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Abstract This study presents an extensive account of Locally Geometric

Semantic Crossover (LGX), a semantically-aware recombination operator for

genetic programming (GP). LGX is designed to exploit the semantic properties of

programs and subprograms, in particular the geometry of semantic space that results

from distance-based fitness functions used predominantly in GP. When applied to a

pair of parents, LGX picks in them at random a structurally common (homologous)

locus, calculates the semantics of subprograms located at that locus, finds a pro-

cedure that is semantically medial with respect to these subprograms, and replaces

them with that procedure. The library of procedures is prepared prior to the evo-

lutionary run and indexed by a multidimensional structure (kd-tree) allowing for

efficient search. The paper presents the rationale for LGX design and an extensive

computational experiment concerning performance, computational cost, impact on

program size, and capability of generalization. LGX is compared with six other

operators, including conventional tree-swapping crossover, semantic-aware opera-

tors proposed in previous studies, and control methods designed to verify the

importance of homology and geometry of the semantic space. The overall con-

clusion is that LGX, thanks to combination of the semantically medial operation

with homology, improves the efficiency of evolutionary search, lowers the variance

of performance, and tends to be more resistant to overfitting.
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1 Introduction

Computer programs are symbolic structures that are designed to attain a desired

operational effect, i.e., produce certain output given input data. That output is a

combined effect of the instructions a program is composed of, or, more precisely, of

their semantics. Semantics is the knowledge that provides ‘grounding’ for the

symbols used at the syntax level (instruction opcodes). Formally, it can be expressed

in a lower-level notation (operational semantics) or by defining the constraints that

bind instruction’s output to input (denotational semantics).

Though it is semantics that determines what a program actually does, most of

genetic programming (GP) algorithms ignore that knowledge and manipulate

programs only with syntax in mind. Focusing on syntax alone allows them to rely on

simple, generic search operators. But this comes at a cost: very little, if anything,

can be said about the anticipated impact of program modification on the output it

produces as that is inherently semantic property. Even a minimal change on the

syntactic level (genotype) can have profound and hard to predict impact on the

overall semantic (phenotype) of program, and thus on its outcome and fitness. In

other words, the genotype-phenotype mapping in GP is usually highly contextual

(epistatic), with effects of particular instructions strongly influencing each other.

This causes GP fitness landscapes to be complex [16], which in turn limits

scalability of search algorithms.

Rugged and epistatic fitness landscapes are obviously not unique to GP, and

occur also in more traditional learning and optimization tasks. In such problems

however, solutions (individuals) are represented as fixed-length vectors of variables,

and epistasis boils down to interdependencies between them. Also, the role a

variable plays in a solution is determined by its position in the vector, and is

common for all solutions. This eases designing effective recombination operators.

Even the simple one-point crossover is tailored to exploit the ‘linkage’ between

variables by swapping groups of them between parent solutions. When such generic

operators do not perform well enough, problem-specific ones can be designed based

on domain knowledge that often indicates which variables are likely to be

interdependent. Also, methods exist that autonomously detect and exploit interde-

pendencies, like competent GAs [9] or estimation of distribution algorithms [36].

In broader terms, recombination operators are intended to exploit modularity of

problems [43], where modules are some entities comprising solution components.

Variables are specific form of such components. In GP however, there is no clear

counterpart of the concept of variable, and it is typically assumed that program

fragments (procedures, subprograms) play the role of modules and their compo-

nents. Following this assumption, typical recombination operators swap code pieces

between parent programs. In doing so however, they do not care about the semantics

of transferred fragments, their presumed roles within the programs they are part of,

whether such roles correspond to each other in any meaningful way, and the

possible impact of such a change on program output.

The main motivation for this work is our conviction that such an approach is

overly simplistic, and that search operators can be designed that exploit the semantic

properties of programs and program fragments. We provide an extensive account of
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locally geometric semantic crossover (LGX), a recombination operator we

introduced in [20]. LGX has controlled impact on program semantics and aims

at making the offspring programs semantically more similar to each other than

the parent programs. To attains this, LGX inserts into parents a procedure

(program) that is semantically medial with respect to the code fragments being

replaced. This modification takes place at the same locus (position in program

code) in both parents, and is intended to impose and exploit semantic

correspondence of homologous program fragments. This design, motivated in

Sect. 3, causes LGX to perform better than the standard GP tree-swapping

crossover and other control operators, including semantic-aware operators

proposed in other studies (Sect. 5).

The paper is organized as follows. Section 2 defines the notion of program

semantics we adopt for this study. Section 3 briefly describes the motivations for

LGX’s design, the algorithm itself, and the library of procedures it relies on. Section

4 reviews the related work and the state of the art on semantics in GP. Section 5

reports the outcomes of an extensive experimental analysis. Sections 6 and 7 discuss

the results and summarize the conclusions.

2 Program semantics for GP

Introduction of a semantic-aware search operator requires adopting a formal concept

of program semantics in the first place. In theories of formal languages, this concept

is typically defined in operational or denotational way, each of which describes the

effects of program execution for all possible input data. However, as a machine

learning technique [29], GP confronts programs with a finite training set of fitness
cases, each being a pair consisting of an input and the corresponding desired

program output. Assuming that this set is the only available data that specifies the

desired outcome of the sought program, a natural definition of semantics is the

vector of outputs a program produces for the input parts of these cases [28].

Semantics may be then viewed as a point in n-dimensional semantic space, where

n is the number of fitness cases. Because fitness cases usually do not enumerate all

possible program inputs, this concept is also known as sampling semantics [44].

This framing of semantics has a few advantages. A technical advantage is that

determining semantics of a program within an evolutionary process comes

essentially for free, because each program has to be run on all fitness cases to

calculate its fitness. Calculating a program’s semantics is then a side-effect of fitness

calculation, available at no extra computational cost. Moreover, this applies also to

the outcomes produced by a program at any point of its execution (i.e., any

subprogram of an evaluated program), which has certain implications for the

approach proposed in this paper.

More importantly however, such understanding of semantics binds it closely to

the fitness function, which, for most application domains, captures the divergence

between program output and the desired output. Typically, fitness is defined as a

distance (or a function thereof) between program semantics and the target, a point in
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semantic space determined by the n desired program outputs. This makes the

semantic space metric, which has fundamental consequences that we will exploit in

Sect. 3.1 (cf. also [32]).

This definition of semantics, together with the concept of target, is very natural

for function approximation (symbolic regression) and Boolean problems. However,

it can be employed in other scenarios and in many, if not all, application domains of

GP. For instance, a controller that balances an inverted pendulum can be evaluated

on n fitness cases, each defining a different set of initial conditions of a simulation

process. The time for which the controller prevents the pole from tipping over

defines its performance on a given fitness case. Assumed the maximal simulation

time is t, the target is the point tn in n-dimensional semantic space, and an

individual’s fitness can be defined as, e.g., the city-block distance of that

individual’s semantics from this target point.

It is worth noting that semantics as framed above obviously does not capture

program outcome for all possible inputs. Two programs that appear semantically

equivalent, i.e., return the same output for all fitness cases, can behave differently

for an input datum that was not present in the training set; GP shares this

characteristic with all algorithms that inductively learn from examples. An

important question, then, is how well the evolved programs generalize beyond

the training data (see Sect. 5).

3 Locally geometric semantic crossover

In this section we motivate and describe the locally geometric semantic crossover

(LGX) [20]. In Sect. 3.1 we present step-by-step the reasoning that underpins

LGX’s design. In Sect. 3.2, we provide concise, self-contained algorithmic

description of LGX, and in Sect. 3.3 we describe preparation steps needed before

a GP run.

3.1 Design rationale

3.1.1 Semantically geometric offspring

As argued in Sect. 2, fitness of an individual in GP is usually based on the error it

commits when applied to the fitness cases. In accordance with this, we assume that

fitness f(p) of a program p is based on a givenmetric that captures the divergence

between the output of p and the known desired output1:

f ðpÞ ¼ jjsðpÞ � tjj; ð1Þ

where s(p), the semantics of p, is the vector of outputs produced by p for the fitness

cases, and t (target) is the vector of desired outputs. The metric jj � jj operates thus

in an n-dimensional semantic space, where n is the number of fitness cases.

1 Because we compare vectors, this metric is also a norm.
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Importantly, it can be also used to measure the semantic similarity of pairs of

programs, which is the key element of the proposed approach. Note also that this

definition of semantics does not depend on what is the nature of data processed by

the programs, nor, e.g., on what is the number of input/independent variables when

the task is symbolic regression. The length of semantics depends directly only on

the number of fitness cases.

Under this definition, the objective is to minimize f, and the fitness landscape can

be visualized as a unimodal surface hovering over the space of solutions, with the

lowest point touching t (as only for this argument the fitness reaches zero), and

raising monotonously with the growing distance from t. For instance, if the metric

used in Eq. (1) is the Euclidean distance, this surface will assume the shape of an

upside-down cone with its apex located at t. Most importantly however, a fitness

landscape defined by Eq. (1) is unimodal for any metric, and convex for Lp norms

(e.g., Euclidean distance, city-block distance) [32]. This opens the possibility for

designing operators that exploit these geometric properties to yield offspring of

good quality (e.g., topological crossover [33]). To do so, a crossover operator

applied to a pair of parent programs p1 and p2 should produce programs whose

semantics are ‘in between’ the semantics of p1 and p2. We formalize this in the

concept of semantically geometric offspring (geometric offspring for short, [32]),

which is an offspring program o that fulfills

jjsðoÞ � sðp1Þjj þ jjsðoÞ � sðp2Þjj ¼ jjsðp1Þ � sðp2Þjj: ð2Þ
Geometric offspring have several attractive properties. By minimizing the total

distance from the parents, the semantics of a geometric offspring is as intermediate

with respect to the parents as possible. In other words, it is a ‘perfect mixture’ of its

parents, which is what crossover operator should provide. For certain norms,

geometric offspring offers even more specific and appealing features. For instance,

for the Euclidean metric, it is guaranteed to be at least as fit as the less fit of the

parents, because no point on the segment sðp1Þsðp2Þ can be further from t than the

more distant of s(p1) and s(p2) (see [31] for proof). If the population is diversified

enough and the parents occupy the opposite ‘slopes’ of the conic fitness landscape,

geometric offspring is likely to be better than both parents. Similarly attractive

properties can be proven for other norms. For the city-block metric (Manhattan

metric, L1), the expected fitness of a geometric offspring amounts to (f(p1) ? f(p2))/2,

assuming that the operator picks the offspring uniformly from the segment

connecting the parents in semantic space (see [18] for proof).

As a side note, let us comment that the above definition does not control how

equidistant is s(o) from s(p1) and s(p2). For instance, an offspring that is

semantically equivalent to one of the parents, e.g., s(o) = s(p1), is still geometric in

the sense of the above formula, although it does not have more in common with p2

than p1. However, to keep our approach simple, in this study we ignore this aspect

(which we discussed in more detail in [18]).

Unfortunately, designing a crossover operator capable of producing semantically

geometric offspring is hard in general, as such offspring is defined by its semantic

properties, while evolutionary search manipulates program syntax. Finding o such

that s(o) fulfills Eq. (2) is another program induction task in itself (and such o may
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not exist in the first place).2 To circumvent this problem, we first note that, given the

stochastic nature of GP search, it may not pay off to put a lot of computational effort

into searching for a perfectly geometric offspring. An offspring that is only

approximately geometric can be still quite effective at advancing the search process

towards the global optimum. This may be seen as restating the problem and

searching for an offspring that minimizes divergence from ‘geometricity’ (cf. [18]),

which can formalized by relaxing Eq. (2):

o ¼ arg min
p
ðjjsðpÞ � sðp1Þjj þ jjsðpÞ � sðp2Þjj � jjsðp1Þ � sðp2ÞjjÞ ð3Þ

However, even if posed as an optimization problem, Formula (3) still remains a

program synthesis task, and as such is challenging. A brute-force way of solving it

could consists in generating offspring candidates at random. However, such trial-

and-error approach, which we investigated in [19], is inevitably computationally

expensive. Also, the odds of randomly generating an almost-geometric offspring

program diminish with the growing complexity of the parent programs.

3.1.2 Problem decomposition

Given that the prospects for effectively finding an approximately geometric offspring

via search are limited, we propose an alternative way of exploiting the geometric

properties of the semantic space. To this aim, we rely on the inherently compositional

nature of programming tasks and use it to shift the problem of finding geometric

offspring from the level of complete programs to the level of subprograms.

Let program pt be a solution to a given programming task t, i.e., s(pt) = t.
Assuming pt comprises at least two instructions, it can be decomposed into

subprograms p0 and p00 such that p0 � p00 � pt, where � is program composition

operator (e.g., concatenation of trees in the case of LGX). This implies that

t0 � sðp0Þ defines a target (desired semantics) of another problem, which is a

subproblem of the original problem t.
Now, let p be a candidate solution to such a subproblem. It can be expected that

the more similar is the semantic s(p) to t0, the better the fitness of the compound

program p � p00 is. In broader terms, the better a part of solution becomes at realizing

certain desired functionality, the fitter we expect the entire solution to be. To

illustrate this in a more general setting, consider the task of designing an electric

torch, composed of a bulb and a battery, aimed at maximizing the light output [21].

There certainly exists (at least one) characteristic of an ideal battery, i.e., a battery

pbat for which there is a ‘compatible’ bulb pbul such that the torch pbat�pbul yields

maximum light. It may be also expected that, under fixed bulb pbul, the more a

battery p is functionally (semantically) similar to pbat, the stronger the emitted light.

This property, termed monotonicity in our previous studies [21, 22], cannot

obviously be expected to hold for all problems and all decompositions of a problem

into subproblems. The interactions between components (here: subprograms) are

often complex, so that an improvement of a component does not always monotonously

2 Albeit in [32] we have shown that for certain problem domains a semantically geometric offspring can

be constructed via purely syntactic manipulation.
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ameliorate the overall fitness. Problems with deceptive decompositions can be

concocted for which, by analogy to trap functions (see, e.g., [36]), making the

subprogram p0 closer to target t0 actually deteriorates the fitness of the compound

program p0 � p00. Consider for instance p0 ¼ x and p00 ¼ sinðÞ : changing monotonously

the output of p0 will cause the output of p00 to rise and fall, and thus move alternately

closer and further from a target. Nevertheless, it is reasonable to assume that some

decompositions exhibit this property, at least in an approximate sense.

3.1.3 Semantically intermediate subprograms

Without additional knowledge of the task being solved, it is hard to automatically

decompose it in a manner that guarantees that the validity of the above reasoning.

More precisely, there is no way of effectively choosing, from the possibly many

subproblems, the subproblem t0 that provides monotonicity. Therefore, LGX avoids

explicit decomposition and, by allowing arbitrary crossover loci, operates on any
subprograms of the parent programs. To this aim, it chooses a homologous locus in

the parent programs (see Fig. 1) and replaces the code at that locus with a

procedure, a piece of code that provides low divergence from geometricity in a

local sense, i.e., considering the semantics of the affected subprograms. The

procedure is selected from a previously prepared library by minimization of

Fig. 1 The working principle of LGX. Vectors of numbers illustrate semantics of subprograms
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Formula (3), with p1 and p2 being this time subprograms of the parent programs,

located at the selected homologous locus (see Sect. 3.2 for details).

Why would pasting such a procedure into the parent programs help the offspring?

Due to the geometric properties of semantic space discussed at the beginning of this

section, a procedure that minimizes the divergence from parents’ subprograms is

likely to be semantically close to an (unknown) subgoal t0. That in turn, based on the

hypothesized monotonicity discussed above, should improve the fitness of the

resulting offspring programs. In other words, the ‘centripetal’ effects of geometric

crossover, when applied locally to subprograms, may result in an analogous effect in

entire offspring programs.

The motivation for making LGX homologous is as follows. Applying the above

operation to subprograms p01; p
0
2 in the parent programs p1 and p2 is more likely to

improve their fitness if they share the remaining program part (often called context,
following [28]), so that p1 ¼ p01 � p00 and p2 ¼ p02 � p00. However, the parents are

paired at random and are in general arbitrarily different, so they typically do not

share p00. Thus, to provide at least some commonality of the way the parents are

affected, we make LGX homologous. As we show in the experiment, this aspect is

indeed significant.

As follows from the above arguments, geometric crossover performed on the

level of subprograms can improve the fitness of offspring programs. However, we

previously argued that, when applied to entire programs, it is guaranteed to produce

offspring with attractive properties. Why do we insist then to choose the former?

The key point is that, while it is often difficult to find a close-to-geometric program

for complete, possibly large and complex parent programs, achieving an analogous

goal on the level of subprograms may be easier, as they are by definition simpler

than programs. This can be done at a reasonable computational cost, which we cover

in the next sections.

3.2 The algorithm

In this section, we provide a technical description of LGX, abstracting from the

motivations presented in the previous section. The presentation assumes tree-based

GP, but LGX is easily portable to other program representations.

Given two parent programs p1 and p2, LGX first determines the common region
for them (see Fig. 1). The idea of the common region, introduced by Poli and

Langdon [38], is a set C of loci that occur in both p1 and p2. Formally, C can be

defined via recursion: (1) The locus of the root node belongs to C. (2) A locus

belongs to C if its parent locus belongs to C and the corresponding nodes in p1 and

p2 have parent nodes of the same arity. Note that this concept is based solely on

program structure (tree shape); the labels of nodes are ignored.

Given the common region C, LGX draws from it a random locus that will be used

as the crossover point. As C is a tree of loci, to choose this point we employ the

same rules as the canonical crossover operator [17]. An internal node in C is

selected with probability 0.9, and a leaf with probability of only 0.1, to reduce bloat.

The root is selected only if the common region contains only one node. It is worth
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emphasizing already at this point, that choosing the locus from the common region

causes LGX to affect on average shallower tree fragments than many other

operators, including the standard tree-swapping crossover.

Subsequently, LGX identifies the subprograms (subtrees) p01 and p02 rooted in the

drawn locus in p1 and p2, respectively. Their semantics, sðp01Þ and sðp02Þ are already

calculated as we cache the semantics for each tree node when executing programs

during the evaluation of individuals. Given sðp01Þ and sðp02Þ, we determine the

midpoint between them in the semantic space:

sm ¼
sðp01Þ þ sðp02Þ

2
ð4Þ

sm represents the semantics of a hypothetical program p:sm = s(p) that would be

perfectly geometric with respect to subprograms p01 and p02 (see Eq. 2). To find a

program that approximates sm, we search alibrary L of previously prepared short

procedures (see Sect. 3.3) for a procedure that minimizes the semantic distance

from sm:

p0 ¼ arg min
p2L
jjsðpÞ � smjj ð5Þ

It is worth noting that such choice of procedures is more specific than the one

presented in the previous section. A procedure that minimizes the above expression

not only has low divergence from geometricity (Eq. (5)), but is also likely to be

equidistant to parents, a combination of features we term medial in the following

(cf. [18]). In this way, we lower the risk of choosing a procedure that is semantically

very similar (or identical) to p01 or p02 (for the setups used in the experimental part of

this paper, semantically identical subtrees are selected in about 8 % acts of

crossovers).

In the simplest variant of the approach, which we proposed in [20], the procedure

p0 chosen in this way replaces the subtrees p01, p02 at the selected locus in both

parents, producing two offspring and completing the crossover act. However,

choosing p0 in this deterministic manner can lead to premature convergence of the

search process. This is particularly likely when no other search operator is used

along with LGX to provide exploration. Thus, rather than choosing the procedure

strictly according to Eq. (5), a set of k closest neighbors of sm are determined, and

one of them is selected at random and planted into the parent programs. The

neighborhood size k is the parameter of the method.

Note also that usually no procedure from the library brings ||s(p) - sm|| to zero.

The library is intended to store relatively simple procedures, which cannot be

expected to express any semantics (see the next section). For this reason, it may be

argued that the differences between the k closest neighbors are quantitative rather

than qualitative.

3.3 The library of procedures

The library, designed to provide semantically diverse subprograms for LGX, is

prepared prior to the evolutionary run using the instruction set I provided with the
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task. The choice of procedures to be gathered in L could be made in many different

ways. Here, for simplicity, L is filled with all trees of height at most h built from

instructions from I, where h is a parameter of the method.

For every procedure p 2 L, we calculate its semantics s(p), i.e., the vector of

outcomes produced by p for the considered set of fitness cases. Any two procedures

p1, p2 having the same semantics (||s(p1), s(p2)|| = 0) do the same thing, which is

redundant from the viewpoint of the method. Therefore, we discard from L the

procedures that duplicate the semantics of other procedures. For each subset of

procedures having the same semantics, only the shortest one remains in L.

To provide fast retrieval of semantically similar procedures (Formula (5)), we

employ a multidimensional index, a data structure designed for geographic and

spatial databases. We chose kd-trees [5] due to very good performance of nearest

neighbor search in multidimensional data sets. The typical time of insertion of m
points into the kd-tree is O(m log 2m), however it can be reduced to O(m log m) with

the linear-time median searching algorithm (eg. [6]). The nearest neighbor query to

the tree consisting m elements takes O(m1-1/d) time in worst case, where d is the

dimensionality of indexed space, but only O(log m) on average [7, 25].

The above three steps of library preparation (generating the procedures,

calculating their semantics, and building the index) introduce certain computational

overhead. However, a library, once prepared for a given instruction set and a set of

program inputs comprised by fitness cases, can be reused in multiple runs and

problems, in which case this overhead can effectively become negligible. Also, for

typical symbolic regression tasks this process turns out to take mere seconds on

contemporary hardware, even for several dozens of thousands of procedures (see

Sect 5).

Alternatively, the library could be filled up during the run, by collecting the

subprograms created by evolution. Although this could lower the cost of library

preparation, it would also make its contents dependent on the course of evolution,

and make the analysis of performance less objective. For this reason, we decided to

prepare the entire library before the run.

4 Related work

There are several contributions in the past GP literature that share some common

elements with the proposed LGX operator. They can be grouped along two main

features of LGX: the use of a library, and the semantically-aware manipulation of

programs.

With respect to the former, LGX can be likened to, e.g., run transferable libraries

(RTL, [41]), which are repositories of program fragments collected in separate GP

runs, intended to be applied to different problem instances. However, contrary to

LGX, RTL requires a series of preliminary GP runs, because fragment’s inclusion in

the library depends on its long-term frequency of occurrence in an evolving

population. Also, the collected modules are then re-used at random, i.e., RTL does

not involve any directed (e.g., semantic-driven) operator to pick the procedures. In

[15], we demonstrated the usefulness of a similar approach on a task of visual
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learning. Rosca and Ballard [40] create an analogous library on-the-fly, during a

single evolutionary run. To update the library at every generation, they use a

sophisticated mechanism for assessing subroutine utility, and employ entropy to

make decision when a subroutine should be created. However, as in RTL, the

subroutines are used in an undirected way, without considering their semantic

properties. Haynes [10] integrated a distributed search of genetic programming-

based systems with collective memory, however he utilizes a library only for

detection of redundancy of GP search agents that operate in parallel. Galvan Lopez

et al. [8] reused code using a special encapsulation terminal, causing code fragments

to be stored implicitly as fragments of individuals in population (in contrast to LGX,

where the library is fixed and explicit). Other approaches involving some form of

library include reuse of assemblies of parts within the same individual [11],

identifying and re-using code fragments based on the frequency of occurrences in

the population [12], and explicit expert-driven task decomposition using layered

learning [1, 13].

Considering the semantic aspects, we review here the approaches that rely on the

understanding of program semantics introduced in Sect. 2, even if some of them do not

explicitly refer to the idea of semantics. McPhee et al. [28] were probably the first to

study the impact of crossover on program semantics and so-called semantic building

blocks. They defined, for Boolean problems, the semantic properties of components

that form offspring in tree-swapping crossover, i.e., subtrees and contexts (partial trees

with a hanging branch), and observed how they change with evolution time. Beadle

and Johnson [3] used program semantics to increase diversity of programs, proposing a

method that produces initial populations of semantically unique programs, and

confronted it with standard population initialization techniques (which typically

produce many semantically identical solutions). This idea was further explored by

Jackson [14]. Subsequently, Beadle and Johnson applied a similar idea the mutation

operator [2] and crossover [4], forbidding creation of offspring that was semantically

identical to parents. The proposed methods proved superior to standard GP in terms of

the number of fully successful programs evolved.

The approaches cited above used semantics primarily to detect differences in

program outcomes. Measuring semantic similarity was a natural further step in

exploitation of semantic information. Semantically-aware crossover (SAC, [35])

and semantic similarity-based crossover (SSC, [45]) proposed by Nguyen et al.

employ semantic similarity to make decision whether a pair of subtrees in parent

solutions should be swapped. In the cited work, SAC and SSC have been reported to

outperform the standard tree-swapping crossover. These operators serve as

reference methods in the experimental part of this paper and will be detailed there.

Yet another step in development of semantically-aware methods involves explicit

exploitation of selected properties of semantic space. Such properties have been

studied by Moraglio [33, 30] and resulted in the idea of geometric offspring as

presented in Sect. 3.1. In [19], Krawiec and Lichocki proposed using a trial-and-

error approach (essentially a form of brood selection) to design a crossover operator

that is approximately geometric. In [32], Moraglio et al. considered properties of

semantic spaces for different metrics and proposed a syntax-based technique for

designing exact semantically geometric crossovers.
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In the context of these contributions, LGX remains unique in combining the three

elements: selection of procedures w.r.t. their semantic properties, homologous

character of crossover, and the use of a library of procedures.

5 Experimental analysis

The experiments presented here have two main goals: (i) assessment of LGX’s

performance and (ii) verification of the rationale discussed in Sect. 3.1. To attain

(ii), we implement three control crossover operators, chosen to assess the impact of

semantic mediality and homology on LGX operation.

To verify the importance of semantic mediality, we use two operators that are

homologous but ignore the semantics of programs. The first of these is the

homologous tree-swapping crossover (GPH), called one-point crossover by Poli

and Langdon in [37]. It computes the common region of parents in the same manner

as LGX (Sect. 3.2), selects a single locus in it, and swaps the parents’ subtrees

rooted at the selected locus. Thus, GPH chooses the locus like LGX but affects the

code at that locus like standard tree-swapping GP crossover, and thus ignores

semantics of subprograms.

The second operator, random crossover (RX), is also homologous and selects

the affected locus like LGX. It also uses the same library L for replacing the code at

the locus. However, RX’s choice of procedures from L is purely random. As in

LGX, the chosen procedure is pasted into both parents. Thus, RX uses the same

repertoire of code fragments as LGX, but, similarly to GPH, its choice of procedure

is not influenced by program semantics. Moreover, that choice does not depend at

all on the replaced subtrees, so RX can be considered as a form of mutation.

To verify the importance of homology, we introduce NHX, an operator that is

non-homologous but locally medial. When applied to a pair of parents, NHX

proceeds as LGX except for the choice of the locus to be affected. To make this

choice, NHX works as the standard tree-swapping crossover, i.e., selects the

subtrees p01 and p02 to be swapped independently in both parents. For this, it uses the

same probability distribution as LGX (Sect. 3.2). Then it proceeds as LGX, i.e.,

finds the semantically most medial procedure in the library (Formulas 4 and 5) and

inserts it into both parents. Thus, NHX works like LGX without the concept of

homology.

To provide a more complete picture for the performance of particular operators,

we use also the following control methods:

GPX The canonical tree swapping crossover [17].

SAC Semantic aware crossover [35]. SAC picks at random two subtrees in the

parents and checks whether their semantic distance is greater than a

predefined threshold (called semantic sensitivity), in which case it swaps

them. Otherwise, it picks another subtrees and tries again, however for a

limited number of times.

SSC Semantic similarity-based crossover [45], an advanced version of SAC.

Rather than relying on a single parameter, SAC swaps subtrees if their
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semantic distance is within a range limited by two parameters, lower and

upper bound on semantic sensitivity.

For convenience, we summarize the properties of considered operators in

Table 1.

5.1 The setup

W apply the compared methods to 12 univariate symbolic regression problems

taken from [27] and [23], shown in Table 2: three polynomials, three rational

functions, and six irrational functions. For each configuration, 100 runs are carried

out, each starting from a different initial population of size 1,024. Fitness is

minimized and defined as the absolute error of individual’s output w.r.t. the desired

output, summed for the 20 fitness cases drawn uniformly (equidistantly) from a

given interval (Table 2). In other words, fitness is defined as in Formula (1), with the

metric jj � jj being the city-block distance between individual’s output and the target

t, calculated by applying a formula from Table 2 to the training set. A run is

considered as success if it finds a program that has fitness smaller than 10-6.

As we compare the methods both in terms of elapsed generations (Sect. 5.2) and

time-complexity (Sect. 5.3), we employ two stopping criteria. A run is terminated if

it lasts for at least 250 generations and at least 200 s. If an ideal solution is found

earlier, a run is assumed to have the ideal fitness (zero) for the remaining

generations.

The detailed setup is given in Table 3. Note that most methods do not involve

mutation. The exceptions are GPX and GPH, where the tree-swapping crossover

alone cannot supply the population with new genetic material. For the population

sizes used here this can easily lead to stagnation, so we provide these setups with the

standard mutation operator that replaces a randomly selected subtree with a subtree

generated using the ramped-half-and-half method [26]. The probability of crossover

is the same for all setups to ensure fair comparison. Other parameters are set to the

defaults of the ECJ package [26] that was used as the experimental framework.

For the methods involving a library of procedures L, we consider two settings of

the maximum procedure height. For h = 3, the assumed instruction set results in

289 procedures, but only 209 of them are semantically distinct, so |L| = 209. For

h = 4, these figures amount to 269217 and 104469, respectively. We append the

value of h to method’s name (e.g., LGX4 for h = 4) to indicate which version we

Table 1 The properties of the compared crossover operators

Semantic mediality

Absent Present

Homology
Absent GPX, SAC, SSC NHX

Present GPH, RX LGX
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Table 2 The benchmarks used for experimental comparison

Problem Definition (formula) Training set Test set

Sextic x6 - 2x4 ? x2 U[-1, 1, 20] R[-1, 1, 20]

Septic x7 - 2x6 ? x5 - x4 ? x3 - 2x2 ? x U[-1, 1, 20] R[-1, 1, 20]

Nonic x9 ? x8 ? x7 ? x6 ? x5 ? x4 ? x3 ? x2 ? x U[-1, 1, 20] R[-1, 1, 20]

R1 (x ? 1)3/(x2-x ? 1) U[-1, 1, 20] R[-1, 1, 20]

R2 (x5 - 3x3 ? 1)/(x2 ? 1) U[-1, 1, 20] R[-1, 1, 20]

R3 (x6 ? x5)/(x4 ? x3 ? x2 ? x ? 1) U[-1, 1, 20] R[-1, 1, 20]

Nguyen-5 sin(x2)cos(x) - 1 U[-1, 1, 20] R[-1, 1, 20]

Nguyen-6 sin(x) ? sin(x ? x2) U[-1, 1, 20] R[-1, 1, 20]

Nguyen-7 log(x ? 1) ? (x2 ? 1) U[0, 2, 20] R[0, 2, 20]

Keijzer-1 0.3xsin(2p x) U[-1, 1, 20] R[-1, 1, 20]

Keijzer-4 x3e-xcos(x)sin(x)(sin2(x)cos(x) - 1) U[0, 10, 20] R[0, 10, 20]

Keijzer-9 logðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

Þ U[0, 100, 20] R[0, 100, 20]

U[a, b, n] means n fitness cases selected uniformly from the given interval [a, b]. R[a, b, n] means

n randomly chosen points from the interval [a, b]

Table 3 Experimental setup

Parameter LGX, NHX, RX SAC, SSC GPX, GPH

Instruction set {? , -, 9 , /, sin, cos, exp, log, x}a

Population size 1024

Initial max tree depth 6

Max tree depth 17

Selection Tournament selection

Tournament size 7

Trials per experiment 100 independent runs

Termination condition 250 generations and at least 200 s of total time

Crossover probability 0.9

Mutation probability 0.0 0.0 0.1

Reproduction probability 0.1 0.1 0.0

Max tree depth in library {3,4} – –

Neighborhood size 8 – –

Semantic sensitivity – 0.0500b –

Lower bound semantic sensitivity – 0.0001c –

Upper bound semantic sensitivity – 0.4000 –

a The division and logarithm are protected. It is assumed that division by 0 returns 0 and logarithm

calculates absolute value of its argument
b The value comes from [35]
c The values for lower and upper bounds of semantic sensitivity come from [44]
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are discussing. Preliminary experiments have shown that setting LGX’s neighbor-

hood size to k = 8 works well, so this value has been adopted in this experiment.

Overall, there are 10 methods, 12 benchmarks and 100 runs for each

configuration, which implies 12,000 evolutionary runs, each lasting at least 200 s.

The following sections describe in detail selected aspects of obtained results.

5.2 Performance over generations

The graphs of best-of-generation fitness with 0.95 confidence intervals for all

analyzed methods are shown in Figs. 2 and 3, with the methods involving semantic

mediality shown in red, and the remaining ones in green. Note that the range of

ordinate varies from problem to problem.

5.2.1 Evolution dynamics and performance on categories of problems

LGX is unquestionable winner in terms of best-of-run fitness on the polynomial

problems. Even for the easiest Sextic problem there are noticeable differences

between the methods. Almost all runs of LGX3 solve it in 75 generations or less. In

the first part of runs, the runner up is NHX3, but around generation 120 it is

overtaken by LGX4 (though the final difference is not statistically significant). It is

worth noting that good results are achieved by SAC as well. SSC converges faster,

but is worse and comparable with GPH at the end of run.

For the more difficult Septic and Nonic, the situation is quite different. The best

results are achieved now by LGX4, but finally LGX3 catches up at the end. In both

cases RX4 is almost as good as LGX3, which can be due to having access to a larger

library. Note that in these two cases NHX4 is worse than its random counterpart

RX4. For NHX and RX employed with small library (h = 3), the results are

inverted. SAC is a bit worse than NHX4 in both cases, while SSC is substantially

inferior.

The rational problems (R1, R2, R3) seem to be easy for LGX4, which noticeably

beats the competition in terms of speed of convergence and best-of-run fitness. For

R1 and R2, for the initial part of runs the second place is taken by NHX4, but at the

end it is caught up by LGX3, causing this pair to be statistically indistinguishable by

the end. For R3, the second place is taken by GPX for most part of run, however

finally it is overtaken by RX3. Despite that, the difference of their results is not

statistically significant. The R2 problem is somehow unusual, with all semantically

medial methods achieving similar level of performance and the non-medial methods

doing much worse (including the semantically-aware, albeit non-medial SAC and

SSC).

The Nguyen problems seem to be easy for LGX/NHX methods, especially for

h = 3. Both methods typically reach optimum in less than 50–100 generations.

Surprisingly, for the harder of these problems, NHX3 overtakes LGX3 but not for

long time. This can be explained by NHX’s ability to affect deeper tree parts than

LGX, which can lead to bigger and fitter programs. Both methods employed with

the bigger library (h = 4) yield slightly worse results. All Nguyen problems also

seem to be easy for SAC and SSC. GPH loses in all these problems.
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Fig. 2 Best-of-generation fitness averaged over 100 runs with 0.95 confidence intervals (I)

46 Genet Program Evolvable Mach (2013) 14:31–63

123



Fig. 3 Best-of-generation fitness averaged over 100 runs with 0.95 confidence intervals (II)
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For Keijzer-4, LGX4 is leading for almost entire run, with RX4, its random

counterpart, running up. While Keijzer-1 does not significanly discriminate RX4,

LGX3 and NHX3, Keijzer-4 seems to consistently tell them apart over entire

evolution time. The order of plots does not change during evolution (except for

LGX3 and NHX4, which switched around the 90th generation, however their

previous performance was almost the same). This quite complex benchmark (cf.

Table 2) seems to be very useful, as opposed to Keijzer-9, which is easy for all

methods.

To complement this picture, in Table 4 we present the success rate of particular

methods, i.e., the percentage of runs that achieve the best-of-run fitness below 10-6.

The methods that involve semantic mediality clearly tend to lead with respect to this

performance indicator.

5.2.2 Significance

To verify whether the observed differences between the methods are significant, we

employed Friedman’s test for multiple achievements of a series of subjects on the

average of best-of-run fitness. The outcome of the test was p = 2.58 9 10-8, which

allowed us to reject the null hypothesis and claim that there is at least one significant

difference between methods. To find out which pairs of methods differ significantly,

a post-hoc analysis was carried out, the results of which we present in Table 5 as the

p values of symmetry test for pairs of methods. Figure 4 visualizes the table as an

outranking graph, with arcs corresponding to the statistically significant outranking

(a = 0.05). The graph is clearly bipartite, with the ‘good’ methods on the one side

and ‘bad’ ones (outranked by at least one other) on the other.

Post-hoc analysis clearly shows that none of the control methods is superior to

LGX. This holds for small (h = 3) as well as big library (h = 4). On the other hand,

LGX is significantly better than GPX, SSC, and, in case of LGX4, to SAC and GPX.

There are also some signs that LGX is superior to RX and NHX, however this result

does not manifest significant at the number of considered benchmarks.

Table 4 Success rate of the best-of-run individuals

Problem GPX

(%)

GPH

(%)

LGX3

(%)

LGX4

(%)

NHX3

(%)

NHX4

(%)

RX3

(%)

RX4

(%)

SAC

(%)

SSC

(%)

Sextic 85 3 31 6 1 3 2

Nonic 1

Nguyen-5 8 3 100 1 73 1 6 4 3

Nguyen-6 50 9 91 3 78 3 22 1 53 48

Nguyen-7 6 12 1 5 2

Keijzer-4 1 1 1

Keijzer-9 41 91 24 71 34 63 56 75 2

The best method marked in bold. Empty spaces mean 0 %. The omitted problems have not been solved by

any method
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GPH is inferior to almost all other methods, including RX, the other homologous

crossover. A possible explanation is that RX constantly supplies the population with

diversified genetic material from the library, while GPH cannot enrich the gene pool

as it only swaps the subtrees between parents. However, RX does not significantly

beat any other operator except for SSC. The columns for RX3 and RX4 in Table 5

Fig. 4 Outranking graph built upon results of post hoc analysis of Friedman’s test

Table 5 Post-hoc analysis of Friedman’s test, conducted on best-of-run fitness, visualized as an out-

ranking table

GPX GPH LGX3 LGX4 NHX3 NHX4 RX3 RX4 SAC SSC

GPX 0.310 0.899 0.899 1.000 0.487

GPH 1.000

LGX3 0.149 0.000 0.980 0.804 0.958 0.958 0.125 0.000

LGX4 0.010 0.000 0.997 0.582 0.236 0.486 0.486 0.008 0.000

NHX3 0.840 0.002 1.000 1.000 0.804 0.006

NHX4 0.987 0.017 1.000 1.000 1.000 0.980 0.039

RX3 0.004 0.010

RX4 0.004 1.000 0.011

SAC 0.351 0.872 0.871 0.535

SSC

Values represent probability of erroneously judging the method in row as outranking the method in

column. Lower values represent stronger confidence in outranking. The p values in bold represent

significant results (a = 0.05)
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suggest that RX could be defeated by some other methods (LGX4, SAC) given

larger sample size (number of benchmarks). This lets us conclude that the operators

that rely only on homology tend to perform substantially worse than LGX.

NHX performs almost as well as LGX. No other method is significantly better

than it. This indicates that relying on semantically medial procedures can be

beneficial. However, as opposed to LGX, NHX has problems beating the standard

crossover, GPX. Also, LGX shows signs of superiority to NHX, though this

difference is insignificant at the number of benchmarks used. This suggests that

being semantically medial is good for a crossover operator, although not as good as

being medial and homologous, a combination of features that is implemented here

by LGX. This can be also seen in several fitness plots (Figs. 2, 3). The fact that

combination of semantic mediality and homology is synergetic confirms the

motivations presented in Sect. 3.1 and is the main result of this study.

The next conclusion is that the methods that rely on semantic mediality (LGX,

NHX) produce monotonous fitness plots with narrow confidence intervals (Figs. 2,

3). The variance of best-of-generation fitness individuals at a given generation is for

these methods often several times smaller than for the other approaches. This

feature, particularly evident for LGX, makes the methods more predictable and

allows for approximate performance prediction.

The results for SAC and SSC suggest that using semantic distances between

parents’ subtrees to decide whether they should be swapped is not very effective. In

particular, it is surprising to see that SSC, the more sophisticated operator, yields to

many more methods than SAC. We attribute these results to sensitivity of these

methods to parameters. Though the parameters specific to SAC and SSC are set as

in [35, 45], the other, generic evolutionary parameters common for all methods are

set to ECJ’s defaults to ensure fair comparison. These defaults are different from the

values used in the cited work (see Table 3). Also, concerning the success rates, we

employ here a much more demanding definition of success (fitness \10-6),

compared to the condition used in [35] (error on each single fitness case \0.01).

In general, using a large library (h = 4) seems to pay off for LGX only for

difficult problems. Apparently, for the easier benchmarks (Sextic, Nguyen-5,

Nguyen-6), the semantic diversity provided by the small library of roughly 200

procedures is sufficient for the search to quickly converge to good solutions.

5.3 Performance over time

LGX incurs an additional computational cost of creating the library and searching

for the semantically similar procedures. While the former turns out to be low (0.1–6

s compared to 200 s of entire run), the latter cannot be ignored. Every act of

crossover requires a kd-tree query, which for the assumed crossover probability 0.9

and population size 1,024 implies 0.9 9 (1,024/2) = 460 queries per generation,

and 115,200 queries per 250-generations run. This urges us to ask the question: will

LGX maintain its performance with the same time allocated to all methods?

To answer this question, in Figs. 5 and 6 we plot the mean fitness of the best-of-

generation individual as a function of run time expressed in seconds. For clarity, we

use logarithmic time scale, so the label ‘102’ marks half of the run time, because the
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plots tended to overlap and flatten out early when plotted against a linear scale. The

plots do not take into account the cost of library building.

The plots reveal that the methods that use the big library (h = 4) are the slowest

and achieve competitive results only after tens of seconds. The obvious reason for

this is the high computational cost of querying the kd-tree built upon the library of

over 100,000 procedures. However, LGX3 and NHX3 that use roughly 500 times

fewer procedures exhibit good time-wise performance, leading for the greater part

of runs in most benchmarks, proving that a moderately sized library can be queried

effectively.

RX4 uses the library, but does not need to query the kd-tree to retrieve

procedures. Therefore, it typically converges much faster than its medial counter-

parts LGX4 and NHX4, but rarely manages to maintain this advantage at the end of

the allocated time.

The methods that do not use the library are usually fast, and their best-of-

generation fitness is typically located between the curves for LGX3 and LGX4 for

most part of the runs (with Nonic and R3 being exceptions).

To complement this picture, in Table 6 we present the number of generations

processed by a single 200-s run, averaged over all benchmarks. LGX4 and NHX4

reach only a few dozen of generations, while the remaining methods process several

hundreds of them. RX4, equipped with the same library as LGX4 and NHX4 is few

times faster than them, since its choice of procedures is purely random and thus

there is no need to search the index.

It is interesting to note that kd-tree querying is not the only reason for the

differences between the library-equipped methods shown in Table 6. The other is

the greater average procedure (subtree) height for the larger library. Consider RX3

and RX4: neither of them uses kd-tree, but the former is about four times faster. This

is because the latter inserts higher (on average) procedures into parents, which

causes the offspring programs to grow larger, which in turn increases the evaluation

time.

The most important result of this experiment is that, despite the extra time needed

for querying, the final performance of LGX3 and NHX3 are not outstanding from the

other methods. In particular, LGX3 usually achieves the best fitness and typically

does so faster than the other methods. The computational effort invested in

searching for semantically medial procedure in the library seems to be compensated

by the capability of finding well-performing solutions. LGX4 works noticeably

slower, however it has the potential to overtake LGX3 in longer trials (which could

be observed in Figs. 2 and 3). This, together with low variance of fitness, can make

LGX attractive not only from theoretical viewpoint, but also in practical scenarios,

for instance when it is critical to produce a well-performing solution in a limited

time.

5.4 Impact on tree size

The compared crossover operators differ in the way they choose the locus to be

affected, and in the source of code fragments they insert into parent solutions. To

investigate how this affects the size of evolved programs, we traced the average
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Fig. 5 Best-of-generation fitness as a function of time (log10), averaged over 100 runs (I)
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Fig. 6 Best-of-generation fitness as a function of time (log10), averaged over 100 runs (II)
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number of nodes of individuals in population, and present it with confidence

intervals in Figs. 7 and 8.

The main observation resulting from these plots is that they look very alike,

particularly concerning the ranking of methods at the end of evolution. In general,

RX4 generates the largest trees, up to 700 nodes. The second is LGX4, with the final

size usually between 400 and 600 nodes. The smallest trees, of 100 nodes on

average, are produced by LGX3, GPH or SSC, depending on the problem. It is

interesting to note that, although these three methods seem to be very similar in this

respect, LGX3 typically attains better fitness than GPH and SSC (Sects. 5.2 and 5.3).

In general, the methods that use the big library (h = 4) tend to produce larger

trees than their counterparts for h = 3. This is not surprising, given the fact that the

average procedure size in the former library is substantially larger than in the latter.

Despite using the same library, RX produces much bigger trees than LGX. This

might suggest that the former selects longer procedures from the library. To verify

this, we gathered statistics on the number of tree nodes in inserted procedures for all

library-based methods, and show them in Table 7. As the average procedure size

turns out to be very similar for RX and LGX, we conclude that the inclination of the

former to produce larger trees has to stem from a more sophisticated interplay

between semantics of subprograms and the dynamics of evolutionary process,

investigation of which is beyond the scope of this study.

Figures 7 and 8 reveal also that NHX produces bigger trees than LGX for h = 3,

while for h = 4 the reverse happens. This is an effect of several factors. On one

hand, given a pair of parents p1 and p2, LGX, by selecting the loci only from the

common region, inserts procedures at shallower locations than NHX. This is

because the common region of p1 and p2 by definition cannot contain deeper loci

than those present in p1 and p2. However, by affecting the same locus in the parent

solutions, and inserting the same procedure at that locus, LGX causes the trees in

population to become more and more structurally similar as evolution proceeds

(note that the LGX setup does not involve mutation). In a long run, the common

region for any two parents in the population is likely to embrace all or almost all

loci in parents. This in turn allows LGX to operate deeper in the tree, and amplify

bloat. The other factor is that, as Table 7 reveals, NHX uses on average slightly

smaller procedures than LGX.

Table 6 Number of generations processed by methods within 200 s (min, max, average and 0.95

confidence interval)

GPX GPH LGX3 LGX4 NHX3 NHX4 RX3 RX4 SAC SSC

Min 948.0 1650.0 1137.0 56.0 1118.0 57.0 819.0 314.0 421.0 620.0

Avg 2011.0 3739.8 1577.8 85.5 1971.0 80.0 1705.9 427.4 1209.7 2783.3

Cf ±143.8 ± 245.6 ±69.5 ±3.0 ±97.3 ±1.3 ±137.4 ±21.7 ±105.1 ±553.4

Max 5746.0 6738.0 4457.0 151.0 3078.0 97.0 3926.0 1051.0 2981.0 19294.0
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Fig. 7 Tree size over generations (I)
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Fig. 8 Tree size over generations (II)
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5.5 Generalization to the test set

Large trees produced by some methods, in particular by RX4 and LGX4 (Figs. 7, 8),

raise concerns about their generalization ability. In machine learning, complex

hypotheses are typically associated with higher risk of overfitting. To verify how

prone to this risk are the evolved programs, we decided to evaluate the best-of-run

individuals on separate test sets of 20 benchmark-specific fitness cases, shown in the

last column of Table 2. For each benchmark and run, the best-of-run program is

applied to these cases and its quality expressed in the same terms as fitness, i.e.,

absolute error.

Comparison of the test-set errors presented in Table 8 to the values of fitness

achieved at the end of runs (Figs. 2, 3) leads to conclusion that all methods overfit,

i.e., commit greater error than on the training set. However, in absolute terms, LGX3

and LGX4 attain the lowest errors on the test set for most problems. The variance of

error (not shown here for brevity) is also typically the lowest for LGX. The fact that

LGX4 often reaches lower test-set error than the other methods (and the lowest for

two benchmarks) is particularly interesting, as the trees it produces typically belong

to the largest ones (Figs. 7, 8). Contrary to the common wisdom of machine

learning, the trees evolved by LGX, built in a semantically-aware and homologous

way, tend to extrapolate better despite being larger. This is consistent with the

results obtained in a recent study on controlling bloat using operator equalisation

[42], where programs evolving in a population, despite growing in size and

improving fitness, tended to keep their average performance on the test set at a

constant level.

6 Discussion

The most evident conclusion that can be drawn from the presented experimental

evidence is that an important factor that determines the performance of considered

operators is the library of procedures. In Fig. 4, the library-equipped operators

(LGX, RX, NHX) outrank many other methods, while never being outranked

themselves. The likely reason for this is the elimination of semantic duplicates that

takes place during library preparation (Sect. 3.3). As it is known from past research

(see, e.g., [24], ch. 7), the distribution of semantics of randomly generated trees is

very uneven. Elimination of semantic duplicates flattens that distribution and causes

all the available semantics of procedures of height up to h to be used equally

frequently. Thus, LGX, RX, and NHX are more likely to paste a semantically ‘rare’

Table 7 The size (number of tree nodes) of the inserted procedure, averaged over all applications of

operators during entire evolutionary runs

h RXh LGXh NHXh

3 5.108 5.082 4.876

4 11.062 11.054 10.866
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procedure than an operator that would generate an equally big procedure in a purely

syntactic way (e.g., using the ramped half-and-half method). This in turn increases

the likelihood for the offspring programs to reach previously unexplored semantics,

and may help obtaining better fitness.

Nevertheless, LGX outranks more methods than NHX and RX in Fig. 4, and

shows some inclination to beat them in Table 5, which suggests that there are some

other important factors that shape our results. To identify them, let us reflect on the

overall effect of LGX on an evolving population. LGX inserts the same procedure

into both of parent programs, making them syntactically and semantically identical

at the selected locus and all the loci in the subtree rooted at that locus. Thus, over

multiple generations, by acting on randomly selected common loci in various pairs

of parent solutions, LGX drives the individuals in population to become more and

more similar in the syntactic sense and, implicitly, also semantically. In practice

however, this never leads to a population-wide convergence. Firstly, LGX chooses

one of the k = 8 closest semantic neighbors from the library at random, so it can

produce a different offspring even when applied twice to the same pair of parents.

Secondly, a single act of crossover affects only a pair of individuals, so it may take a

long time for all individuals in population to converge at a particular locus.

The extent to which individuals in a population evolving under LGX become

syntactically similar is however of secondary importance. What matters is that this

similarity has certain ‘semantic grounding’, resulting from the fact that every

application of LGX inserts a procedure with semantics that is ‘medial’ with respect

to semantics of the parents’ subtrees (Eq. 4). As the experiments demonstrate, this

grounding is essential. If it was not, LGX would not prove superior to RX on most

benchmarks (Figs. 2, 3). Like LGX, RX is ‘convergent’ in the sense that it pastes

the same procedure at a common locus in both parents. Compared to LGX, it does

even more intense exploration as it draws a procedure from the entire library, while

Table 8 Errors committed by the best-of-run individuals (as of 250 generation) on test sets (averages

over 100 runs)

Problem GPX GPH LGX3 LGX4 NHX3 NHX4 RX3 RX4 SAC SSC

Sextic 0.024 0.086 0.002 0.091 1013 0.044 0.029 0.106 0.092 0.106

Septic 0.207 0.914 0.096 0.214 0.197 0.390 0.220 1013 0.366 0.776

Nonic 0.130 0.639 0.104 0.217 0.150 0.226 1013 0.828 0.199 0.577

R1 0.261 0.809 0.159 0.181 0.145 0.185 0.124 40.32 0.238 0.515

R2 0.316 0.767 0.092 0.091 0.245 0.357 105 1013 0.451 0.958

R3 0.059 0.341 0.090 0.144 0.225 0.139 0.238 0.661 1013 0.179

Nguyen-5 0.025 0.118 0.000 0.013 0.003 0.040 0.030 1013 0.046 0.092

Nguyen-6 0.033 0.210 0.004 0.033 0.004 0.041 0.019 0.129 0.026 1013

Nguyen-7 0.044 0.305 0.008 0.005 0.007 0.007 0.043 10.90 0.056 0.085

Keijzer-1 0.134 0.362 0.092 0.108 0.106 1.381 0.103 67.36 1013 0.335

Keijzer-4 0.492 0.881 1.363 13.27 1.838 1013 1.675 30.24 54.42 1013

Keijzer-9 0.000 0.004 0.003 0.592 0.005 0.064 0.159 4.160 0.011 0.192

For errors greater than 100, only the order of magnitude is given
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LGX chooses one of only k = 8 semantically most similar procedures. Yet RX

clearly converges more slowly, and in most cases attains worse fitness at the end of

run.

Thus, making offspring semantically identical at a homologous locus is only a

part of LGX’s success. What matters as well is the semantic relationship between

the pasted procedure and the subtrees replaced in parents. LGX performs better

because it makes the subprograms at the affected locus not only identical, but also

semantically medial with respect to parents’ subprograms (Eq. 4). This change

propagates to the outputs of the offspring programs, with certain likelihood causing

them to become semantically more similar to each other (see the discussion on

monotonicity in Sect. 3.1). Proving this hypothesis is beyond the scope of this paper;

however, in [18], we demonstrated experimentally, for linear programs, that

crossover operators that are semantically medial at the level of subprograms tend to

produce offspring that are more medial than the offspring built using the standard

code-swapping crossovers. That, in turn, causes them perform better. In this way

LGX, while explicitly considering only semantic properties of subprograms (i.e.,

locally), has some features of semantically geometric crossover [30, 32].

The above observations allow us to link these results to the issue of problem

decomposition. The convergence of homologously located subprograms towards a

common semantics can be viewed as if such subprograms aimed at solving a

subproblem of the original problem (cf. Sect. 3.1). In other words, LGX enables

evolution to bind a subproblem to a specific locus in the genotype, and work semi-

independently on the parts of programs delegated to solving particular subproblems.

In this sense, LGX facilitates discovery of subproblems within the problem, which

in turn could allow explicit problem decomposition.

Finally, it is interesting to note that, on the genotypic level, labeling LGX a

crossover operator is questionable, as it does not explicitly exchange genetic

material between the parent solutions. However, it ‘blends’ the parents on the

semantic, phenotypic level. In this sense, LGX can be regarded as a memetic search

operator, but driven by the semantic properties of programs rather than directly by

the fitness function.

7 Conclusions

The overall conclusion of this study is that crossover operators that use a library of

semantically unique procedures as a source of genetic material improve the

efficiency of evolutionary search when compared to other crossover operators

(including some semantic-aware ones). Locally geometric semantic crossover

(LGX), the operator that uses such a library and is both homologous and

semantically medial is the best option among the library-equipped operators

considered here, causing the evolved programs to generalize better. The extra

computational overhead it involves can be canceled out by its semantically-aware

character if the library is not too big. Finally, LGX is not very sensitive to initial

conditions (low variance of fitness and test-set performance), which can help

avoiding running it multiple times.
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LGX and the related concepts have been demonstrated here for programs

represented as trees, and verified on symbolic regression benchmarks. However,

homologous and semantically medial crossover can be easily generalized.

Homology can be meaningfully defined for many program representations (see

Sect. 5.3 in [39] for review). Concerning semantic mediality, any domain for which

(i) semantics is computable, (ii) semantic metric is available, and (iii) semantic

‘blending’ can be expressed, can be subjected to this approach. Concerning

requirement (i), defining program semantics as a vector of outputs is now widely

accepted in GP [44, 34] and technically convenient. Meeting the second requirement

is often easy, as fitness function usually is a metric, or is based on such. Concerning

(iii), although for some semantic spaces (e.g., Hamming space), Eq. (4) cannot be

used to explicitly and uniquely determine the midpoint between semantics of

parents’ subprograms, semantic blending can be expressed in alternative ways, for

instance based on triangle inequality or divergence from equidistance, which we

studied in [18].

Apart from moving to other problem domains, our future work on this topic will

focus on verifying some of the hypotheses formulated in Sect. 6, particularly the

supposed binding of semantic subproblems to different loci in program trees.

Designing other search operators with the help of the concepts introduced here is yet

another interesting research direction. Ongoing preliminary research suggests that

an indexed library can serve as a useful source of genetic material for a

semantically-aware mutation operator. Next, for the sake of LGX’s simplicity, we

decided here to populate its library in a very straightforward way. More

sophisticated sampling procedures may be considered, e.g., such that provide a

more uniform distribution of procedures in the semantic space.
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