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Abstract We show the existence of isometric (or Ford) fundamental regions for a large
class of subgroups of the isometry group of any rank one Riemannian symmetric space of
noncompact type. The proof does not use the classification of symmetric spaces. All hith-
erto known existence results of isometric fundamental regions and domains are essentially
subsumed by our work.
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1 Introduction

Let D be a rank one Riemannian symmetric space of noncompact type and denote its full
group of Riemannian isometries by G. Suppose that � is a subgroup of G. A subset Y of
D is called a fundamental region for � in D if Y is open, the translates of Y by each two
elements of � are disjoint, and D is covered by the family of �-translates of the closure of
Y . If, in addition, Y is connected, then it is called a fundamental domain for � in D.

In this article, we show the existence of so-called isometric (or Ford) fundamental regions
for a large class of subgroups of G, see Theorem 3.18, Corollary 3.20 and Proposition 4.38.
In many situations, the fundamental regions will turn out to actually be fundamental domains
(see Corollary 3.23 and Proposition 4.38). Moreover, in Sect. 4, we show that our results sub-
sume all previously known existence results of isometric fundamental regions and domains.

Let � be an admissible subgroup of G. The distinctive trait of an isometric fundamental
region for � is that it consists of two building blocks. One of them is a fundamental region
F∞ for the stabilizer group �∞ of ∞. The other one is the common part of the exteriors
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of all isometric spheres of � (see Sect. 3 for a definition). Then the isometric fundamental
region is the set

F := F∞ ∩
⋂

g∈���∞
ext I (g),

where ext I (g) denotes the exterior of the isometric sphere I (g) of g ∈ ���∞. These
fundamental regions are of interest for several applications. For example, they reflect the
geometry of � in a way particularly adjusted to the needs of the construction of a symbolic
dynamics for the geodesic flow on the orbifold �\D (see [19]).

Our proof of the existence of isometric fundamental regions does not use the classification
of rank one Riemannian symmetric spaces of noncompact type. This was made possible by
the classification-free constructions of all these spaces provided by Cowling et al. in [6] and
[7], respectively, by Korányi and Ricci in [15] and [16]. These constructions appear to be
the first ones which are uniform both on the level of spaces and on the level of isometry
groups. The approach in [6] and [7] is intimately connected with the restricted root space
decomposition of the Lie algebra of the isometry group of the symmetric space, and hence it
is the method of choice for considerations of algebraic nature. In contrast, the construction
in [16] and [15] reflects the geometric side of the spaces. Both constructions are amazingly
easy to work with. Moreover, one can effortless switch from one construction to the other and
translate insights and advantages from one model to the other. We recall both constructions
in Sect. 2.

Using their work we provide a uniform definition of the notion of an isometric sphere
and its exterior in Sect. 3. The uniformity on the level of isometry groups then allows to
stick to a classification-free treatment of the isometric spheres, which finally results in a
classification-free proof of the existence of isometric fundamental regions.

For real, complex and quaternionic hyperbolic spaces, there already exist several (differ-
ent and also non-equivalent) definitions of isometric spheres in the literature, e. g., in [10]
for the hyperbolic plane, in [13] for the upper half plane model and the disk model of two-
dimensional real hyperbolic space, in [17] for three-dimensional real hyperbolic space, in
[1] and [2] for real hyperbolic spaces of arbitrary dimension, in [11,18] and [12] for com-
plex hyperbolic spaces, and in [14] for quaternionic hyperbolic spaces. Moreover, for certain
subgroups of the isometry group of real and complex hyperbolic spaces, the existence of
isometric fundamental regions was already known. More precisely, Apanasov [1] and [2]
provides the hitherto most general treatment of groups acting on real hyperbolic spaces. In
[10], Ford investigates the case of the hyperbolic plane. However, his definition of funda-
mental region is not equivalent to our definition. Therefore, his result cannot be compared
to our one. Groups acting on complex hyperbolic spaces are considered by Kamiya in [12].
In Sect. 4, we will investigate which definitions of isometric spheres are subsumed by our
uniform one, and we will show that the known isometric fundamental regions are special
cases of Theorem 3.18.

Throughout we will use the following notation. If T is a topological space and U a subset
of T , then the closure of U is denoted by U or cl(U ) and its boundary is denoted by ∂U .
Moreover, we write U ◦ for the interior of U . The complement of U in T is denoted by �U
or T �U .

For two arbitrary sets A and B, the complement of B in A is written as A� B. If ∼ is an
equivalence relation on A, then A/∼ denotes the set of equivalence classes. Likewise, if � a
group acting on A, then we write A/� for the space of right cosets. Moreover, if p is a point
of A, then �p denotes the stabilizer group {g ∈ � | gp = p} of p in �.
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2 Classification-free constructions

The basic objects of the classification-free construction of rank one Riemannian symmetric
spaces of noncompact type in [6] and [7] are so-called H -type (Heisenberg type) algebras.
In contrast, Korányi and Ricci [15] and [16] construct these symmetric spaces from so-called
J 2C-module structures.

In this section, we introduce these notions and we briefly recall the two constructions.
Mostly we duplicate, for the convenience of the reader, material from their work. Neverthe-
less, in parts it can be considered as complementary, e. g., Lemma 2.2 on the (non-)uniqueness
of decompositions of H -type algebras, the notion of ordered decompositions, and a refined
definition of an isomorphism between H -type algebras, respectively, between C-module
structures (which corrects a minor inaccuracy). Moreover, we prove in detail that the Cayley
transform is an isometry, and that the group M given in [6] and [7] and that in [15] and [16]
are indeed the same.

All omitted proofs can be found in [6] or [7] for statements in the language of H -type alge-
bras, and in [15] or [16] for those in the language of J 2C-modules. As long as no confusion
can arise, each inner product is denoted by 〈·, ·〉 and its associated norm by | · |.
2.1 H -type algebras and the J 2-condition

A vector space is called Euclidean if it is a finite-dimensional real vector space endowed with
an inner product. A Lie algebra is called Euclidean if, in addition to being a Lie algebra, it
is a Euclidean vector space. For a vector space v let Endvs(v) denote the group and vector
space of endomorphisms of v. If v carries additional structures, then the elements of Endvs(v)

are not required to be compatible with these structures. In particular, if v is Euclidean, then
ϕ ∈ Endvs(v) need not be orthogonal.

Definition 2.1 Let n be a Euclidean Lie algebra. Then n is said to be an H-type algebra if

(H1) there are two subvector spaces v, z of n (each of which may be trivial) such that

[n, z] = {0}, [n, n] ⊆ z,

and n is the orthogonal direct sum of z and v,
(H2) for all X ∈ v, all Z ∈ z we have

|J (Z)X | = |Z | · |X |
where J : z → Endvs(v) is the R-linear map defined by

〈J (Z)X, Y 〉 = 〈Z , [X, Y ]〉
for all X, Y ∈ v, all Z ∈ z. The map J is well-defined and unique by Riesz’ Repre-
sentation Theorem (or its finite-dimensional counterpart).

If (H1) holds, then n is either abelian or two-step nilpotent. In the first case we call n

degenerate, in the second non-degenerate.
The construction of a symmetric space from an H -type algebra n depends on the

choice of z and v in the decomposition z ⊕ v of n. We call the pair (z, v) an ordered decom-
position of n. The following lemma shows that the ordered decomposition is unique unless n

is non-trivial and abelian (which precisely is the reason for calling abelian H -type algebras
degenerate). It will turn out that both possible ordered decompositions of a non-trivial abelian
H -type algebra give rise to the same symmetric space, but in different models. Nevertheless,
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this non-uniqueness calls for a careful notion of isomorphisms between H -type algebras,
which we will discuss after the lemma.

We denote the center of a Lie algebra g by Z(g).

Lemma 2.2 Let n be an H-type algebra. If n is non-abelian or n = {0}, then the ordered
decomposition (z, v) of n is unique. In this case, we have z = Z(n) and v = Z(n)⊥. If n

is abelian and n = {0}, then there are two ordered decompositions of n, namely (z, v) =
(Z(n), {0}) = (n, {0}) and (z, v) = ({0}, n).
Proof Suppose that (z, v) is an ordered decomposition of n. Then v is uniquely determined
by z, namely v = z⊥. Since [z, z] = {0}, we know that z is a subvector space of Z(n) (even a
subalgebra). If z = {0}, then [n, n] ⊆ z = {0}. In this case, n is abelian and (z, v) = ({0}, n).

Suppose now that z = {0}. We have to prove that z = Z(n). For contradiction assume that
z = Z(n), hence dim z < dim Z(n). Then there is a non-trivial element X ∈ v ∩ Z(n). Fix
some Z ∈ z, Z = 0. For all Y ∈ v it follows that

〈J (Z)X, Y 〉 = 〈Z , [X, Y ]〉 = 0.

Thus J (Z)X = 0. But then

|J (Z)X | = 0 = |Z | · |X |,
which is a contradiction to (H2). Therefore, z = Z(n).

This shows that for non-abelian n or for n = {0}, the pair (z, v) = (Z(n), Z(n)⊥) is the
only candidate for an ordered decomposition of n. Because there is at least one by hypothesis,
(Z(n), Z(n)⊥) is indeed an ordered decomposition of n. For non-trivial abelian n we have
the two candidates ({0}, n) and (n, {0}), which both clearly satisfy (H1) and (H2). ��

Let n be a non-trivial abelian H -type algebra. Then n admits the two ordered decompo-
sitions (n, {0}) and ({0}, n). The isomorphism idn of n as a Euclidean Lie algebra does not
respect these decompositions. In Sect. 2.3 we will see that preserving the decompositions
is essential for the bijection between H -type algebras and C-module structures. Therefore,
from now on, we will always consider an H -type algebra n as being equipped with a (fixed)
ordered decomposition and denote it by n = (z, v, J ) or, briefly, by (z, v, J ). Although the
map J is determined by z and v, we keep it in the triple to fix a notation for it.

Definition 2.3 Let n j = (z j , v j , J j ), j = 1, 2, be H -type algebras. An isomorphism from
n1 to n2 is a pair (ϕ, ψ) of isomorphisms of Euclidean vector spaces ϕ : z1 → z2 and
ψ : v1 → v2 such that the diagram

z1 × v1
J1 ��

ϕ×ψ
��

v1

ψ

��
z2 × v2

J2 �� v2

commutes.

The following lemma shows that isomorphism of H -type algebras is a refined notion of
isomorphism of Euclidean Lie algebras.

Lemma 2.4 Let n j = (z j , v j , J j ), j = 1, 2, be H-type algebras and suppose that the map
(ϕ, ψ) : n1 → n2 is an isomorphism. Then ϕ ×ψ : z1 ⊕ v1 → z2 ⊕ v2 is an isomorphism of
Euclidean Lie algebras.
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Proof For all Z ∈ z2 and all X, Y ∈ v1 we have

〈Z , [ψ(X), ψ(Y )]〉 = 〈J2(Z)(ψ(X)), ψ(Y )〉 = 〈ψ (J1(ϕ
−1(Z))X

)
, ψ(Y )

〉

= 〈J1(ϕ
−1(Z))X, Y

〉 = 〈ϕ−1(Z), [X, Y ]〉

= 〈Z , ϕ([X, Y ])〉 .
Since 〈·, ·〉|z2×z2 is non-degenerate, it follows that ϕ([X, Y ]) = [ψ(X), ψ(Y )]. Define
χ := ϕ × ψ and let Z1, Z2 ∈ z1, X1, X2 ∈ v1. Then

[Z1 + X1, Z2 + X2] = [X1, X2]
and

[χ(Z1 + X1), χ(Z2 + X2)] = [ϕ(Z1)+ ψ(X1), ϕ(Z2)+ ψ(X2)]
= [ψ(X1), ψ(X2)] = ϕ([X1, X2])
= χ([Z1 + X1, Z2 + X2]).

Finally, χ is clearly an isomorphism of Euclidean vector spaces. This completes the
proof. ��
Remark 2.5 Suppose that n1, n2 are non-degenerate H -type algebras and let the map χ : n1

→ n2 be an isomorphism between n1 and n2 as Euclidean Lie algebras. Then χ(Z(n1)) =
Z(n2). Hence Lemma 2.2 implies that χ is an isomorphism of H -type algebras. In turn,
Lemma 2.4 shows that the isomorphisms between n1 and n2 as H -type algebras coincide
with the isomorphisms between n1 and n2 as Euclidean Lie algebras.

For an H -type algebra (z, v, J ) we often write JZ X instead of J (Z)X , and we abbreviate
the set {JZ | Z ∈ z} with Jz.

Definition 2.6 An H -type algebra n = (z, v, J ) is said to satisfy the J 2-condition if

∀ X ∈ v ∀ Z1, Z2 ∈ z : (〈Z1, Z2〉 = 0 ⇒ ∃ Z3 ∈ z : JZ1 JZ2 X = JZ3 X
)
. (H3)

If n is abelian, then (H3) is trivially satisfied.

2.2 C-module structures and the J 2-condition

A C-module structure is a triple (C, V, J ) consisting of two Euclidean vector spaces C and
V and an R-bilinear map J : C × V → V satisfying the following properties:

(M1) there exists e ∈ C �{0} such that J (e, v) = v for all v ∈ V ,
(M2) for all ζ ∈ C and all v ∈ V we have |J (ζ, v)| = |ζ ||v|.

The cases where V = {0} or C = Re are not excluded. We refer to these as degenerate.
If V = {0} and C = Re, then the C-module structure (C, V, J ) is called non-degener-
ate. For brevity, a C-module structure (C, V, J ) is sometimes called a C-module structure1

on V . One easily proves the following lemma.

Lemma 2.7 Let (C, V, J ) be a C-module structure. If V = {0}, then the element e in (M1)
is uniquely determined and of unit length.

1 The “C” is “C-module structure” or in “C-module structure on V ” does not refer to the Euclidean space C
in the triple (C, V, J ). Hence, if (C ′, V, J ′) satisfies (M1) and (M2), then it is still called a C-module structure
on V .
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The construction of a symmetric space from a C-module structure (satisfying the J 2-con-
dition defined below) depends on the choice of e in (M1) and uses |e| = 1. If (C, V, J )
is a C-module structure with V = {0}, then J vanishes everywhere. Thus every element
a ∈ C�{0} satisfies J (a, ·) = idV . In this case, we endow C with a distinguished vector e of
unit length and fix it (sometimes) in the notation as (C, e, V, J ). The influence of the partic-
ular choice of e on the constructed symmetric space is much weaker than that of the different
ordered decompositions of degenerate H -type algebras. In fact, the choice of e determines
the orthogonal decomposition C = Re ⊕ C ′ (see below). If e1, e2 are two choices for e,
then there is an isomorphism between Re1 ⊕ C ′

1 and Re2 ⊕ C ′
2 as Euclidean vector spaces

which respects the decompositions. In turn, (C, e1, V, J ) and (C, e2, V, J ) are isomorphic
as C-module structures (see below for the definition of isomorphism).

If (C, V, J ) is a non-degenerate C-module structure, then the element e in (M1) is unique
by Lemma 2.7. For reasons of uniformity, also in this case, we will often use the notation
(C, e, V, J ) for (C, V, J ).

If (C, V, J ) is a C-module structure, then we will use Jζ v or ζv to abbreviate J (ζ, v).
Further, we set Cv := {ζv | ζ ∈ C} for v ∈ V .

A C-module structure (C, V, J ) is said to satisfy the J 2-condition if

C(Cv) = Cv for all v ∈ V . (M3)

In this case, V is called2 a J 2C-module and (C, V, J ) a J 2C-module structure.
Let (C1, e1, V1, J1) and (C2, e2, V2, J2) be C-module structures. An isomorphism3 from

(C1, e1, V1, J1) to (C2, e2, V2, J2) is a pair (ϕ, ψ) of isomorphisms of Euclidean vector
spaces ψ : V1 → V2 and ϕ : C1 → C2 with ϕ(e1) = e2 such that the diagram

C1 × V1
J1 ��

ϕ×ψ
��

V1

ψ

��
C2 × V2

J2 �� V2

commutes.
The requirement that ϕ(e1) = e2 is relevant only if one of the C-module structures is

degenerate. In fact, if (C1, e1, V1, J1) and (C2, e2, V2, J2) are non-degenerate C-module
structures and (ϕ, ψ) is a pair of isomorphisms of Euclidean vector spaces ψ : V1 → V2 and
ϕ : C1 → C2 such that J2 ◦ (ϕ × ψ) = ψ ◦ J1, then

J2(ϕ(e1), v) = ψ
(
J1(e1, ψ

−1(v))
) = v

for each v ∈ V . The uniqueness of e2 shows that ϕ(e1) = e2.
For a C-module structure (C, e, V, J ) let C ′ := e⊥ denote the orthogonal complement of

Re in C . For ζ = ae + z ∈ C with a ∈ R and z ∈ C ′ we set Re ζ := a, the real part of ζ ,
and Im ζ := z, the imaginary part4 of ζ . Further we set ζ := ae − z, the conjugate of ζ . We
will use the identification Re → R, ae �→ a, of Euclidean vector spaces.

2 As with the “C” in “C-module structure”, the “J 2” in “J 2-condition” and “J 2C-module” does not refer to
the map J .
3 In [15] and [16] the condition ϕ(e1) = e2 is omitted from the definition. However, as discussed, this
condition is needed and indeed this stronger notion of isomorphism is used in their work.
4 Note that, in contrast to the usual definition in complex analysis, if C = C and ζ = a + ib ∈ C, then one
has here Im ζ = ib.
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2.3 Bijection between H -type algebras and C-module structures

Let n = (z, v, J ) be an H -type algebra. Endow R with the standard inner product and consider
the Euclidean direct sum c := R ⊕ z. The map J̃ : c × v → v, defined by

J̃ (t + Z , X) := t X + JZ X

for all t + Z ∈ R ⊕ z, X ∈ v, is R-bilinear. Since 〈JZ X, X〉 = 〈Z , [X, X ]〉 = 0, we further
find

| J̃ (t + Z , X)|2 = |t X + JZ X |2 = t2|X |2 + |JZ X |2
= t2|X |2 + |Z |2|X |2 = (t2 + |Z |2)|X |2
= |t + Z |2|X |2,

hence | J̃ (t + Z , X)| = |t + Z ||X |. Moreover, for each X ∈ v we have

J̃ (1, X) = X.

Therefore, (c, v, J̃ ) is a C-module structure with e = 1. The condition (H3) is easily seen to
be equivalent to

J̃ (c) J̃ (c)X = J̃ (c)X for all X ∈ v. (H3’)

Thus, (c, v, J̃ ) satisfies the J 2-condition if and only if n does. This construction provides an
assignment of a C-module structure to each H -type algebra (with fixed ordered
decomposition).

Vice versa, let (C, e, V, J ) be a C-module structure and let [·, ·] : V × V → C ′ be the
map defined by

〈z, [x, y]〉 = 〈J (z, x), y〉 (2.1)

for all z ∈ C ′, all x, y ∈ V . Riesz’ Representation Theorem (or its finite-dimensional coun-
terpart) shows that [·, ·] is well-defined. We extend [·, ·] to the Euclidean direct sum C ′⊕V by

[z1 + v1, z2 + v2] := [v1, v2]
for all z j + v j ∈ C ′ ⊕ V . This map is R-bilinear. Since Jz is skew-symmetric for each
z ∈ C ′ (cf. Sect. 2.5), the (extended) map [·, ·] is anti-symmetric. Moreover, [V, V ] ⊆ C ′
and [V,C ′] = [C ′,C ′] = {0} imply the Jacobi identity for [·, ·]. Thus, C ′ ⊕ V endowed with
[·, ·] is a Euclidean Lie algebra. Let J ′ : C ′ → Endvs(V ) denote the map J ′(z)(v) = J (z, v).
Then (C ′, V, J ′) is an H -type algebra. Using the equivalence of (H3) and (H3’), we see that
this H -type algebra satisfies the J 2-condition if and only if (C, V, J ) does so.

Using the identification e = 1 from Sect. 2.2, the construction of a C-module structure
from an H -type algebra

(z, v, J ) �→ (R ⊕ z, 1, v, J̃ )

and that of an H -type algebra from a C-module structure

(C, e, V, J ) �→ (C ′, V, J ′)

are inverse to each other. Moreover, one easily sees that these constructions are equivariant
under isomorphisms of C-module structures, respectively of H -type algebras. More precisely,
if (ϕ, ψ) : (z1, v1, J1) → (z2, v2, J2) is an isomorphism of H -type algebras, then
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(id ×ϕ,ψ) : (R ⊕ z1, 1, v1, J̃1) → (R ⊕ z2, 1, v2, J̃2)

is an isomorphism of C-module structures.
Conversely, if (ϕ, ψ) : (C1, e1, V1, J1) → (C2, e2, V2, J2) is an isomorphism of C-mod-

ule structures, then ϕ(C ′
1) = C ′

2 and the map
(
ϕ|C ′

1
, ψ
)

: (C ′
1, V1, J ′

1

)→ (C ′
2, V2, J ′

2

)

is an isomorphism of H -type algebras.

2.4 The model D

Let n = (z, v, J ) be an H -type algebra. Further let a be a one-dimensional Euclidean Lie
algebra and fix an element H of unit length in a. Then a is spanned by H . We denote by s

the Euclidean direct sum Lie algebra a ⊕ n = a ⊕ z ⊕ v endowed with the Lie bracket that
is determined by requiring that

[H, X ] = 1

2
X for all X ∈ v

[H, Z ] = Z for all Z ∈ z

and that equals the original Lie bracket on n, when restricted to n.
Let exp(s) be the connected, simply connected Lie group with Lie algebra s. We identify

the tangent space to exp(s) at the identity with s. Further we endow exp(s) with the left-
exp(s)-invariant Riemannian metric that coincides with the inner product on s at the identity
of exp(s). We parametrize exp(s) by

{
R

+ × z × v → exp(s)
(t, Z , X) �→ exp(Z + X) exp((log t)H)

and set S := R
+ × z × v. By requiring this parametrization to be a diffeomorphism and an

isometry, S inherits the structure of a connected, simply connected Lie group with Riemann-
ian metric. The Campbell–Baker–Hausdorff formula for n = z ⊕ v shows that the group
operations on exp(s) correspond on S to the group operations

(t1, Z1, X1) (t2, Z2, X2) =
(

t1t2, Z1 + t1 Z2 + 1

2
t1/2
1 [X1, X2], X1 + t1/2

1 X2

)

(2.2)

(t, Z , X)−1 = (t−1,−t−1 Z ,−t−1/2 X
)

(2.3)

for all (t j , Z j , X j ), (t, Z , X) ∈ S. The differential structure on S coincides with the differ-
ential structure on the open subset R

+ × z × v of some R
m . Now let

D :=
{
(t, Z , X) ∈ R × z × v

∣∣∣∣ t >
1

4
|X |2
}

and consider the bijection

� :
{

R × z × v → R × z × v

(t, Z , X) �→ (t + 1
4 |X |2, Z , X

)
.

(2.4)

Then�(S) = D, so that we define the structure of a Riemannian manifold on D by requiring
� to be an isometry. The differential structure on D is identical to that of D being an open
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subset of R × z × v. Moreover, � induces a simply transitive action of S on D by defining

s · p := �
(
s�−1(p)

)

for s ∈ S and p ∈ D. In coordinates s = (ts, Zs, Xs) and p = (tp, Z p, X p) this action reads

s · p =
(

ts tp + 1

4
|Xs |2 + 1

2
t1/2
s 〈Xs, X p〉, Zs + ts Z p + 1

2
t1/2
s [Xs, X p], Xs + t1/2

s X p

)

.(2.5)

Due to the definition of the Riemannian metric, S obviously acts by isometries. We call
oD := (1, 0, 0) the base point of D. The geodesic inversion σ of D at oD is given by

σ(t, Z , X) = 1

t2 + |Z |2 (t,−Z , (−t + JZ )X)

for all (t, Z , X) ∈ D. Then σ is an isometry, and hence D a symmetric space, if and only if n

satisfies the J 2-condition. In this case, D has rank one and, if in addition n is non-trivial, then
D is of noncompact type. If n = {0}, then the constructed space D is the rank one Euclidean
symmetric space R.

Conversely, let D be a rank one symmetric space of noncompact type. Suppose that g is
the simple Lie algebra of the Lie group of Riemannian isometries of D. Let ϑ be a Cartan
involution of g, and let k and p be its +1- respectively −1-eigenspace. Fix a maximal abelian
subalgebra a of p and choose a vector H ∈ a which spans a. Then the decomposition of g

into restricted root spaces is

g = g−2α ⊕ g−α ⊕ (a ⊕ m)⊕ gα ⊕ g2α,

where

gβ := {X ∈ g | [H, X ] = β(H)X}
for the linear functional β : a → R and

m := {X ∈ k | [H, X ] = 0}.
We suppose that H is normalized such that α(H) = 1

2 . If we set p := dim gα and
q := dim g2α and if we endow n := g2α ⊕ gα with the inner product

〈X, Y 〉 := − 1

p + 4q
B(X, ϑY )

where B is the Killing form of g, then n = (g2α, gα, J ) is an H -type algebra with J 2-
condition. The symmetric space constructed from (g2α, gα, J ) is exactly D. This means that
each rank one Riemannian symmetric space of noncompact type arises from the construction
above.

2.5 The ball model B

Let (C, e, V, J ) be a J 2C-module structure and let W := C ⊕ V be the Euclidean direct
sum of C and V . Consider the unit disc

B := {w ∈ W | |w| < 1}
in W and endow it with the differential structure induced from W . In the following we will
define a Riemannian metric on B with respect to which B is a rank one Riemannian symmetric
space of noncompact type if (C, V ) = (Re, {0}).

123



228 Geom Dedicata (2010) 147:219–276

Polarization of the equation in (M2) shows that we have

〈ζu, ηv〉 + 〈ηu, ζv〉 = 2〈ζ, η〉〈u, v〉 (2.6)

for all ζ, η ∈ C and all u, v ∈ V . For ζ ∈ C let J ∗
ζ denote the adjoint of Jζ . Then (2.6)

implies

J ∗
ζ = Jζ . (2.7)

Moreover we have

Jζ Jζ = |ζ |2 idV = Jζ Jζ . (2.8)

Thus, if we set ζ−1 := |ζ |−2ζ for ζ ∈ C �{0}, then we have

ζ−1(ζv) = v = ζ(ζ−1v) (2.9)

for all v ∈ V . In Sect. 4.1 we will see that, if V = {0}, there is a multiplication on C such
that ζ−1 is the inverse of ζ .

Definition 2.8 Let (ζ, v), (η, u) ∈ W � {0}. Then (ζ, v) is called equivalent to (η, u), if
either ζ = 0 = η and u ∈ Cv, or ζ = 0 = η and ζ−1v = η−1u. In this case, we write
(ζ, v) ∼ (η, u).

One easily proves that ∼ is an equivalence relation on W � {0}. For an element w ∈
W �{0} let

Cw := {w′ ∈ W �{0} | w′ ∼ w} ∪ {0}
denote the equivalence class ofw together with the element 0 ∈ W . Since B is an open subset
of the real vector space W , we shall identify the tangent space TwB to the point w ∈ B with
W . The Riemannian metric w �→ 〈·, ·〉w− on B is defined by

〈X, Y 〉0− := 4〈X, Y 〉 on T0 B (2.10)

and, for w ∈ B�{0}, by

〈X, Y 〉w− :=

⎧
⎪⎨

⎪⎩

4 〈X,Y 〉
(1−|w|2)2 if X, Y ∈ Cw

4 〈X,Y 〉
1−|w|2 if X, Y ∈ (Cw)⊥

0 if X ∈ Cw, Y ∈ (Cw)⊥ (or vice versa).

(2.11)

2.6 The Cayley transform

Let n = (z, v, J ) be a non-trivial H -type algebra which satisfies the J 2-condition. Further let
a be a one-dimensional Euclidean Lie algebra with fixed unit length vector H . Suppose that
(C, e, V, J ) is the J 2C-module structure associated to (z, v, J ) (see Sect. 2.3). We consider
the Riemannian symmetric spaces D and B which are constructed in Sect. 2.4, respectively,
2.5.

The Cayley transform (in R × z × v-coordinates, see [7, (2.10a)])

C :
{

B → D
(t, Z , X) �→ 1

(1−t)2+|Z |2
(
1 − t2 − |Z |2, 2Z , 2(1 − t + JZ )X

)
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is clearly a diffeomorphism from B to D. Its inverse (see [7, (2.10b)]) is given by

C−1 :
{

D → B
(t, Z , X) �→ 1

(1+t)2+|Z |2
(−1 + t2 + |Z |2, 2Z , (1 + t − JZ )X

)
.

Proposition 2.9 The Cayley transform is an isometry.

Proof In [7], the pullback of the Riemannian metric of D to B via C is described as follows:
Let p ∈ B. Denote the tangent space to B at p by Tp B, which we identify with R × z × v.
If ‖X‖p denotes the norm of X ∈ Tp B induced by the pullback of the Riemannian metric on
D, then

‖X‖0 = 2|X|
for all X ∈ T0 B. For p ∈ B�{0} we have

‖X‖2
p =
⎧
⎨

⎩
4 |X|2

1−|p|2 if X ∈ T (1)p ,

4 |X|2
(1−|p|2)2 if X ∈ Rp ⊕ T (2)p

where

Tp B = Rp ⊕ T (2)p ⊕ T (1)p

is a direct sum which is orthogonal w. r. t. Euclidean metric and Riemannian inner product
on Tp B. Theorem 6.8 in [7] provides explicit formulas for T (1)p and Rp ⊕ T (2)p , which we
will state in the following. For X ∈ v let j(X) := Jz X and define k(X) to be the orthogonal
complement of RX in

j(X)⊥ = {Y ∈ v | ∀ Z ∈ z : 〈JZ X, Y 〉 = 0}.
For p = (t, Z , X) ∈ B�{0} we have

(i) T (1)p = v and Rp ⊕ T (2)p = R ⊕ z if X = 0,

(ii) T (1)p = R ⊕ z ⊕ k(X) and Rp ⊕ T (2)p = j(X)⊕ RX if (t, Z) = (0, 0),
(iii) in the remaining cases,

T (1)p = k(X)⊕ {(|X |2u, |X |2W,−(u + JW )(t − JZ )W
) ∣∣ W ∈ z, u ∈ R

}

and

Rp ⊕ T (2)p = {((t2 + |Z |2)u, (t2 + |Z |2)W, (u + JW )(t − JZ )X
) ∣∣ W ∈ z, u ∈ R

}
.

Note that this subsumes the degenerate cases. On T0 B, the Riemannian inner product (2.10)
obviously coincides with this one. For p ∈ B � {0}, (2.11) implies that it suffices to show
that Rp ⊕ T (2)p = Cp. To that end let p = (ζ, v) = (t, Z , X) ∈ B�{0} (hence ζ = (t, Z) ∈
C = R × z and v = X ∈ V = v). If v = 0, then

Cp = C × {0} = C = R × z = Rp ⊕ T (2)p .

If ζ = 0, then

Cp = Cv = (R + Jz)X = Rp ⊕ T (2)p .

If ζ = 0 and v = 0, then (η, u) ∈ Cp if and only if η = 0 and ζ−1v = η−1u, or (η, u) = 0.
This means that in both cases

u = Jη Jζ−1v = |ζ |−2 Jη Jζ v = J|ζ |−2η Jζ v.

123



230 Geom Dedicata (2010) 147:219–276

Hence

Cp =
{(
η, J|ζ |−2η Jζ v

) ∣∣∣ η ∈ C
}

=
{(

|ζ |2ξ, Jξ Jζ v
) ∣∣∣ ξ ∈ C

}
= Rp ⊕ T (2)p .

This completes the proof. ��
Note that for n = {0}, respectively, (C, V ) = (Re, {0}) Proposition 2.9 shows that the

model B is isometric to the Euclidean symmetric space R.

2.7 The map β2

Let (C, e, V, J ) be a J 2C-module structure. In this section, we introduce a map

β2 : V × V → C,

which will be shown to be C-hermitian, i. e., β2 is R-bilinear and for all u, v ∈ V we have
β2(u, v) = β2(v, u). The map β2 encodes the inner product and the Lie bracket on V .
We define β2 : V × V → C by5

〈β2(v, u), ζ 〉 := 〈Jζ u, v〉 for all ζ ∈ C.

Lemma 2.10 For ζ, η ∈ C we have 〈η, ζ 〉 = 〈η, ζ 〉.
Proof Let ζ = a + x and η = b + y (a, b ∈ R, x, y ∈ C ′) be the decompositions of ζ and
η w. r. t. C = R ⊕ C ′. Since R and C ′ are orthogonal, we find

〈ζ , η〉 = 〈a, b〉 − 〈x, b〉 + 〈a, y〉 − 〈x, y〉
= 〈a, b〉 − 〈x, y〉
= 〈a, b〉 + 〈x, b〉 − 〈a, y〉 − 〈x, y〉
= 〈ζ, η〉.

This proves the lemma. ��
Proposition 2.11 The map β2 : V × V → C is R-bilinear. Further we have

(i) β2(v, u) = β2(u, v) for all u, v ∈ V ,
(ii) β2(v, v) = 〈v, v〉 for all v ∈ V .

Proof One easily sees that β2 is R-bilinear. Using Lemma 2.10 we find

〈β2(v, u), ζ 〉 = 〈Jζ u, v〉 = 〈u, Jζ v〉 = 〈β2(u, v), ζ 〉 = 〈β2(u, v), ζ 〉
for all u, v ∈ V and all ζ ∈ C . Hence β2(v, u) = β2(u, v), which proves (i). Finally let
v ∈ V . From β2(v, v) = β2(v, v) it follows that β2(v, v) ∈ R. Then

β2(v, v) = 〈β2(v, v), e〉 = 〈ev, v〉 = 〈v, v〉,
which shows (ii). ��
Lemma 2.12 For v1, v2 ∈ V we have

Re β2(v1, v2) = 〈v1, v2〉 and Im β2(v1, v2) = [v2, v1].
5 This is J∗ in [16].
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Proof Let v1, v2 ∈ V . By Proposition 2.11 we have

|v1|2 + 2〈v1, v2〉 + |v2|2 = |v1 + v2|2 = β2(v1 + v2, v1 + v2)

= |v1|2 + β2(v1, v2)+ β2(v2, v1)+ |v2|2
= |v1|2 + β2(v1, v2)+ β2(v1, v2)+ |v2|2
= |v1|2 + 2 Re β2(v1, v2)+ |v2|2.

Hence Re β2(v1, v2) = 〈v1, v2〉. To show the second claim, note that Proposition 2.11 implies
that

Im β2(v1, v2) = 1

2
β2(v1, v2)− 1

2
β2(v1, v2) = 1

2
β2(v1, v2)− 1

2
β2(v2, v1).

For each ζ ∈ C ′ it follows that

〈ζ, Im β2(v1, v2)〉 = 1

2
〈ζ, β2(v1, v2)〉 − 1

2
〈ζ, β2(v2, v1)〉

= 1

2
〈Jζ v2, v1〉 − 1

2
〈Jζ v1, v2〉

= 1

2
〈Jζ v2, v1〉 + 1

2
〈v1, Jζ v2〉

= 〈Jζ v2, v1〉 = 〈ζ, [v2, v1]〉.
Since 〈·, ·〉|C ′×C ′ is non-degenerate and Im β2(v1, v2) ∈ C ′ and [v2, v1] ∈ C ′, it follows that
Im β2(v1, v2) = [v2, v1]. ��
2.8 The isometry group

Let n = (z, v, J ) be a non-trivial H -type algebra which satisfies the J 2-condition, and let
a be a one-dimensional Euclidean Lie algebra. Construct the Euclidean Lie algebra s and
the spaces S and D as in Sect. 2.4. We denote by (C, e, V, J ) the J 2C-module structure
(R ⊕ z, 1, v, J̃ ) which is isomorphic to n. Let G denote the full isometry group of D. Sup-
pose that N , respectively, A are the connected, simply connected Lie groups with Lie algebra
n, respectively, a. Then N and A are subgroups of S, more precisely, S is the semidirect
product AN . In the parametrization of S, the groups N and A are given by

N = {n(Z ,X) := (1, Z , X)
∣∣ (Z , X) ∈ z × v

}

and

A = {at := (t, 0, 0)
∣∣ t ∈ R

+ } .

Let K be the stabilizer of the base point oD = (1, 0, 0) in G and let M := Z K (A) be the
centralizer of A in K . Recall the geodesic inversion

σ(t, Z , X) = 1

t2 + |Z |2 (t,−Z , (−t + JZ )X)

at the origin oD from Sect. 2.4.

Theorem 2.13 (Theorem 6.4 in [7]) The Lie group G has the Bruhat decomposition MAN ∪
NσMAN.
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Let X := R × z × v ∪ {∞} be the one-point compactification of R × z × v, where ∞
denotes the point at infinity. A compactification of D is then given by the closure of D in X ,
namely

D
g =
{
(t, Z , X) ∈ R × z × v

∣∣∣∣ t ≥ 1

4
|X |2
}

∪ {∞}

=
{
(ζ, v) ∈ C × V

∣∣∣∣ Re ζ ≥ 1

4
|v|2
}

∪ {∞}.

The space D
g

is precisely the geodesic compactification of D, see, e. g., [3, Sect. I.2] or [8,
Proposition 1.7.6]. Let B be the closed unit ball in W = R×z×v. Then the Cayley transform
C : B → D extends (uniquely) to a homeomorphism B → D

g
. Therefore, [7, Corollary 6.2]

amounts to the following proposition.

Proposition 2.14 The action of G extends continuously to D
g
.

The Bruhat decomposition of G implies that the stabilizer G∞ of ∞ in G equals MAN .
For future purposes we need explicit formulas for the action of the groups M, A and N

on D
g
. The action of N and A in R × z × v-coordinates is already given in (2.5). Suppose

that (ζ, v) ∈ D
g
�{∞}. For at ∈ A we have

at∞ = ∞ and at (ζ, v) = (tζ, t1/2v).

For n(Z ,X) ∈ N we get n(Z ,X)∞ = ∞ and

n(Z ,X)(ζ, v) =
(

1

4
|X |2 + Z + ζ + 1

2
β2(v, X), X + v

)
.

In C × V -coordinates, the geodesic inversion σ reads as

σ∞ = 0, σ0 = ∞,

and for (ζ, v) ∈ D
g
�{0,∞},

σ(ζ, v) = 1

(Re ζ )2 + | Im ζ |2
(
Re ζ,− Im ζ, J− Re ζ+Im ζ v

)

= |ζ |−2
(
ζ , J−ζ v

)
=
(
ζ−1, J−|ζ |−2ζ v

)

= (ζ−1,−ζ−1v
) = ζ−1(1,−v).

The Cayley transform in C × V -coordinates is

C :
{

B → D
(ζ, v) �→ |1 − ζ |−2

(
1 + 2 Im ζ − |ζ |2, 2(1 − ζ )v

)

with

C−1 :
{

D → B
(η, u) �→ |1 + η|−2

(−1 + 2 Im η + |η|2, 2(1 + η)u
)
.

The following proposition provides the explicit form of the group M .

Proposition 2.15 The group M is the group of automorphisms of the J 2C-module structure
(C, e, V, J ), that is, the elements of M are the pairs (ϕ, ψ) of orthogonal endomorphisms
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ϕ : C → C with ϕ(e) = e and ψ : V → V such that the diagram

C × V
J ��

ϕ×ψ
��

V

ψ

��
C × V

J �� V

commutes. If (ϕ, ψ) ∈ M, then its action on D
g

is given by (ϕ, ψ)(∞) = ∞ and
(ϕ, ψ)(ζ, v) = (ϕ(ζ ), ψ(v)) for (ζ, v) ∈ D

g
�{∞}.

Proof Let G̃ := C−1GC. For each g ∈ G set g̃ := C−1gC, and for each subset T of G let
T̃ := C−1T C be the corresponding subset of G̃. Clearly, G̃ is the full isometry group of
B. We will first characterize the centralizer Z K̃ ( Ã) of Ã in K̃ as a subgroup of G̃. Let M̃
denote the automorphism group of (C, e, V, J ) and define the action of (ϕ, ψ) ∈ M̃ on B
by (ϕ, ψ)(ζ, v) := (ϕ(ζ ), ψ(v)). We will show that M̃ = Z K̃ ( Ã). By [15, Proposition 4.1]
we have that M̃ ⊆ K̃ . Let at ∈ A and (ζ, v) ∈ B. Then one easily calculates that

ãt (ζ, v) = C−1 ◦ at ◦ C(ζ, v)
= ∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣−2

×
(

− |1 − ζ |4 + 4t Im ζ + t2 |1 + 2 Im ζ −|ζ |2∣∣2 ,
4t1/2|1 − ζ |2 (|1 − ζ |2 + t (1 − Im ζ − |ζ |2)) ((1 − ζ )v

) )
.

Suppose that m̃ = (ϕ, ψ) ∈ M̃ . Since ϕ(e) = e, we have that ϕ(ζ ) = ϕ(ζ ) and ϕ(Im ζ ) =
Im ϕ(ζ ) for each ζ ∈ C . Moreover, |ζ | = |ϕ(ζ )| for each ζ ∈ C . Then the first component
of m̃ ◦ ãt (ζ, v) is given by

ϕ

(
−|1 − ζ |4 + 4t Im ζ + t2

∣∣1 + 2 Im ζ − |ζ |2∣∣2
∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣2

)

= −|1 − ζ |4 + 4t Im ϕ(ζ )+ t2
∣∣1 + 2 Im ζ − |ζ |2∣∣2

∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣2

= −|1 − ϕ(ζ )|4 + 4t Im ϕ(ζ )+ t2
∣∣1 + 2 Im ϕ(ζ )− |ϕ(ζ )|2∣∣2

∣∣|1 − ϕ(ζ )|2 + t (1 + 2 Im ϕ(ζ )− |ϕ(ζ )|2)∣∣2
.

This is the first component of ãt ◦ m̃(ζ, v). The second component of m̃ ◦ ãt (ζ, v) reads as

ψ

((|1 − ζ |2 + t (1 − 2 Im ζ − |ζ |2)) ((1 − ζ )v
)

∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣2
)

= ϕ
(|1 − ζ |2 + t (1 − 2 Im ζ − |ζ |2))ψ ((1 − ζ )v

)
∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣2

=
(|1 − ζ |2 + t (1 − 2 Im ϕ(ζ )− |ζ |2)) (ϕ(1 − ζ )ψ(v)

)
∣∣|1 − ζ |2 + t (1 + 2 Im ζ − |ζ |2)∣∣2

=
(|1 − ϕ(ζ )|2 + t (1 − 2 Im ϕ(ζ )− |ϕ(ζ )|2))

(
(1 − ϕ(ζ ))ψ(v)

)

∣∣|1 − ϕ(ζ )|2 + t (1 + 2 Im ϕ(ζ )− |ϕ(ζ )|2)∣∣2
.
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Clearly, this is the second component of ãt ◦ m̃(ζ, v). Hence, m̃ commutes with each ãt . This
shows that M̃ ⊆ Z K̃ ( Ã).

Conversely, suppose that m̃ ∈ Z K̃ ( Ã). We have to show that m̃(1, 0) = (1, 0). Then
[15, Proposition 4.1] implies that m̃ ∈ M̃ . For each t ∈ R

+, we have

ãt (1, 0) = lim
n→∞ ãt

(
1 − 1

n
, 0

)
= (1, 0).

Thus, ãt (m̃(1, 0)) = m̃(1, 0). The only points on ∂B that are invariant under each ãt are
(1, 0) and (−1, 0). Seeking a contradiction assume that m̃(1, 0) = (−1, 0). Since σ̃ = − id,
we get σ̃ ◦ m̃(1, 0) = (1, 0). By [15, Proposition 4.1] we have σ̃ ◦ m̃ ∈ M̃ . Our previous
argument then shows that σ̃ ◦ m̃ commutes with all ãt . Therefore,

ãt ◦ σ̃ ◦ m̃ = σ̃ ◦ m̃ ◦ ãt = σ̃ ◦ ãt ◦ m̃,

which means that σ̃ commutes with each ãt . This is a contradiction. Hence it follows that
m̃(1, 0) = (1, 0), which by [15, Proposition 4.1] shows that m̃ ∈ M̃ . Therefore, M̃ = Z K̃ ( Ã).
Now let m̃ = (ϕ, ψ) ∈ M̃ and set m := C ◦ m̃ ◦ C−1. For (η, u) ∈ D we find

m(η, u) = C ◦ m̃ ◦ C−1(η, u)

= C ◦ m̃
(|1 + η|−2 (1 + 2 Im η + |η|2, 2(1 + η)u

))

= C
(
|1 + ϕ(η)|−2

(
1 + 2 Im ϕ(η)+ |ϕ(η)|2, 2(1 + ϕ(η))ψ(u)

))

= (ϕ(η), ψ(u)).

The remaining claim follows directly from continuity or, alternatively, from the extension of
the Cayley transform to B. ��

3 Isometric fundamental regions

Throughout this section let (C, e, V, J ) be a J 2C-module structure such that (C, V ) =
(Re, {0}) and suppose that (z, v, J ) is the corresponding H -type algebra with J 2-condition.
Recall the model D of the rank one Riemannian symmetric space of noncompact type which
is constructed from (C, e, V, J ), respectively, (z, v, J ) in Sect. 2.4. Let G denote the full
isometry group of D.

The purpose of this section is to prove the existence of isometric fundamental regions
for certain subgroups � of G. For this we first have to define the notion of the isometric
sphere of g ∈ G�G∞, which is a sphere w. r. t. Cygan metric. The Cygan metric is a metric
on D

g
�{∞} which arises from a certain group norm on D

g
�{∞}. This group norm is an

extension of the Heisenberg pseudonorm.

3.1 The Cauchy–Schwarz Theorem for β2

In our setting, the proof of the Cauchy–Schwarz Theorem as it is usually taught in linear
algebra cannot be adapted to the map β2. Therefore, we provide an alternative proof for
which the following two lemmas are needed.

Lemma 3.1 Let u, v ∈ V . Then β2(v, u) = 0 if and only if v ∈ (Cu)⊥.

Proof We have β2(v, u) = 0 if and only if

〈β2(v, u), ζ 〉 = 0 for all ζ ∈ C.
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By the definition of β2, this holds if and only if

〈ζu, v〉 = 0 for all ζ ∈ C,

hence if and only if v ∈ (Cu)⊥. ��
Lemma 3.2 Let u ∈ V and λ ∈ C. Then β2(λu, u) = |u|2λ.

Proof By the definition of β2 and the polarization (2.6) we have

〈β2(λu, u), ζ 〉 = 〈ζu, λu〉 = 〈λ, ζ 〉|u|2 = 〈|u|2λ, ζ 〉
for all ζ ∈ C . Hence β2(λu, u) = |u|2λ. ��
Proposition 3.3 Let u, v ∈ V . Then

|β2(u, v)| ≤ |u||v|.
Equality holds if and only if v ∈ Cu or u ∈ Cv.

Proof Let (v1, v2) ∈ Cu × (Cu)⊥ be the unique pair such that v = v1 + v2. Using that β2

is C-hermitian (see Proposition 2.11), Lemma 3.1 yields

β2(u, v) = β2(u, v1)+ β2(u, v2) = β2(u, v1).

Then Lemma 3.2 shows

|β2(u, v1)|2 = |u|2|v1|2.
Clearly

|v1|2 ≤ |v1|2 + |v2|2 = |v|2,
where equality holds if and only if v2 = 0, hence if and only if v = v1 ∈ Cu. Thus,

|β2(u, v)|2 = |β2(u, v1)|2 = |u|2|v1|2 ≤ |u|2|v|2,
where the inequality is an equality if and only if u = 0 or v ∈ Cu. This proves the claim.

��
3.2 H-coordinates, Cygan metric, and isometric spheres

Let z = (t, Z , X) ∈ D
g
�{∞} and recall the map� from (2.4). The horospherical coordinates

or H-coordinates of z relative to the origin oD of D are defined as

�−1(z) =
(

t − 1

4
|X |2, Z , X

)
.

To avoid confusion with the ordinary coordinates of D
g
, H-coordinates will be subscripted

by h. Hence, the H-coordinates of z are denoted by
(
t − 1

4 |X |2, Z , X
)

h .

Since � induces a bijection between D
g
�{∞} and the topological closure

S = R
+
0 × z × v

of S in R × z × v, there is a geometric characterization of H-coordinates. We elaborate on
this in the following remark.
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Remark and Definition 3.4 Let z = (t, Z , X) = (ζ, v) ∈ D
g

� {∞}. The horosphere
through z with center ∞ is the N -orbit of z. We extend the group A to the set

A+ := A ∪ {a0},
where a0 : D

g → D
g

is defined by a0∞ := ∞ and a0z := 0 for all z ∈ D
g
�{∞}. Then

there is a unique pair (as, n) ∈ A+ × N such that

nas(oD) = z.

The height of z is defined as

ht(z) := t − 1

4
|X |2 = Re ζ − 1

4
|v|2.

Formula (2.5) shows that s = ht(z) and n = (1, Z , X). Hence the H-coordinates of z are

(ht(z), Z , X)h = (ht(z), Im ζ, v)h .

This means that the H-coordinates are given by the height of the ∞-centered horosphere on
which z lies and the coordinates of z in the canonical parametrization of this horosphere.

The Cygan metric on D is a metric on D
g
�{∞} which arises from a certain group norm.

If (G, ·) is a group with neutral element 1G , then a map p : G → R
+
0 is called a group norm

if

(GN1) p(g) = 0 if and only if g = 1G ,
(GN2) p(g−1) = p(g) for all g ∈ G,
(GN3) p(gh) ≤ p(g)+ p(h) for all g, h ∈ G.

Suppose that p is a group norm on G, then the map d : G × G → R, d(g, h) := p(g−1h) is
a metric on G. It is called the metric induced by p.

A well-known example of a group norm and a pre-form of the group norm for the Cygan
metric is the Heisenberg pseudonorm on N . More precisely, N inherits an inner product from
its canonical bijection to z × v. Then the Heisenberg group norm q (which is also known as
the Heisenberg pseudonorm) on N is defined by

q(Z , X) :=
∣∣∣∣
1

4
|X |2 + Z

∣∣∣∣
1/2

=
(

1

16
|X |4 + |Z |2

)1/4

.

The last equality holds because z and R
∼= a are orthogonal. Since each height level set of

D
g
�{∞} is isomorphic to N , the metric induced from the Heisenberg group norm measures

the distance between two elements in the same height level set.
To be able to also measure the distance between elements in different height level sets, we

extend the Heisenberg pseudonorm to the direct product of the groups (R,+) (“differences
between height level sets”) and N by

p :
{

R × N → R

(k, Z , X) �→ ∣∣ 14 |X |2 + |k| + Z
∣∣1/2 .

Obviously, p|{0}×N = q .

Proposition 3.5 The map p is a group norm on R × N.
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Proof The neutral element of R × N is (0, 0, 0), and z is orthogonal to R. This implies that
p satisfies (GN1). To prove (GN2) let g = (k, Z , X) ∈ R × N . Then

p(g−1) = p(−k,−Z ,−X) =
∣∣∣∣
1

4
|X |2 + |k| − Z

∣∣∣∣
1/2

=
((

1

4
|X |2 + |k|

)2

+ |Z |2
)1/4

=
∣∣∣∣
1

4
|X |2 + |k| + Z

∣∣∣∣
1/2

= p(g).

The triangle equality (GN3) is shown in several steps. For each g = (k, Z , X) ∈ R × N
we have

p(g) =
∣∣∣∣
1

4
|X |2 + |k| + Z

∣∣∣∣
1/2

=
((

1

4
|X |2 + |k|

)2

+ |Z |2
)1/4

≥
((

1

4
|X |2
)2
)1/4

= 1

2
|X |.

This and Proposition 3.3 yield that

1

4
|β2(X2, X1)| ≤ |X1|

2

|X2|
2

≤ p(k1, Z1, X1)p(k2, Z2, X2)

for all (k j , Z j , X j ) ∈ R × N , j = 1, 2. Further, for all (Z , X) ∈ N and k1, k2 ∈ R, we find

∣∣∣∣
1

4
|X |2 + |k1 + k2| + Z

∣∣∣∣
1/2

=
((

1

4
|X |2 + |k1 + k2|

)2

+ |Z |2
)1/4

≤
((

1

4
|X |2 + |k1| + |k2|

)2

+ |Z |2
)1/4

=
∣∣∣∣
1

4
|X |2 + |k1| + |k2| + Z

∣∣∣∣
1/2

.

Now let g j = (k j , Z j , X j ) ∈ R × N , j = 1, 2. Then

p(g1g2) = p

(
k1 + k2, Z1 + Z2 + 1

2
[X1, X2], X1 + X2

)

=
∣∣∣∣
1

4
|X1 + X2|2 + |k1 + k2| + Z1 + Z2 + 1

2
[X1, X2]

∣∣∣∣
1/2

≤
∣∣∣∣
1

4
|X1 + X2|2 + |k1| + |k2| + Z1 + Z2 + 1

2
[X1, X2]

∣∣∣∣
1/2

=
∣∣∣∣
1

4
|X1|2 + |k1| + Z1 + 1

4
|X2|2 + |k2| + Z2 + 1

2
(〈X1, X2〉 + [X1, X2])

∣∣∣∣
1/2

.

Recall from Lemma 2.12 that

〈X1, X2〉 + [X1, X2] = β2(X2, X1).
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Then

p(g1g2) ≤
∣∣∣∣
1

4
|X1|2 + |k1| + Z1 + 1

4
|X2|2 + |k2| + Z2 + 1

2
β2(X2, X1)

∣∣∣∣
1/2

≤
[∣∣∣∣

1

4
|X1|2 + |k1| + Z1

∣∣∣∣+
∣∣∣∣
1

4
|X2|2 + |k2| + Z2

∣∣∣∣+
1

2
|β2(X2, X1)|

]1/2

=
[

p(g1)
2 + p(g2)

2 + 1

2
|β2(X2, X1)|

]1/2

≤ [p(g1)
2 + p(g2)

2 + 2p(g1)p(g2)
]1/2

= p(g1)+ p(g2).

This completes the proof. ��
The definition of the Cygan metric uses the H-coordinates on D

g
�{∞}. We use the map

κ :
{

D
g
�{∞} → R × N

z �→ �−1(z)

to assign to each element of D
g
�{∞} its H-coordinates. The advantage of using H-coordi-

nates is that the points of D
g
�{∞} get embedded into the group R × N . This in turn allows

to perform the group operations of R × N on κ(z1), κ(z2) for elements z1, z2 ∈ D
g
�{∞}.

Definition 3.6 The Cygan metric on D is given by

ρ :
{

D
g
�{∞} × D

g
�{∞} → R

(g1, g2) �→ p
(
κ(g1)

−1κ(g2)
)
.

Since κ is injective, the Cygan metric is in fact a metric on D
g
�{∞}.

The following lemma provides worked out formulas for the Cygan metric. It can be proved
by a straightforward calculation.

Lemma 3.7 Let z j = (ζ j , v j ) = (k j , Z j , X j )h be elements of D
g
�{∞}. Then the Cygan

metric is given by

ρ(z1, z2) =
∣∣∣∣
1

4
|X1 − X2|2 + |k1 − k2| + Z1 − Z2 + 1

2
Im β2(X2, X1)

∣∣∣∣
1/2

=
∣∣∣∣
1

4
|v1|2 + 1

4
|v2|2 + | ht(z1)− ht(z2)| + Im ζ1 − Im ζ2 − 1

2
β2(v1, v2)

∣∣∣∣
1/2

.

Convention 3.8 Let g ∈ G � G∞. Whenever in the following we write g = n1σmat n2,
it should be understood that n1, n2 ∈ N , at ∈ A and m ∈ M .

Definition 3.9 Let g ∈ G � G∞. Suppose that g = n1σmat n2, and let R(g) := t−1/4.
Then the set

I (g) := {z ∈ D
∣∣ ρ
(
z, g−1∞) = R(g)

}

is called the isometric sphere of g. Further,

ext I (g) := {z ∈ D
∣∣ ρ
(
z, g−1∞) > R(g)

}
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is called the exterior of I (g), and

int I (g) := {z ∈ D
∣∣ ρ
(
z, g−1∞) < R(g)

}

is called the interior of I (g). The value R(g) is the radius of I (g).

Lemma 3.10 Let g = n1σmat n2 ∈ G�G∞ and n2 = (1, Zs2, Xs2). Then

ρ
(
(ζ, v), g−1∞) =

∣∣∣∣
1

4
|Xs2|2 + Zs2 + ζ + 1

2
β2(v, Xs2)

∣∣∣∣
1/2

.

Further ρ
(·, g−1∞) is unbounded on D, and hence ext I (g) = ∅.

Proof We have

g−1∞ = n−1
2 0 =

(
1

4
|Xs2|2 − Zs2,−Xs2

)
.

Thus, the expression for ρ((ζ, v), g−1∞) follows immediately from Lemma 3.7. We now
prove the second part of the claim. Let (ζ, v) ∈ D and t > 1. Then

ht ((tζ, v)) = t Re ζ − 1

4
|v|2 > Re ζ − 1

4
|v|2 > 0.

Hence (tζ, v) ∈ D. Further

ρ
(
(tζ, v), g−1∞)2 =

∣∣∣∣tζ + 1

4
|Xs2|2 + Zs2 + 1

2
β2(v, Xs2)

∣∣∣∣

≥ t |ζ | −
∣∣∣∣
1

4
|Xs2|2 + Zs2 + 1

2
β2(v, Xs2)

∣∣∣∣ ,

which converges to ∞ for t → ∞. Hence ρ
(·, g−1∞) is unbounded. This completes the

proof. ��
Lemma 3.11 Let g ∈ G�G∞. Then

(i) ext I (g) and int I (g) are open,
(ii) ext I (g) = {z ∈ D

∣∣ ρ
(
z, g−1∞) ≥ R(g)

} = � int I (g),
(iii) int I (g) = {z ∈ D

∣∣ ρ(z, g−1∞) ≤ R(g)
} = � ext I (g).

(iv) If (ζ, v) ∈ int I (g), then (ζ − s, v) ∈ int I (g) for each s ∈ (0, ht(ζ )).
(v) If (ζ, v) ∈ ext I (g), then (ζ + s, v) ∈ ext I (g) for each s > 0.

Proof Suppose that g = n1σmat n2 with n2 = (1, Z2, X2). Then R(g) = t−1/4 and, by
Lemma 3.10,

ρ
(
(ζ, v), g−1∞) =

∣∣∣∣
1

4
|X2|2 + Z2 + ζ + 1

2
β2(v, X2)

∣∣∣∣
1/2

for each (ζ, v) ∈ D. Since β2(·, X2) : V → C is R-linear (see Proposition 2.11), the map

f :
{

D → R

(ζ, v) �→ ∣∣ 14 |X2|2 + Z2 + ζ + 1
2β2(v, X2)

∣∣

is continuous. Then

ext I (g) = f −1 ((t−1/2,∞)
)

and int I (g) = f −1 ((−∞, t−1/2)
)
.
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This shows that ext I (g) and int I (g) are open. Moreover, it follows that int I (g) is con-
tained in f −1

(
(−∞, t−1/2]). For the converse inclusion relation, it suffices to show that

f −1(t−1/2) ⊆ int I (g). Let z0 = (ζ0, v0) ∈ f −1(t−1/2). Then

t−1/2 =
∣∣∣∣
1

4
|X2|2 + Z2 + ζ0 + 1

2
β2(v0, X2)

∣∣∣∣

=
[∣∣∣∣

1

4
|X2 + v0|2 + ht(ζ0)

∣∣∣∣
2

+
∣∣∣∣Z2 + Im ζ0 + 1

2
Im β2(v0, X2)

∣∣∣∣
2
]1/2

.

For each s ∈ (0, ht(ζ0)) it follows that

t−1/2 >

[∣∣∣∣
1

4
|X2 + v0|2 + ht(ζ0)− s

∣∣∣∣
2

+
∣∣∣∣Z2 + Im ζ0 + 1

2
Im β2(v0, X2)

∣∣∣∣
2
]1/2

=
∣∣∣∣
1

4
|X2|2 + Z2 + ζ0 − s + 1

2
β2(v0, X2)

∣∣∣∣ .

Thus, (ζ0 − s, v0) ∈ int I (g) for each s ∈ (0, ht(ζ0)). Hence

lim
s↘0

(ζ0 − s, v0) = (ζ0, v0) ∈ int I (g).

This proves (iii) and (iv). The proof of (ii) is analogous to that of (iii), and the proof of (v) is
analogous to that of (iv). ��
Proposition 3.12 We have

⋂

g∈���∞
ext I (g) =

⋂

g∈���∞
ext I (g) = D�

⋃

g∈���∞
int I (g).

Proof Lemma 3.11(iii) states that � ext I (g) = int I (g) for each g ∈ ���∞. Therefore,

�

⎛

⎝
⋂

g∈���∞
ext I (g)

⎞

⎠ =
⎛

⎝
⋃

g∈���∞
� ext I (g)

⎞

⎠
◦

=
⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠
◦
.

By Lemma 3.11(i), the interior of each isometric sphere is open. Thus

⋃

g∈���∞
int I (g) =

⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠
◦
,

and hence

⋃

g∈���∞
int I (g) ⊆

⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠
◦
.

In the following we will prove the converse inclusion relation. Let z = (ζ, v) be an element

of
(⋃{ int I (g) | g ∈ ���∞}

)◦
and pick ε > 0 such that

zε := z + ε = (ζ + ε, v) ∈
⋃

g∈���∞
int I (g).
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Fix some k ∈ ���∞ such that zε ∈ int I (k). Lemma 3.11(iv) yields that z = zε − ε is in
int I (k). Thus z ∈⋃{int I (g) | g ∈ ���∞}. This shows that

⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠
◦

⊆
⋃

g∈���∞
int I (g).

In turn,

�
⋃

g∈���∞
int I (g) =

⋂

g∈���∞
ext I (g).

Finally we have � int I (g) = ext I (g) for each g ∈ ���∞ by Lemma 3.11(iii). Therefore,
⋂

g∈���∞
ext I (g) = �

⋃

g∈���∞
int I (g) =

⋂

g∈�\�∞
� int I (g) =

⋂

g∈���∞
ext I (g).

��
Let g ∈ G � G∞ and (ζ, v) ∈ D

g
� {∞}. Suppose that g = n1σmat n2 with

n j = (1, Zsj , Xsj ) and m = (ϕ, ψ). A lengthy but easy calculation shows that

g(ζ, v) =
(

1

4
|Xs1|2 + Zs1 + xt−1 − 1

2
t−1/2β2(xψ(Xs2 + v), Xs1), (3.1)

Xs1 − xt−1/2ψ(Xs2 + v)

)

where

x :=
[
ϕ

(
1

4
|Xs2|2 + Zs2 + ζ + 1

2
β2(v, Xs2)

)]−1

.

This explicit expression for the action of g on D is used in the following two lemmas. We
denote the set of orthogonal endomorphisms of C , respectively of V, by O(C), respectively
O(V ).

Lemma 3.13 If g ∈ G�G∞, then g maps ext I (g) onto int I (g−1), and I (g) onto I (g−1).

Proof Suppose that g = n1σmat n2 with n j = (1, Zsj , Xsj ) and m = (ϕ, ψ). Then we have
g−1 = n−1

2 σmat n
−1
1 . Hence it follows that

R(g) = R(g−1) = t−1/4

and

g−1 I (g−1) = {z ∈ D | ρ(gz, g∞) = R(g)} .
In the following we will compare ρ(gz, g∞) to ρ

(
z, g−1∞). Let (ζ, v) be in D. Set

x :=
[
ϕ

(
1

4
|Xs2|2 + Zs2 + ζ + 1

2
β2(v, Xs2)

)]−1

.

Then (3.1) and Lemma 3.10 yield that

ρ (g(ζ, v), g∞) =
∣∣∣∣
1

2
|Xs1|2 + xt−1 − 1

2
β2(Xs1, Xs1)

∣∣∣∣
1/2

.
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By Proposition 2.11, β2(Xs1, Xs1) = |Xs1|2. Thus

ρ (g(ζ, v), g∞) = ∣∣xt−1
∣∣1/2 = |x |1/2t−1/2.

Since ϕ ∈ O(C), it follows that

|x |1/2 =
∣∣∣∣ϕ
(

1

4
|Xs2|2 + Zs2 + ζ + 1

2
β2(v, Xs2)

)∣∣∣∣
−1/2

=
∣∣∣∣
1

4
|Xs2|2 + Zs2 + ζ + 1

2
β2(v, Xs2)

∣∣∣∣
−1/2

= ρ
(
(ζ, v), g−1∞)−1

.

Therefore,

ρ
(
(ζ, v), g−1∞) ρ (g(ζ, v), g∞) = t−1/2.

Hence, (ζ, v) ∈ I (g) if and only if

ρ (g(ζ, v), g∞) = t−1/4.

This is equivalent to g(ζ, v) ∈ I (g−1). In turn, gI (g) = I (g−1). Further, we have (ζ, v) ∈
ext I (g) if and only if

t−1/4 > ρ (g(ζ, v), g∞) .

Therefore, g ext I (g) = int I (g−1). ��
Lemma 3.14 Let n = (1, Z , X) ∈ N , as ∈ A, and m = (ϕ, ψ) ∈ M.

(i) If n′ := (1, s Z , s1/2 X
)
, then asn = n′as .

(ii) For all u, v ∈ V we have ϕ (β2(v, u)) = β2(ψ(v), ψ(u)).
(iii) If n′ := (1, ϕ(Z), ψ(X)), then mn = n′m.

Proof Claim (i) is shown by direct calculation. To prove (ii) recall thatϕ ∈ O(C), ψ ∈ O(V ),
and that ψ (J (η,w)) = J (ϕ(η), ψ(w)) for each (η,w) ∈ C ⊕ V . For each ζ ∈ C we have

〈ϕ (β2(v, u)) , ζ 〉 = 〈β2(v, u), ϕ−1(ζ )
〉 = 〈J (ϕ−1(ζ ), u

)
, v
〉

= 〈ψ (J (ϕ−1(ζ ), u
))
, ψ(v)

〉 = 〈J (ζ, ψ(u)), ψ(v)〉
= 〈β2(ψ(v), ψ(u)), ζ 〉 .

Thus ϕ (β2(v, u)) = β2(ψ(v), ψ(u)). For the proof of (iii) let (ζ, v) ∈ D. Then

m (n(ζ, v)) =
(
ϕ

(
1

4
|X |2 + Z + ζ + 1

2
β2(v, X)

)
, ψ(X + v)

)

=
(

1

4
|ψ(X)|2 + ϕ(Z)+ ϕ(ζ )+ 1

2
ϕ (β2(v, X)) , ψ(X)+ ψ(v)

)
.

Now (ii) yields

m (n(ζ, v)) =
(

1

4
|ψ(X)|2 + ϕ(Z)+ ϕ(ζ )+ 1

2
β2 (ψ(v), ψ(X)) , ψ(X)+ ψ(v)

)

= n′ (ϕ(ζ ), ψ(v)) = n′ (m(ζ, v)) .

Hence mn = n′m. ��
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Proposition 3.15 Let g ∈ G∞ and h ∈ G�G∞. Then

gI (h) = I
(
ghg−1) ,

g int I (h) = int I
(
ghg−1) ,

g ext I (h) = ext
(
ghg−1) .

Proof It suffices to prove the claim for the three cases g ∈ A, g ∈ N , and g ∈ M . This we
will do separately. Let h = n1σmat n2 with n j = (1, Z j , X j ).

Suppose first that g = as . Let (ζ, v) ∈ D. For j ∈ {1, 2} set n′
j := (1, s Z j , s1/2 X j

)
.

Lemma 3.14 implies that

ghg−1 = asn1σmat n2a−1
s = n′

1σma−1
s at a

−1
s n′

2 = n′
1σmas−2t n

′
2.

Therefore, R
(
ghg−1

) = s1/2t−1/4 = s1/2 R(h). By Lemma 3.10 we have

ρ
(
(ζ, v), (ghg−1)−1∞) =

∣∣∣∣
1

4
s|X2|2 + s Z2 + ζ + 1

2
s1/2β2(v, X2)

∣∣∣∣
1/2

and

ρ
(
a−1

s (ζ, v), h−1∞) =
∣∣∣∣
1

4
|X2|2 + Z2 + s−1ζ + 1

2
s−1/2β2(v, X2)

∣∣∣∣
1/2

= s−1/2ρ
(
(ζ, v), (ghg−1)−1∞).

Then

gI (h) = {z ∈ D
∣∣ ρ
(
g−1z, h−1∞) = R(h)

}

= {z ∈ D
∣∣ ρ
(
z, (ghg−1)−1∞) = s1/2 R(h)

}

= {z ∈ D
∣∣ ρ
(
z, (ghg−1)−1∞) = R(ghg−1)

}

= I
(
ghg−1) .

Analogously, we see that g ext I (h) = ext I
(
ghg−1

)
and g int I (h) = int I

(
ghg−1

)
.

Now suppose that g = n3 = (1, Z3, X3). Then ghg−1 = (n3n1)σmat (n2n−1
3 ) and

(see Lemma 2.12)

n2n−1
3 =
(

1, Z2 − Z3 − 1

2
Im β2(X3, X2), X2 − X3

)
.

Therefore, by Lemmas 3.10 and 2.12,

ρ
(
(ζ, v), (n3hn−1

3 )−1∞
)

=
∣∣∣∣
1

4
|X2|2 + 1

4
|X3|2 − 1

2
β2(X3, X2)+ Z2 − Z3 + ζ + 1

2
β2(v, X2 − X3)

∣∣∣∣
1/2

.
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On the other hand, we have

ρ
(

n−1
3 (ζ, v), h−1∞

)

=
∣∣∣∣
1

4
|X2|2 + Z2 + 1

4
|X3|2 − Z3 + ζ − 1

2
β2(v, X3)+ 1

2
β2(−X3 + v, X2)

∣∣∣∣
1/2

=
∣∣∣∣
1

4
|X2|2 + 1

4
|X3|2 + Z2 − Z3 + ζ − 1

2
β2(X3, X2)+ 1

2
β2(v, X2 − X3)

∣∣∣∣
1/2

= ρ
(
(ζ, v), n3h−1n−1

3 ∞
)
.

Since R(h) = R
(
ghg−1

)
, the claim follows for this case.

Finally suppose that g = m2 = (ϕ, ψ) and set n′
j := (1, ϕ(Z j ), ψ(X j )

)
for j = 1, 2.

Lemma 3.14 shows that

ghg−1 = m2n1σmat n2m−1
2 = n′

1σm−1
2 mm−1

2 at n
′
2.

From this it follows that R(h) = R
(

m2hm−1
2

)
. Moreover, we have

ρ
(
(ζ, v), (ghg−1)−1∞) =

∣∣∣∣
1

4
|ψ(X2)|2 + ϕ(Z2)+ ζ + 1

2
β2(v, ψ(X2))

∣∣∣∣
1/2

.

From Lemma 3.14 it follows that

ρ
(
(ζ, v), (ghg−1)−1∞) =

∣∣∣∣
1

4
|X2|2 + ϕ(Z2)+ ζ + 1

2
ϕ
(
β2(ψ

−1(v), X2)
)∣∣∣∣

1/2

.

On the other side we find

ρ
(
g−1(ζ, v), h−1∞) = ρ

(
(ϕ−1(ζ ), ψ−1(v)), h−1∞)

=
∣∣∣∣
1

4
|X2|2 + Z2 + ϕ−1(ζ )+ 1

2
β2(ψ

−1(v), X2)

∣∣∣∣
1/2

=
∣∣∣∣
1

4
|X2|2 + ϕ(Z2)+ ζ + 1

2
ϕ
(
β2(ψ

−1(v), X2)
)∣∣∣∣

1/2

= ρ
(
(ζ, v), (ghg−1)−1∞) .

From this it follows that gI (h) = I
(
ghg−1

)
, g ext I (h) = ext I

(
ghg−1

)
, and g int I (h) =

int I
(
ghg−1

)
. ��

An immediate consequence of Proposition 3.15 is the following corollary.

Corollary 3.16 Let � be a subgroup of G and g ∈ �∞. Then

g
⋂

h∈���∞
ext I (h) =

⋂

h∈���∞
ext I (h)

and

g
⋃

h∈���∞
int I (h) =

⋃

h∈���∞
int I (h).
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Lemma 3.17 Let z ∈ D and g ∈ G�G∞. Then

ht(z) =
(
ρ(z, g−1∞)

R(g)

)4

ht(gz).

Proof Let z = (ζ, v) and g = n1σmat n2 with n j = (1, Z j , X j ) and m = (ϕ, ψ). We first
evaluate ht(gz). Set

x :=
[
ϕ

(
1

4
|X2|2 + Z2 + ζ + 1

2
β2(v, X2)

)]−1

.

Using (3.1) we find

ht(gz) = Re

(
1

4
|X1|2 + Z1 + xt−1 − 1

2
t−1β2 (xψ(X2 + v), X1)

)

−1

4

∣∣X1 − xt−1/2ψ(X2 + v)
∣∣2

= 1

4
|X1|2 + t−1 Re(x)− 1

2
t−1/2 〈xψ(X2 + v), X1〉

−1

4

∣∣X1 − xt−1/2ψ(X2 + v)
∣∣2

= t−1 Re(x)− 1

4
t−1|x |2 · |X2 + v|2

= t−1|x |2
[

Re
(|x |−2x

)− 1

4
|X2 + v|2

]
.

Since Re ϕ(η) = Re η for each η ∈ C , it follows that

Re
(|x |−2x

) = Re
(
x−1) = Re

(
x−1)

= Re

(
1

4
|X2|2 + Z2 + ζ + 1

2
β2(v, X2)

)

= 1

4
|X2|2 + Re ζ + 1

2
〈v, X2〉

= 1

4
|X2 + v|2 + Re ζ − 1

4
|v|2.

Thus,

ht(gz) = t−1|x |2
[

Re ζ − 1

4
|v|2
]

= t−1|x |2 ht(z).

Lemma 3.10 shows that

ρ
(
(ζ, v), g−1∞) = ∣∣ 14 |X2|2 + Z2 + ζ + 1

2β2(v, X2)
∣∣1/2 = |x |−1/2.

Since R(g) = t−1/4, we have

ht(z) = t |x |−2 ht(gz) =
(
ρ(z, g−1∞)

R(g)

)4

ht(gz).

��
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3.3 Fundamental regions

A subgroup � of G is said to be of type (O) if

⋂

g∈���∞
ext I (g) = D

∖ ⋃

g∈���∞
int I (g).

For a subset S of G let 〈S〉 denote the subgroup of G generated by S. Then S is said to be of
of type (F), if for each z ∈ D the maximum of the set

{ht(gz) | g ∈ 〈S〉}
exists.

Theorem 3.18 Let � be a subgroup of G of type (O) such that ���∞ is of type (F). Suppose
that F∞ is a fundamental region for �∞ in D satisfying

F∞ ∩
⋂

g∈���∞
ext I (g) = F∞ ∩

⋂

g∈���∞
ext I (g).

Then

F := F∞ ∩
⋂

g∈���∞
ext I (g)

is a fundamental region for � in D.

Proof Since � is of type (O), the set
⋂{ext I (g) | g ∈ ���∞} is open. Then F∞ being

open as a fundamental region for �∞ in D yields that F is open.
Now let z ∈ F and g ∈ �� {id}. If g ∈ �∞, then gz /∈ F∞ since the �∞-translates

of F∞ are pairwise disjoint. If g ∈ ���∞, then z ∈ ext I (g). Lemma 3.13 states that
gz ∈ int I

(
g−1
)
, and hence gz /∈ ext I

(
g−1
)
. Thus, in each case, gz /∈ F . This shows that

the �-translates of F are pairwise disjoint.
It remains to prove that D ⊆ � · F . To that end let z ∈ D and set

A :=
⋂{

ext I (g)
∣∣∣ g ∈ ���∞

}
.

Since ���∞ is of type (F), the set 〈���∞〉z contains an element of maximal height, sayw.
We claim that w ∈ A. Seeking a contradiction assume that w /∈ A. Proposition 3.12 yields
the existence of h ∈ ���∞ with w ∈ int I (h). Then, by definition,

ρ(w, h−1∞) < R(h).

This and Lemma 3.17 show that ht(hw) > ht(w), which is a contradiction to the choice ofw.
Thus, w ∈ A.

Since �∞F∞ = D, there is k ∈ �∞ such that kw ∈ F∞. Corollary 3.16 implies that
kw ∈ A. Finally,

kw ∈ F∞ ∩ A = F∞ ∩
⋂

g∈���∞
ext I (g) = F .

This completes the proof. ��
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Remark 3.19 Let � be a subgroup of G and suppose that the set

{int I (g) | g ∈ ���∞}
of interiors of all isometric spheres is locally finite. Then

⋃

g∈���∞
int I (g) =

⋃

g∈���∞
int I (g).

by [20, Hilfssatz 7.14]. Lemma 3.11(iii) implies that

�

⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠ = �

⎛

⎝
⋃

g∈���∞
int I (g)

⎞

⎠ =
⋂

g∈���∞
�int I (g) =

⋂

g∈���∞
ext I (g).

Hence, if the set of interiors of isometric spheres is locally finite, then � is of type (O).

A special case of Theorem 3.18 is the following corollary.

Corollary 3.20 Let � be a subgroup of G of type (O) and �∞ = {id}. Further suppose that
���∞ is of type (F). Then

F :=
⋂

g∈���∞
ext I (g)

is a fundamental region for � in D.

The following proposition serves to show that in many situations the fundamental region
in Theorem 3.18 is actually a fundamental domain (see Corollary 3.23 below).

Proposition 3.21 Suppose that v = {0}. Then the set ext I (g) is geodesically convex for
each g ∈ G�G∞.

Proof Let z1, z2 ∈ ext I (g), z1 = z2. Then there exist s2 > s1 > 0 and h ∈ G such that
z1 = has1 · oD and z2 = has2 · oD . W.l.o.g. we may assume that h is either of the form
h = n ∈ N (if h ∈ G∞) or h = n′σn ∈ NσN (if h ∈ G � G∞). The geodesic segment
connecting z1 and z2 is given by

c := {har · oD | s1 ≤ r ≤ s2}.
In the following we will show that c ⊆ ext I (g) by examining separately the two cases for h.

Suppose that g = n1σmat n2 with n1, n2 = (1, Zs) ∈ N , at ∈ A and m ∈ M and
r ∈ [s1, s2]. At first let h = n = (1, Z) ∈ N . Then

ρ(nar · oD, g−1∞) = ρ((r, Z), g−1∞) = |Zs + Z + r |1/2 = (|Zs + Z |2 + r2)1/4

≥ (|Zs + Z |2 + s2
1

)1/4 = ρ(nas1 · oD, g−1∞) > R(g).

Hence har · oD ∈ ext I (g).
Now let h = n′σn ∈ NσN with n′ = (1, Z ′) and n = (1, Z). A straightforward calcula-

tion shows that

ρ(har · oD, g−1∞) > R(g) = t−1/4

is equivalent to

0 < ar4 + br2 + c (3.2)
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where Z ′
s := Zs + Z ′ and

a := |Z ′
s |2 − t−1

b := 1 + 2|Z |2|Z ′
s |2 − 2〈Z , Z ′

s〉 − 2|Z |2t−1

c := |Z |4|Z ′
s |2 − 2|Z |2〈Z , Z ′

s〉 + |Z |2 − |Z |4t−1.

Solving (3.2) separately for a = 0, a > 0 and a < 0 yields that it is satisfied for r . Therefore,
har · oD ∈ ext I (g). This completes the proof. ��
Remark 3.22 Using the classification in [15] of J 2C-module structures and the statement
[5, Proposition 2.5.1] on the (non-)existence of totally geodesic submanifolds of codimen-
sion one in rank one Riemannian symmetric spaces we see that Proposition 3.21 in general
becomes false if v = {0}.

Theorem 3.18 and Proposition 3.21 immediately imply the following statement.

Corollary 3.23 Let v = {0} and let � be a subgroup of G of type (O) such that ���∞ is of
type (F). Suppose that F∞ is a convex fundamental domain for �∞ in D satisfying

F∞ ∩
⋂

g∈���∞
ext I (g) = F∞ ∩

⋂

g∈���∞
ext I (g).

Then

F := F∞ ∩
⋂

g∈���∞
ext I (g)

is a convex fundamental domain for � in D.

4 Projective models

The purpose of this section is to show that the existing definitions of isometric spheres and
results concerning the existence of isometric fundamental regions in literature are essentially
covered by the definitions and results in Sect. 3. The reason for the reservation towards a
confirmation to cover all existing definitions and results is twofold: On the one hand the
author cannot guarantee to be aware of all existing results. On the other hand, at least for the
real hyperbolic plane, the literature contains non-equivalent definitions of isometric spheres.
Moreover, the existence results of isometric fundamental regions by Ford are proved for a
weaker notion of fundamental region than the one used here. Section 4.7 contains a detailed
discussion of the latter issues.

Let (C, V, J ) be a J 2C-module structure. In Sect. 4.1 we introduce the structure of divi-
sion algebras on C following [15] and [16]. For C being an associative division algebra, we
redo, in Sects. 4.3 and 4.4, the classical projective construction of hyperbolic spaces in terms
of the J 2C-module structure. A long part of Sect. 4.4 is devoted to a detailed study of the
relation between the isometry group G of the symmetric space and the natural “matrix” group
on the projective space. This investigation will show that the matrix group is isomorphic to a
certain subgroup Gres of G. In Sect. 4.5, we use these results to provide a characterization of
the isometric sphere of g ∈ Gres via a cocycle. In Sect. 4.6, we prove that a special class of
subgroups � of Gres are of type (O) with ���∞ being of type (F) and use Theorem 3.18 to
show the existence of an isometric fundamental domain for �. Finally, in Sect. 4.7, we bring
together these investigations for a comparison with the existing literature.
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4.1 Division algebras induced by J 2C-module structures

Let (C, V, J ) be a J 2C-module structure. Suppose that V = {0} and fix an element
v ∈ V � {0}. From (M3) and (M2) it follows that for each pair (ζ, η) ∈ C × C there
exists a unique element τ ∈ C such that

J (ζ, J (η, v)) = J (τ, v).

Hence, each choice v ∈ V �{0} equips C with a multiplication ·v : C × C → C via

ζ ·v η := τ ⇔ J (ζ, J (η, v)) = J (τ, v).

Equation (2.9) shows that the inverse of ζ ∈ C � {0} is ζ−1 = |ζ |−2ζ , independent of the
choice of v ∈ V �{0}. The following properties of (C, ·v) are shown in [15].

Proposition 4.1 (Proposition 1.1 and Corollary 1.5 in [15])

(i) For each v ∈ V � {0}, the Euclidean vector space C with the multiplication ·v is a
normed, not necessarily associative, division algebra.

(ii) The multiplication ·v on C is independent of the choice of v ∈ V � {0} if and only if
(C, ·v) is associative for one (and hence for all) v.

We call the J 2C-module structure (C, V, J ) associative if (C, ·v) is associative for some
(and hence each) v ∈ V�{0} and otherwise non-associative. If (C, ·v) is associative, we omit
the subscript v of the multiplication ·v .

Remark 4.2 Only associative J 2C-module structures are modules in the sense of [4].

Remark 4.3 Suppose that (C, V, J ) is an associative J 2C-module structure. The classifica-
tion in [15] (or [16, Sect. 4]) shows that C is real or complex or quaternionic numbers.

4.2 C-sesquilinear hermitian forms

From now on let (C, V, J ) be an associative J 2C-module structure. Suppose that M is a
(left) C-module. A map � : M × M → C is said to be a C-sesquilinear hermitian form
if � is C-hermitian and C-linear in the first variable, that is, if the following properties are
satisfied:

(SH1) �(ζ1x1 + ζ2x2, y) = ζ1�(x1, y)+ ζ2�(x2, y) for all ζ1, ζ2 ∈ C and x, y ∈ M ,
(SH2) �(x, y) = �(y, x) for all x, y ∈ M .

A C-sesquilinear hermitian form � is called non-degenerate if �(m1, ·) = 0 implies that
m1 = 0. It is called indefinite if there exist m1,m2 ∈ M such that �(m1,m1) < 0 and
�(m2,m2) > 0.

Proposition 4.4 The map β1 : C × C → C, β1(x, y) := x y, is C-sesquilinear hermitian.
Further Re β1(x, y) = 〈x, y〉 for all x, y ∈ C.

Proof Obviously, β1 is R-bilinear. For each y ∈ C , the C-linearity of β1(·, y) is exactly the
left-sided distribution law of the division algebra C . To show (SH2) let x, y ∈ C . From (2.7)
it follows that

Jyx = J ∗
yx = J ∗

x J ∗
y = Jx Jy = Jx y .
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Therefore,

β1(x, y) = x y = yx = β1(y, x).

Hence β1 is C-sesquilinear hermitian. Finally, polarization of β1(x, x) = |x |2 (see (2.8))
over R implies the remaining statement. ��
Remark 4.5 An immediate consequence of Proposition 4.4 is that conjugation and multipli-
cation in C anticommute, i. e., x y = yx for all x, y ∈ C . In particular, for a C-sesquilinear
hermitian form � on the C-module M we have

�(m1, ζm2) = �(m1,m2)ζ

for all m1,m2 ∈ M and all ζ ∈ C . Moreover, we have�(m,m) = �(m,m) for each m ∈ M
and therefore, �(m,m) ∈ R.

Lemma 4.6 For all ζ, η, ξ ∈ C we have 〈ζ, ξη〉 = 〈ξζ, η〉.
Proof Let v ∈ V �{0}. Using (2.6) and (2.7) we find

2〈ζ, ξη〉|v|2 = 2〈ζv, ξηv〉 = 2〈ξζv, ηv〉 = 2〈ξζ, η〉|v|2,
hence 〈ζ, ξη〉 = 〈ξζ, η〉. ��
Proposition 4.7 The map β2 : V × V → C is C-sesquilinear hermitian.

Proof Because of Proposition 2.11 it remains to show that β2 is C-linear in the first variable.
Let v, u ∈ V and ζ ∈ C . Lemma 4.6 and (2.7) yield that for all η ∈ C we have

〈ζβ2(v, u), η〉 = 〈β2(v, u), ζη〉 = 〈ζηu, v〉 = 〈ηu, ζv〉 = 〈β2(ζv, u), η〉.
Hence ζβ2(v, u) = β2(ζv, u). ��

A finite sequence (v1, . . . , vn) in V is called an orthonormal C-basis of V if

(CON1) |v j | = 1 for each j ∈ {1, . . . , n},
(CON2) for each pair (i, j) ∈ {1, . . . , n}2, i = j , the sets Cvi and Cv j are orthogonal,
(CON3) if we use for each j ∈ {1, . . . , n} the bijection C → Cv j , ζ �→ ζv j , to equip

Cv j with the structure of a Euclidean vector space and a C-module, then V is
isomorphic as C-module and Euclidean vector space to the direct sum

⊕n
j=1 Cv j

of the Euclidean spaces and C-modules Cv j , j = 1, . . . , n.

The following lemma yields that V is a free C-module.

Lemma 4.8 There is an orthonormal C-basis of V .

Proof Clearly, one finds a sequence (v1, . . . , vn) in V which satisfies (CON1) and (CON2)
such that V is isomorphic as Euclidean vector space to

⊕n
j=1 Cv j . From Propositions 4.7

and 2.11 it follows that

ψ :
{

V → ⊕n
j=1 Cv j

v �→ ∑n
j=1 β2(v, v j )v j

is an isomorphism (of Euclidean vector spaces) from V to
⊕n

j=1 Cv j . Let v ∈ V, η ∈ C and
suppose that v is isomorphic to (ζ1v1, . . . , ζnvn) ∈⊕n

j=1 Cv j . Then

ψ(ηv) =
n∑

j=1

β2(ηv, v j )v j =
n∑

j=1

(
ηβ2(v, v j )

)
v j = η

⎛

⎝
n∑

j=1

β2(v, v j )v j

⎞

⎠ = ηψ(v).

This shows that ψ is indeed an isomorphism of C-modules. ��
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4.3 The C-projective space PC (E)

Let (C, V, J ) be an associative J 2C-module structure. Further let W := C ⊕ V be the
Euclidean direct sum of C and V , and E := C ⊕ W = C ⊕ C ⊕ V be that of C and W .
We define a C-multiplication on E by

· :
{

C × E → E
(τ, (ζ, η, v)) �→ (τζ, τη, τv).

Because (C, V, J ) is associative and hence σ(τv) = (στ)v for each v ∈ V and all σ, τ ∈ C
(or equivalently, since the definition of the product in C does not depend on the choice of
v ∈ V �{0}, see Proposition 4.1), E becomes a C-module. Since V is a free C-module by
Lemma 4.8, also E is a free C-module.

Two elements z1, z2 of E �{0} are called equivalent (z1 ∼ z2) if there is τ ∈ C such that
τ z1 = z2. Note that τ is actually in C � {0}. Then E being a C-module implies that ∼ is
indeed an equivalence relation on E�{0}. The C-projective space PC (E) of E is defined as
the set of equivalence classes of ∼,

PC (E) := (E �{0}) /∼,
endowed with the induced topology and the differential structure generated by the following
(standard) charts: Let {v1, . . . , vn−1} be an orthonormal C-basis of V . Then E is isomorphic
to Cn+1 both as Euclidean vector space and C-module. For each j = 1, . . . , n + 1 the set

U j := {[(ζ1, . . . , ζn+1)] ∈ PC (E)
∣∣ ζ j = 0

}

is open, and the maps ϕ j : U j → Cn

ϕ j ([(ζ1, . . . , ζn+1)]) := ζ−1
j (ζ1, . . . , ζ̂ j , . . . , ζn+1)

are pairwise compatible in the sense that they are real differentiable (they are not C-differ-
entiable unless C is commutative). Here, ζ̂ j means that ζ j is omitted, hence (ζ1, . . . , ζ̂ j , . . . ,

zn+1) = (ζ1, . . . , ζ j−1, ζ j+1, . . . , ζn+1) ∈ Cn . Obviously, the differential structure is inde-
pendent of the choice of the orthonormal C-basis of V , and PC (E) is a real smooth manifold
of dimension n · dimR C .

Let� be a C-sesquilinear hermitian form on E . Recall from Remark 4.5 that�(z, z) ∈ R

for each z ∈ E . Suppose that q is its associated quadratic form, that is

q :
{

E → R

z �→ �(z, z).

Then we define the following sets:

E−(�) := q−1 ((−∞, 0)) the set of �-negative vectors,
E0(�) := q−1(0)�{0} the set of �-zero vectors, and
E+(�) := q−1 ((0,∞)) the set of �-positive vectors.

For each τ ∈ C and z ∈ E �{0} we have

q(τ z) = �(τ z, τ z) = τ�(z, z)τ = �(z, z)ττ = q(z)|τ |2. (4.1)

Lemma 4.9 Let � be a C-sesquilinear hermitian form on E. The set PC (E) equals the
disjoint union PC (E−(�)) ∪ PC (E0(�)) ∪ PC (E+(�)).
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Proof Clearly, PC (E) = PC (E−(�)) ∪ PC (E0(�)) ∪ PC (E+(�)). Hence it remains to
prove that this union is disjoint. Suppose that q denotes the quadratic form associated to �.
If we assume for contradiction that

PC (E−(�)) ∩ PC (E0(�)) = ∅,
then there are equivalent z1, z2 ∈ E�{0} such that q(z1) < 0 and q(z2) = 0. But then there
is τ ∈ C �{0} such that

0 = q(z2) = q(τ z1) = q(z1)|τ |2 < 0,

which is a contraction. Hence PC (E−(�)) ∩ PC (E0(�)) = ∅. Analogously we see that
PC (E−(�)) ∩ PC (E+(�)) = ∅ and PC (E+(�)) ∩ PC (E0(�)) = ∅. ��

Let π : E�{0} → PC (E) denote the projection on the equivalence classes. Since C�{0}
acts homeomorphically on E �{0}, the projection π is open. Further π is continuous by the
definition of the topology on PC (E).

Proposition 4.10 Let� : E × E → C be a C-sesquilinear hermitian form, which is indefi-
nite and non-degenerate. Then

∂PC (E−(�)) = PC (E0(�)) .

Proof Let U ⊆ PC (E−(�)). All complements, closures, interiors, and boundaries of subsets
of E �{0} are taken in E �{0}. At first we show that

�π
(
�∂π−1(U )

) = ∂U. (4.2)

To that end let M := π−1(U ). Then �M = π−1
(
�U
)
. From π being open and continuous

it follows that (�U )◦ = π
(
(�M)◦

)
. This yields

π
(
�M
) = π

((
�M
)◦) = (�U

)◦ = �U ,

hence �π(�M) = U . Again from π being open and continuous we get U ◦ = π (M◦).
Therefore,

�π
(
�∂π−1(U )

) = �π
(
�∂M
)

= �π
(
�
(
M ∩ �M◦))

= �
(
π
(
�M
) ∪ π (M◦))

= �π
(
�M
) ∩ �π

(
M◦)

= U ∩ �U ◦ = ∂U.

Let q denote the quadratic form associated to �. Then q is smooth. Since � is non-degen-
erate, 0 is a regular value for q|E�{0}. Hence E0(�) = q−1(0)�{0} is the boundary of the
bounded submanifold q−1((−∞, 0])�{0} and therefore also of E−(�) = q−1((−∞, 0)).
Then the statement follows from (4.2) and Lemma 4.9 with U := PC (E−(�)). ��
4.4 The C-hyperbolic spaces PC (E−(�1)) and PC (E−(�2))

Let (C, V, J ) be an associative J 2C-module structure. We define two specific non-degen-
erate, indefinite C-sesquilinear hermitian forms �1 and �2 and consider the manifolds
PC
(
E−(� j )

)
defined in Sect. 4.3. For each space we choose a set of representatives and a

Riemannian metric on it such that PC (E−(�1)) is essentially the ball model from Sect. 2.5
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and PC (E−(�2)) becomes the Siegel domain model for hyperbolic space, which is essen-
tially the model D from Sect. 2.4.

We denote by GLC (E) the group of all C-linear invertible maps E → E . Set

U (� j ,C) := {g ∈ GLC (E)
∣∣ ∀ z1, z2 ∈ E : � j (gz1, gz2) = � j (z1, z2)

}
,

and let Z(� j ,C) denote the center of U (� j ,C). Recall that G denotes the full isometry
group of B, respectively D. In this section, we establish a natural and explicit isomorphism
between the quotient group PU(� j ,C) := U (� j ,C)/Z(� j ,C) and a subgroup Gres of G.
Moreover, we explicitly characterize Gres. In Sect. 4.5, this isomorphism is used to show that
the definition of isometric spheres in literature is subsumed by our definition.

Let β3 : W × W → C be the sum of β1 and β2, that is,

β3 ((η1, v1), (η2, v2)) := β1(η1, η2)+ β2(v1, v2).

We define the maps � j : E × E → C ( j = 1, 2) by

�1 ((ζ1, η1, v1), (ζ2, η2, v2)) := −β1(ζ1, ζ2)+ β1(η1, η2)+ β2(v1, v2)

= −β1(ζ1, ζ2)+ β3 ((η1, v1), (η2, v2))

and

�2 ((ζ1, η1, v1), (ζ2, η2, v2)) := −β1(ζ1, η2)− β1(η1, ζ2)+ β2(v1, v2).

Let q j denote the associated quadratic forms. For all (ζ, w) = (ζ, η, v) ∈ E we have

q1 ((ζ, w)) = q1 ((ζ, η, v)) = −|ζ |2 + |η|2 + |v|2 = −|ζ |2 + |w|2.
Employing Proposition 4.4, we see that

q2 ((ζ, η, v)) = −2 Re β1(ζ, η)+ |v|2 = −2〈ζ, η〉 + |v|2.
Lemma 4.11 For j = 1, 2, the map � j is a C-sesquilinear hermitian form on E which is
non-degenerate and indefinite.

Proof Propositions 4.4 and 4.7 imply that� j is C-sesquilinear hermitian. Suppose that there
is (ζ, η, v) ∈ E such that for all (σ, τ, u) ∈ E we have

�1 ((ζ, η, v), (σ, τ, u)) = 0.

Propositions 4.4 and 2.11 show that

0 = �1 ((ζ, η, v), (0, η, v)) = |η|2 + |v|2.
Hence (η, v) = (0, 0). Further

0 = �1 ((ζ, η, v), (ζ, 0, 0)) = −|ζ |2,
and therefore ζ = 0. This shows that �1 is non-degenerate. Suppose now that there is
(ζ, η, v) ∈ E such that for all (σ, τ, u) ∈ E we have

�2 ((ζ, η, v), (σ, τ, u)) = 0.

Then

0 = �2 ((ζ, η, v), (0, 0, v)) = |v|2
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and therefore v = 0. Moreover,

0 = �2 ((ζ, η, v), (0, ζ, 0)) = −|ζ |2.
Thus ζ = 0 and analogouslyη = 0. Hence�2 is non-degenerate. Finally, for (any)v ∈ V�{0},

q1 ((1, 0, 0)) = −1 and q1 ((0, 0, v)) = |v|2 > 0,
q2 ((1, 1, 0)) = −2 and q2 ((0, 0, v)) = |v|2 > 0.

Therefore, �1 and �2 are indefinite. ��

4.4.1 Set of representatives for PC (E−(�1))

Proposition 4.10 shows that we have

PC
(
E−(� j )

) = PC
(
E−(� j )

) ∪ PC
(
E0(� j )

)

for j ∈ {1, 2}. If z = (ζ, w) ∈ E−(�1) ∪ E0(�1), then ζ = 0. Therefore, the element
[z] ∈ PC (E−(�1)) ∪ PC (E0(�1)) is represented by (1, ζ−1w), and this is the unique
representative of the form (1, ∗). If z ∈ E−(�1), then

0 > q1
(
1, ζ−1w

) = −1 + |ζ−1w|2.
This shows that 1 > |ζ−1w|2. Conversely, if w ∈ W with |w|2 < 1, then [(1, w)] is an ele-
ment of PC (E−(�1)). Recall the unit ball B = {w ∈ W | |w| < 1} in W . Then PC (E−(�1))

and B are in bijection via the map

[(ζ, w)] �→ ζ−1w.

The same argument shows that ∂PC (E−(�1)) = PC (E0(�1)) is bijective to ∂B via this
map. We define τB : PC (E−(�1)) → B as

τB ([(ζ, w)]) := ζ−1w.

Its inverse is

τ−1
B (w) = [(1, w)].

In comparison with Sect. 4.3, we see that PC (E−(�1)) is a subset of U1 and τB a restriction
of ϕ1. Therefore, τB is a diffeomorphism between the manifolds PC (E−(�1)) and B, and
also between the manifolds with boundary PC (E−(�1)) and B.

4.4.2 Riemannian metric on B

Since B is an open subset of the vector space W , we may and shall identify the tangent space
at a point of B with W . We define a Riemannian metric ρ̃ on B by

ρ̃(p)(X, Y ) := 〈X, Y 〉
1 − |p|2 + 〈β3(X, p), β3(Y, p)〉

(1 − |p|2)2
= 1

(1 − |p|2)2 Re
(
(1 − |p|2)β3(X, Y )+ β1 (β3(X, p), β3(Y, p))

)

for all p ∈ B and all X, Y ∈ Tp B = W . Proposition 4.13 below shows that ρ̃ essentially
coincides with the Riemannian metric defined in (2.11).

Lemma 4.12 Let x, y ∈ W . Then β3(x, y) = 0 if and only if y ∈ (Cx)⊥.
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Proof Let ζ, η, ξ ∈ C . Proposition 4.4 yields

〈ζη, ξ 〉 = Re β1 (ζη, ξ) = Re
(
ζη ξ
) = Re

(
ζ ξη
) = Re β1(ζ, ξη) = 〈ζ, ξη〉.

By Riesz’ Representation Theorem we know that β3(x, y) = 0 if and only if

〈β3(x, y), ξ 〉 = 0 for all ξ ∈ C.

Supposing that x = (ζ, v), y = (η, u) ∈ C ⊕ V , it follows from the definitions of β3, β1, β2

and the inner product on W that

〈β3(x, y), ξ 〉 = 〈β1(ζ, η), ξ 〉 + 〈β2(v, u), ξ 〉 = 〈ζη, ξ 〉 + 〈ξu, v〉
= 〈ζ, ξη〉 + 〈v, ξu〉 = 〈ξζ, η〉 + 〈ξv, u〉
= 〈ξ x, y〉.

Hence β3(x, y) = 0 if and only if y ∈ (Cx)⊥. ��

Proposition 4.13 The map ρ̃ coincides, up to a multiplicative factor of 4, with the Riemann-
ian metric given by (2.11) on B.

Proof For p = 0 and all X, Y ∈ T0 B we have

ρ̃(0)(X, Y ) = 〈X, Y 〉 = 1

4
〈X, Y 〉0−.

Suppose that p = (ζ, v) ∈ B �{0}. We claim that the equivalence class Cp (see Sect. 2.5)
coincides with the C-orbit C · p of p. For ζ = 0 this is obviously true. Suppose that ζ = 0.
For each τ ∈ C �{0}, we have τp = (τζ, τv) and

(τζ )−1(τv) = ζ−1τ−1τv = ζ−1v.

Hence (ζ, v) ∼ (τζ, τv). If τ = 0, then τp = 0 ∈ Cp by definition. Conversely, suppose
that (η, u) ∈ Cp�{0}. Then

ηζ−1 p = ηζ−1(ζ, v) = (η, ηζ−1v
) = (η, ηη−1u

) = (η, u).

Thus, (η, u) ∈ C · p. Clearly, 0 ∈ Cp ∩ C · p. This shows that Cp = C · p.
Now let p ∈ B�{0} and X, Y ∈ Tp B. Suppose first that X, Y ∈ (Cp)⊥. Then Lemma 4.12

shows that

ρ̃(p)(X, Y ) = 〈X, Y 〉
1 − |p|2 = 1

4
〈X, Y 〉p−.

Suppose now that X ∈ Cp and Y ∈ (Cp)⊥ (or vice versa). Then

ρ̃(p)(X, Y ) = 〈X, Y 〉
1 − |p|2 = 0 = 1

4
〈X, Y 〉p−.

Finally suppose that X, Y ∈ Cp. Then X = τ1 p and Y = τ2 p for some τ1, τ2 ∈ C . From
Lemma 2.12, Propositions 4.4 and 4.7 it follows that

〈X, Y 〉 = Re β3(X, Y ) = Re β3(τ1 p, τ2 p) = Re (τ1β3(p, p)τ 2) = |p|2 Re(τ1τ 2)

= |p|2〈τ1, τ2〉.
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Then

ρ̃(p)(X, Y ) = 〈X, Y 〉
1 − |p|2 + 〈β3(τ1 p, p), β3(τ2 p, p)〉

(1 − |p|2)2

= |p|2〈τ1, τ2〉
1 − |p|2 + 〈τ1β3(p, p), τ2β3(p, p)〉

(1 − |p|2)2

= |p|2〈τ1, τ2〉
1 − |p|2 + |p|4〈τ1, τ2〉

(1 − |p|2)2

= |p|2〈τ1, τ2〉
(1 − |p|2)2

= 〈X, Y 〉
(1 − |p|2)2 = 1

4
〈X, Y 〉p−.

This completes the proof. ��

4.4.3 Induced Riemannian isometries on B

Let πB := τB ◦ π : E−(�1) → B and suppose that g ∈ U (�1,C). Since g is C-linear,
it induces a (unique) map g̃ on B by requiring the diagram

E−(�1)
g ��

πB

��

E−(�1)

πB

��
B

g̃ �� B.

to commute. Our next goal is to show that each such induced map is a Riemannian isometry
on B.

To simplify proofs we fix an orthonormal C-basis B(V ) := {v1, . . . , vn−1} for V . Then
B(E) := {e1, e2, . . . , en+1}, given by

e1 := (1, 0, 0), e2 := (0, 1, 0), ek := (0, 0, vk−2) for k = 3, . . . , n + 1,

is an orthonormal C-basis for E . In the following we will identify each element in E,W
and V , and each map g ∈ U (�1,C) with its representative with respect to B(E). Since E
is a left C-module, the representing vector of z ∈ E is a row, and the application of a map
g ∈ U (�1,C) to z corresponds to the multiplication of the row vector of z to the matrix of g
(and not vice versa, as usually in linear algebra). Further we use the notation z∗ for z� (the
conjugate transpose of z).

Lemma 4.14 Let v = (ζ1, . . . , ζn−1), u = (η1, . . . , ηn−1) ∈ V = Cn−1. Then

β2(v, u) =
n−1∑

j=1

ζ jη j = vu∗.

Proof Let v j , vk ∈ B(V ). If j = k, then β2(v j , vk) = |v j |2 = 1. If j = k, then v j is
orthogonal to Cvk , hence

〈β2(v j , vk), ξ 〉 = 〈ξvk, v j 〉 = 0

for each ξ ∈ C , hence β2(v j , vk) = 0. The claim now follows by the C-sesquilinearity
of β2. ��
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Remark 4.15 Let g ∈ U (�1,C) and suppose that

g =
(

a b
c� A

)

w. r. t. to B(E), where a ∈ C, b, c ∈ Cn and A ∈ Cn×n . Then the induced map g̃ : B → B
is given by

g̃(p) = (a + pc�)−1(b + p A). (4.3)

Further, the representing matrix of �1 is
(−1

I

)
, where I denotes the n × n identity matrix.

Since g preserves �1, we find the conditions
(−1

I

)
=
(

a b
c� A

)(−1
I

)(
a c
b∗ A∗

)

=
(−|a|2 + |b|2 −ac + bA∗

−c�a + Ab∗ −c�c + AA∗
)

(4.4)

on the entries of g.

The following proposition is proved by a long but straightforward calculation. We omit
this proof here.

Proposition 4.16 Let g ∈ U (�1,C). The induced map on B is a Riemannian isometry.

In the following we will determine which elements in U (�1,C) induce the same isometry
on B. We denote the center of C by Z(C) and set

Z1(C) := {a ∈ Z(C) | |a| = 1},
which are the central elements in C of unit length. Further we let Z(�1,C) denote the center
of U (�1,C).

Lemma 4.17 We have Z(�1,C) = {a idE | a ∈ Z1(C)}.
Proof Clearly, {a idE | a ∈ Z1(C)} ⊆ Z(�1,C). For the converse inclusion relation let

g =
(

a b
c� A

)
∈ Z(�1,C).

For each d ∈ C, |d| = 1, and each matrix D ∈ Cn×n, DD∗ = I , the matrix

h =
(

d 0
0 D

)

is in U (�1,C). So necessarily,
(

ad bD
c�d AD

)
= gh = hg =

(
da db

Dc� D A

)
.

The left upper entries show that a ∈ Z(C). Choosing different values for d , but the same
(invertible) D, we find b = c = 0. If D runs through all permutation matrices and all rotation
matrices, then we see that A is a diagonal matrix diag(x, . . . , x) with x ∈ Z(C). By (4.4),
|a| = 1 = |x |. Then

g =
(

a 0
0 x I

)
.
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Let h =
(

d u
w� B

)
∈ U (�1,C). Then

(
ad au

xw� x B

)
= gh = hg =

(
da ux
w�a Bx

)
.

Therefore, au = ux = xu. For u = 0 it follows that a = x . Hence g = a idE for some
a ∈ Z1(C). ��
Proposition 4.18 Let g1, g2 ∈ U (�1,C). Then g1 and g2 induce the same isometry on B if
and only if g1h = g2 for some h ∈ Z(�1,C).

Proof It suffices to show that exactly the elements in Z(�1,C) induce idB . Let g be an
element of U (�1,C) and suppose that

g =
(

a b
c� A

)

w. r. t. B(E), where a ∈ C, b, c ∈ Cn and A ∈ Cn×n . Then the induced isometry on B is

g̃ :
{

B → B
p �→ (a + pc�)−1(b + p A).

Suppose that g̃ = idB . Then

0 = g̃(0) = a−1b,

which yields that b = 0 and, by (4.4), |a| = 1. Hence

g =
(

a 0
c� A

)
.

Now (4.4) shows that 0 = −ac, which implies that c = 0. Thus,

g̃(p) = a−1 p A

for all p ∈ B. Suppose that A = (ai j )i, j=1,...,n . Let j ∈ {1, . . . , n} and consider the vector
p = (pi )i=1,...,n with p j = 1

2 and pi = 0 for i = j . Then p ∈ B and

p = g̃(p) = 1

2
a−1(a j1, . . . , a jn).

Therefore, ai j = 0 for i = j and a j j = a. This shows that A = aI .
Now let ζ ∈ C with |ζ | < 1. Then (ζ, 0) ∈ B and therefore,

(ζ, 0) = g̃(ζ, 0) = a−1(ζ, 0)a.

Hence aζ = ζa. By scaling, this equality holds for all ζ ∈ C . Thus a ∈ Z1(C), which yields
that g ∈ Z(�1,C). Conversely, each element of Z(�1,C) clearly induces idB on B. ��
Let

PU(�1,C) := U (�1,C)/Z(�1,C)

and denote the coset of g ∈ U (�1,C) by [g]. As before we use the notation g̃ for the isometry
on B induced by g ∈ U (�1,C). Recall that G is the full isometry group of B.
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Corollary 4.19 The map

j�1 :
{

PU(�1,C) → G
[g] �→ g̃

is a monomorphism of groups.

The next goal is to characterize the subgroup of G to which PU(�1,C) is isomorphic.
For this it is most convenient to work with the space PC (E−(�2)).

4.4.4 Set of representatives for PC (E−(�2))

If z = (ζ, η, v) ∈ E−(�2), then

0 > q2 ((ζ, η, v)) = −2〈ζ, η〉 + |v|2,
which shows that ζ = 0. Thus, [z] ∈ PC (E−(�2)) is represented by (1, ζ−1η, ζ−1v) and
this is the unique representative of the form (1, ∗, ∗). We note that

0 > q2
(
(1, ζ−1η, ζ−1v)

) = −2〈1, ζ−1η〉 + |ζ−1v|2 = −2 Re(ζ−1η)+ |ζ−1v|2,
and therefore

Re(ζ−1η) >
1

2
|ζ−1v|2.

Hence, if we define

H :=
{
(τ, u) ∈ C ⊕ V

∣∣∣∣ Re(τ ) >
1

2
|u|2
}
,

then

(ζ−1η, ζ−1v) ∈ H.

Conversely, if (τ, u) ∈ H , then [(1, τ, u)] ∈ PC (E−(�2)).
If z = (ζ, η, v) ∈ E0(�2), then either ζ = 0 or z = (0, η, 0) with η = 0. Applying

the previous argumentation we see that the set of elements in PC (E0(�2)) which have a
representative (ζ, η, v) ∈ E0(�2) with ζ = 0 is bijective to

{
(τ, u) ∈ C ⊕ V

∣∣∣∣ Re(τ ) = 1

2
|u|2
}

via

[(ζ, η, v)] �→ (ζ−1η, ζ−1v).

If z = (0, η, 0) with η = 0, then [z] is represented by (0, 1, 0). Let

H
g :=
{
(τ, u) ∈ C ⊕ V

∣∣∣∣ Re(τ ) ≥ 1

2
|u|2
}

∪ {∞}

denote the closure of H in the one-point compactification (C ⊕ V ) ∪ {∞} of C ⊕ V . Then
the map τH : PC (E−(�2)) → H

g
,

τH ([(ζ, η, v)]) :=
{
(ζ−1η, ζ−1v) if ζ = 0,
∞ if ζ = 0,
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is a bijection with inverse map

τ−1
H (∞) = [(0, 1, 0)] τ−1

H (τ, u) = [(1, τ, u)].
Since τH |PC (E−(�2)) is a restriction of the chart mapϕ1 from Sect. 4.3, τH is a diffeomorphism
between PC (E−(�2)) and H .

4.4.5 Riemannian metric and induced isometries on H

Recall the model D from Sect. 2.4. The map

β :
⎧
⎨

⎩

H
g → D

g

∞ �→ ∞
(ζ, v) �→ (ζ,

√
2v)

is clearly a diffeomorphism between the manifolds H
g

and D
g

with boundary, and hence
a diffeomorphism between H and D. We endow H with a Riemannian metric by requiring
that β be an isometry.

Let πH := τH ◦ π : E−(�2) → H . As before, each g ∈ U (�2,C) defines a (unique)
map g̃ on H which makes the diagram

E−(�2)
g ��

πH

��

E−(�2)

πH

��
H

g̃ �� H

commutative.
Let Z(�2,C) denote the center of U (�2,C) and set

PU(�2,C) := U (�2,C)/Z(�2,C).

In the following we will use the results from the previous subsections to show that PU(�2,C)
is isomorphic to a subgroup of the full isometry group G of H . We consider the map

T :
{

E → E

(ζ, η, v) �→
(

1√
2
(ζ − η), 1√

2
(ζ + η), v

)
.

Then T is C-linear and invertible with inverse map T −1 : E → E ,

T −1(ζ, η, v) =
(

1√
2
(ζ + η),

1√
2
(−ζ + η), v

)
.

The following lemma is shown by a straightforward calculation.

Lemma 4.20 The map T transforms�2 into�1, i. e., �2 ◦ (T × T ) = �1. Further, we have
T (E−(�1)) = E−(�2) and T (E0(�1)) = E0(�2).

Proposition 4.21 The map

λ :
{

U (�1,C) → U (�2,C)
g �→ T ◦ g ◦ T −1

is an isomorphism with λ (Z(�1,C)) = Z(�2,C).
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Proof Let g ∈ U (�1,C). Since T ∈ GLC (E), we have λ(g) ∈ GLC (E). Lemma 4.20
shows that

�2 ◦ (T gT −1 × T gT −1) = �2 ◦ (T × T ) ◦ (gT −1 × gT −1)

= �1 ◦ (g × g) ◦ (T −1 × T −1) = �1 ◦ (T −1 × T −1)

= �2.

Hence λ(g) ∈ U (�2,C). Clearly, λ is an isomorphism of groups, which shows that
λ (Z(�1,C)) = Z(�2,C). ��

For the proof of the following proposition recall the Cayley transform C : B → D from
Sect. 2.8. For each ζ ∈ C �{1} we have

(1 − ζ )−1(1 + ζ ) = |1 − ζ |−2(1 − ζ )(1 + ζ ) = |1 − ζ |−2(1 − ζ + ζ − |ζ |2)
= |1 − ζ |−2(1 + 2 Im ζ − |ζ |2).

Hence

C(ζ, v) = (1 − ζ )−1(1 + ζ, 2v).

Proposition 4.22 Let g ∈ U (�2,C). Then the induced map g̃ on H is an isometry. Further,
the map

j�2 :
{

PU(�2,C) → G
[g] �→ g̃

is well-defined and a monomorphism of groups.

Proof The map T induces the map T̂ : PC (E−(�1)) → PC (E−(�2)) given by

T̂ ([(ζ, η, v)]) =
[(

1√
2
(ζ − η),

1√
2
(ζ + η), v

)]

and the map T̃ : B → H given by

T̃ ((η, v)) = τH
(
T̂ [(1, η, v)]) = τH

([
1√
2
(1 − η),

1√
2
(1 + η), v

])

= τH

([(
1, (1 − η)−1(1 + η), (1 − η)−1

√
2v
)])

= (1 − η)−1(1 + η,
√

2v).

Therefore, T̃ = β−1 ◦ C. From Propositions 2.9 and 4.13 it follows that the isometry group
of B and that of H are identical. Then Propositions 4.16 and 4.21 imply that for each
g ∈ U (�2,C), the induced map g̃ is an isometry on H . Moreover, Proposition 4.21 shows
that λ factors to a map

λ̃ : PU(�1,C) → PU(�2,C).

Recall the map j�1 from Corollary 4.19. Then the diagram

PU(�1,C)

j�1 �����
���

���
�

λ̃ �� PU(�2,C)

j�2�����
���

���
�

G

commutes, which completes the proof. ��
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4.4.6 Lifted isometries

In this section, we determine which isometries on H are induced from an element inU (�2,C).
To that end we need explicit formulas for the action of an element g ∈ G on H , which are
provided by the following remark.

Remark 4.23 Let g ∈ G. Section 2.8 provides explicit formulas for the action of g on D.
Using the isometry β : H → D, the action of g on H is given by

gH := β−1 ◦ g ◦ β : H → H.

Evaluating this formula, we find the following action laws. For the geodesic inversion σ
we have

σ H (ζ, v) = ζ−1(1,−v).
For as ∈ A we get

aH
s (ζ, v) = (sζ, s1/2v

)
.

For n = (ξ, w) ∈ N it follows

nH (ζ, v) =
(
ζ + ξ + 1

4
|w|2 + β2

(
v,

1√
2
w

)
,

1√
2
w + v

)
.

For m = (ϕ, ψ) ∈ M we have

m H (ζ, v) = (ϕ(ζ ), ψ(v)) .

Proposition 4.24 A representative of σ H in U (�2,C) is

g(ζ, η, v) = (η, ζ,−v).

Proposition 4.25 Let as ∈ A. Then

g(ζ, η, v) = (s−1/2ζ, s1/2η, v
)

is a representative of as in U (�2,C).

Proof Obviously, g is C-linear and induces as on B. Further

�2 (g(ζ1, η1, v1), g(ζ2, η2, v2)) = �2
(
(s−1/2ζ1, s1/2η1, v1), (s

−1/2ζ2, s1/2η2, v2)
)

= −s−1/2ζ1η2s1/2 − s−1/2η1ζ2s1/2 + β2(v1, v2)

= −ζ1η2 − η1ζ 2 + β2(v1, v2)

= �2 ((ζ1, η1, v1), (ζ2, η2, v2)) .

Hence g ∈ U (�2,C). ��

Proposition 4.26 Let n = (ξ, w) ∈ N. A representative of n in U (�2,C) is

g(ζ, η, v) =
(
ζ, ζ

(
ξ + 1

4
|w|2
)

+ η + 1√
2
β2(v,w),

1√
2
ζw + v

)
.
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Proof The map g is clearly C-linear and induces n on B. To see that �2 is g-invariant,
we calculate

�2 (g(ζ1, η1, v1), g(ζ2, η2, v2))

= �2

[(
ζ1, ζ1

(
ξ + 1

4
|w|2
)

+ η1 + 1√
2
β2(v1, w),

1√
2
ζ1w + v1

)
,

(
ζ2, ζ2

(
ξ + 1

4
|w|2
)

+ η2 + 1√
2
β2(v2, w),

1√
2
ζ2w + v2

)]

= −ζ1

[(
−ξ + 1

4
|w|2
)
ζ 2 + η2 + 1√

2
β2(w, v2)

]

−
[
ζ1

(
ξ + 1

4
|w|2
)

+ η1 + 1√
2
β2(v1, w)

]
ζ 2 + β2

(
1√
2
ζ1w + v1,

1√
2
ζ2w + v2

)

= ζ1ξζ 2 − 1

4
|w|2ζ1ζ 2 − ζ1η2 − 1√

2
ζ1β2(w, v2)− ζ1ξζ 2 − 1

4
|w|2ζ1ζ 2

−η1ζ 2 − 1√
2
β2(v1, w)ζ 2 + 1

2
|w|2ζ1ζ 2 + 1√

2
ζ1β2(w, v2)

+ 1√
2
β2(v1, w)ζ 2 + β2(v1, v2)

= �2 ((ζ1, η1, v1), (ζ2, η2, v2)) .

This completes the proof. ��

The remaining part of this section is devoted to the discussion which elements of M have
a representative in U (�2,C). The situation for M is much more involved than the proofs of
Propositions 4.24–4.26. In particular, it will turn out that in general not every element of M
can be lifted to U (�2,C).

Lemma 4.27 Let m = (ϕ, ψ) ∈ M and suppose that ϕ is an inner automorphism of C. Then

{β2 (ψ(v1), ψ(v2)) | v1, v2 ∈ V } = C.

Proof Let a ∈ C �{0} and suppose that ϕ(ζ ) = a−1ζa for all ζ ∈ C . Choose v ∈ V with
|v| = 1. For each ζ ∈ C we find

β2
(
ψ(aζa−1v), ψ(v)

) = β2
(
ϕ(aζa−1)ψ(v), ψ(v)

) = β2 (ζψ(v), ψ(v))

= ζβ2(ψ(v), ψ(v)) = ζ |ψ(v)|2 = ζ |v|2
= ζ.

Therefore,

C ⊆ {β2 (ψ(v1), ψ(v2)) | v1, v2 ∈ V } .
The converse inclusion relation clearly holds by the range of β2. ��

Let iH : H
g → E−(�2) ∪ E0(�2) be any section of

πH = τH ◦ π : E−(�2) ∪ E0(�2) → H
g
.
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Let g̃ ∈ G and recall from Proposition 2.14 that g extends continuously to H
g
. If the element

g ∈ U (�2,C) is a representative of g̃, then the diagram

E−(�2) ∪ E0(�2)
g �� E−(�2) ∪ E0(�2)

πH

��
H

g

iH

��

g̃ �� H
g

commutes. We will make use of this fact in the proof of Proposition 4.28 below. For
convenience we define iH by

iH (∞) := (0, 1, 0) and iH (η, v) := (1, η, v). (4.5)

Proposition 4.28 Let m = (ϕ, ψ) ∈ M. Then there exists a representative of m in U (�2,C)
if and only if ϕ = id. In this case,

g(ζ, η, v) = (ζ, η, ψ(v))

is such a representative.

Proof Suppose first that m = (ϕ, ψ) with ϕ = id. We will show that

g :
{

E → E
(ζ, η, v) �→ (ζ, η, ψ(v))

is an element of U (�2,C). To that end let (ζ1, η1, v1), (ζ2, η2, v2) ∈ E and ζ ∈ C . Then

g (ζ(ζ1, η1, v1)+ (ζ2, η2, v2)) = (ζ ζ1 + ζ2, ζη1 + η2, ψ(ζv1 + v2))

= (ζ ζ1, ζη1, ψ(ζv1))+ (ζ2, η2, ψ(v2))

= (ζ ζ1, ζη1, ϕ(ζ )ψ(v1))+ g(ζ2, η2, v2)

= (ζ ζ1, ζη1, ζψ(v1))+ g(ζ2, η2, v2)

= ζg(ζ1, η1, v1)+ g(ζ2, η2, v2).

This shows that g is C-linear. The map g is obviously invertible, hence g ∈ GLC (E).
Lemma 3.14(ii) implies that �2 is invariant under g. Hence g ∈ U (�2,C). Clearly,
g induces m.

Suppose now that m = (ϕ, ψ) ∈ M and that there is a representative g of m in U (�2,C).
We have to show that ϕ = id. Since m(0) = 0, it follows that

g (iH (0)) = g(1, 0, 0) ∈ π−1
H (0) = (C �{0})× {0} × {0}.

Thus, there is a ∈ C �{0} such that g(1, 0, 0) = (a, 0, 0). Further m(∞) = ∞. The same
argument shows that there is b ∈ C �{0} such that

g (iH (∞)) = g(0, 1, 0) = (0, b, 0).

Then for each ζ ∈ C with Re ζ ≥ 0 we have

(ϕ(ζ ), 0) = m(ζ, 0) = πH (g(iH (ζ, 0))) = πH (g(1, ζ, 0)) = πH ((a, ζb, 0))

= (a−1ζb, 0).

Thus ϕ(ζ ) = a−1ζb for all ζ ∈ C with Re ζ ≥ 0. Now

1 = ϕ(1) = a−1b
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and therefore b = a. Hence ϕ(ζ ) = a−1ζa for all ζ ∈ C with Re ζ ≥ 0. Suppose now that
(η, v) ∈ H is arbitrary. Then

g (iH (η, v)) = g(1, η, v) = g(1, η, 0)+ g(0, 0, v)

= (a, ηa, 0)+ (σ, τ, u) = (a + σ + ηa + τ, u)

where (σ, τ, u) depends only on v. From

(a−1ηa, ψ(v)) = (ϕ(η), ψ(v)) = πH (a + σ, ηa + τ, u)

= ((a + σ)−1(ηa + τ), (a + σ)−1u
)

it follows that

a−1ηa = (a + σ)−1ηa + (a + σ)−1τ

for all η with Re(η) > 1
2 |v|2. Pick k ∈ R with k > 1

2 |v|2. Then

k = a−1ka = k(a + σ)−1a + (a + σ)−1τ

and

2k = 2k(a + σ)−1a + (a + σ)−1τ.

Solving this system for σ and τ , we find σ = τ = 0. Hence

g(1, η, v) = (a, ηa, aψ(v)).

Since g has to be C-linear, it follows that

g(ζ, η, v) = (ζa, ηa, aψ(v))

for all (ζ, η, v) ∈ E . We derive further properties of a. Let v ∈ V � {0}. Then g being in
U (�2,C) yields that

|v|2 = q2 ((0, 0, v)) = q2 (g(0, 0, v)) = |aψ(v)|2 = |a|2|ψ(v)|2 = |a|2|ψ(v)|2,
hence |a|2 = 1. Again using that g ∈ U (�2,C) we find that for all v1, v2 ∈ V

β2 (ψ(v1), ψ(v2)) = �2 ((0, 0, v1), (0, 0, v2))

= �2 (g(0, 0, v1), g(0, 0, v2)) = �2 ((0, 0, aψ(v1)), (0, 0, aψ(v2)))

= β2 (aψ(v1), aψ(v2)) = aβ2 (ψ(v1), ψ(v2)) a

= aβ2 (ψ(v1), ψ(v2)) a−1.

Before we can apply Lemma 4.27 we have to show that ϕ(ζ ) = a−1ζa for all ζ ∈ C . Let
ζ ∈ C with Re ζ < 0 and consider the decomposition ζ = ζ1 + ζ2 with ζ1 ∈ R and ζ2 ∈ C ′.
Then the R-linearity of ϕ yields

ϕ(ζ ) = ϕ(ζ1 + ζ2) = ϕ(ζ1)+ ϕ(ζ2) = −ϕ(−ζ1)+ a−1ζ2a

= −a−1(−ζ1)a + a−1ζ2a = a−1ζ1a + a−1ζ2a = a−1(ζ1 + ζ2)a = a−1ζa.

Then Lemma 4.27 implies that a ∈ Z(C). Therefore, ϕ = id. ��
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We set

M res := {(ϕ, ψ) ∈ M | ϕ = id} and Gres := NσM res AN ∪ M res AN .

Further we define a map ϕH : Gres → PU(�2,C) as follows: For g̃ = σ, g̃ ∈ A, g̃ ∈ N or
g̃ ∈ M res we set ϕH (g̃) := [g], where g is the lift of g̃ as in Propositions 4.24–4.26 or 4.28,
respectively. For g̃ = n2σmasn1 ∈ NσM res AN we define

ϕH (g̃) := ϕH (n2)ϕH (σ )ϕH (m)ϕH (as)ϕH (n1), (4.6)

and likewise for g̃ = masn ∈ M res AN we set

ϕH (g̃) := ϕH (m)ϕH (as)ϕH (n).

In other words, we extend ϕH to a group homomorphism. Since the Bruhat decomposition
of an element g̃ ∈ Gres is unique and the Bruhat decomposition of Gres can be directly trans-
fered to PU(�2,C), the map ϕH is indeed well-defined. By our previous considerations,
ϕH is even a group isomorphism.

The following remark shows that M res is not necessarily all of M .

Remark 4.29 The classification [15, Theorem 3.1] of division algebras arising from associa-
tive J 2C-module structures (C, V, J ) shows that C is either real or complex or quaternionic
numbers. In the following we show that M = M res for C = R, but M = M res for C = C or
C = H (quaternions).

(i) Let C = R and suppose that m = (ϕ, ψ) ∈ M . We claim that ϕ = id. Since ϕ : R → R

is a norm-preserving endomorphism of R, the map ϕ is either id or − id. Assume for
contradiction that ϕ = − id. Let (ζ, v) ∈ C × V such that ζ = 0 and v = 0. Then

ϕ(ζ )ψ(v) = −ζψ(v) = −ψ(ζv) = ψ(ζv).

Hence m /∈ M . This is a contradiction and therefore ϕ = id.
(ii) Let C = C = V and suppose that ϕ = ψ are complex conjugation. For all elements

(ζ, v) ∈ C ⊕ V = C
2 we have ϕ(ζ )ψ(v) = ζ v = ζv = ψ(ζv). Clearly, ϕ,ψ are

R-linear endomorphisms of the Euclidean vector space C. Therefore, m = (ϕ, ψ) ∈ M ,
but m /∈ M res.

(iii) Let C = H = V . Define ϕ : C → C and ψ : V → V by

ϕ(a + ib + jc + kd) := a − ib − jc + kd

ψ(a + ib + jc + kd) := −a + ib + jc − kd

for a + ib + jc + kd ∈ H. Clearly, ϕ,ψ are R-linear endomorphisms of the Euclid-
ean vector space H. We claim that J ◦ (ϕ × ψ) = ψ ◦ J . To that end let ζ = a1 +
ib1 + jc1 + kd1 ∈ C and v = a2 + ib2 + jc2 + kd2 ∈ V . Then

ζv = a1a2 − b1b2 − c1c2 − d1d2 + i(a1b2 + b1a2 + c1d2 − d1c2)

+ j (a1c2 − b1d2 + c1a2 + d1b2)+ k(a1d2 + b1c2 − c1b2 + d1a2).

Therefore,

ψ(ζv) = −a1a2 + b1b2 + c1c2 + d1d2 + i(a1b2 + b1a2 + c1d2 − d1c2)

+ j (a1c2 − b1d2 + c1a2 + d1b2)+ k(−a1d2 − b1c2 + c1b2 − d1a2).
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On the other side we get

ϕ(ζ )ψ(v) = (a1 − ib1 − jc1 + kd1)(−a2 + ib2 + jc2 − kd2)

= −a1a2 + b1b2 + c1c2 + d1d2 + i(a1b2 + b1a2 + c1d2 − d1c2)

+ j (a1c2 − b1d2 + c1a2 + d1b2)+ k(−a1d2 − b1c2 + c1b2 − d1a2)

= ψ(ζv).

Therefore, m = (ϕ, ψ) ∈ M , but m /∈ M res.

4.5 Isometric spheres via cocycles

For an element g ∈ Gres
� G∞, we give a characterization of the isometric sphere and its

radius via a cocycle. Using the isometry β : H → D we find for the height function on H
the formula

htH (ζ, v) = Re ζ − 1

2
|v|2,

and for the Cygan metric (z j = (ζ j , v j ))

ρH (z1, z2) =
∣∣∣∣
1

2
|v1|2 + 1

2
|v2|2 +

∣∣∣htH (z1)− htH (z2)

∣∣∣+ Im ζ1 − Im ζ2 − β2(v1, v2)

∣∣∣∣
1/2

(4.7)

The basis point in H is oH = (1, 0). The horospherical coordinates of z ∈ H
g

� {∞},
z = (ζ, v), are

(
htH (z), Im ζ,

1√
2
v

)

h
.

In the following we derive a formula for isometric spheres which uses a cocycle.
Let Z1(C) act diagonally on E and suppose that π(1) : E → E/Z1(C) is the canonical

projection. Further set

π
(1)
H := τH ◦ π ◦

(
π(1)
)−1 : (E−(�2) ∪ E0(�2)) /Z1(C) → H

g
.

Recall the section iH of πH from (4.5) and set

i (1)H := π(1) ◦ iH : H
g → E/Z1(C).

Further recall the isomorphism ϕH : Gres → PU(�2,C) from (4.6). For each g ∈ Gres the
map ϕH (g) : E → E induces canonically a map E/Z1(C) → E/Z1(C), which we denote
by ϕH (g) as well. For all g ∈ Gres the diagram

E/Z1(C)
ϕH (g) �� E/Z1(C)

π
(1)
H

��
H

g

i (1)H

��

g �� H
g
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commutes, but the diagram

E/Z1(C)
ϕH (g) �� E/Z1(C)

H
g

i (1)H

��

g �� H
g

i (1)H

��

in general not. The second diagram gives rise to the cocycle

j : Gres × H
g → C×/Z1(C)

defined by

ϕH (g)
(

i (1)H (z)
)

= j (g, z)i (1)H (gz) ∀ g ∈ Gres ∀ z ∈ H
g
.

Lemma 4.30 Let g = n2σmat n1 ∈ Gres
�G∞. Then

j (g−1,∞) = t1/2 mod Z1(C).

Further, R(g) = ∣∣ j (g−1,∞)
∣∣−1/2

.

Proof Suppose that n1 = (ξ1, w1). From n−1
1 = (−ξ1,−w1) and g−1 = n−1

1 σat mn−1
2

it follows that

g−1∞ = n−1
1 σ∞ = n−1

1 0 =
(

−ξ1 + 1

4
|w1|2,− 1√

2
w1

)
.

Further

ϕH
(
g−1) (iH (∞)) =

(
t1/2, t1/2

(
−ξ1 + 1

4
|w1|2
)
,− 1√

2
t1/2w1

)
mod Z1(C).

Hence j (g−1,∞) = t1/2 mod Z1(C). Then R(g) = t−1/4 = ∣∣ j (g−1,∞)
∣∣−1/2

. ��
Proposition 4.31 Let z1, z2 ∈ H

g
�{∞}, z j = (ζ j , v j ). Then

ρH (z1, z2) =
∣∣∣�2 (iH (z1), iH (z2))+ 2 min

(
htH (z1), htH (z2)

)∣∣∣
1/2
.

Proof For all k1, k2 ∈ R we have

k1 + k2 − |k1 − k2| = 2 min(k1, k2).

This and the definition of �2 show that
∣∣∣ �2 (iH (z1), iH (z2)) +2 min

(
htH (z1), htH (z2)

)∣∣∣

=
∣∣∣�2 ((1, ζ1, v1), (1, ζ2, v2))+ htH (z1)+ htH (z2)−

∣∣∣htH (z1)− htH (z2)

∣∣∣
∣∣∣

=
∣∣∣−β1(1, ζ2)− β1(ζ1, 1)+ β2(v1, v2)+ htH (z1)+ htH (z2)−

∣∣∣htH (z1)− htH (z2)

∣∣∣
∣∣∣

=
∣∣∣ζ1 − htH (z1)+ ζ 2 − htH (z2)− β2(v1, v2)+

∣∣∣htH (z1)− htH (z2)

∣∣∣
∣∣∣ .

Since

ζ1 − htH (z1) = ζ1 − Re ζ1 + 1

2
|v1|2 = Im ζ1 + 1

2
|v1|2
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and

ζ 2 − htH (z2) = ζ 2 − Re ζ2 + 1

2
|v2|2 = − Im ζ2 + 1

2
|v2|2,

it follows that
∣∣∣ �2 (iH (z1), iH (z2))+ 2 min

(
htH (z1), htH (z2)

)∣∣∣

=
∣∣∣∣
1

2
|v1|2 + Im ζ1 + 1

2
|v2|2 − Im ζ2 − β2(v1, v2)+

∣∣∣htH (z1)− htH (z2)

∣∣∣
∣∣∣∣

= ρH (z1, z2)
2.

Since ρH (z1, z2) is nonnegative, the claim follows. ��

For the proof of the following proposition we note that the map

�
(1)
2 :
{

E/Z1(C)× E/Z1(C) → C/Z1(C)
([z1], [z2]) �→ [�2(z1, z2)]

is well-defined. In particular, we have

∣∣∣�(1)2 ([z1], [z2])
∣∣∣ = |�2(z1, z2)|

for all z1, z2 ∈ E . Further, let

∂g H :=
{
(ζ, v) ∈ C ⊕ V

∣∣∣∣ Re(ζ ) = 1

2
|v|2
}

∪ {∞}

denote the boundary of H in H
g
.

Proposition 4.32 Let g ∈ Gres
�G∞ and z ∈ H

g
�{∞, g−1∞}. Then

| j (g, z)|1/2 = | j (g−1,∞)|1/2ρH (z, g−1∞) = ρH (z, g−1∞)

R(g)
.

Proof The second equality is proved by Lemma 4.30. For the proof of the first equality recall
from Proposition 4.31 that

ρH (z, g−1∞) =
∣∣∣�2
(
iH (z), iH (g

−1∞)
)+ 2 min

(
htH (z), htH (g−1∞)

)∣∣∣
1/2
.

From g−1∞ ∈ ∂g H �{∞} it follows that ht(g−1∞) = 0. Hence

ρ(z, g−1∞)2 = ∣∣�2
(
iH (z), iH (g

−1∞)
)∣∣ .

Suppose that gz = (ζ, v). Then

�2 (iH (gz), iH (∞)) = �2 ((1, gz), (0, 1, 0))

= −β1(1, 1)− β1(ζ, 0)+ β2(v, 0) = −1.
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It follows that

ρH (z, g−1∞)2 = ∣∣�2
(
iH (z), iH (g

−1∞)
)∣∣ =
∣∣∣�(1)2

(
i (1)H (z), i (1)H (g−1∞)

)∣∣∣

=
∣∣∣�(1)2

(
i (1)H (z), j (g−1,∞)ϕH (g

−1)i (1)H (∞)
)∣∣∣

= | j (g−1,∞)|−1
∣∣∣�(1)2

(
i (1)H (z), ϕH (g

−1)i (1)H (∞)
)∣∣∣

= | j (g−1,∞)|−1
∣∣∣�(1)2

(
ϕH (g)i

(1)
H (z), i (1)H (∞)

)∣∣∣

= | j (g−1,∞)|−1| j (g, z)| |�2 (iH (gz), iH (∞))|
= | j (g−1,∞)|−1| j (g, z)|.

This proves the claim. ��

Proposition 4.33 Let g ∈ Gres
�G∞. Then

I (g) = {z ∈ H | | j (g, z)| = 1},
ext I (g) = {z ∈ H | | j (g, z)| > 1},
int I (g) = {z ∈ H | | j (g, z)| < 1}.

Proof This claim follows immediately from comparing Definition 3.9 and Proposition 4.32.
��

4.6 A special instance of Theorem 3.18

The most frequent appearance of isometric fundamental regions in the literature is for prop-
erly discontinuous subgroups � of Gres for which ∞ is an ordinary point and the stabilizer
�∞ is trivial. We show that under these conditions � is of type (O) and ���∞ of type (F).
Theorem 3.18 implies the existence of an isometric fundamental region for �, which will be
seen to actually be a fundamental domain.

Definition 4.34 Let U be a subset of H
g

and � a subgroup of G. Then � is said to act prop-
erly discontinuously on U if for each compact subset K of U , the set K ∩gK is nonempty for
only finitely many g in �. The group � is said to be properly discontinous if � acts properly
discontinuously on H .

Definition and Remark 4.35 Let � be a properly discontinuous subgroup of G and z ∈ H .
The limit set L(�) of � is the set of accumulation points of the orbit �z. Since � is properly
discontinuous, L(�) is a subset of ∂g H . The combination of Propositions 2.9 and 1.4 in [9]
shows that L(�) is independent of the choice of z. The ordinary set or discontinuity set�(�)
of � is the complement of L(�) in ∂g H , hence �(�) := ∂g H �L(�).

Remark 4.36 Let g, h ∈ Gres and z ∈ H
g
. Since ϕH is a group isomorphism and ϕH (g) is

C-linear, it follows that

ϕH (gh) (iH (z)) = ϕH (g) (ϕH (h) (iH (z)))

= ϕH (g) ( j (h, z)iH (hz))

= j (h, z)ϕH (g) (iH (hz))

= j (h, z) j (g, hz)iH (hgz).
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Further,

ϕH (gh) (iH (z)) = j (gh, z)iH (ghz).

Thus,

j (gh, z) = j (h, z) j (g, hz).

The proof of the following lemma proceeds along the lines of [10, Section 17].

Lemma 4.37 Let � be a properly discontinuous subgroup of Gres such that �∞ = {id} and
∞ ∈ �(�). Then

(i) the set of radii of the isometric spheres of � is bounded from above.
(ii) the number of isometric spheres with radius exceeding a given positive quantity is finite.

Proof We start by proving some relations between radii and distances of centers of isometric
spheres. Let g, h ∈ ���∞ such that g = h−1. The cocycle relation shows that

j
(
(gh)−1,∞) = j (g−1,∞) j (h−1, g−1∞).

Proposition 4.32 yields
∣∣ j
(
(gh)−1,∞)∣∣−1/2 = | j (g−1,∞)|−1/2| j (h−1, g−1∞)|−1/2

= | j (g−1,∞)|−1/2| j (h,∞)|−1/2ρH (g−1∞, h∞)−1.

Note that gh = id and therefore gh /∈ �∞. Then Lemma 4.30 shows that

R(gh) = R(g)R(h−1)

ρH (g−1∞, h∞)
. (4.8)

Using the same arguments, we find

j (g−1,∞) = j
(
h(gh)−1,∞) = j

(
(gh)−1,∞) j

(
h, (gh)−1∞)

and therefore

R(g) = | j (g−1,∞)|−1/2 = ∣∣ j ((gh)−1,∞)∣∣−1/2 ∣∣ j
(
h, (gh)−1∞)∣∣−1/2

= R(gh)
∣∣ j
(
h, (gh)−1∞)∣∣−1/2

. (4.9)

Proposition 4.32 shows that identity
∣∣ j
(
h, (gh)−1∞)∣∣1/2 = R(h)−1ρH ((gh)−1∞, h−1∞). (4.10)

Because R(h) = R(h−1), it follows from (4.8) to (4.10) that

ρH ((gh)−1∞, h−1∞) = ∣∣ j (h, (gh)−1∞)∣∣1/2 R(h) = R(gh)R(h)

R(g)

= R(h)2

ρH (g−1∞, h∞)
. (4.11)

Since � is properly discontinuous and ∞ ∈ �(�), [9, Proposition 8.5] shows that there
exists an open neighborhood U of ∞ in H

g
such that (���∞) ⊆ H

g
�U . Since H

g
�U is

compact, we find m > 0 such that

ρH (a∞, b∞) < m
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for all a, b ∈ ���∞. Then (4.11) shows that

R(h)2 = ρH ((gh)−1∞, h−1∞) ρH (g−1∞, h∞) < m2. (4.12)

Thus, for each a ∈ ���∞ we have R(a) < m, which proves (i).
Now let k > 0 and suppose that there are a, b ∈ ���∞ such that I (a) = I (b−1) and

R(a), R(b) > k. Since a = b−1, (4.8) shows in combination with (4.12) that

ρH (a−1∞, b∞) = R(a)R(b)

R(ab)
>

k2

m
.

This means that the distance between the centers of isometric spheres whose radii exceed k
is bounded from below by k2/m. The centers of all these isometric spheres are contained in
the compact set ∂g H �U , which is bounded in C × V and hence also w. r. t. ρH . It follows
that there are only finitely many spheres with radius exceeding k. This proves (ii). ��
Proposition 4.38 Suppose that � is a properly discontinuous subgroup of Gres such that
�∞ = {id} and ∞ ∈ �(�). Then � is of type (O) and ���∞ of type (F). Moreover,

F :=
⋂

g∈���∞
ext I (g)

is a fundamental domain for � in H.

Proof For each z ∈ H , the map ρH (·, z) : H → R is continuous. Therefore, each ρH -ball
is open in H . Lemma 4.37(ii) implies that the set {int I (g) | g ∈ ���∞} is locally finite.
Then Remark 3.19 shows that � is of type (O). Note that here the subgroup 〈���∞〉 of �
which is generated by ���∞ is exactly �. Let z ∈ H . Lemma 5 before Theorem 5.3.4 in
[21] states that �z is a closed subset of H . Since ∞ ∈ �(�), Proposition 8.5 in [9] shows
that we find an open neighborhood U of ∞ in H

g
such that �z ⊆ H

g
�U . Now H

g
�U

is compact and therefore �z is so. The height function is continuous, which shows that the
maximum of {ht(gz) | g ∈ �} exists. Thus, ���∞ is of type (F). By Theorem 3.18, F is
a fundamental region for � in H . By Lemma 4.37(i) the radii of the isometric spheres of �
are uniformly bounded from above. Hence there is R > 0 such that the arc-connected set
{z ∈ H | htH (z) = R} is contained in F . Let w1, w2 ∈ F . Then w1 + [0, R − htH (w1)] and
w2 + [0, R − htH (w2)] are contained in F by Lemma 3.11(v). Hence, there is an arc in F
from w1 to w2. This shows that F is arc-connected, and thus connected. ��
4.7 Isometric spheres and isometric fundamental regions in the literature

For real hyperbolic spaces, definitions of isometric spheres are given at several places,
e. g., the original definition of Ford in [10] for the plane, in [13] for the upper half plane
model and the disk (ball) model of two-dimensional real hyperbolic space, in [17] for three-
dimensional space and in [2] (or, earlier, in [1]) for arbitrary dimensions. The definition for
the upper half plane model is not equivalent to that in the disk model (see [17]). Ford’s defi-
nition is that for the upper half plane model. His definition has been directly generalized to
higher dimensions. Ford and Apanasov show the existence of isometric fundamental regions
for a huge class of groups.

For complex hyperbolic spaces, the (to the knowledge of the author) only existing defini-
tions of isometric spheres are given by Parker in [18], Goldman in [11], and Kamiya in [12].
Kamiya also discusses the existence of isometric fundamental regions for certain groups.

For quaternionic hyperbolic spaces, an investigation of isometric fundamental regions
does not seem to exist. A definition of isometric spheres is provided by [14].
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In this final section, we discuss the relation of the existing definitions of isometric spheres
(for real hyperbolic space only exemplarily) to our definition of isometric spheres, and
we compare the existing statements on the existence of isometric fundamental regions to
Theorem 3.18.

4.8 Real hyperbolic spaces

Ford [10] shows the existence of isometric fundamental regions for groups of isometries
acting on real hyperbolic plane (see [10, Theorems 15 and 22 in Ch. III]). Ford’s definition
of fundamental region is not equivalent to our definition. In fact, each fundamental region
in sense of our definition is a fundamental region in the sense of Ford, but not the other way
round. In particular, the translates of a fundamental region in sense of Ford are not required
to cover the whole space. For this reason the hypothesis of [10, Theorems 15, 22] are weaker
than that of Theorem 3.18. However, the following discussion shows that the definition of
isometric spheres in [10] is subsumed by our definition.

In [2], the model

D′ = {(t, Z) ∈ R × z | t > 0}

of real hyperbolic space is used, and the isometric sphere for an element g ∈ Gres, acting on
D′, is defined as

I (g) := {z ∈ D′ | |g′(z)| = 1}.

More precisely, Apanasov (as all other references) uses the coordinates in the order z ×R. In
particular, his model space for two-dimensional real hyperbolic space is the upper half plane,
whereas D′ is the right half plane. Clearly, this difference has no affect on his definition of
isometric sphere. Lemma 4.39 below will show that this definition of isometric spheres is
subsumed by our definition.

The space D′ is the symmetric space in Sect. 2.4 constructed from the abelian H -type alge-
bra n = (n, {0}) = (z, {0}). In Sects. 4–4.6 we had to work with the ordered decomposition
({0}, v) = ({0}, n) of n. Hence we used the symmetric space

D =
{
(u, X) ∈ R × v

∣∣∣∣ u >
1

4
|X |2
}
,

which is isometric to D′. According to [7], the isometry from D′ to D is

ν :
{

D′ → D
(t, Z) �→ (t2 + |Z |2, 2Z).

Then the action of an isometry g ∈ Gres on D′ is given by νG(g) := ν−1 ◦ g ◦ ν. Recall the
isometry β : H → D from Sect. 4.4.1.

Lemma 4.39 Let z ∈ D′ and g ∈ Gres
�Gres∞ . Then

∣∣ j
(
g, β−1 ◦ ν(z))∣∣−1 = ∣∣νG(g)

′(z)
∣∣ .
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Proof Let z = (t, Z) ∈ D′ and g = n2σmasn1 ∈ Gres
�Gres∞ with n j = (1, w j ), j = 1, 2,

and m = (id, ψ). At first we calculate the value of
∣∣ j
(
g, β−1 ◦ ν(z))∣∣. We have

ϕH (g)iH
(
β−1 ◦ ν(z)) = ϕH (g)

(
1, t2 + |Z |2,√2Z

)

= ϕH (n2)ϕH (σ )ϕH (m)ϕH (as)ϕH (n1)
(

1, t2 + |Z |2,√2Z
)

=
(

s1/2
(

1

4
|w1|2 + t2 + |Z |2 + β2(Z , w1)

)
, ∗, ∗
)
.

Thus

∣∣ j
(
g, β−1 ◦ ν(z))∣∣ = s1/2

∣∣∣∣
1

4
|w1|2 + t2 + |Z |2 + β2(Z , w1)

∣∣∣∣.

Note that Z andβ2(Z , w1) have to be seen as element of D (not of D′). Henceβ2(Z , w1) ∈ R.
Therefore, β2(Z , w1) = 〈Z , w1〉 and further

∣∣ j
(
g, β−1 ◦ ν(z))∣∣ = s1/2

∣∣∣∣∣t
2 +
∣∣∣∣
1

2
w1 + Z

∣∣∣∣
2
∣∣∣∣∣ = s1/2

∣∣∣∣

(
t,

1

2
w1 + Z

)∣∣∣∣
2

.

Let (u,W ) ∈ R × z. For the derivative νG(g)′(z) we find

νG(g)
′(z)(u,W ) = −s−1/2

(
t, ψ

(
1

2
w1 + Z

))−1

(u, ψ(W ))

(
t, ψ

(
1

2
w1 + Z

))−1

.

Then

∣∣νG(g)
′(z)(u,W )

∣∣ = s−1/2
∣∣∣∣

(
t, ψ

(
1

2
w1 + Z

))∣∣∣∣
−1

· |(u, ψ(W ))|

·
∣∣∣∣

(
t, ψ

(
1

2
w1 + Z

))∣∣∣∣
−1

= s−1/2
∣∣∣∣

(
t,

1

2
w1 + Z

)∣∣∣∣
−2

|(u,W )| .

Thus,

∣∣νG(g)
′(z)
∣∣ = s−1/2

∣∣∣∣

(
t,

1

2
w1 + Z

)∣∣∣∣
−2

= ∣∣ j (g, β−1 ◦ ν(z))∣∣−1
.

This completes the proof. ��
Lemma 4.39 and Proposition 4.33 immediately imply the following characterization of

exteriors of isometric spheres.

Proposition 4.40 Let g ∈ Gres
�Gres∞ . Then

ext I (g) = {z ∈ D′ ∣∣|νG(g)
′(z)| < 1

}
.

Hence [2, Theorem 2.30] is a special case of Proposition 4.38. Lemma 2.31 in [2] states
an extension of Theorem 2.30 for subgroups � of Gres with �∞ = {id}. Unfortunately,
the hypotheses of [2, Lemma 2.31] are not completely stated, for which reason we cannot
compare this lemma with Theorem 3.18.
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4.9 Complex hyperbolic spaces

The isometric spheres for isometries of complex hyperbolic spaces in [12] are identical to
those in [11]. Kamiya uses the model H and defines the Cygan metric by formula (4.7).
Recall the map ϕH from Sect. 4.4.6. Let f ∈ PU(1, n; C) = PU(�2,C) such that ϕ−1

H ( f )
does not fix ∞. Further suppose that (ai j )i, j=1,...,n+1 is a matrix representative of f . Then
Kamiya defines the isometric sphere of f to be the set

I ( f ) :=
{

z ∈ H
∣∣∣ ρ(z, ϕ−1

H ( f −1)∞) = R f

}

where R f := |a12|−1/2. One easily proves that this definition does not depend on the choice
of the matrix representative. The following lemma shows that our definition of isometric
spheres covers this one.

Lemma 4.41 Suppose that f = (ai j )i, j=1,...,n+1 ∈ PU(1, n; C) with ϕ−1
H ( f )(∞) = ∞.

Then R f = R
(
ϕ−1

H ( f )
)

.

Proof Set g := ϕ−1
H ( f ). We have

f

⎛

⎝
0
1
0

⎞

⎠ =
⎛

⎜⎝
a12
...

an+1,2

⎞

⎟⎠.

Therefore,

| j (g,∞)| = |a12|.
Since | j (g−1,∞)| = | j (g,∞)|, Lemma 4.30 shows that R(g) = |a12|−1/2. ��

[12, Theorem 3.1] states the existence of isometric fundamental domains for discrete
subgroups � of Gres for which, after possible conjugation of �, we have ∞ ∈ �(�) and
�∞ = {id}. By [21, Theorem 5.3.5], � is discrete if and only if � is properly discontinuous.
Therefore, Kamiya’s Theorem is a special case of Proposition 4.38.

In [18], Parker uses a section of the projection map from E�{0} to horospherical coordi-
nates which is reminiscent of the ball model. Therefore, we expect that, as in the real case,
this definition is not equivalent to the definition from [12].

4.10 Quaternionic hyperbolic spaces

In [14], Kim and Parker propose a definition of isometric spheres for isometries in Gres
�Gres∞

of quaternionic hyperbolic space. They use the model H and horospherical coordinates for
the definition.

With the bijection
{

z × v → z × v

(Z , X) �→ (Z , 1
2 X
)
,

our Heisenberg group N and our Cygan metric is transferred into their one. After shuffling
coordinates, they characterize (see [14, Proposition 4.3]) the isometric sphere I (g) of an
element g = (ai j )i, j=1,...,n+1 in PSp(n, 1; H) with ϕ−1

H (g)(∞) = ∞ as

I (g) =
{

z ∈ H
∣∣∣ ρ(z, ϕ−1

H (g−1)∞) = √
2 · |a12|1/2

}
.
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They use a slightly different indefinite form on E for the definition of the hyperbolic space.
Despite this difference we can apply the calculation in Sect. 4.9 we see that our definition of
isometric sphere provides |a12|1/2 as radius. The factor

√
2 in [14] is due to the factor 1

2 in
their choice of the section of the projection from E−(�2) to H .
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