkhorn river at
Waterloo, Nebraska, USA) presented in Fig. 1b. The panels represent the following: a Hurst rescaled range
(R/S) analysis, b semivariogram analysis, c detrended fluctuation analysis, d power spectral analysis. All
graphs are shown on logarithmic axes. Best-fit power laws are presented by straight solid lines which have
been slightly shifted on the y-axis. The corresponding power-law exponents are given in the legend of the
corresponding panel and in Table 8
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strength. As the 95 % confidence intervals contain the value b�PSðbest�fitÞ; PSðWhittleÞ½ � = 1.0,

we cannot decide whether our time series is a fractional noise (b\ 1.0) or fractional

motion (b[ 1.0).

For both the palaeotemperature and discharge time series, we have modelled them as

showing positive long-range persistence. For these data types, both short-range and long-

range persistent models have been applied by different authors. For example, for both data

types, Granger (1980) and Mudelsee (2007) model the underlying processes as the

aggregation of short-memory processes with different strength of short memory.

The third data set, the geomagnetic auroral electrojet (AE) index data, sampled per

minute for 01 February 1978 (Fig. 1c), contains N = 1,440 values. The differenced AE

index (DxAEðtÞ ¼ xAEðtÞ � xAEðt � 1Þ) is approximately Levy distributed (double-sided

power law) with an exponent of a = 1.40 (Fig. 1d). The four functions that characterize the

strength of long-range dependence show a power-law scaling, and the corresponding esti-

mated strengths of long-range dependence for the AE index are as follows (Table 8;

Fig. 39): bHu = 1.02, bHa = 2.18, bDFA = 2.01, bPS(best-fit) = 1.92, and bPS(Whittle) = 1.92,
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Fig. 39 Long-range dependence analysis of the 24 h period (01 February 1978, sampled per minute)
geomagnetic auroral electrojet (AE) index data presented in Fig. 1c1. The panels represent the following:
a Hurst rescaled range (R/S) analysis, b semivariogram analysis, c detrended fluctuation analysis, d power
spectral analysis. All graphs are shown on logarithmic axes. Best-fit power laws are presented by straight
solid lines which have been slightly shifted on the y-axis. The corresponding power-law exponents are given
in the legend of the corresponding panel and in Table 8
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and for the differenced AE index are as follows (Table 8): bHu = 0.12, bHa = 1.01,

bDFA = 0.13, bPS(best-fit) = 0.11, and bPS(Whittle) = 0.05.

Based on Sect. 7 performance results for realizations of Levy-distributed fractional

noises, we believe that the best estimators are PS(best-fit) and PS(Whittle). If we use the

limits of both of these, then we conclude (Table 8) that the AE index is characterized by

b�PSðbest�fitÞ;PSðWhittleÞ½ � ¼ 1:92, and 95 % confidence intervals for the two combined between

1.82 and 2.00. In other words, there is a strong long-range positive persistence, close to a

Levy-Brownian motion. Watkins et al. (2005) have analysed longer series (recordings of an

entire year) of the AE index and described it as a fractional Levy motion with a persistence

strength of b = 1.90 (standard error of 0.02) with a Levy distribution (a = 1.92). With

respect to the strength of long-range persistence, our results for the AE index are very

similar to that of Watkins et al. (2005), and our 95 % confidence intervals for bHa, bDFA,

and bPS, do not conflict with a value of b = 1.90.

In order to apply the benchmark-based improvement technique to the differenced AE

index, performance tests were run for Levy-distributed (a = 1.40) fractional noises with

N = 1,440 data points. The results for b�Hu;Ha;DFA; PSðbest�fitÞ; PSðWhittleÞ½ � are given in Table 8. If

we use the limits for both PS(best-fit) and PS(Whittle), then we conclude that the differenced

AE index is characterized by b�PSðbest�fitÞ; PSðWhittleÞ½ � between 0.06 and 0.12, and 95 % confi-

dence intervals for the two combined between -0.03 and 0.20. In other words, there is long-

range positive persistence with weak strength. This persistence strength is very close to

b = 0, and so our differenced AE index can be considered close to a white Levy noise. We

concluded above that the AE index is characterized by b�PS ¼ 1:92 [95 % confidence: 1.82 to

2.00] and here that the differenced AE index is characterized by b�PS ¼ 0:06 to 0:12 [95 %

confidence: -0.03 to 0.20]. This is not unreasonable as (Sect. 3.6) the long-range persistence

strength of a symmetrically distributed fractional noise or motion will be shifted by ?2 for

aggregation and -2 for the first difference (this case). The difference in the two adjusted

measured strengths of long-range persistence for the original and differenced AE index is

slightly smaller than two. We believe that this is caused by nonlinear correlations in the data.

We observe that when considering DFA applied to the differenced AE index series, the

size of the resultant 95 % confidence intervals (�0:16\b�DFA\0:39) is two to three times

bigger than that of the spectral techniques ð0:01\b�PSðbest�fitÞ\0:20; �0:03\ b�PSðWhittleÞ
\0:12Þ. This confirms the results we presented in Sect. 7 for the analysis of synthetic

noises: in the case of fractional Levy noises, DFA has larger random errors (proportional to

the confidence interval sizes) than power spectral techniques.

The three geophysical time series considered here have all been equally spaced in time.

However, unequally spaced time series in the geophysics community are common

(unequally spaced either through missing data or through events that do not occur equally

in time). For an example of a long-range persistence analysis of an unequally spaced time

series (the Nile River) see Ghil et al. (2011).

We have considered three very different geophysical time series with different one-

point probability distributions: a proxy for palaeotemperature (Gaussian), discharge (log-

normal), and AE index (Levy). For each, we have shown that the estimated strength of

long-range persistence can often be more uncertain than one might usually assume. In each

case, we have examined these time series with conventional methods that are commonly

used in the literature (Hurst rescaled range analysis, semivariogram analysis, detrended

fluctuation analysis, and power spectral analysis), and we have complemented these results

with benchmark-based improvement estimators, putting the results from each technique

into perspective.
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11 Summary and Discussion

In this paper we have compared four common analysis techniques for quantifying long-

range persistence: (1) rescaled range (R/S) analysis, (2) semivariogram analysis, (3)

detrended fluctuation analysis, and (4) power-spectral analysis (best-fit and Whittle).

Although not evaluated in this paper, we have also included in the supplementary material

results of a fifth technique, discrete wavelet analysis. To evaluate the first four methods, we

have constructed ensembles of realizations of self-affine noises and motions with different

(1) time series lengths, N = 64, 128, 256, …, 131,072; (2) persistence strengths, b =

-1.0, -0.8, -0.6, …, 4.0; and (3) one-point probability distributions (Gaussian; log-normal

with cv = 0.0, 0.1, 0.2, …, 2.0, and two types of construction; Levy with a = 1.0, 1.1,

1.2, …, 2.0). A total of about 17,000 different combinations of process parameters were

produced, and for each process type 100 realizations created. We have evaluated the four

techniques by statistically comparing their performance. We have found the following:

(1) Hurst rescaled range analysis is not recommended;

(2) Semivariogram analysis is unbiased for 1.2 B b B 2.8, but has large random error

(standard deviation or confidence intervals).

(3) Detrended fluctuation analysis is well suited for time series with thin-tailed

probability distributions and persistence strength of b[ 0.0.

(4) Spectral techniques overall perform the best of the techniques examined here: they have

very small systematic errors (i.e. are unbiased), with small random error (i.e. tight

confidence intervals and small standard deviations) for positive persistent noises with a

symmetric one-point distribution, and they are slightly biased for noises or motions with

an asymmetric one-point probability distribution and for anti-persistent noises.

In order to quantify what is the most likely strength of persistence for a fixed time series

length and one-point probability distribution, a calibration scheme based on benchmark-

based improvement statistics has been proposed. The most useful result of our benchmark-

based improvement is realistic confidence intervals for the strength of persistence with

respect to the specific properties of the considered time series. These confidence intervals

can be used to demonstrate long-range persistence in a time series: if the upper and lower

values of the 95 % confidence interval for a persistence strength b do not contain the value

b = 0.0, then the considered series can be interpreted (in a statistical sense) to be long-

range persistent.

Another outcome of our investigation is that typical confidence intervals for the strength

of long-range persistence are asymmetric with respect to the benchmark-based improved

estimator, b�measured. The only exception (i.e. symmetric confidence intervals) corresponds

to spectral analysis of time series with symmetric one-point probability distributions.

In this context, we emphasize that for time domain techniques the standard deviation of

the persistence strength cannot be calculated as the regression error of the linear regression

(e.g., for log(DFA) vs. log(segment length), log(R/S) vs. log(segment length), and

log(semivariogram) vs. log(lag)). This would be possible only if the fluctuations around the

average of the measured functions, logðDFAÞ, logðR=SÞ, and logðsemivariogramsÞ, were

independent of the abscissa (log(length) or log(lag)). However, as we characterize highly

persistent time series, these fluctuations are also persistent and the assumption of inde-

pendence cannot be held to be true.

One aspect of our study found limitations in the Schreiber–Schmitz algorithm. It turned

out that the Schreiber–Schmitz algorithm can construct fractional noises and motions with
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symmetric one-point probability distributions and with persistence strength between

–1.0 B b B 1.0. However, highly asymmetric probability distributions and with large

strengths of persistence (b[ 1.0) can lead to resultant time series with a persistence

strength that is systematically smaller than the one that is modelled.

In the literature, the performance of detrended fluctuation analysis and spectral analysis

has been benchmarked using synthetic time series with known properties (e.g., Taqqu et al.

1995; Pilgram and Kaplan 1998; Malamud and Turcotte 1999a; Eke et al. 2002; Penzel

et al. 2003; Maraun et al. 2004). Our current investigations for quantifying long-range

persistence of self-affine time series have shown that the systematic errors of both tech-

niques (DFA and spectral analysis) are comparable, while the random errors of spectral

analysis are lower, resulting in the fact that a total root-mean-squared error (RMSE, which

takes into account both the systematic and random errors) is also lower for spectral analysis

over a broad range of persistence strengths and probability distribution types. However, as

the analysed time series might have nonlinear correlations, both DFA and spectral analysis

should be applied, as the nonlinear nature of the correlations (even if the time series is also

self-affine) can strongly influence and give very different results for the two techniques

applied (see Rangarajan and Ding 2000). Detrended fluctuation analysis is also subject to

practical issues, such as choice of the trend function to use.

We recommend investigation of self-affine long-range persistence of a time series by

applying power spectral and detrended fluctuation analysis. In the case of time series with

heavy-tailed or strongly asymmetric one-point probability distributions, benchmark-based

improvement statistics for the strength of long-range persistence, which is based on a large

range of model time series simulations, is required. If the considered time series are not

robustly self-affine, but also have short-range correlations or have periodic signals

superimposed, then the proposed framework must be appropriately modified. To aid the

reader, extensive supplementary material is provided, which includes (1) fractional noises

with different strengths of persistence and one-point probability distributions, along with R

programs for producing them, (2) the results of applying different long-range persistence

techniques to realizations from over 6,500 different sets of process parameters, (3) an

Excel spreadsheet to do benchmark-based improvements on the measured persistence

strength for a given time series, and (4) a PDF file of all figures from this paper in high-

resolution.

Many time series in the Earth Sciences exhibit long-range persistence. For modelling

purposes it is important to quantify the strength of persistence. In this paper, we have

shown that techniques that quantify persistence can have systematic errors (biases) and

random errors. Both types of errors depend on the measuring technique and on parameters

of the considered time series such as the one-point probability distribution, the length of

the time series, and the strength of self-affine long-range persistence. We have proposed

the application of benchmark-based improvement statistics in order to calibrate the mea-

sures for quantifying persistence with respect to the specific properties (length, probability

distribution, and persistence strength) of the considered time series. Thus, the uncertainties

(systematic and random errors) of the persistence measurements obtained might be better

contextualized. We give three examples of ‘typical’ geophysics data series—temperature,

discharge, and AE index—and show that the estimated strength of long-range persistence

is much more uncertain than might be usually assumed.
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Appendix 1: Construction of Gaussian-Distributed Fractional Noises and Motions

(1.1) Choose the parameter for the strength of long-range persistence, b, and the length of

the noise or motion, N.

(1.2) Begin with a Gaussian-distributed white noise with 2N elements x1, x2, …, x2N.

(1.3) Subtract the mean �x (see Eq. 1) from each of the time series elements xt,

t = 1, 2, …, 2N.

(1.4) Apply a discrete Fourier transform to the mean-corrected white noise. This results

in the (complex-valued) Fourier coefficients Xk, k = 1, 2, …, N.

(1.5) Filter the Fourier coefficients:

~Xk ¼ Xk

k

N

� ��b=2

; k ¼ 1; 2; . . .;N

~Xk ¼ ~XN�k; k ¼ N þ 1; N þ 2; . . .; 2N

ð39Þ

(1.6) Apply an inverse discrete Fourier transform to the filtered Fourier coefficients to get

~xk; k ¼ 1; 2; . . .; 2N.

(1.7) Take the first N elements of the Fourier-filtered noise or motion obtained in (1.6).

(1.8) Subtract the sample mean �~x from each noise element ~xt; t ¼ 1; 2; . . .;N:
(1.9) Normalize the standard deviation to be one by dividing each time series element

~xt � �~x; t ¼ 1; 2; . . .;N by the sample standard deviation rx ~xð Þ: The resultant time

series represents a realization of a Gaussian-distributed, self-affine noise or motion

with b the strength of long-range persistence.

Appendix 2: Construction of Levy-Distributed Fractional Noises and Motions

(2.1) Choose the parameter for the strength of long-range persistence, b, the length of the

noise or motion, N, and the exponent of the Levy distribution, a.

(2.2) Begin with a Levy-distributed white noise with N2 elements x1; x2; . . .; xN2 . As N2

can become very large, it may lead to conflicts with the computer memory.

Therefore, choose the number of elements as large as possible.

(2.3–2.6) are identical to (1.3–1.6)

(2.7) Take the first N elements of the Fourier-filtered noise or motion obtained in (2.6).

(2.8) Subtract the sample mean from each of the remaining noise or motion elements.

(2.9) Normalize the sample standard deviation to be one by dividing each time series

element by the sample standard deviation. The resultant time series represents a

realization of a Levy-distributed, self-affine noise or motion with b the strength of

long-range persistence.
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Appendix 3: Construction of Log-Normal Distributed Fractional Noises and Motions
by Box–Cox Transformation of Fractional Gaussian Noises

(3.1) Choose the parameter for the strength of long-range persistence, b, the length of the

noise or motion, N, and the parameters for the log-normal distribution: the mean

value l (l[ 0) and the coefficient of variation cv = r/l (cv [ 0).

(3.2) Construct a Gaussian-distributed, self-affine noise or motion with 2N elements,

y1, y2, …, y2N, with b the strength of long-range persistence, by performing steps

(1.2–1.6) of Appendix 1.

(3.3) Subtract the sample mean �y from each of the noise or motion elements yt,

1 B t B 2N.

(3.4) Normalize the standard deviation to be one by dividing each noise or motion

element by the sample standard deviation of the noise. The resultant noise is called

ŷ1; ŷ2; . . .; ŷ2N :
(3.5) The transformation into a log-normal noise or motion is performed by applying the

following function to each element:

xt ¼ exp
ŷt � log l=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ c2

v

p� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log 1þ c2

v

� �q

0
B@

1
CA; t ¼ 1; 2; . . .; 2N ð40Þ

(3.6) Take the first N elements of the log-normal noise or motion obtained in (3.5). The

resultant time series represents a realization of a log-normal distributed fractional

noise or motion with b the strength of long-range persistence.

Appendix 4: Construction of Log-Normal Distributed Fractional Noises and Motions
by the Schreiber–Schmitz Algorithm

(4.1) Choose the parameter for the strength of long-range persistence, b, the length of the

noise or motion, N, and the parameters for the log-normal distribution: the mean

value l (l[ 0) and the coefficient of variation cv = r/l (cv [ 0).

(4.2) Construct a very long (we recommend a length of L = N2) Gaussian-distributed,

self-affine noise or motion x1, x2, …, xL, with b the strength of long-range

persistence by performing steps (1.2–1.6) of Appendix 1. Store the amplitudes

(moduli) m1, m2, …, mL/2 of the Fourier coefficients, X1, X2, …, XL/2.

(4.3) Construct a white noise n1, n2, …, nL of length L (i.e. length of the fractional noise

or motion created in step 4.2) with the desired one-point probability distribution.

(4.4) [Amplitude adjustment] The time series n1, n2, …, nL is sorted such that its rank

order is identical to that of x1, x2, …, xL. This way, correlations are transferred from

the fractional noise or motion x1, x2, …, xL to the time series n1, n2, …, nL.

(4.5) [Adjustment of the power spectrum] Fourier transform the amplitude-adjusted data

set of values, n1, n2, …, nL, and reset the Fourier amplitudes to the Fourier

amplitudes of the fractional Gaussian noise or motion, m1, m2, …, mL/2 (see step

4.2), but keep the complex phases of the Fourier coefficients.

(4.6) Repeat steps (4.4–4.5) until the time series elements n1, n2, …, nL do not change

any more (we have used 10,000 iteration steps).
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(4.7) Take the first N elements of n1, n2, …, nL. The resultant time series represents a

realization of a log-normal distributed self-affine noise or motion with b the

strength of long-range persistence.

Appendix 5: Fitting Power-Law Functions to Data

Four of the techniques considered in this paper (R/S, semivariograms, DFA, and PS(best-

fit)) that we use for evaluating long-range persistence are based on fitting power-law

functions to the data. In this appendix, we will briefly discuss various methods for fitting

power laws to data, explain the statistical background, perform some simulations, and will

conclude that, for the purposes of analyses in this paper, a power-law regression can in

most cases be effectively done by a linear regression of the log-transformed data.

We begin with a set of discrete measured values, z1, z2, …, zn (e.g., our power spectral

densities), each associated with the values of an explanatory variable h1, h2, …, hn (e.g., a

given frequency in power spectral analysis). Assume that these pairs of values are well

described by a model h that is a power-law function that has superimposed on it fluctu-

ations (a white noise):

zt ¼ hðhtÞ þ et ¼ ch�b
t þ et; t ¼ 1; 2; . . .; n; ð41Þ

where c and b are constants, with b the exponent of an inverse power law. The variable e is

a (white) noise that is superimposed on the power-law trend h, in other words, the (usually

unknown) contamination or fluctuation around the model function. In this case the noise

is additive. Each value of the stationary white noise is uncorrelated with all other values,

and the one-point probability distribution of the white noise can vary (e.g., Gaussian,

log-normal, and chi-squared).

If the fluctuations systematically change as a function of the variable h, one way of

modelling this is by multiplying e by ch�b, such that the power-law function h has

superimposed on it a multiplicative noise:

zt ¼ ethðhtÞ ¼ ceth
�b
t ; t ¼ 1; 2; . . .; n: ð42Þ

For the specific case of power spectral analysis, the fluctuations for power spectral

densities considered as a function of frequency in the case of self-affinity have been

modelled by a multiplicative chi-squared process (Eq. 42) by both Timmer and König

(1995) and Chatfield (1996). Furthermore, the method by which we construct fractional

Gaussian and Levy noises and motions in this paper (described in Appendix 1 and 2,

respectively) is based on a transformation of a white Gaussian or white Levy noise into the

spectral domain, and then a filter which is effectively a multiplier (Eq. 39), that is, a

multiplicative process in the spectral domain. Thus, multiplicative processes for the power

spectral density fluctuations are important to consider for the analyses done in this paper.

These fluctuations are also important for the other power-law based techniques considered

in this paper (R/S, semivariograms, and DFA).

We first present (Fig. 40) realizations of the processes given by Eqs. (41) and (42). In

Fig. 40 we simulate an inverse power-law with exponent -0.5, and from top to bottom:

(a1, a2) additive (Eq. 41) Gaussian-distributed fluctuations (mean = 0.0, standard devia-

tion = 1.0), (b1, b2) multiplicative (Eq. 42) Gaussian-distributed fluctuations (mean =

1.0, standard deviation = 1.0), and (c1, c2) multiplicative (Eq. 42) chi-squared distributed
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fluctuations (2 degrees of freedom, mean = 1.0, standard deviation = 1.0). The left-hand

column of Fig. 40 is given in linear–linear axes, and the right-hand column in log–log axes.

Figure 40a shows that for a realization of the additive process and Gaussian-distributed

fluctuations, on linear axes the fluctuations are stationary, but that if a log-transform were

taken the fluctuations become non-stationary (i.e. the variance grows from left to right). In

Fig. 40b,c, a realization of a multiplicative process, we see the opposite: on linear–linear
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Fig. 40 Power-law functions with additive and multiplicative noises. Shown is the power-law function
z = 2.5h-0.5 with superimposed on it the following: a additive Gaussian-distributed fluctuations (Eq. 41),
b Gaussian-distributed multiplicative fluctuations (Eq. 42), c chi-squared distributed multiplicative
fluctuations (Eq. 42). The left-hand column shows data on linear axes and the right-hand column the
same data presented on logarithmic axes

638 Surv Geophys (2013) 34:541–651

123



axes the variance grows (the fluctuations are non-stationary), but on log–log axes, they are

approximately stationary.

We are mainly interested in the power-law exponent b, and we need an appropriate

statistical technique for estimating this coefficient from the given data. In the absence of

additive or multiplicative superimposed fluctuations (our Gaussian or chi-squared white

noise), then zt ¼ hðhtÞ ¼ ch�b; t ¼ 1; 2; . . .; n: However, in the presence of additive or

multiplicative fluctuations (noise), we have to explore what power-law fitting method leads

to the best-fit.

We consider two commonly used methods: ordinary nonlinear least-squares regression

(ONL) and least-squares linear regression of the log-transformed data (LL). Xiao et al.

(2011) discuss in depth the difference between these two methods for fitting power laws,

coming to the conclusion that ordinary nonlinear regression (ONL) is more appropriate for

additive errors and linear regression of log-transformed data (LL) is appropriate for

multiplicative errors. The errors here are the fluctuations around the best-fit power-law

line. In their work, Xiao et al. (2011) considered Gaussian-distributed additive and log-

normal distributed multiplicative fluctuations. We will here (further below) consider

Gaussian-distributed additive and Gaussian and chi-squared distributed multiplicative

fluctuations over many realizations. These two methods, ONL and LL, and others (e.g.,

weighted nonlinear regression) for fitting power laws to measured data, have also been

discussed by a number of authors (e.g., Bard 1973; Newman 1993; Schulz et al. 1994;

Robinson 1995), including evaluation of different methods’ strengths and weaknesses.

We will now consider these two methods, ONL and LL. Both are based on minimizing

D, the squared distance of the difference between the best-fit function and the measured

values. The squared distances for the methods are as follows:

Method ONL Ordinary Nonlinear Regression (ONL)

DONLðc; bÞ ¼
Xn

t¼1

zt � ch�b
t

� �2 ð43Þ

Method LL Linear Regression of the Log-Transformed Data (LL)

DLLð~c; bÞ ¼
Xn

t¼1

logðztÞ � b logð~htÞ � ~c
	 
2

ð44Þ

where the constant c for the two equations is not the same.

We now present simulation results (Fig. 41) for additive Gaussian-distributed fluctua-

tions (Eq. 41) and multiplicative Gaussian and chi-squared fluctuations (Eq. 42), which

were shown in Fig. 40. However, we now consider, for each of the three additive and

multiplicative processes, three values of the power-law exponent: b = -0.5, 0.5, and 1.5, a

total of nine processes, each with 1,000 realizations. As previously mentioned, chi-squared

distributions and multiplicative processes are typical of the fluctuations resulting from

long-range persistence techniques we apply in this paper to self-affine time series, and we

consider here typical values of power-law exponents that are within our range of

-1.0 B b B 4.0 considered in this paper.

Our simulations are based on 500 equidistantly spaced values h in the interval (0.0, 0.5),

1,000 realizations for each set of parameters, and estimation of the power-law coefficient

with the techniques ONL and LL. The ONL method (Eq. 43) has been applied here by

implementing the Golub–Pereyra algorithm which is an efficient iterative method for
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determining the best-fit power law ch�b (for details see Golub and Pereyra 1973; Bates and

Watts 1988). In their iterative algorithm we use the following parameters: (1) for b =

-0.5, 0.5, 1.5, respectively, bstart = 0.0, 0.0, 1.0, and a minimum step-size factor of 2-10;

(2) maximum number of iterations 500; and (3) a tolerance level for the relative offset
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Fig. 41 Distribution of estimated power-law exponents for two different fitting techniques applied to
three different power-law models shown in Fig. 40 (Gaussian-distributed additive fluctuations, Gaussian-
distributed multiplicative fluctuations, chi-squared distributed multiplicative fluctuations) with three
different power-law exponents in the equation z = 2.5h-b: a b = -0.5, b b = 0.5, c b = 1.5. For each
power-law exponent, 1,000 realizations of the three power-law models (Fig. 40) are created. For each
realization the power-law exponent was fit by ordinary nonlinear regression (ONL) and by linear regression
of the log-transformed data (LL). The resultant distribution of the fitted values of b is presented by box and
whisker plots. They give the mean value (white circle), the median (horizontal line in the middle of the box),
25 and 75 % percentile (box lower and upper edges), 5 and 95 % percentiles (lower and upper whiskers),
and maximum and minimum of the fitted exponents (upper and lower horizontal bar). The power-law model
is colour coded: Gaussian-distributed additive fluctuations (yellow), Gaussian-distributed multiplicative
fluctuations (blue), chi-squared distributed multiplicative fluctuations (pink)
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convergence criterion of 10-6. The results are presented in Fig. 41, where from top to

bottom are shown the three types of b simulated, and from left to right are the three types

of fluctuation—additive Gaussian, multiplicative Gaussian, and multiplicative chi-

squared—each fit by both ONL and LL. In each case we show a box plot (rectangle top and

bottom 25 and 75 %, horizontal line in the rectangle the median, white circle the mean

value, whiskers 5 and 95 %, and the top and bottom horizontal lines the maximum and

minimum). The long-dashed horizontal line in each panel is the process modelled value

for b.

We find that for multiplicative Gaussian and chi-squared distributions, b = -0.5, 0.5,

and 1.5, LL estimates are on average correct and the spread of the estimated values is

small, whereas for ONL the estimates are overestimated with larger spreads. For additive

Gaussian-distributed noises: (1) the LL estimates (relative to the b of the process) are

overestimated for b = -0.5 and underestimated for b = 0.5 and 1.5; and (2) the ONL

estimates have a median value close to the b of the process and a very wide spread of

values for b = –0.5 and 0.5 versus a very tight spread of values for b = 1.5. This large

spread, for cases when b \ 1.0, is most likely caused by the low ratio of signal h�b
t to noise

et in the model for Eq. 41. In other words, in Eq. 41 if we consider et to be a constant

scatter that does not vary with b, then over the interval considered for h (0.0 to 0.5), and in

particular as h! 0:0, the term ch�b
t becomes of the same order as or smaller (relative to et)

for b\ 1.0; thus, et superimposed on ch�b
t results in a very noisy signal zt which becomes

more difficult to estimate the best-fit b. For b [ 1.0, ch�b
t is not overwhelmed by et, and the

signal zt is not as ‘noisy’, thus resulting in much better estimates (less spread) for b. We

confirmed this effect by changing c in ch�b
t such that the term ch�b

t would always be much

larger than et and found that for b\ 1.0, the spread of the values of b for ONL additive

Gaussian noise became much smaller, of the same order as for b[ 1.0.

In this appendix we have thus far considered et ðt ¼ 1; 2; . . .; nÞ as an uncorrelated

series of values (i.e. a white noise), which have been superimposed (added or multiplied)

on our power-law function h, resulting in our ‘noisy’ power-law function z (e.g., our power

spectral densities). Assuming a multiplicative process, we now examine the case of power

spectral analysis applied to realizations of different fractional noises, the degree to which

correlations are in fact present or absent. We could also consider other techniques that we

have applied in this paper, but take power spectral analysis as an example.

We applied power spectral analysis to 1,000 realizations each of processes created to

have Gaussian, log-normal (cv = 2.0), and Levy (a = 1.5) distributed noises and motions

with two persistence strengths b = 0.0 and 2.0. For each of the six processes (each with

1,000 realizations) we calculated the average power spectral density �Sk at a given fre-

quency fk, applying detrending and windowing (Welch) as described in Sect. 6.2. The

multiplicative errors (Eq. 42), ek, are given by:

ek ¼
Sk � �Sk

�Sk

¼ Sk

�Sk

� 1; k ¼ 1; 2; . . .; 512 ð45Þ

In order to test for correlations in these error time series, ek, the autocorrelation function

C(s) (Eq. 3) was applied to each of the time series for lags s = 1 to 100. We found:

(1) b = 0.0 (white noise). For Gaussian, log-normal (cv = 2.0), and Levy (a = 1.5)

white noises, at s = 1 (i.e. neighbouring pairs of frequencies), Eq. (45) gave average

correlations (over the 1,000 realizations) of 0.14 \ C(1) \ 0.21. For s[ 1 (i.e. pairs

of frequencies separated by 1 up to 99 frequencies), Eq. (45) gave C(s) & 0.00.
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Theoretically (Chatfield 1996) for stationary Gaussian noises (b \ 1.0), we would

expect no correlations in the power spectral density errors for all lags. We attribute

the weak correlations found for all three one-point probability distributions for s = 1,

as potentially an effect of the Welch window used as part of the process of doing

power spectral analysis.

(2) b = 2.0 (Brownian motion). For fractional Gaussian motions we find similar results

to b = 0.0 (weak correlations for s = 1, negligible correlations for s [ 1). For the

Levy (a = 1.5) Brownian motions C(1) = 0.23, and for the log-normal (cv = 2.0)

Brownian motions C(1) = 0.33. In other words, both show weak correlations at lag 1.

As s increases, for both of these non-Gaussian one-point probability distributions,

C(s) decays slowly to 0.

Assuming a multiplicative error for the power spectral densities, the correlations we

have found for these six example processes (both stationary b = 0.0 and non-stationary b =

2.0 examples, and for three different one-point probability distributions) are either very

weak (e.g., at lag 1 for all processes, and for larger lags for b = 2.0 non-Gaussian motions)

or negligible. The techniques LL and ONL both require uncorrelated errors as an

assumption of their application. We believe the errors in the six sets of process realizations

we have shown are so weak as to not effect this assumption.

Our results shown in this appendix for additive and multiplicative noises confirm those

of Xiao et al. (2011) in that linear regression of log-transformed data is appropriate for

multiplicative errors (the case for analyses done in this paper) and that simple nonlinear

regression is more appropriate for additive errors. Furthermore, we find that LL works well

for both Gaussian and chi-squared distributed multiplicative fluctuations. We conclude

from our simulations that linear regression of the log-transformed data is appropriate for

fitting power-law exponents within the context of the four long-range persistence tech-

niques considered in this paper (R/S, semivariograms, DFA, and PS(best-fit)).

Appendix 6: Discrete Wavelet Transform

The discrete wavelet transform (DWT) was introduced by Grossmann and Morlet (1984)

and Daubechies (1988). The DWT decomposes a signal into a cascade of temporally

(spatially) localized sub-signals. The related basis functions, the wavelets, are localized in

the time and frequency domain. The set of wavelets which are assigned to a particular scale

in the cascade serves as a spectral band-pass filter. Those wavelets vary in their temporal

localization (in the time domain) and can be transformed into each other by dilatation. Two

excellent discussions of the wavelet transform are given by Hubbard (1996) and Wornell

(1996). Flandrin (1992), Wornell (1990, 1993), and Wornell and Oppenheim (1992) have

applied wavelets to fractional noises and motions. We have performed DWT analysis on

the synthetic time series described in Sect. 4.2. Although in the text of this paper we have

not provided a summary of the results of DWT analysis, we have included the results in our

supplementary material and therefore give here details of how DWT analysis was

performed.

(6.1) Take a time series xt, t = 1, 2, …, N, where the time series length N is a power of 2.

(6.2) Choose a discrete valued mother wavelet function w tð Þ: We use here wavelets from

the ‘best-localized’ family (Doroslovacki 1998), specifically ‘best-localized 20’.

However, except for the Haar wavelet, we have found most discrete mother wavelet

types (Daubechies 1988; Percival and Walden 2000) to give similar results.
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(6.3) Determine the wavelet basis functions

wkl tð Þ ¼ 2�k=2w 2�k t � lð Þ
� �

; 1� t�N ð46Þ

where 2k is the scale, k is the level (1 B k B K), and l is the number of the wavelet

coefficient (1 B l B 2K-k?1). We use a maximum level K = log2(N), and maxi-

mum number of wavelet coefficients per level is LðkÞ ¼ 2K�kþ1:
(6.4) Perform a wavelet transform on the time series xt. We use ‘symmetric’ boundary

conditions (vs. periodic boundary conditions). The result of the wavelet transform is

a set of wavelet coefficients wkl which fulfil the following:

xt ¼
XK

k¼1

XLðkÞ

l¼1

wklwkl tð Þ; 1� t�N ð47Þ

where wkl are the wavelet coefficients given by:

wkl ¼
XN

t¼1

xtwkl tð Þ

¼ 2�k=2
XN

t¼1

xtw 2�k=2 t � lð Þ
	 
 ð48Þ

(6.5) Compute the variance of the wavelet coefficients for each scale:

s2
DWT kð Þ ¼ r2 wk1;wk2; . . .;wkLf gð Þ; 1� k�K ð49Þ

(6.6) Apply weighted linear regression to log s2
DWT kð Þ

� �
as a function of wavelet scale

k. The weights in the linear regression are chosen as wk = 1/(2K-k?1). Determine the

slope of the best-fitting weighted linear model, bDWT.
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