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Abstract K-area is an invariant for Riemannian manifolds introduced by Gromov as an
obstruction to the existence of positive scalar curvature. However in general it is difficult to
determine whether K-area is finite or not in spite of its natural definition. In this paper, we
study how the invariant changes under surgery.
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1 Introduction

The notion of K-area was introduced by Gromov [3]. It is an invariant for Riemannian
manifolds with values in (0,+∞]. Roughly, K-area(M) measures how small C0 curvature
norms can be achieved for ”non-trivial” vector bundles over a Riemannian manifold M .
Here a ”non-trivial” vector bundle E means a vector bundle with non-zero Chern numbers.
Finiteness of K-area has a deep relationship with the existence of positive scalar curvature.
The following theorem was proved by Gromov using the relative index theorem [2].

Theorem 1.1 [3] Let M be an even dimensional complete spin Riemannian manifold. If the
scalar curvature Sc of M satisfies inf Sc > ε2, then K-area(M) ≤ cε−2 where c is a constant
depending on the dimension of M.

In particular even dimensional spin manifold with K-area(M) = ∞ does not admit
complete Riemannian metrics of uniformly positive scalar curvature.

Even though both notions of scalar curvature and K-area require Riemannian metrics,
finiteness of K-area on a compact manifold depends only on its homotopy type. Hence
infiniteness ofK-area is a homotopical obstruction to the existence of positive scalar curvature
on compact spin manifolds.

In this paper we verify the following.
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Theorem 1.2 Let M be an oriented even dimensional Riemannian manifold with p + q =
dim(M). Let M� be a manifold obtained by p-surgery for q �= 2. If K-area(M) < ∞, then
K-area(M�) < ∞.

As a special case:

Corollary 1.3 Let M1 and M2 be oriented even dimensional Riemannian manifolds of the
same dimension. Let M1�M2 denote the connected sum of M1 and M2. If both K-area(M1)

and K-area(M2) are finite, then K-area(M1�M2) is also finite.

On the other hand the converse is easy to verify. Of course, the following Lemma 1.4
follows also from Theorem 1.2, but it can be verified without it.

Lemma 1.4 Let M1, M2, and M1�M2 be as above. If either M1 or M2 has infinite K-area,
then K-area(M1�M2) = ∞.

In fact, if M1 has infinite K-area then there exists a ”non-trivial” vector bundle E over M1

with small C0 curvature norm. Then we can construct another vector bundle over M1�M2 by
extending E trivially onto M2.

We remark that the main theorem is analogous to the following.

Proposition 1.5 [1] Let M be a compact manifold which carries a Riemannian metric of
positive scalar curvature. Then any manifold obtained by surgeries in codimension ≥ 3 also
carries a metric of positive scalar curvature.

The proof of our main theorem is rather different. The idea of the above proposition is
that Sq−1 × N admits a Riemannian metric of positive scalar curvature for q ≥ 3. On the
other hand, we use a property that the cartesian product of spheres at the connecting region is
simply connected. Any almost flat vector bundles over compact simply connected manifolds
are trivial, which will be used to compute finiteness of K-area.

In [5] M. Listing studies so called ”homology classes of finite K-area” and remarks that
the homology of finite K-area in the dimensions lower than the largest one behave in the
same way as the ordinary homology when taking the connected sums.

In [4] B. Hanke extends the concept of K-area by admitting Hilbert-A-module bundles
of small or vanishing curvature. He defines the notion of infiniteness (and finiteness) of K-
area of K -homology classes h ∈ K0(M) ⊗ Q for closed smooth manifolds M . It is shown
that the K-area of the homological fundamental classes of area-enlargeable manifolds in
the sense of [2] are infinite. Moreover he shows that oriented manifolds with fundamental
classes of infinite K-area are essential. Manifolds are said to be essential if the classifying
maps of universal covers map the homological fundamental classes to non-zero classes in
the homology of the fundamental groups.

2 Definition and a fundamental lemma

Let E → M be a Hermitian vector bundle over a Riemannian manifold M , and let A be a
section of

∧∗ T M ⊗ End(E). Let us define

‖A‖ := sup
ξ∈∧∗(T M)

‖ξ‖=1

|A(ξ)|op (2.1)

where |A(ξ)|op denote the operator norm of A(ξ) ∈ End(E).
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Let K×(M) denote the isomorphism classes of Hermitian vector bundles equipped with
compatible connections E = (E,∇) over M , which satisfy the following conditions.

(i) (E,∇) are isomorphic to the trivial bundles Cr equipped with flat connections outside
compact subsets of M .

(ii) (E,∇) have a non-zero Chern number. i.e. there exists a (multivariable) polynomial p
such that

∫

M

p(c1(E), c2(E), · · · ) �= 0 (2.2)

where ck(E) ∈ H∗
c (M) are the Chern classes of E = (E,∇).

Definition 2.1 ([3]) Let M be an even dimensional Riemannian manifold and let R = RE =
RE,∇ denote the curvature tensor of (E,∇). Then K-area of M is defined by

K-area(M) := sup
(E,∇)∈K×(M)

1

‖RE,∇‖ (2.3)

K-area(M) = ∞ if and only if for any ε > 0, there exists a vector bundle (E,∇) ∈ K×(M)

with a small curvature ‖R‖ < ε.

The following fundamental lemma is useful.

Lemma 2.2 Let M and M ′ be Riemannian manifolds and let f : M → M ′ be a smooth
Lipschitz map of non-zero degree which is proper or constant outside a compact subset in
M. Then K-area(M) ≥ c−2K-area(M ′) where c is the Lipschitz constant of f .

Lemma 2.2 implies that finiteness or infiniteness of K-area(M) is independent of the
deformation of Riemannian metrics on compact subsets in M . In particular, the finiteness
or infiniteness of K-area is a homotopy invariant of compact manifolds. This is stated in [3]
without proof. We give a proof for convenience.

Proof Set K-area(M ′) = 1
a . If K-area(M

′) = ∞, take a = 0. For any ε > 0, there
exists E = (E,∇) ∈ K×(M ′) with ‖RE‖ < a + ε. Let p be a polynomial satisfying∫
M ′ p(c1(E), c2(E), · · · ) �= 0. Consider the vector bundle f ∗E → M equipped with the

induced connection f ∗∇. Since f is proper or constant outside a compact subset, f ∗E is
isomorphic to a flat bundle Cr outside a compact subset. Moreover,

∫

M

p(c1( f
∗E), c2( f

∗E), · · · ) = deg( f )
∫

M ′
p(c1(E), c2(E), · · · ) �= 0 (2.4)

Hence, ( f ∗E, f ∗∇) ∈ K×(M). On the other hand

R f ∗E (u ∧ v) = RE ( f∗(u ∧ v)) (2.5)

‖R f ∗E‖ ≤ ‖ f∗(u ∧ v)‖‖RE‖ ≤ c2(a + ε) (2.6)

K-area(M) ≥ 1

‖R f ∗E‖ ≥ 1

c2(a + ε)
(2.7)

Therefore K-area(M) ≥ c−2K-area(M ′) ��
Here, we give some examples of K-area.
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Example 2.3 (1) Let S2m denote even dimensional spheres K-area(S2m) < ∞, which fol-
lows from Theorem 1.1.

(2) If M be an oriented even dimensional closed simply connected manifold, then
K-area(M) < ∞. Later in Lemma 3.2, every vector bundle (E,∇) over a closed sim-
ply connected manifold with sufficiently small curvature ‖RE,∇‖ < δ is topologically
trivial, which implies that all Chern numbers of E are zero. Hence K-area(M) < 1

δ
.

K-area(Sn) < ∞ can be verified also from this.
(3) K-area(T 2m) = ∞where T 2m denote even dimensional tori. It follows fromTheorem1.1

that T 2m and hence T 2m−1 do not admit Riemannian metrics of positive scalar curvature.

Proof of (3) Generally let M = (M, g) be a Riemannian manifold equipped with a metric
g. Observe that K-area(M, c2g) = c2K-area(M, g) by the preceding Lemma 2.2.

On the other hand let π : M̃ → M be a finite covering space of M which is trivial outside
a compact subset. Then K-area(M̃) = K-area(M). In fact for E = (E,∇) ∈ K×(M̃), we
can take π!E ∈ K× whose fiber is

π!Ex =
⊕

x̃∈π−1(x)

Ex̃ (2.8)

So we can verify that ‖RE‖ ≥ ‖Rπ!E‖ and hence K-area(M) ≥ K-area(M̃). Conversely,
π : M̃ → M satisfies the hypothesis of the preceding Lemma 2.2 with Lipschitz constant
c = 1 so K-area(M̃) ≥ K-area(M). Therefore K-area(M̃) = K-area(M).

Now consider an 2m-dimensional tori equipped with flat metrics g0 which are
induced by T 2m = R2m/Z2m . There exist 22m-fold coverings π : (T 2m, 4g0) →
(T 2m, g0). Hence K-area(T 2m, g0) = K-area(T 2m, 4g0) = 4K-area(T 2m, g0), which
implies K-area(T 2m, g0) = ∞. ��

3 Surgery

Let M1 and M2 be Riemannian manifolds and let M1�M2 denote the connected sum of M1

and M2 equipped with a Riemannian metric which coincides with the original metric of
M1 � M2 outside a compact neighborhood of the connecting region.

Example 3.1 Let M be a 2m dimensional closed spin manifold. Then T 2m�M does not
admit a Riemannian metric of positive scalar curvature. In fact K-area(T 2m) = ∞ implies
K-area(T 2m�M) = ∞ and apply Theorem 1.1.

Proof of Lemma 1.4 Suppose that K-area(M1) = ∞. Write M1�M2 as (M1\Dn) ∪
(M2\Dn). There exits a smooth map f : (M1�M2) → M1 which satisfies the followings;

f (M2 \ Dn) = {x} where x is the center of Dn ⊂ M1.
f = id outside a neighborhood of Dn ⊂ M1.
deg f = 1.
Although f does not necessarily satisfy the assumption of Lemma 2.2, we can see that

( f ∗E, f ∗∇) ∈ K×(M1�M2) if ( f,∇) ∈ K×(M1) just like as in the Proof of Lemma 2.2.
Hence it follows that K-area(M1�M2) ≥ c−2K-area(M1) = ∞ where c is the Lipschitz
constant of f . ��

However, the converse of Lemma 1.4 is not trivial. The following two lemmata are used
to verify Theorem 1.2.
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Lemma 3.2 Let N be a compact simply connected Riemannian manifold and take E =
(E,∇) ∈ K×(N ). For any ε > 0, there exist δ > 0 such that if ‖RE‖ < δ, there exists a
global orthonormal frame ē = {ēi }ri=1 for E satisfying ‖ω‖ < ε where ω is the connection
1-form of (E,∇) with respect to ē.

Proof Fix a finite good open covering {Vα} of N equipped with geodesic coordinates whose
centers are pα . So each finite intersection of {Vα} is contractible unless it is empty. Let E
be a Hermitian vector bundle with ‖RE‖ < δ for some δ > 0. Fix an orthonormal basis
eα0 = {eiα0}ri=1 for E |pα0

. Let eα = {eiα}ri=1 be an orthonormal basis for E |pα obtained by
the parallel transportation of eα0 along γ α

0 , one of the minimal geodesics connecting pα0 and
pα . Extend eα on each Vα by the parallel transportation along the geodesic t �→ exppα

(tv)

where v is an unit tangent vector at pα .
Let ωα be the connection 1-form with respect to eα on Vα .
For x ∈ Vα let γ x

α be the (unique) geodesic connecting pα and x and for a piece-wise
smooth curve γ let Tγ be the parallel transportation along γ . Take x ∈ Uα and X ∈ TxM .
By the definition of eα, eα(expx (t X)) = T

γ
expx (t X)
α

T−1
γ x
α
eα(x). Then,

∇Xeα(x) = lim
t→0

1

t

(
T−1
expx (t X)eα(expx (t X)) − eα(x)

)

= lim
t→0

1

t

(
T−1
expx (t X)Tγ

expx (t X)
α

T−1
γ x
α

− id
)
eα(x) (3.1)

‖∇Xeα(x)‖ ≤ lim
t→0

1

t

∫

Dt

‖R‖ (3.2)

where Dt is a 2-dimensional disk whose boundary is the closed curve expx (t X)−1γ
expx (t X)
α

(γ x
α )−1. Since area(Dt ) = O(t) (t → 0), we have

‖∇eα‖ ≤ c1δ i.e. ‖ωα‖ ≤ c1δ (3.3)

where c1 is a constant depending on {Vua}. Keep in mind that constants c1, c2, · · · , c6 which
will appear below are independent of the vector bundle E .

Let ψβα : Vα ∩ Vβ → U (r) denote the transition functions, i.e., ψβαeα = eβ . By the

definition of eα, ψβα(x) = Tγ where γ = γ x
β γ

β
0

(
γ x
α γ α

0

)−1. Since N is simply connected,
There exists a 2-dimensional disk D ⊂ N whose boundary is γ . By the compactness, we can
take D so that area(D) < c2 where c2 is a constant depending on N and {Vα}. Then we have

‖ψβα − id‖ ≤
∫

D

‖R‖ < c2δ (3.4)

By ψβαeα = eβ , we have dψβα ⊗ eα + ψβα∇eα = ∇eβ . Hence by (3.3)

‖dψβα‖ < 2c1δ (3.5)

Taking into account the estimate (3.4) we can set ψβα = exp(vβα) for some vβα : Vα ∩
Vβ → u(r) using exp : u(r) → U (r) if δ > 0 is sufficiently small since exp is a diffeomor-
phism from a neighbourhood of 0 ∈ u(r) to a neighbourhood of id ∈ U (r). Remark that
(3.4) and (3.5) implies

‖vβα‖ < c′
2δ and ‖dvβα‖ < 2c1δ (3.6)

There exist open subsets Wα and compact subsets Kα such that Wα ⊂ Kα ⊂ Vα and⋃
α Wα = N . Note that these are independent of (E,∇). Let {ρα, ρβ, 1 − ρα − ρβ} be
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a partition of unity associated to {Vα, Vβ, N \ (Kα ∪ Kβ)}. (ρα + ρβ ≡ 1 on Kα ∪ Kβ .)
Construct an orthonormal frame e(2) on Kα ∪ Kβ as follows;

e(2) =
{

(exp(ρβvβα))eα, on Kα

(exp(ραvαβ))eβ, on Kβ
(3.7)

e(2) is well defined. In fact on Kα ∩ Kβ ,

exp(ραvαβ)eβ = exp(ρα(−vβα)) exp(vβα)eα

= exp((1 − ρβ)(−vβα) + vβα)eα = exp(ρβvβα)eα (3.8)

There is a constant c3 > 0 such that |dρα| < c3, |dρβ | < c3. Hence by (3.3), (3.6), and
(3.7),

‖∇e(2)‖ = ‖d(exp(ρβvβα)) ⊗ eα + exp(ρβvβα)∇eα‖
≤ |dρβ |‖vβα‖ + ρβ‖dvβα‖ + ‖∇eα‖ < c4δ (3.9)

This means the connection 1-form ω(2) associated to e(2) satisfies ‖ω(2)‖ < c4δ.
Next, choose another open subset Vγ , set V(2) := Vα ∪ Vβ, K(2) := Kα ∪ Kβ and let

ψγ(2) : Kγ ∩ K(2) → U (r) denote the transition function i.e., eγ = ψγ(2)e(2).
Remark that id = ψγ(2) exp(ρβvβα)ψαγ implies ‖ψγ(2)−id‖ < c5δ and ‖dψγ(2)‖ < c5δ.

Therefore, we can write ψγ(2) = exp(vγ (2)) for some vγ (2) satisfying ‖vγ (2)‖ < c′
5δ and

‖dvγ (2)‖ < c′
5δ.

We can employ the similar argument to construct an orthonormal frame e(3) on Kγ ∪K(2)
satisfying ‖∇e(3)‖ < c6δ. Namely, let {ργ , ρ(2), 1 − ργ − ρ(2)} be a partition of unity
associated to {Vγ , V(2), N \ (Kγ ∪ K(2))}, and define

e(3) =
{

(exp(ρ(2)v(2)γ ))eγ , on Kγ

(exp(ργ vγ (2)))e(2), on K(2)
(3.10)

It satisfies ‖∇e(3)‖ < c6δ.
Repeat the above argument to construct a global orthonormal frame ē for E which satisfies

‖∇ ē‖ < cδ. It means ‖ω‖ < cδ where ω is the connection 1-form with respect to ē. Though
c depends on N , it does not depend on (E,∇). ��
Remark 3.3 The proof of Lemma 3.2 also holds if N is not connected but each connected
component is simply connected by applying the arguments on each connected component.

Lemma 3.4 Let M be a Riemannian manifold with a simply connected boundary N = ∂M,
and let E0 = (E0,∇0) be a Hermitian vector bundle over M equipped with a compati-
ble connection. Suppose that a neighborhood of ∂M is equipped with a product metric of
(−2, 2] × N and that the connection ∇0 restricted to (−2, 2] × N is invariant under the
translation.

Let M(−2,a] denote (M \ (−2, 2] × N ) ∪ ((−2, a] × N ). For instance the original M can
be denoted by M(−2,2]. Then for any ε > 0, there exists δ > 0 such that if ‖RE0‖ < δ, there
exists a vector bundle (E,∇) over M(−2,6] satisfying the following;

(i) ‖RE‖ < ε.
(ii) The restriction of (E,∇) to M(−2,2] is isomorphic to (E0,∇0).
(iii) (E,∇) is trivial and flat on (4, 6] × N.

Proof Choose ε0 > 0 sufficiently small. For {0} × N and ε0, we can find δ = δ(ε0) > 0 as
in the preceding Lemma 3.2. Suppose that ‖RE0‖ < δ. Then we obtain a global orthonormal
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frame e for E0|{0}×N such that the connection 1-formω0 with respect to e satisfies ‖ω0‖ < ε0.
Let E be a trivial Hermitian vector bundle without a connection on M(−2,6] which is an
extension of E0. Extending e we obtain a orthonormal frame for E denoted also by e. Now
compose a connection 1-form ω with respect to e on on (−2, 6] × N by

ω|(t,y) = χ(t)ω0|y (3.11)

where χ is a smooth function on (−2, 6] satisfying

χ(t)

{≡ 1, t < 2
≡ 0, t > 4

(3.12)

0 ≤ dχ

dt
≤ 1 (3.13)

Since ω|(t,y) = ω0|y on (−2, 2) × N , the new connection denoted by ∇ can be patched
with ∇0.

‖RE,∇‖ = ‖ω ∧ ω + dω‖
= ‖χ(t)2ω0 ∧ ω0 + dχ(t) ∧ ω0 + χ(t) ∧ dω0‖
≤ |χ(t)|‖ω0 ∧ ω0 + dω0‖ + |χ(t)2 − χ(t)|‖ω0 ∧ ω0‖ + ‖dχ ∧ ω0‖
≤ ‖RE0,∇0‖ + ‖ω0‖2 + ‖ω0‖
≤ δ + ε20 + ε0 (3.14)

Hence taking ε0 depending on ε and δ depending on ε0 sufficiently small, we obtain
‖RE,∇‖ < ε. Moreover ω|(t,y) = 0 for t > 4 means that (E,∇) is flat on (4, 6] × N . ��
Definition 3.5 Let M be aRiemannianmanifold, and n = p+q = dim(M). Fix an inclusion
ϕ : S p × Dq ↪→ M. Define another (smooth) manifold M� as follows;

M� := (M \ ϕ(S p × Dq)) ∪∂(ϕ(S p×Dq )) (Dp+1 × Sq−1) (3.15)

Remark that ∂(S p × Dq) ∼= S p × Sq−1 ∼= ∂(Dp+1 × Sq−1). M� is called a manifold
obtained by p-surgery, or surgery in codimension q, along ϕ : S p × Dq ↪→ M.

We assume that M� is equipped with a Riemannian metric which coincides with the
original one outside a compact neighborhood of (Dp+1 × Sq−1) ⊂ M�.

Proof of Theorem 1.2 Since the finiteness of K-area is invariant under deformations of Rie-
mannian metrics on compact subsets, we may assume that the ”connecting region”, the
neighborhood of ∂(Dp+1 × Sq−1) ⊂ M� is isometric to S p × (−4, 4)× Sq−1 equipped with
a canonical Riemannan metric.

Let E0 = (E0,∇0) be a Hermitian vector bundle equipped with a compatible connection.
It is sufficient to verify that for sufficiently small δ > 0, ‖RE0‖ < δ implies that all Chern
numbers of E0 are zero.

Let f : M� → M� be a smooth Lipschitz map such that f = id outside S p × (−4, 4) ×
Sq−1, f (x, t, y) = (x, 0, y) for |t | < 2, and ‖ f∗‖ < 2. Consider f ∗E0, the pull-back of E0

by f equipped with the induced connection f ∗∇0. Then ‖R f ∗E0‖ ≤ 2δ and the connection
is invariant under the translation near the cylindrical boundary. Since deg( f ) = 1 the Chern
numbers of f ∗E0 are equal to those of E0.

Cut M� along S p × {0} × Sq−1 and remove Dp+1 × Sq−1 component. Let the resulting
manifold be denoted by M ′.
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In the case of p �= 1, we can apply to f ∗E0|M ′ the preceding Lemma 3.4 to obtain
a vector bundle E = (E,∇) over M ′

(−2,6] with ‖RE‖ < ε which is trivial and flat on

S p × (4, 6] × Sq−1. Remark that ∂M ′ = S p × {0} × Sq−1 is simply connected by the
condition q �= 2.

Even in the case of p = 1, we claim that there exist a such extension of the vector
bundle. In fact, consider the two copies of removed region D2 × Sn−2 and the vector bundle
f ∗E0 → (D2×Sn−2) and reverse the orientation of one of them.We can patch them together
along the boundary for the invariance of the connection of f ∗E0 under the translation near the
cylindrical boundary. Since the resultingmanifold, the double of D2×Sn−2, is homeomorphic
to S2 × Sn−2, by Lemma 3.2 there exists a global orthonormal frame e for the resulting
vector bundle over S2 × Sn−2 such that the connection 1-form ω0 with respect to e satisfies
‖ω0‖ < ε0. Hence there exists a such orthonormal frame for the restriction of f ∗E0 onto a
neighborhood of ∂M ′. Then we can construct a vector bundle E = (E,∇) over M ′

(−2,6] with
‖RE‖ < ε which is trivial and flat on S p × (4, 6] × Sq−1 in the same way as the Proof of
Lemma 3.4.

In the following argument the condition q �= 2 is not needed. Deform the metric of
S p × Dq to have a product metric near the boundary S p × (−1, 1) × Sq−1 so that it can be
patched with M ′

(−2,6]. The resulting manifold is homeomorphic to M . Since (E,∇) is trivial

and flat on S p × (4, 6] × Sq−1 ⊂ (M ′
(−2,6] ∪ S p × Dq), it can be extended on S p × Dq

trivially.
Let X be M� \ M ′ and let Y be M \ M ′. They are homeomorphic to Dp+1 × Sq−1

and S p × Dq respectively. Glue X and (−Y ) together to compose a Riemannian manifold
homeomorphic to Sn where (−Y ) is the orientation reversed Y . Remark that ( f ∗E0, f ∗∇0)

on X and (E,∇) on (−Y ) can be joined smoothly. Hence they define a Hermitian vector
bundle equipped with a compatible connection (E,∇) with a small curvature ‖R‖ < ε on
X ∪ (−Y ).

Since K-area(M) = K-area(M ′ ∪Y ) < ∞ and K-area(X∪(−Y )) < ∞, there exist ε > 0
such that for any polynomial p,

∫

M ′∪Y
p(c1(E), c2(E), · · · ) = 0

∫

X∪(−Y )

p(c1(E), c2(E), · · · ) = 0 (3.16)

Therefore,
∫

M�

p(c1(E0), c2(E0), · · · )

=
∫

M ′∪X

p(c1( f
∗E0), c2( f

∗E0), · · · )

=
∫

M ′∪Y
p(c1(E), c2(E), · · · ) +

∫

X∪(−Y )

p(c1(E), c2(E), · · · ) = 0 (3.17)

which implies K-area(M�) < 1
δ

< ∞. ��
Remark 3.6 Notice that surgery is an invertible operator. Let M� be a Riemannian manifold
obtained from M by p-surgery. Then M is obtained by performing (q − 1)-surgery to M�.
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M = (M� \ Dp+1 × Sq−1) ∪ (S p × Dq). So if both p �= 1 and q − 1 �= 1 are satisfied, then
K-area(M�) = ∞ iff K-area(M) = ∞.

Proof of Corollary 1.3 ByLemma1.4,K-area(M1�M2) < ∞ impliesK-area(M1) < ∞ and
K-area(M2) < ∞. Suppose that both K-area(M1) and K-area(M2) are finite. Remark that
the K-area of the disjoint union K-area(M1�M2) is equal to max{K-area(M1),K-area(M2)}.
Then we can apply the case of p = 0 of the preceding Theorem 1.2 to conclude
K-area(M1�M2) < ∞. ��

Notice that we did not assume that M is compact in Theorem 1.2 and so we can ”localize”
K-area in the following sense.

Example 3.7 Let M∞ is an oriented even dimensional Riemannian manifold with a cylin-
drical end (0,∞) × Sn−1 and suppose that M0 := M∞ \ ((0,∞) × Sn−1) is compact. Let
M be a compact manifold obtained by sewing a disk Dn on M0. K-area(M∞) = ∞ if and
only if K-area(M) = ∞.

Proof This is a direct consequence of Corollary 1.3. In fact M∞ can be written as M�M ′
whereM ′ is a completeRiemannianmanifold homeomorphic toRn whosemetric is a smooth-
ing of the n dimensional hemispherical metric attached along the canonical cylindrical metric
on [0,∞) × Sn−1 of the same radius. Since inf ScM ′ > 0 and M ′ is spin, K-area(M ′) is
finite. Therefore K-area(M∞) = ∞ if and only if K-area(M) = ∞. ��

Example 3.7 suggests that the cylindrical region (0,∞)×Sn−1 have no effect on finiteness
or infiniteness of K-area.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which
permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source
are credited.
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