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Abstract Thegeodesic flowof theflatmetric on a torus isminimizing the polynomial entropy
among all geodesic flows on this torus. We prove here that this properties characterises the
flat metric on the two torus.

Résumé Leflot géodésique desmétriques plates sur un toreminimise l’entropie polynomiale
parmi tous les flots géodésique sur ce tore. On montre ici que cette propriété caractérise les
métriques plates en dimension deux.
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1 Introduction

There are several classes of hyperbolicmanifolds onwhich themetricswith constant curvature
are characterized by the fact that their geodesic flow is minimizing the topological entropy,
see [6,16] for example. The situation is different on tori. Flat metrics have zero entropy, but
other metrics also have zero entropy, such as the tori of revolution. In order to characterize
the flat metrics, it is therefore useful to consider a finer dynamical invariant of the geodesic
flow, such as the polynomial entropy, introduced in [22].
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Using the techniques of [22], it was proved in [17] that the polynomial entropy of a flat
torus of dimension d (in restriction to the sphere bundle) is equal to d − 1, which is a lower
bound for the polynomial entropy of all metrics on T

d . It was also proved in [19] that the
polynomial entropy of the revolution two torus is two, which is higher than the one of the
flat two tori. This gives an indication that the polynomial entropy might be a sufficiently fine
invariant to characterize the flat metrics. Our main result in the present paper is that this is
indeed the case in dimension two. A partial result in that direction has been obtained in [18].

Theorem 1 If the polynomial entropy of a C2 metric g on T
2 (in restriction to the sphere

bundle) is smaller than two, then this entropy is equal to one and the torus (T2, g) is isometric
to a flat torus.

Theorem 1 immediately implies the following strong rigidity for flat metrics on T
2 (see

Corke and Kleiner [9]):

Corollary 1.1 Let g be a flat metric on T
2, and g′ be another metric on T

2. If the geodesics
flows of g and g′ are C0 conjugated, then g and g′ are isometric.

The detailed proof of Corollary 1.1 from Theorem 1 is given in Sect. 3.2 below. We will
prove Theorem 1 using Mather-Fathi theory. The useful facts from this theory are recalled in
Sect. 3, where a more general estimate on the polynomial entropy of Tonelli Hamiltonians
is given, see Theorem 2. Theorem 1 is deduced from Theorem 2 using the Theorem of Hopf
and its variants, see [15]. The definition of the polynomial entropy is recalled in Sect. 2, and
the entropy estimates leading to the proof of Theorem 2 are detailed in Sect. 4. Once the
dynamics has been well understood with the help of Mather-Fathy theory, these estimates
are similar to those appearing in [19,21,22].

2 The polynomial entropy

Consider a continuous map f : X → X , where (X, d) is a compact metric space. We
construct new metrics d f

n on X by setting

d f
n (x, y) = max

0�k�n−1
d( f k(x), f k(y)).

These metrics are the dynamical metrics associated with f. Obviously, if f is an isometry or
is contracting, d f

n coincides with d and in general d f
n is topologically equivalent to d. We

denote byG f
n (ε) the minimal number of balls of radius ε for the metric d f

n in a finite covering
of X. The topological entropy of the map f, defined as

htop( f ) = lim
ε→0

lim sup
n→∞

logG f
n (ε)

n

measures the exponential growth rate of G f
n . In the present paper we will rather consider a

polynomial measure of the growth rate introduced in [22]:

Definition 2.1 The polynomial entropy hpol( f ) of f is defined by

hpol( f ) = lim
ε→0

lim sup
n→∞

logG f
n (ε)

log n
.
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We also consider sets that are ε-separated for the metrics d f
n (we will write (n, ε)-

separated). Recall that a set E is said to be ε-separated for a metric d if for all (x, y) in
E2, d(x, y) ≥ ε. Denote by S f

n (ε) the maximal cardinal of a (n, ε)-separeted set contained
in X.

Observing that S f
n (2ε) � G f

n (ε) � S f
n (ε), we obtain

hpol( f ) = lim
ε→0

lim sup
n→∞

log S f
n (ε)

log n
.

Remark 2.1 If φ := (φt )t∈R is a continuous flow on X, for t > 0 and ε > 0, one can define in
the same way the numbers Gφ

t (ε) and Sφ
t (ε). The polynomial entropy hpol(φ) of φ is defined

as

hpol(φ) = lim
ε→0

lim sup
t→∞

logGφ
t (ε)

log t
= lim

ε→0
lim sup
t→∞

log Sφ
t (ε)

log t
.

One easily checks that if φ1 is the time-one map of φ, hpol(φ) = hpol(φ1).

The following properties of the polynomial entropy are proved in [22].

Property 2.1 1. hpol is a C0 conjugacy invariant, and does not depend on the choice of
topologically equivalent metrics on X.

2. If A is an f-invariant subset of X, then hpol( f|A ) � hpol( f ).
3. For m ∈ N

∗, hpol( f m) = hpol( f ) and if f is invertible, hpol( f −m) = hpol( f ).

We conclude this section with the following useful result which relates the polynomial
entropy of a flow with that of a Poincaré map.

Proposition 2.1 Let M be a smooth manifold, d a distance on M associated with a Rie-
mannian metric, and X a C1 complete vector field on M with flow φ = (φt )t∈R. Let A a be
compact φ-invariant subset of M and let � be a C1 codimension 1 embeddded submanifold
of X such that:

• for any a ∈ A, there exists t > 0 such that φt (a) ∈ �.
• for any a ∈ A ∩ �, X (a) is transverse to �.

Then the Poincaré return map ϕ : A ∩ � → A ∩ � is well defined, continuous and satisfies

hpol(ϕ) � hpol(φ|A).

Proof Let τ : A ∩ � → R
∗+ : a 	→ τa be the first return time map of ϕ.

Since the function τ is continuous on the compact set A ∩ �, we have T := max{τa | a ∈
A ∩ �} < ∞. Let d� be the distance induced by d on �.

There exists τ ∗ > 0 and a neighborhood V of A ∩ � in � such that the map � :] −
4τ ∗, 4τ ∗[×V ∩� → M : (t, a) 	→ φt (a) is aC1-diffeomorphism onto its image. Its inverse
is thus locally Lipschitz, hence its restriction to the compact set K := �([−τ ∗, τ ∗]×(A∩�))

is Lipschitz. As a consequence, there exists δ > 0 such that for any t, t ′ ∈ [−τ ∗, τ ∗] and
a, a′ ∈ A ∩ �

d(x, x ′) � δmax(|t − t ′|, d�(a, a′)) if x = φt (a) and x ′ = φt ′(a′). (1)

Note that τ ∗ < 1
4 min{τa | a ∈ A∩�}. Since the compact sets A∩� and A\�(]−τ ∗, τ ∗[×V )

are disjoint, the constant δ can be chosen such that

d(a, x) � δτ ∗ for each a ∈ � ∩ A and x ∈ A\K . (2)
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Let τ kx be the successive return times of the point x, so that ϕk(x) = φτ kx (x). Note that
τ 1x = τx , and τ k+1

x = τ kx + τϕk (x), hence τ kx � kT for all x ∈ A ∩ �.
We will now prove that two points x and y of A ∩ � which are (n, ε)-separated by

ϕ are (nT, δε) separated by φ for ε < τ ∗. There exists m ∈ {0, . . . , n} such that
d�(ϕm(x), ϕm(y)) � ε. Let us assume for definiteness that τmx � τmy .

If φτmx (y) ∈ A\K , then d(φτmx (x), φτmx (y)) � δε by (2), hence x and y are (τmx , δε)-
separated by φ.

If φτmx (y) ∈ K , then there exists m′ � m and s ∈ [−τ ∗, τ ∗] such that φτmx (y) =
φs(ϕm′

(y)).
If m′ = m, then d(φτmx (x), φτmx (y)) = d(ϕm(x), φs(ϕm(y)) � δmax(s, ε), hence x and

y are (τmx , δε)-separated by φ.
If m′ < m, since τ k+1

x − τ kx > 2τ ∗ for k ∈ {1, . . . ,m − 1}, there exists k ∈ {1, . . . ,m}
such that φτ kx (y) /∈ K , otherwise m′ � m. Then d(φτ kx (x), φτ kx (y)) � δε by (2), hence the
points x and y are (τ kx , δε)-separated by φ.

We have proved that

Sϕ
n (ε) � Sφ

nT (δε)

provided ε < τ ∗, which implies the inequality on hpol. 
�

3 Tonelli Hamiltonians

3.1 Some definitions from weak KAM theory

We work on the d-dimensional torus T := R
d/Zd , and will mostly consider the case d = 2.

A Tonelli Hamiltonian on T is a C2 Hamiltonian function H(q, p) : T×R
d(=T ∗T) −→ R

such that, for each q ∈ T, the function p 	−→ H(q, p) is convex with positive definite
Hessian and superlinear. The Hamiltonian vectorfield on T ∗T is given by

XH (q, p) = ( − ∂q H(q, p), ∂pH(q, p)
)
.

It generates a complete flow ϕt
H which preserves the function H.

To a Riemaniann metric gx (v, v′) = 〈G(x)v, v′〉 where G(x) is a C2 field of positive
definite symmetric matrices, we associate the Hamiltonian

H(x, p) = 1

2
〈G(x)−1 p, p〉.

It is well-known that the Hamiltonian flow of H is conjugated to the geodesic flow by
the Legendre diffeomorphism (x, v) 	−→ (x,G(x)v). In other words, geodesics are the
projections of Hamiltonian orbits.

Returning to the general case of a Tonelli Hamiltonian, the α function ofMather is defined
on H1(T,R) by

α(c) := inf
u∈C∞ sup

q
H(q, c + du(q)) = min

u∈C1,1
sup
q

H(q, c + du(q)),

where the infimum and the minimum are taken respectively on the set of smooth functions
on T and on the set of C1 functions with Lipschitz differential. It was proved in [4] that the
minimum exists on the set of C1,1 functions, see also [11]. A C1,1 function satisfying the
inequality

H(q, c + du(q)) � α(c)
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at each point q ∈ M is called a c-critical subsolution (as we just recalled, such functions
exist). Theremay exist several c-critical subsolutions.At least one of them,w, has the property
that

H(q, c + dw(q)) = α(c) ⇒ H(q, c + du(q)) = α(c)

for all critical subsolutions u. We define

A(c) := {q ∈ T, H(q, c + dw(q)) = α(c)} = ∩u{q ∈ T, H(q, c + du(q)) = α(c)},
where the intersection is taken on all c-critical subsolutions u. This is a non-empty compact
set, called the projected Aubry set. In view of the strict convexity of H in p, the differential
du(q) of a c-subsolution u at a point q ∈ A(c) does not depend on the c-critical subsolution
u. We define

A∗(c) := {(q, c + dw(q)), q ∈ A(c)} = {(q, c + du(q)), q ∈ A(c))}
for each c-critical subsolution u. This set is called the Aubry set, it is invariant under the flow
of H, compact, and not empty. It is moreover contained in the graph of the Lipschitz closed
form c + du for each c-critical subsolution u. A consequence of the invariance of A∗(c) is
that the projected Aubry A(c) set is invariant under the vectorfield

χ(q) := ∂pH(q, c + du(q))

on T for each c-critical subsolution u. The special c-critical subsolution w introduced above
has the property that the strict inequality

H(q, c + dw(q)) < α(c)

holds on the complement of A(c). A c-critical subsolution having this property is said strict
outside the Aubry set.

Mather measures at cohomology c (also called c-minimizing measures) are defined as the
invariant probability measures of the Hamiltonian flow supported on the Aubry set A∗(c).
There is a bijection (given by the projection) between Mather measures at cohomology c and
χ-invariant probability measures on A(c). We denote by M∗(c) the Mather set formed by
the union of the supports of Mather measures at cohomology c. Its projection M(c), called
the projected Mather set, is the union of supports of χ-invariant probability measures on
A(c). The Mather setM∗(c) is compact, non-empty, and invariant. The projected Mather set
M(c) is compact, non-empty, and χ-invariant. We define the rotation number of the Mather
measure μ∗ as

h(μ∗) :=
∫

T ∗T
∂pH(q, p)dμ∗(q, p) =

∫

T
χ(q)dμ(q) ⊂ R

d = H1(T,R),

whereμ is the projection ofμ∗ onT. So it is just the rotation number ofμ seen as aχ-invariant
probability measure on T.

There is an interesting relation between the function c 	−→ α(c) and the rotation numbers
of Mather measures, which was discovered by Mather [26]: The function α is convex and
superlinear on H1(T,R). Moreover, its subdifferential ∂α(c) ∈ H1(T,R) in the sense of
convex analysis is precisely the set of rotation numbers of Mather measures at cohomology
c.

It is well-known (and easy to prove using the convexity of H) that the inequality

−α(c) �
∫

T ∗T
(p − c) · ∂pH(q, p) − H(q, p)dμ∗(q, p)
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holds for each compactly supported invariant probabilitymeasureμ∗.Moreover, the invariant
probability measures achieving equality are precisely the Mather measures at cohomology
c. This explains the c-minimizing terminology. Our presentation however is not completely
standard because we work on T ∗T instead of TT. If everything is sent back on TT using the
Legendre transform, then the function p · ∂pH(q, p) − H(q, p) is sent to the more familiar
Lagrangian function.

Following Mather, we denote by β(h) : H1(T,R) −→ R the Legendre dual of α. In the
geodesic case, where H is quadratic in the fibers, the functions α and β are homogeneous of
degree 2. The function

√
β, which is homogeneous of degree one, is called the stable norm.

3.2 Flat metrics and proof of the Corollary 1.1

Let us discuss the case of flat metrics onT = T
d , which form an easy class of examples. A flat

metric is isometric to a constant metric of the form gq(v, v) = 〈Gv, v′〉 where G (hence also
G−1) is a fixed positive definite symmetric matrix. The corresponding Hamiltonian function
is

H(q, p) = 1

2
〈G−1 p, p〉.

Proposition 3.1 If the Hamiltonian flows of two Hamiltonians H(q, p) = 1
2 〈G−1 p, p〉

and H̃(q, p) = 1
2 〈G̃−1 p, p〉 associated to constant metrics are topologically conjugated (in

restriction to their energy levels {H = 1}and {H̃ = 1}), then there exists amatrix A ∈ Gld(Z)

such that G = At G̃ A. As a consequence, the corresponding metrics are isometric.

Proof Let us consider the quadratic functions n(v) = 〈Gv, v〉/2 and ñ(v) = 〈G̃v, v〉/2 on
R
d and let us denote� and �̃ their unit spheres� = {n = 1}. Themap (q, p) 	−→ (q,G−1 p)

conjugates the Hamiltonian flow of H in restriction to the energy level H = 1 to the flow
of the equations q̇ = v, v̇ = 0 on T × �. Since the flows of H and H̃ are conjugated, there
exists a homeomorphism ϕ : T×� −→ T× �̃ which conjugates the flows of q̇ = v, v̇ = 0
on these manifolds.

For each non resonant v ∈ �, the torus T × {v} is invariant, topologically transitive,
and d-dimensional, hence it is sent by ϕ to a torus with the same properties, which must
be a torus of the form T × {w}, for some w ∈ �̃. By density of the non resonant vectors
in �, we conclude that the map ϕ is of the form ϕ(q, v) = (ϕ1(q, v), φ(v)). Since ϕ is a
homeomorphism, so is φ : � −→ �̃. In the case d � 3 the map ϕ induces a homology map

ϕ∗ : Zd = H1(T × �) −→ H1(T × �̃) = Z
d

which is given by a matrix A ∈ Gld(Z). In the case d = 2, the action

ϕ∗ : Z2 × Z = H1(T × �) −→ H1(T × �̃) = Z
2 × Z

is upper triangular by blocks, and the left upper bloc is a matrix A ∈ Gl2(Z) which describes
the action on homology of the restriction ϕ|T×{v} for each v ∈ �. For each v ∈ � ∩ (RZd),
each orbit of T× {v} is periodic and gives rise to an oriented closed curve whose homology
is the only indivisible element h of R+v ∩ Z

d . Moreover, the minimal period of this orbit
is the positive real number T such that T v = h. The image by ϕ of such a periodic orbit
is a periodic orbit of minimal period T and homology h̃ = Ah. Since this orbit belongs to
T×{φ(v)}, we conclude that h̃ = Tφ(v), hence that φ(v) = Av. By continuity, this equality
holds for each v, hence

�̃ = φ(�) = A(�).
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This implies that ñ ◦ A = n, hence that G = At G̃ A. 
�
Proof of Corollary 1.1 If the geodesic flow of the metric g′ is topologically conjugated to the
geodesic flow of the flat metric g, then the polynomial entropy of g′ is equal to the polynomial
entropy of g, which is equal to 1. Theorem 1 implies that g′ is flat, and Proposition 3.1 then
implies that g and g′ are isometric. 
�
3.3 The special case of dimension two, the main statement in the Tonelli case

In this section, we work on the two-dimensional torus T = R
2/Z2. We first recall from [12]

some useful facts on rotation sets of flows on T.
Let us consider a flow on T and lift it to the flow ψ t on the cover R2 [identified with

H1(T,R2)]. The rotation set of our flow is the set of limits of sequences of the form

(ψ tk (xk) − xk)/tk,

where xk is a sequence in R
2 and tk −→ ∞. This is a compact and convex subset of

R
2 = H1(T,R) which is not empty. If the flow is generated by a vectorfield ν, then its

rotation set is also the set of the rotation numbers
∫

νdμ of all invariant probability measures
μ. The rotation set of a flow on the two torus T is a compact interval contained in a straight
line through the origin of R2 = H1(T,R). Moreover, see [12]:

• If the straight line has rational direction [which means that it contains an element of
H1(T,Z)], then the ergodic invariantmeasures of non-zero rotation number are supported
on periodic orbits. The α and ω limit sets of the flow are made of periodic orbits in this
case.

• If the straight line has irrational direction, then there is at most one ergodic invariant
measure of non-zero rotation number.

Let us apply these results to the Aubry set A∗(c) at a point c which is not a minimum of
the function α. Then, the rotation set ∂α(c) does not contain zero, and it is contained in the
rotation set of the vectorfield χ(q) = ∂pH(q, c + dw(q)) on T. We conclude that ∂α(c) is
a compact interval of a ray ρ(c) ∈ SH1(T,R), where

SH1(T,R) := (H1(T,R) − {0})/]0,∞) ≈ S1

is the set of open half lines of H1(T,R) starting at the origin. We say that a ray has rational
direction if it contains a point of H1(T,Z), and that it has irrational direction otherwise.
Recall that c-minimizing measures are in bijection with χ-invariant probability measures on
A(c).

• If ρ(c) has rational direction, then the ergodic c-minimizing measures are supported on
periodic orbits. Moreover, the α and ω limits of each orbit of A∗(c) are periodic orbits
supporting c-minimizing measures.

• If ρ(c) has irrational direction, then there exists a unique c-minimizing measure, and the
rotation set ∂α(c) is a point.

In all cases, each half orbit of A(c) has a single rotation number which is contained in ρ(c).
However, in the case of a rational direction, it is possible that the positive half-orbit and the
negative half-orbit of a given point have different rotation numbers both contained in ρ(c).

Let us explain a bit more how different rotation numbers can appear in the rational case.
In this case, the periodic orbits of A(c) are oriented embedded closed curve, and they all
represent the same homology class [ρ(c)] ∈ H1(T,Z) which is the only indivisible integer
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class in the half line ρ(c). The rotation number of the invariant measure supported on such
an orbit is then [ρ(c)]/T , where T is the minimal period of the orbit. The periodic orbits
of A(c) do not necessarily all have the same period, hence the associated measures do not
necessarily have the same rotation number.

For each e > min α, the set

A(e) := {c ∈ H1(T,R) : α(c) � e} ⊂ H1(T,R)

is a compact and convex set, whose interior is {α < e} and whose boundary is α−1(e). At
each boundary point c ∈ α−1(e), the set A(e) has a single outer normal ρ(c) ∈ SH1(T,R).
The map c 	−→ ρ(c) is thus continuous, and the set α−1(e) is a C1 curve. Note that the
map ρ : α−1(e) −→ SH1(T,R) is continuous and onto, and that it preserves the order. It is
however not necessarily one to one. For each c ∈ α−1(e), we consider the face F(c) ⊂ α−1(e)
defined as the set of cohomologies c′ such that ρ(c′) = ρ(c) and α(c′) = e. The face F(c) is a
compact segment containing c. It is also the set of points c′ ∈ A(e) such that (c′−c)·ρ(c) = 0.
The following is well known, see [2,23,25], but since we give the statement in a way which
is not obviously equivalent to those of these papers, we will provide a proof in Sect. 3.4. We
recall that the Mather setM∗(c) is the union of the supports of c-minimizing measures, and
that the projected Mather set M(c) ⊂ T is its projection.

Proposition 3.2 Each c ∈ α−1(e) is in one (and only one) of the following three cases:

1. ρ(c) has irrational direction and F(c) = {c}.
2. ρ(c) has rational direction, M(c) = T, and F(c) = {c}
3. ρ(c) has rational direction, M(c) �= T and F(c) is a non-trivial segment [c−, c+]. The

sets A∗(c−) and A∗(c+) contain non-periodic orbits (which are heteroclinics).

If, for a given value e > min α of the energy, case 3 does not occur for any c ∈ α−1(e),
then the map c 	−→ ρ(c) is a homeomorphism from α−1(e) to SH1(T,R). The energy level
{H = e} is then C0-integrable, as is proved in ([24], Theorem 3), see also Sect. 3.4:

Proposition 3.3 If, for a given value e > min α of the energy, case 3 does not occur for any
c ∈ α−1(e), then the Aubry sets A∗(c), c ∈ α−1(e) are Lipschitz invariant graphs which
partition the energy level {H = e}.

IfH is the Hamiltonian associated to a Riemaniannmetric, then this implies that themetric
is flat, in view of the Theorem of Hopf, see also [15]. As a consequence, Theorem 1 follows
from:

Theorem 2 Let e > min α be a given energy level. If there exists a cohomology c ∈ α−1(e)
in case 3, then the polynomial entropy of the Hamiltonian flow restricted to the energy level
{H = e} is not less than 2. In other words, if the polynomial entropy of the flow restricted
to the energy level {H = e} is less than two, the Aubry sets A∗(c), c ∈ α−1(e) are Lipschitz
invariant graphs which partition the energy level.

We will make use in the proof of two important properties of the Aubry sets:

Property 3.1 The set-valed map c 	−→ A∗(c) is outer semi-continuous. It means that each
open set U ⊂ T ∗T containing A∗(c), also contains A∗(c′) for c′ close to c.

We recall the definition of the vectorfield χ(q) := ∂pH(q, c + dw(q)) on T.
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Property 3.2 For each c ∈ α−1(e), there exists a global curve of section of A(c). More
precisely, there exists a cooriented C1 embedded circle � ⊂ T such that χ(q) is transverse
to � onA(c) and respects the coorientation. Moreover, each half orbit ofA(c) intersects �.
The flow of A(c) thus induces a homeomorphism ψ of � ∩ A(c) which preserves the cyclic
order of �.

Proof of Property 3.1 It is proved in [5] using the content of [10]. 
�
Proof of Property 3.2 Let us consider a cohomology c0 such that α(c0) < e and such that
c−c0 ∈ H1(T,Q). Since ρ(c) is the outer normal to ∂A(e) at c and c0 belongs to the interior
of A(e), we have

ρ(c) · (c − c0) > 0.

We consider a c-critical subsolution w of class C1,1 and strict outside the Aubry set. We also
consider a c0-critical subsolution u0. Let l ∈ N be such that l(c − c0) ∈ H1(T,Z). Let us
consider the C1,1 function �̂ on R

2 defined by

q 	−→ �̂(q) = l(c − c0)q + lw(q) − lu0(q).

The function �̃ = �̂ mod 1 : R
2 −→ T = R/Z is Z2-periodic, hence it gives rise to a

function � : T −→ T such that d� = l(c − c0) + l(dw − du0). For each point q such that
H(q, c + dw(q)) = e, we have

e − l−1d�(q) · χ(q) = H(q, c + dw(q)) − ∂pH(q, c + dw(q))

· (c0 + du0(q) − c − dw(q))

� H(q, c0 + du0(q)) � α(c0) < e

hence

d�(q) · χ(q) > 0.

Let us consider a regular value θ of�. Such a value exists by fine versions of Sard’s Theorem
(see [3]) since � is C1,1. The preimage �−1(θ) is a 1-dimensional cooriented submanifold
of T. It can be seen as an intersection cocycle of cohomology l(c − c0). It is a finite union
of embedded cooriented circles �i each of which is a cocycle of cohomology σi , with∑

σi = l(c − c0). Since ρ(c) · l(c − c0) > 0, there exists j such that ρ(c) · σ j > 0.
We denote by � the cooriented circle � j . Since d�(q) · χ(q) > 0, the orbits of A(c) are
transverse to �, and intersect it according to the coorientation.

Finally, each half orbit of A(c) has a rotation number contained in ρ(c). We have seen
that σ · ρ(c) > 0, where σ is the cohomology of the intersection cocycle associated to �.
Each half orbit of A(c) thus intersects �. As a consequence, the flow of A(c) generates a
Poincaré map

ψ : A(c) ∩ � −→ A(c) ∩ �

which is a bi-Lipschitz homeomorphism preserving the cyclic order on the circle �. This
implies that ψ can be extended to a homeomorphism of � preserving the cyclic order. 
�
3.4 Faces of the balls of α on the two torus

We take d = 2 and fix an energy level e > min α. We study the affine parts of the ball α−1(e)
and prove Propositions 3.2 and 3.3. The following is a variant of a Lemma of Massart [23]:
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Lemma 3.1 Assume that d = 2, that e > min α, and that the segment [c0, c1] is contained
in α−1(e). Then the Mather set M∗(c) does not change when c varies in [c0, c1].
Proof We have (c1 − c0) · ρ(c) = 0 for each c ∈ [c0, c1]. Let c be a point in [c0, c1]
and let μ∗ be an ergodic c-minimizing measure. Such a measure has a rotation number
h(μ∗) = sρ(c), s > 0. For each c′, we have

α(c′) �
∫

T ∗T
(c′ − p) · ∂pH(q, p) + H(q, p)dμ∗(q, p) = α(c) + (c′ − c) · h(μ∗).

If c′ ∈ [c0, c1], then the inequality α(c′) � α(c) + (c′ − c) · h(μ∗) is an equality, hence μ∗
is a c′-minimizing measure. This implies that M∗(c′) ⊂ M∗(c) for each c′ ∈ [c0, c1]. By
symetry, we conclude that M∗(c′) = M∗(c) for c′ ∈ [c0, c1]. 
�

The following Lemma also comes from Massart [23]:

Lemma 3.2 Assume that e > min α, and that the segment [c0, c1] is contained in α−1(e).
Then the Aubry set A∗(c) does not change when c varies in ]c0, c1[. Moreover, we have the
inclusion A∗(c) ⊂ A∗(c0) ∩ A∗(c1) for each c ∈ ]c0, c1[.

Wewill see that, unlike theMather set, the Aubry set can be bigger at the boundary points.

Proof Let us consider a point c = ac0 + (1 − a)c1, a ∈ ]0, 1[. Let wi , i ∈ {0, 1} be a
ci -critical subsolution strict outside the Aubry set. Then, wc := aw0 + (1 − a)w1 is a c-
critical subsolution. Using the strict convexity ofH in p, we observe that the strict inequality
H(q, c+ swc(q)) < e holds outside of the set where H(q, c0 +dw0(q)) = e and H(q, c1 +
dw1(q)) = e and c0 + dw0 = c1 + dw1. We conclude that the Aubry setA(c) is contained
in A(c0) ∩ A(c1), and that c0 + dw0 = c1 + dw1 = c + dwc on A(c). As a consequence,
A∗(c) ⊂ A∗(c0) ∩ A∗(c1). If c and c′ are two points in ]c0, c1[, assuming for example that
c∈ ]c0, c′[, we conclude that A∗(c) ⊂ A(c′). Similarly, we have c′ ∈ ]c, c1[, and we obtain
the converse inclusion, hence A∗(c) = A∗(c′). 
�

We recall that F(c) is defined as the largest segment of α−1(e) containing c.

Corollary 3.1 If M(c) = T, then F(c) = c.

Proof If M(c) = T, then there exist one and only one c-critical subolution w, and M∗(c)
is the graph of c + dw. Assume now that there exists c′ such that M∗(c′) = M∗(c). Then
M(c′) = T, hence there exists a unique c′-critical subsolution w′, and M∗(c′) is the graph
of c′ + dw′. We thus have c + dw = c′ + dw′ at each point, which implies that c = c′. In
view of Lemma 3.1, this implies that F(c) = c. 
�

The following was first proved by Bangert, see [2]:

Corollary 3.2 If ρ(c) has an irrational direction, then F(c) = c.

Proof As above, let us consider a cohomology c satisfying the hypothesis of the Corollary,
and a cohomology c′ such that [c, c′] ∈ α−1(e), hence M∗(c′) = M∗(c), by Lemma 3.1.
We will prove that c′ = c, which implies the Corollary. Note that (c′ − c) · ρ(c) = 0, so
that it is enough to prove that (c′ − c) · [�] = 0, where [�] ∈ H1(T,Z) is the homology
of the section � given by Property 3.2 (equipped with an orientation). Let w and w′ be c
and c′-critical subsolutions. We consider the closed Lipschitz form η = c′ − c + dw′ − dw,
whose cohomology is c′ − c and prove that

∫
�

η = 0.
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SinceM∗(c′) = M∗(c), we have η = 0 onM(c). It is thus enough to prove that
∫
I η = 0

for each connected component I of the complement ofM(c)∩� in�. We first observe that
∫

I
η =

∫

ψ(I )
η,

where ψ is a homeomorphism of � extending the return map of � ∩ A(c). To prove this
equality, we integrate η on the contractible closed curve made of the interval I =]q−, q+[,
followed by the orbit of q+ until its return ψ(q+), followed by the interval −ψ(I ) =
]ψ(q+), ψ(q−)[ followed by the piece of orbit of q− in negative time direction from ψ(q−)

to q+.
Since the intervals ψk(I ) are two by two disjoint in �, their lengh is converging to zero.

Since the form η is bounded, this implies that
∫
ψk (I ) η −→ 0, hence that

∫
I η = 0. 
�

In view of these corollaries there are three cases:

• ρ(c) has irrational direction and F(c) = {c} (Corollary 3.2).
• ρ(c) has rational direction, M(c) = T, and F(c) = {c} (Corollary 3.1).
• ρ(c) has rational direction and M(c) �= T.

Let us studymore precisely the last case.We denote by [c−, c+] the face F(c). We assume
for definiteness that c is an interior point of this face, which means that either c ∈ ]c−, c+[
or c− = c = c+.

We consider the cooriented section� given by Property 3.2.We orient� in such away that
(c+ −c−) · [�] � 0, where [�] is the homology of� (hence (c+ −c−) · [�] > 0 if c+ �= c−,
since [�] is not proportional to ρ(c)). The return map ψ fromM(c)∩� to istelf is periodic,
its minimal period is τ := σ · [ρ(c)]. The complement of M(c) in T is a disjoint union of
topological open annuli. Each of these annuli U intersects � in τ disjoint open intervals,
that we orient according to the orientation of �. Each orbit of A(c) − M(c) is contained in
such an annulus U, is α-asymptotic to one of its boundaries, and is ω-asymptotic to its other
boundary. We say that such an orbit is positive if it crosses the annulus U according to the
orientation of �, and that it is negative if it crosses in the other direction. In other words, the
heteroclinic orbit is positive if the sequence of its successive intersections with the interval
I is increasing. The following implies Proposition 3.2:

Proposition 3.4 If c∈ α−1(e) is such that ρ(c) is rational and M(c) �= T, then

• c− �= c+
• The Aubry set A(c+) contains positive heteroclinics in each connected component of

T − M(c) and no other orbit except those of M(c).
• The Aubry set A(c−) contains negative heteroclinics in each connected component of

T − M(c) and no other orbit except those of M(c).
• Finally, A(c) = M(c) for each c in ]c−, c+[.

Proof The statements concerning A(c+) and A(c−) imply that c+ �= c−. Moreover, they
imply that A(c+) ∩ A(c−) = M(c), hence that A(c) = M(c) for each c in ]c−, c+[, by
Lemma 3.2.

We will now prove the statement concerning A(c+), the other one being similar. We fix
a connected component U of T − M(c), and a connected component I of U ∩ �. Let ρm
be the direction of m[ρ] + [�], and let cm ∈ α−1(e) be such that ρ(cm) = ρm . Note that
cm −→ c+.

The annulus U contains an oriented closed curve K of homology [ρ]. The Aubry set
A(cm) contains a periodic orbit of homology positively proportional to m[ρ] + [�], hence
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it intersects K . In view of the semi-continuity of the Aubry set, see Property 3.1, we deduce
thatA(c+) intersects K . As a consequence, the setA(c+) does contain heteroclinic orbits in
U. Moreover, there exists m0 ∈ N and a compact subinterval J ⊂ I which contains a point
in each orbit of M(cm) for m � m0.

Let us now consider the return map ψτ of I ∩ A(c). Either we have ψτ (x) > x for each
x ∈ I ∩ A(c), and the orbits of A(c) ∩ U are positive heteroclinics, or we have ψτ (x) < x
for each x ∈ I ∩ A(c), and the orbits of A(c) ∩U are negative heteroclinics.

In view of the semi-continuity of the Aubry set, � is also a cooriented transverse section
for A(cm) for m � m0, provided m0 is large enough. Denoting by ψcm the corresponding
section map, we have ψτ

cm (J ) ⊂ I for m � m0 provided m0 is large enough. Then, there
exists a point xm ∈ J ∩ M(cm) ⊂ J ∩ A(cm), and xm < ψτ

cm (xm).
At the limit, using the semi-continuity of the Aubry set, we find a point x ∈ J ∩ A(c+)

such that ψτ (x) � x , hence ψτ (x) > x . We conclude that the heteroclinics are positive. 
�

For the convenience of the reader, and because our statement is not exactly the one of
[24], Theorem 3, we now prove Proposition 3.3, following [24]:

We consider an energy level e > min α such that the curve α−1(e) does not contain any
non-trivial segment, which is equivalent to saying that M(c) = T for each c such that ρ(c)
is rational. Note then that the map ρ : α−1(e) −→ SH1(T,R) is continuous and bijective,
hence it is a homeomorphism. Since the set SH1(T,Z) of rational directions is dense in
SH1(T,R), its preimage ρ−1(SH1(T,Z)) is dense in α−1(e). For each point c in this set, we
haveA(c) = T. In view of the semi-continuity of the Aubry set, we deduce thatA(c) = T for
each c ∈ α−1(e). As a consequence, there exists a unique (up to the addition of a constant)
c-critical subsolution wc, which is actually a solution, and the Aubry set A∗(c) is the graph
of c+dwc. Moreover, the functions dwc, c ∈ α−1(e) are equi-Lipschitz. The semicontinuity
of the Aubry set A∗ implies that the map c 	−→ c + dwc(q) is continuous for each q ∈ T.

The orbits of A∗(c) all have a forward rotation number in ρ(c). For c′ �= c, the orbits of
A∗(c′) all have a forward rotation number in ρ(c′), and, since ρ(c′) �= ρ(c), the sets A∗(c)
and A∗(c′) are disjoint. As a consequence, for each q ∈ T, the map c 	−→ c + dwc(q) is
one to one on α−1(e), hence it has degree ±1 as a circle map into {p ∈ TqT : H(q, p) = e}.
It is thus onto, which implies that the Aubry sets fill the energy level. 
�

4 Lower bound for the polynomial entropy

We prove Theorem 2. We consider an energy level e > min α, assume that the ball α−1(e)
contains a non-trivial face [c−, c+], and prove that the entropy of the Hamiltonian flow on the
energy level H−1(e) is at least two. The proof have similarities with the ones of [19,21,22].
We work with the section � of A(c+) given in Property 3.2. We fix a parameterisation
R/Z −→ �, and put on � the distance such that this parameterisation is isometric. This
distance is Lipschitz equivalent to the restriction of the distance on T.

The direction ρ(c) ∈ SH1(T,Z) is independant of c ∈ [c−, c+], and it is rational, we
denote it by ρ in the sequel, and by [ρ] ∈ H1(T,Z) the associated indivisible integer point. As
above,we consider, form ∈ N, the directionρm ofm[ρ]+[�] and a cohomology cm ∈ α−1(e)
such that ρ(cm) = ρm . Let us decide for definiteness that cm −→ c+ (otherwise we exchange
the names of c+ and c−). We fixm0 large enough so that � is a cooriented transverse section
of A(cm) for each m � m0 (such a value of m0 exists in view of the semi-continuity of the
Aubry set) and denote by ψcm the corresponding return map of A(cm) ∩ �. The orbits of
M(c) give rise to periodic orbits of ψ , and the minimal period of these orbits is τ := σ · [ρ],
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where σ is the cohomology of the intersection cocycle associated to �. The integral class
m[ρ]+[�] is not necessarily indivisible in H1(T,Z), hence the minimal period for the return
mapψcm of the points of�∩M(cm)may be smaller thanmτ . However, becausem[ρ]+[�]
is indivisible in the group generated by [�] and [ρ], we have:

Lemma 4.1 Each point ofM(cm)∩� is periodic for the mapψτ
cm , and has aminimal period

equal to m.

The following proof might appear unnecessarily complicated. Things can also be under-
stood as follows: The statement of the Lemma is obvious if ([�],[ρ]) is a base of H1(T,Z)

(since m[ρ] + [�] is then indivisible in H1(T,Z)) and we can reduce the situation to this
simple case by taking a finite covering, which does not change the value of the polynomial
entropy.

Proof Let us denote byG the subgroup of H1(T,Z) generated by [�] and [ρ]. Let χ : T −→
T be a covering such that χ∗(H1(T,Z)) = G. This coverging has τ sheets. The preimage
of � by this coverging has τ connected components, and we denote by �̃ one of them. We
have

[�̃] = χ−1∗ ([�]) ⊂ H1(T,Z),

and the cohomology of the intersection cocycle associated to �̃ is σ̃ := χ∗(σ )/τ . The
preimage of each orbit ofM(ρ) has τ connected components, each of which is a closed curve
of homology [ρ̃] := χ−1∗ ([ρ]). Since [ρm] does not necessarily belong to G, the preimage
of closed orbits in M(cm) may have less than τ connected components. Each of these
components have a homology in H1(T,Z)which is indivisible and positively proportional to
[ρ̃m] := m[�̃] + [ρ̃]. Since m[ρ] + [�] is indivisible in G, [ρ̃m] is indivisible in H1(T,Z),
hence it is equal to the homology of the connected components of the preimages of orbits of
M(cm). Note that χ∗([ρ̃m]) = m[ρ] + [�] is not necessarily equal to [ρm].

The minimal ψτ
cm -period of orbits of M(cm) ∩ � is equal to the intersection number

σ̃ · [ρ̃m] = (σ/τ) · (m[ρ] + [�]) = m. 
�

As in the proof of Proposition 3.4, we consider a compact subinterval J ⊂ I such that
each orbit ofA(cm) contains a point of J for m � m0 (we may have to increase m0). We can
chose ε0 > 0 small enough and m0 large enough to have, for all m � m0,

d(q, ψ±τ
cm (q)) � 2ε0 (3)

for all q ∈ A(cm) ∩ I such that d(q, J ) � ε0. Each point of J ∩ M(cm),m � m0 is at
distance at least 2ε0 from all the other points of its ψτ -orbit. We deduce:

Lemma 4.2 For q ∈ J ∩ M(cm),m � m0, the orbit

Oψτ (q) :=
{
q, ψτ

cm (q), ψ2τ
cm (q), . . . , ψ(m−1)τ

cm (q)
}

is (ε0,m)-separated by ψτ , hence (2ε0, τm)-separated by ψ .

Proof Let θ and θ ′ be two points of this orbit. There exists l ∈ {0, 1, . . . ,m − 1} such that
ψ lτ (θ) ∈ J . Thenψ lτ (θ ′) is another point of the sameorbit, henced

(
ψ lτ (θ), ψ lτ (θ ′)

)
� 2ε0.


�
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We denote by �∗ the set of points of the energy surface H−1(e) which project on �,
we endow it with a distance which satisfies d((q, p), (q ′, p′)) � d(q, q ′). We consider the
compact invariant set of the Hamiltonian flow (on the energy level) defined by

A := A∗(c+) ∪
⋃

m�m0

A∗(cm).

The surface �∗ is a transverse section of the flow on this invariant set, as required in Propo-
sition 2.1. We denote by � the corresponding return map of A ∩ �∗. The restriction of � to
A∗(cm) ∩ �∗ is conjugated to ψcm by the projection. In view of Proposition 2.1, it is enough
to bound from below the polynomial entropy of � on A∩�∗. We exhibit a sufficiently large
separated set using the orbits

O�τ (x) := {x, �τ (x), . . . , �(k−1)τ (x)}.
Lemma 4.3 Let us chose, for each m � m0, an element xm of M∗(cm) ∩ J ∗. The set

⋃

k∈{m,m+1,m+2,...,2m−1}
O�τ (xk)

is (ε0, 4m)-separated by �τ , hence (ε0, 4mτ)-separated by � (for m � m0).

Since the cardinal of this union is more thanm2, we conclude that the polynomial entropy
of � is at least two. By Proposition 2.1 the polynomial entropy of the Hamiltoinan flow on
the energy surface is at least two.

Proof Let x = (q, p) ∈ O�τ (xk) and y = (θ, η) ∈ O�τ (xl) be two different points in this
union.

If k = l, the points x and y belong to the same orbit O�τ (xk). They are (ε0,m)-separated
by �τ in view of Lemma 4.2.

Otherwise, we assume for definiteness that m � k < l < 2m. There exists an integer
s ∈ {0, 1, . . . , k − 1} such that ψ sτ

ck (q) ∈ J .
If d

(
ψ sτ
ck (q), ψ sτ

cl (q)
)

� ε0, then d
(
�sτ (x),�sτ (y)

)
� ε0 hence x and y are (ε0, k)-

separated by �τ .
If d

(
ψ sτ
ck (q), ψ sτ

cl (θ)
)

� ε0, then d
(
ψ sτ
cl (θ), J

)
� ε0 hence (3) implies that

d
(
ψ(k+s)τ
cl (θ), ψ sτ

cl (θ)
)

� 2ε0

so that

d
(
ψ(k+s)τ
cl (θ), ψ(k+s)τ

ck (q)
) = d

(
ψ(k+s)τ
cl (θ), ψ sτ

ck (q)
)

� ε0

hence

d
(
�(k+s)τ (y),�(k+s)τ (x)

)
� ε0.

As a consequence, the points x and y are (ε0, 4m)-separated by �τ . 
�
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