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Abstract The ability to explicitly represent infec-

tious disease distributions and their risk factors over

massive geographical and temporal scales has trans-

formed how we investigate how environment impacts

health. While landscape epidemiology studies have

shed light on many aspects of disease distribution and

risk differentials across geographies, new computa-

tional methods combined with new data sources such as

citizen sensors, global spatial datasets, sensor networks,

and growing availability and variety of satellite

imagery offer opportunities for a more integrated

approach to understanding these relationships. Addi-

tionally, a large number of new modelling and mapping

methods have been developed in recent years to support

the adoption of these new tools. The complexity of this

research context results in study-dependent solutions

and prevents landscape approaches from deeper inte-

gration into operational models and tools. In this paper

we consider three common research contexts for spatial

epidemiology; surveillance, modelling to estimate a

spatial risk distribution and the need for intervention,

and evaluating interventions and improving healthcare.

A framework is proposed and a categorization of

existing methods is presented. A case study into

leptospirosis in Sri Lanka provides a working example

of how the different phases of the framework relate to

real research problems. The new framework for geo-

computational landscape epidemiology encompasses

four key phases: characterizing assemblages, charac-

terizing functions, mapping interdependencies, and

examining outcomes. Results from Sri Lanka provide

evidence that the framework provides a useful way to

structure and interpret analyses. The framework

reported here is a new way to structure existing

methods and tools of geocomputation that are increas-

ingly relevant to researchers working on spatially

explicit disease-landscape studies.

Keywords Geocompuation � Landscape change �
Disease risk � Framework � GIS

Introduction

While the global burden of disease has been shifting

from communicable to non-communicable diseases

and injuries (Murray et al. 2012), infectious diseases

continue to causes persistent (HIV/AIDs; Tuberculo-

sis; Malaria), and episodic (Ebola in West Africa)

public health threats. In both cases, the environment is

critical to the risks to human health and wellness posed

by infectious agents (Lash et al. 2008; Weiss and

McMichael 2004), environmental toxins (Ard 2015),

access to healthcare (Wang and Luo 2005; Kwan

2013), social disadvantage (Wilkinson 1994), and

stress (Shankardass 2012). There is a pressing need to
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develop the theories, tools and datasets that support

investigating links between the environment and

health.

A number of converging trends are currently

aiming towards a greater role for geography in studies

of environment and human health. Firstly, the emer-

gence and re-emergence of infectious pathogens over

the last few decades has re-emphasized the importance

of local exposures and risks, whether due to environ-

mental or communicable transmission processes that

result from complex assemblages of local and global-

scale processes. Secondly, spatially explicit models of

infectious diseases have been developed at a range of

spatial and temporal scales—from household-level

models of infectious disease spread (Riley 2007), to

global models of the factors driving the spatial

distribution of zoonotic pathogens (Jones et al.

2008). These models require spatial datasets describ-

ing every aspect of disease risk from wind patterns to

health-seeking behaviours. The use of geographic

information systems (GIS) is critical to the building

and operation of spatially explicit disease risk models.

Finally, spatial modelling has been improved by the

concurrent rise in sources of geographical data to

support such modelling efforts across all scales

(though not all diseases). The importance of the

‘landscape’ in emerging, zoonotic, and infectious

disease literatures is widely recognized from both a

substantive perspective due to greater interdependen-

cies between populations (Khan et al. 2009), incursion

into natural areas (e.g., Field et al. 2001), intensifica-

tion of livestock production (Gerber et al. 2005;

Graham et al. 2008), wildlife trade (Karesh et al. 2005)

as well as more practical considerations due to the

abundant data and technologies now available (e.g.,

Vitolo et al. 2015). We focus on landscape epidemi-

ology (LE) which is interested in the interaction

between features of the landscape (and their compo-

sition and configuration) with disease and risks of

disease. This is distinct from the broader domain of

spatial epidemiology, which includes studies of health

services and health systems.

Despite the growing adoption of geographic tools

and methodologies, their deployment in infectious

disease epidemiology, modelling, and control at the

implementation level has been mostly piecemeal and

study-specific. Lambin et al. (2010) suggested ten

propositions which help to situate relationships

between landscape change and infection risk,

identifying key themes such as connectivity, land-

scape configuration and composition, the importance

of examining processes and patterns at multiple spatial

and temporal scales, and human behaviours. While

these propositions provide a valuable guide for

researchers, they do not provide aid to the use of that

knowledge in applied settings. Most research into

landscape and disease risks assume a better under-

standing of infection risk will ultimately ‘trickle

down’ to effective uses of that enhanced knowledge.

Recent advances in understanding of how knowledge

is adopted in decision-support contexts, and the

translation of knowledge to specific communities of

users in application of health research and technolo-

gies has shed light on the importance of the types of

knowledge and expertise required to make this trans-

action possible (Straus et al. 2011). The simple fact

that knowledge exists does not necessarily mean that it

will be pushed to development and application

(Estabrooks et al. 2006). In this paper we take a

different approach, by focusing on three core knowl-

edge use contexts that broadly encompass the majority

of spatial epidemiological studies. We aim to develop

a single organizational framework for conducting

studies of landscape and infectious diseases that

situate methods and data within the broader concep-

tual context and thereby promote more rigorous and

transparent study design and interpretation and trans-

lation of findings.

Need for organizing framework for landscape

approaches to health

The rapid expansion of methods and data available for

landscape-oriented epidemiological studies has con-

siderably transformed health-environment research

over the last two decades. It is now customary to

include landuse/landcover data sensed from satellites,

climate data obtained from global repositories of

networked weather stations (e.g., WorldClim) or from

satellite sensors such as the Tropical Rainfall Moni-

toring Mission that provides daily rainfall data for all

of Asia. Also, these data products are increasingly

available at a global scale, and as ‘pre-processed’

information products consumable by spatial models.

For example, the WorldPop project (http://www.

worldpop.org.uk/) aims to provide high-resolution

spatially explicit demographic data across South and

Central Americas, Asia, and Africa (Tatem 2014).
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Geographically granular case data aggregated over

small health areas are also commonplace, both in

studies in the developed and developing worlds. Data

describing other features of the environment such as

roads, river networks, water bodies, built-up areas,

health care service locations are also increasingly

available in even remote parts of the world. We are on

the cusp of real-time global-scale epidemiology,

whereby ‘feeds’ describing the important features of

the environment for health is updated in real-time. For

diseases with immediate environmental components

of risk (e.g., arboviruses, heat-related illnesses), the

benefits of timely updating of spatially explicit infor-

mation on risk factors provide opportunities for highly

granular public health responses and data-driven pol-

icy formulations. Further, diseases with longer laten-

cies and more complex risk profiles also stand to

benefit from enhanced environmental information.

With this data-rich environment in machine-readable

forms, and the capacity for automated model-building,

it is important to structure analysis using such large,

spatially explicit information sources within a broader

framework for understanding disease-landscape

dynamics (e.g., Lambin et al. 2010).

Citizen-based, user-generated, or volunteered data

have also become increasingly prevalent, sometimes

described as participatory epidemiology (Brownstein

et al. 2009). The recent cholera outbreak in Haiti

provides a salient example, where volunteers on the

ground and on the other side of the world contributed

data and expertise to the mapping of local environment

in support of disease control and health programs.

Citizen-generated data is also increasingly used in

empirical studies themselves, for example—actively

in mobile health-reporting apps such as ‘outbreaks

near me’ (Freifeld et al. 2010) as well as passively,

when web-search data are repurposed for syndromic

surveillance of seasonal influenza (Hulth et al. 2009),

in support of what is often called ‘epidemiological

intelligence’. In landscape epidemiological research,

all of these datasets can be accessed, mapped, and

integrated via their geographies to derive factors

affecting disease risk, and the cumulative risk distri-

bution in space and time.

The data processing methods, software, statistical

tools, visualization approaches, and reporting mech-

anisms that drive this research vary considerably, and

encompass a wide array of levels and areas of

expertise. As such, the place of geocomputation—

the tools and methodologies of geographic comput-

ing—within this spectrum of approaches is unclear,

and more importantly, selecting the appropriate

approach for a given study objective is increasingly

difficult.

Reviews of ‘GIS in Epidemiology’ have not

provided this sort of framework. Many reviews have

rightly focused on broad overviews of spatial analysis

or GIS methods and disease (Cromley 2003; Rytkönen

2004), and/or their application to areas such as animal

disease (Freier et al. 2007), and other areas such as

surveillance (Robertson et al. 2010). The shortcom-

ings of GIS approaches to health research and

specifically the disconnect between analytical meth-

ods and parameters such as neighbourhood weights

matrices in disease mapping models, and their epi-

demiological meaning was highlighted by Yang et al.

(2013), whereas Fritz et al. (2013) review and compare

methods for handling point event data in spatial health

research. Barrett et al. (2013) reviewed the scope for

big data to improve understanding and tracking of

health-related behaviours and outcomes. And while

the emphasis in health geography over the last two

decades has focused largely on social determinants

(Kearns 1993; Kearns and Moon 2002), these

approaches have bifurcated somewhat from

approaches dominant in spatially oriented infectious

disease epidemiology, which have remained quantita-

tive and modelling/biomedically oriented. Rather than

debate the relative merits of these paradigms, it is

instructive to re-examine the motivation for these

studies in the first place, and perhaps contextualize

these differing research frames within a common

framework. Recent work relating infectious disease

risk to climate change has introduced ideas from

adaptation research such as vulnerability and adaptive

capacity that are conditioned on socioeconomic pro-

cesses (Kienberger and Hagenlocher 2014) is an

example of a new generation of integrative spatial

studies of health and disease that may be bridging this

gap. In this paper, we present a framework oriented

around knowledge uses and existing tools in order to

provide a methodological grounding for new integra-

tive studies in landscape epidemiology (LE).

A key requirement for landscape epidemiology is

the ability to handle, process, represent, and transform

large amounts of data. The backbone of GIS—

relational database management systems—has pro-

vided the technology for this historically, although
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rarely identified explicitly in research related to LE

studies. However, given the increasingly granularity of

satellite data, the volume of mobile sensor data, and the

advent of ‘big data’ generally (and real-time epidemi-

ology), these technologies are starting to become

insufficient to handle the current data-rich environ-

ment. New geocomputational methods for spatial data

storage and access may be required for new research in

landscape epidemiology—including spatial indexes,

data compression algorithms, and knowledge discov-

ery algorithms. For example, social media data streams

are by definition ‘always on’—and extracting and

storing a subset of these defined by space and time into

a relational database for the purposes of on-line

surveillance of new disease reports induces a delay in

the processing chain. Application programming inter-

faces (APIs) as a way of accessing data portals

algorithmically partially sidestep this issue, but these

tools are by their nature reserved for researchers with

advanced technical skills. Consequently, the ‘data

processing step’ is an increasingly relevant but

frequently overlooked component of LE studies, as

data integration based on geography is often required

prior to undertaking any analysis. Complex processing

chains that incorporate web-based geographic data

repositories, cloud-based storage and analysis, and

delivery of results via web-map services may encom-

pass the computational tools of neogeography (e.g.,

OpenLayers, cartoDB, D3, leaflet), open data portals

and cloud services (e.g., Amazon EC2) and a myriad

other software tools and packages. Situating these

methods and tools within their functional context

relevant for LE will provide an organizational mapping

to aid understanding of this complex and rapidly

evolving landscape.

A key theme in the adaptation of landscape

approaches to human health is the explicit recognition

of the importance of multiple spatial and temporal

scales in the study of health outcomes. While scale has

increasingly been emphasized in the health geography

literatures, much of this work has been conceptual and

theoretical rather than applied. While laying the

necessary theoretical foundations for a multi-scale

approach to understanding health and disease in

populations is an important first step, concrete tools

and methodologies are required in order to opera-

tionalize these ideas for applied LE. Geocomputa-

tional methods are well-suited to multi-scale analysis,

however there are several approaches to multi-scale

analysis that can be taken, and little guidance is

available to researchers aiming to take a multi-scale

approach to LE. Characterizing features of the land-

scape at multiple scales is perhaps one of the most

widely employed tactics, whether it is compositional

factors (e.g., percent forest cover) or configurational

properties (e.g., edge density, fragmentation). Identi-

fying ‘zones’ of scale consistency and abrupt changes

in landscape properties with scale can provide insight

into the appropriate spatial scale of investigation (Wu

2004). This approach is consistent with the landscape

ecology paradigm of hierarchical patch dynamics,

which may provide a conceptual basis for investigat-

ing landscape influences on health in patchy

landscapes.

The theories, tools and data driving applied LE

research today have significant potential to improve

health of individuals and the allocation of scarce

healthcare resources. Our aim in proposing the

framework that follows is to more clearly organize

current methods, provide a structure for research

design, and more concretely link methods to knowl-

edge translation and use. Surveillance can provide

health workers with the baseline knowledge required

to judge when and where unusual events are taking

place, which can catalyze early responses to outbreaks

or changes in disease incidence. Knowledge of risk

factors can contribute to formulating effective inter-

ventions, and identifying areas and populations vul-

nerable to disease. Once knowledge of landscape

influences on health and disease is established, this can

be applied and integrated into healthcare delivery

systems in contextually appropriate ways (Lai et al.

2008).

Landscape approaches: use cases

We provide the motivation for our framework through

the lens of applied LE. While these use-cases are not

encompassing of all studies that might employ LE

approaches, these categories cover the majority of

applied research objectives, and as such will provide a

useful lens through which to contextualize our orga-

nization of geocomputational methods applicable for

LE. It is worth highlighting that these categories are

not mutually exclusive, and often studies and research

projects aiming to take a LE approach will encompass

two or even three of the use-cases.
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Surveillance: What has changed?

Public health surveillance is defined by the World

Health Organization (WHO) as continuous, system-

atic collection, analysis and interpretation of health-

related data needed for the planning, implementation,

and evaluation of public health practice (WHO 2005).

A variety of objectives may drive surveillance

including outbreak detection, situational awareness,

and identifying long term trends, and statistical and

computational methods will be specific to the system

objective (Robertson et al. 2010). Additionally, a

variety of information sources may be required to

achieve a given public health objective targeted

through surveillance (WHO 2014). The inclusion of

explicit geographical information is now a key com-

ponent of most actionable public health surveillance

systems, including those focused on infections with

major landscape components.

Spatial risk modelling: Why are things are

where they are?

Many spatial–epidemiological studies are interested in

identifying the factors that contribute to the spatial risk

distribution. Most regression-type models employed

through either generalized linear modelling frame-

work or Bayesian hierarchical modelling fall into this

category. With respect to landscape risks, a wide

variety of modelling methods are now being used such

as MaxEnt (Phillips et al. 2006), random forests (and

related methods) (Breiman et al. 1984), and general

additive models employing various nonlinear map-

pings (Hastie and Tibshirani 1990). The elucidation of

spatial risk factors in LE can provide key insight into

how landscape impacts risk, but often these connec-

tions are difficult to identify and confounded with

sampling unit and spatial scale (e.g., modifiable areal

unit problem).

Interventions: What would happen if …?

Evaluating disease control methods has been largely

the domain of mathematical modelling methods that

have been developed for outbreaks of infectious

diseases, and environmental heterogeneities are rarely

included—often because spatially explicit data are

lacking and/or relationship to environmental factors

are unknown (although see a recent example of the

Ebola outbreak by Merler et al. 2015). However

policy-scenario modelling in the context of disease

control can be used to investigate the effect of

different public health policies on health outcomes

of interest (e.g., Claude et al. 2009). The required

knowledge in order to parameterize models for

evaluating interventions is generally very extensive

and requires understanding some degree of absolute

risk (e.g., Lengeler et al. 1998).

Framework for geocomputational landscape

epidemiology (GLE)

Here we propose a functional framework for organiz-

ing analytical tasks that are commonly employed as

part of LE, which we are terming Geocomputational

Landscape Epidemiology (GLE). Geocomputation

was defined in Openshaw (2014) as the ‘application

of a computational science paradigm to study a wide

range of problems in geographical and earth systems

(the geo) contexts’. This definition makes special point

to emphasize that the geo includes both human and

physical systems, and that geocomputation is part of a

wider shift towards computational science in social

sciences, natural sciences, and subfields of the

humanities disciplines that emphasizes mathematical

models, simulation, and high-performance computing.

Geocomputation is not equivalent to data mining,

machine learning, or computer science, but may

include aspects of these disciplines (Couclelis 1998).

The defining characteristic of geocomputation is that

advanced computational tools and methods are

deployed for solving complex geographical problems

that would otherwise not be possible. Thus the tools in

geocomputation do not only provide a faster way of

doing calculations, they provide a methodology for

conceptualizing new research questions from a com-

putational science perspective, and the tools to answer

these questions.

Geocomputation may be seen as analogous or

congruous to the computational science approach to

social science generally, described by Torrens (2010) as

‘‘making use of computing and informatics in exploring

the mechanisms that drive complex social, behavioral,

and economic systems’’, emphasizing themes of com-

plexity, modelling and simulation, visualization, cyber-

spaces, semantics, and socio-technical systems. In the

natural sciences, advanced computational methods have
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been deployed for modelling and simulating environ-

mental processes for many years, often as implemen-

tations of numerical models.

There is a natural fit to apply the tools of geocom-

putation to landscape epidemiology, which was

described originally by Pavlovksy (1966) as the

concept of the ‘natural nidality of human diseases’,

recognizing that the sources of human disease existed

naturally in the environment, varying with climate,

soils, elevation, vegetation, and other landscape com-

ponents. These ideas, most evident for the zoonotic

infections for which they were discovered, have also

been extended to chronic disease, and recognition of

environmental effects on health is now widespread.

Recent adaptations and extensions have been formu-

lated as ecosystem-health, which focuses on health

from an ecological perspective (Waltner-Toews et al.

2008), One Health, which emphasizes inter-related-

ness of animal and human health (Coker et al. 2011),

and wildlife health (Grogan et al. 2014; Stephen 2014),

which takes a similar approach to the protection and

promotion of healthy wildlife populations.

We present this framework as a general organizing

system for studying disease from an explicitly ‘land-

scape’ approach, one which by its nature requires

some sophistication in spatial analysis and geographic

information handling methodology. More impor-

tantly, the framework provided in Fig. 1 outlines a

knowledge-based organization of geocomputational

methods.

Characterize the assemblage

The first component of GLE is called ‘characterizing

the assemblage’ and encompasses all methods of

analysis that aim to describe a pattern or relationship.

This phase usually comes before other phases and

often will be the aim of study itself, such as to estimate

a realistic distribution of disease risk from aggregated

case data. There are two basic approaches to charac-

terizing assemblages, which correspond to the two

types of properties associated with a spatial pattern:

pattern composition, and pattern configuration. Pattern

composition includes measures that describe how

much of a quantity is distributed on the map, or

broadly answer the question ‘what is where?’ We keep

this definition broad as many of the approaches used in

geocomputational approaches to LE are aimed at

answering these types of questions. For example,

cluster detection and hotspot mapping methods are

examples of this, which might not normally be

described as measures of composition. Measures of

configuration—alternatively, seek to describe the

spatial configuration of quantities on the landscape.

Configurational measures answer the question ‘how is

x configured on the landscape?’. Answers to these

types of questions are therefore descriptions of spatial

pattern, rather than locations. Details about the

methods within this part of the framework can be

found in Table 1.

Composition

Measures of composition in this context comprise all

methods that aim to describe or characterize the spatial

or temporal distribution of risks and/or risk factors. As

this is an extremely common and broadly defined task,

this encompasses many different statistical approaches,

but all aim to quantify or explain the distribution.

Configuration

Measures of configuration contrast with those of

composition as they are aimed at quantifying the

spatial configuration of the pattern. The methods here

are used to complement compositional measures as

part of a GLE study, and often have direct epidemi-

ological relevance and can be used as covariates with

modelling methods.

Characterize functions

Characterizing functions of a system or disease of

interest with geocomputational methods differs from

the above as the focus here is on dynamic elements of

quantities of interest. Many of the methods and

approaches noted in this section are more general

than geocomputation alone, but do have important or

special considerations when implemented in a setting

where space is explicit. Functional properties include

describing inputs, outputs, and connections between

different functions that might combine to form a

complex system. As the ideas here are very general,

we have broken up the concepts into some classes,

though emphasize they area all descriptive of func-

tional characteristics, and in most cases, require that

basic characterization of the underlying landscape-

disease assemblage has already been done.
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Flows: activity patterns, trade flows, animal

movement, vector movement

Many concepts relevant for describing health in LE are

better described as ‘flows’ then factors or static

measurements of landscape properties. In our

framework, flows can be defined as methods, vari-

ables, and concepts that describe movement of a

quantity of interest in geographic and/or parameter

space. In practice, this step of analysis might be used to

develop spatial variables that are used in a study aimed

at the ‘characterize the assemblage’ step, or may be the

Fig. 1 Framework for

geocomputational landscape

epidemiology which moves

from lower level complexity

of a describing patterns,

b describing processes that

interact with those patterns,

c examining how patterns

and processes contribute to

disease risk and health-

promoting factors, and

d evaluating final

information products (maps

or other) and link these to

research gaps and

knowledge uses
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objective of analysis. Examples of flows include the

movement of mosquito vectors with climate change,

movement of cattle to markets in a region, commuting

patterns of residents of a large metropolitan area, and

the flow of capital into resource extraction industries

in individual countries or regions. While we don’t

constrain our description to physical flows (e.g.,

diurnal movement of people within the city), we

emphasize aspects of flows that can be represented and

or analyzed within a geocomputational framework.

Often, non-geographic flows have important proper-

ties and expressions that are embedded within geo-

graphic space. For example, the use of social network

analysis in recent years has increased—in order to

identify physical contact tracing and exposure/trans-

mission opportunities, but also to model the flow of

knowledge about public health-related factors such as

health-promoting activities or risk perceptions within

and between vulnerable communities.

Feedbacks

In complex systems, feedbacks are defined as those

components of a system that engage in or foster

learning and exhibit behavior. In geocomputation,

learning and behavior are increasingly relevant con-

cepts, as algorithms are developed that learn relation-

ships across space from continuous data streams

(Young 2013). Many of the dynamical models of

mathematical modelling center on feedbacks between

system components, and estimation of critical epi-

demiological parameters. While geography has tradi-

tionally been excluded or assumed away in these

models, the field of spatial statistics has developed

spatially explicit extensions to classical epidemiolog-

ical models (Riley et al. 2015). However, for LE the

majority of approaches that are focused on represent-

ing connectivity and positive and negative feedback

between system components fall into the category of

conceptual modelling approaches rather than empir-

ical/mathematical modelling. The translation of con-

ceptual models of complex systems to workable

mathematical models that can be fit to observational

data is one of the most challenging aspects of GLE. In

practice, there is often iteration between the

approaches described in Tables 2 and 3 and those in

Table 4. Feedbacks can also exist within complex

systems designed to represent a health domain that are

Table 1 Methods and information sources for characterizing compositional properties of geographic distributions

Method/technology Uses Foundational sources Software

Cluster detection and

hotspot mapping

Identifying high risk areas Kulldorff and Nagarwalla (1995),

Getis and Ord (1992) and Anselin

(1995)

SatScan; ArcGIS Spatial Stats Toolbox;

spdep package (R); surveillance

package (R)

Disease mapping

models

Creating smooth disease

risk maps

Bernardinelli et al. (1995) and

Lawson (2008)

WinBUGS; JAGS/Rjags; GeoDa;

diseasemapping package (R)

Spatial distribution

modelling

Estimating probable

distribution of disease

vectors/hosts

Breiman et al. (1984) and Phillips

et al. (2006)

dismo package (R)

Semivariogram/

spatial interpolation

modelling

Estimating spatial scale

Spatial interpolation

Creating smooth maps of

environmental covariates

Cressie (1991) and Cressie and

Wikle (2011)

gstat package (R); automap package

(R); ArcGIS

Point pattern analysis Identifying high risk areas

Describing spatial

distribution

Diggle (2003) and Badeley and

Turner (2005)

SpatStat package (R)

Geographically

weighted regression

Identifying spatial change

in risk–risk factor

relationships

Brundson et al. (1996) and

Fotheringham et al. (2002)

GWR; ArcGIS

Landscape pattern

indices (global)

Species richness

Fractional land cover

Evenness

O’Neil et al. (1988) FragStats; SDMTools package (R);

APACK; Patch analyst
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Table 2 Methods and information sources for characterizing configurational properties of geographic distributions

Method/technology Examples Foundational sources Software

Landscape pattern

indices (global)

Largest patch index

Number of patches

Edge density

O’Neil et al. (1988) FragStats; SDMTools package (R);

APACK; Patch analyst

Landscape pattern

indices (local)

Number of patches (in

neighbourhood)

Eccentricity

Boots (2003) and Long et al.

(2010)

NA

Pattern similarity

measures

How similar are two maps?

Where do two maps have

similar spatial patterns

Wang et al. (2004) and

Robertson et al. (2014)

NA

Table 3 Methods and information sources for characterizing functional flows of geographical processes

Method/technology Examples Foundational sources Software

Agent-based modelling Species’ interactions at interface areas

Evaluating control methods

Grimm et al. (2006) and Railsback

and Grimm (2011)

NetLOGO; rePast;

Nova

Cellular automata Spread of emerging infectious disease in

theoretical populations

Landscape influences on zoonotic pathogen

under various policy scenarios

Pfeiffer et al. (2008) and Ward

et al. (2009)

Raster-based GIS

packages

Spatial network

analysis/graph

methods

Flow of virus in wildlife populations across

landscape barriers

Dale and Fortin (2010) ArcGIS Geometric

Networks; iGraph;

Social network analysis Knowledge of risk factors for infectious

disease

Perception of control measures during an

epidemic

Scott (2012) sna package for R;

SocNetV

Gravity models Effect of commuting patterns on spread of

an infectious disease

Haynes and Fotheringham (1984)

and Balcan et al. (2009)

GLM in R/SPSS etc.

Table 4 Methods and information sources for characterizing functional feedbacks of geographical processes

Method Examples Foundational sources Software

Differential equations

(PDEs)

Modelling spread of zoonoses in wildlife

Epidemic modelling

Anderson and May (1979) MatLab; Maple; Wolfram

Alpha

Complex adaptive

systems

Social–ecological systems as a disease

control tool

Levin (1998) Graphical software

Machine learning Learning toponymn references within

newspaper articles

Sentiment classification during an outbreak

from text

Bishop (2006) and Gahegan

(2000)

Programming/application-

specific
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created as loosely coupled ensembles of simple

models—which are integrated with an aim of intelli-

gence, situational awareness, or monitoring.

Events

Events in the context of GLE are discrete in space and

time, and have relevance for understanding how land-

scape influences disease dynamics. The International

Health Regulations (2005) define an event as ‘‘a mani-

festation of disease or an occurrence that creates a

potential for disease’’ (IHR 2005). This includes infec-

tious disease, zoonotic disease, toxic pollution events,

and these threats to public health form the basis for the

‘Event-based surveillance’ approach described as part of

WHO’s early warning and response system (WHO

2014). Events in GLE therefore correspond to methods

and tools that are required for the handling, processing,

and analysis of information sources that provide context

or early-warning for occurrences that create potential for

landscape-oriented disease (see Table 5).

Map interdependencies

While the ‘phases’ above have focused on a catego-

rization of existing methods used in geocomputational

approaches to LE, we now turn to a phase where the

functions described in part 2 are mapped back onto the

compositional and configurational patterns described

in part 1. Here, we begin to see how interacting

components of the system are spatially structured,

which functional components share geographic prop-

erties, and what the overall controlling contribution of

landscape is to the risk profile of interest. This might

be considered an integrative or meta-analysis step as

this is rarely done within the context of a single study,

but generally is part of a review study or systems-

based empirical analysis of existing literature. There

are few formal methods available for this step, but

these types of meta-analyses or systems analysis are

typically depended on when major new health events

such as the emergence of a new disease occurs, as they

provide a holistic description of the processes that

conspired to lead to the event. A good example is

provided by Wang and Eaton (2007) which describes

the overall conditions that led to the emergence of

SARS in southeast China in 2002 including docu-

mented human-to-human spread, independent trans-

mission events from animal-to-human in four separate

cases, and animal-to-animal transmission among palm

civet cats in a market environment.

An example of a technological approach to this step

might be that of HealthMap which provides integra-

tion of reported health events obtained from the web

from all over the world (Brownstein et al. 2008).

Through scraping, geocoding, and mapping health

event data in a common platform, this platform

provides the capacity for ‘epidemic intelligence’—

using space to index health events and draw common

cause and connections where they otherwise might not

be apparent. This also provides multi-scale explo-

ration of the patterns of outbreaks, from the local to

international.

Examine outcomes

The final part of this framework is to examine the

outcomes, real or simulated, from the geocomputa-

Table 5 Methods and information sources for characterizing events in geographical processes

Method Examples Foundational

sources

Software/tools

Geographic information

extraction and geocoding

Extracting place names from articles matching disease-related

keywords

Leidner

(2008)

Twofishes;

geonames.org

Language/topic modelling Impact of changes in airline travel due to terrorist event in

relation to spread of infectious disease

Bishop (2006) Nltk for Python

Social media analysis Predicting disease level and risk perception from Twitter Signorini et al.

(2011)

NA

Web/media surveillance Integrating and mapping web-based information for infectious

disease surveillance

Brownstein

et al. (2008)

NA
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tional representation of the disease/landscape system

of interest. The task of examining the outputs of a

model can include visual analysis, pattern comparison

measures and sensitivity analyses to changes in model

parameters. Additionally, this sort of integrated inter-

pretation also considers the advances made in the non-

landscape aspects of the disease that have taken place

and may provide alternate (re)-interpretations of

patterns. For example, when a new disease emerges,

patterns of spread and distribution will be unexplained

until the natural reservoir has been isolated and genetic

work completed. The objective of this level of analysis

is to realize integrated insight into landscape–disease

interactions and risk.

Case study

What follows is a brief case study that highlights the

components of the framework in relation to a zoonotic

disease of global importance, leptospirosis (Bharti

et al. 2003). The case study is not exhaustive of the

framework phases, and includes a review of previ-

ously published work and new analysis of a large

outbreak in 2008 in Sri Lanka.

Surveillance: leptospirosis in Sri Lanka—

epidemic in notified cases

Leptospirosis is a one of the most prevalent zoonoses

in the world, affecting millions of people annually

every year. The bacterial spirochaete (i.e., leptospira)

that gives rise to the disease in humans have a large

number of animal reservoirs, including cattle, rodents

and foxes. The bacteria are passed from animal

reservoirs to the environment through urine—where

they can then infect humans.

In Sri Lanka, leptospirosis is historically associated

with rice agriculture. Transmission occurs when open

wounds or skin abrasions come into contact with urine

from infected rodents (giving rise to the local name

‘rat fever’). Diagnostic facilities are limited and the

clinical presentation is similar to Hantavirus infections

(Gamage et al. 2011; Sunil-Chandra et al. 2015), and

only a fraction of suspected cases are tested. A large

outbreak of suspected leptospirosis occurred in Sri

Lanka in 2008. The reasons for the outbreak remain

speculative, but are hypothesized to be at least

partially due to expanded cultivation of paddy field

areas that resulted from policies aimed at increasing

domestic rice production. As part of the programme

‘Api Vavamu, Rata Nagamu’, unused fertile lands

were targeted for food production among landholders,

many which had not traditionally been involved in

farming. The development of this program was a

direct response to the global rise in food prices that

began accelerating in 2007, with international price of

rice increasing 250 % between 2007 and 2008 (Kel-

egama 2010). According to the Central Bank of Sri

Lanka, rice paddy production increased 18.2 %

between 2007 and 2008 (Kelegama 2010).

There are many questions related to the causes of the

epidemic of notified cases of leptospirosis in Sri Lanka

in 2008 to be investigated, including (a) whether cases

truly were leptospirosis or a concurrent outbreak of

some other clinically indistinct outbreak as has been

theorized (Agampodi et al. 2011); (b) whether the

epidemic had strong environmental determinants—

either in higher than average rainfall, flooding, or other

factors, and whether the epidemic was predictable and

(c) what early warning could have been forecast using

available data; (d) would the epidemic have happened

had the local food production policy not been in place,

and finally—(e) what was the importance of variability

in clinical suspicion in driving the spike in reported

cases. Many of these questions have geographical

dimensions that warrant and/or necessitate a geocom-

putational approach.

Employing the framework outlined in this paper as

a guide, we will show how we could approach some of

these research questions. Starting with part 1—in

many studies where a GLE approach is employed,

variables related to local meteorology and LU/LC will

be the first step towards characterizing the assemblage

of relevance for understanding the disease distribu-

tion. In many developing countries, these variables

exist but are difficult to access or not available directly

in digital form, and researchers often rely on long-term

normals. Depending on the application, these may be

suitable candidates, but for most applications and GLE

contexts daily meteorological observations are

required (or a combination of daily and normal)—a

step that can require extensive text parsing to trans-

form the data into a format suitable for storage in a

geographic database. Note that an important precursor

to this step is to identify the spatial and temporal scales

that are relevant for the study.
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Characterize the assemblage

The key questions we will explore in this analysis

relate to the relationship between rainfall and reported

cases of leptospirosis during the peak of the epidemic

in 2008. As disease reporting occurs over the admin-

istrative units scribed for the Ministry of Health, called

Medical Officer of Health (MOH) Areas in Sri Lanka,

we need to standardize both measures over these

geographical units. The potential mechanistic rela-

tionships include at least those outlined in Table 6 so

the actual temporal lag required to investigate the

relationship between cases is a key parameter of

interest, as this could be used to determine the early-

warning value of rainfall modelling.

Methods

In order to transform daily rainfall records obtained

from the Department of Meteorology into seamless

rainfall maps for the entire country, spatial interpola-

tion modelling was performed. Previous comparative

analysis of interpolation methods found that thin-plate

smoothing splines were a generally effective method

for interpolating rainfall in Sri Lanka (Plouffe et al.

2015). Daily rainfall records were tabulated into

monthly totals for each of the 446 stations, and each

month was interpolated using TPS function in the

Fields package in R (Nychka et al. 2015). Averaging

interpolated total rainfall for each month over each

MOH area provided concurrent estimates of rainfall

and reported cases of leptospirosis over equivalent

geographical units. Surveillance data for weekly

reported cases of leptospirosis by MOH area were

aggregated by year, and standardized by population to

produce estimates of incidence per 100,000 for the

year 2008 in each geographical unit. Plots of the time

series of annual cases and the monthly rainfall maps

were compared visually. Simple cross-correlation

analysis between case counts and rainfall was used

to identify potential temporal lags of importance for

early-warning.

Results

The monthly time series of cases reveals a large spike

in cases in September 2008 (Fig. 2). The timing of this

spike is consistent with peaks in cases in previous

years, however the magnitude is much greater and

worthy of further investigation. Examining the rainfall

patterns over 2008 evident in Fig. 3, the most striking

pattern is the unseasonably intense and extensive

rainfall that occurred in March 2008. Whether this

unusually high amount of rainfall occurred was related

to the spike in reported cases on leptospirosis is

unclear. Correlation analysis revealed both positive

and negative associations between incidence and

rainfall (Table 7). The highest rank monthly correla-

tions in terms of t-statistic magnitude were July

(positive), March (negative), and April (positive). The

magnitudes of the correlations were not high; indicat-

ing limited predictive potential at least at the scales

investigated here. Direct comparison of month-to-

month correlations would provide a more robust

indicator of the relationship—however power is also

reduced due to the smaller numbers and smaller effect

sizes. Month-to-month cross correlations indicated

both positive and negative associations (Fig. 4). While

some interesting spatial patterns emerge from this

analysis, the evidence is insufficient to explain the

outbreak in 2008, as key information is missing. Note

that our previous modelling work of landscape factors

related to clusters of high risk found associations

between paddy areas, small agricultural holdings,

distance to cities and distance to rivers (Robertson

et al. 2012).

Table 6 Hypothesized rainfall–leptospirosis relationships in Sri Lanka

Mechanism Description Temporal lag

Rodent populations Increased rainfall during the monsoon season creates abundant food sources and optimal

reproductive conditions for rats

6 Months to a year

Flooding Rainfall-induced floods displace rats into environments where they have more frequent

contact with humans

Days to weeks

Agriculture and/or

exposures

Seasonal variation in rainfall that determines agricultural activities that put people at

greater risk of exposure to contaminated surface waters

Months/drives

seasonal pattern
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Characterize functions

With a basic description of the reported leptospirosis

surveillance data now in place, we can move to use

this example to motivate additional analyses within

the GLE framework that would improve our under-

standing of the dynamics of risk and the causes of

the outbreak. The analyses reported in the section

above indicated some evidence for a relationship

driving at least the endemic cycle of cases, an

anomalous event in September 2008 which does not

have an obvious rainfall signal, and evidence of

spatial variability in the relationships, suggesting

perhaps both rural agriculture risk profile and a peri-

urban risk profile combining to produce the risk

landscape in 2008. A functional analyses would

examine the flows, feedbacks, and events that would

describe the movement of people, their interaction

with the health care system and care-seeking

behaviours, application of control mechanisms, dis-

tributions of animal reservoirs and their habitats or

production chains in the case of livestock, and

individual interactions with paddy fields. As these

forms of data are much more difficult to obtain than

those used in the previous section, a dynamic

modelling approach using individual-based models

would allow for exploration of the parameter space

in a way that we could test alternate scenarios that

might lead to the observed pattern.

We may also investigate specific events that

occurred in September 2008 that may explain the

spike in reported cases. For example, the year 2008

saw heavy fighting as the Sri Lankan Army

engaged in an offensive military push to end the

civil war with the Tamil Tigers (LTTE) that

controlled much of the territory in the north of

the country. In early September, the Sri Lankan

Army captured the town of Mallavi that served as

Fig. 2 Monthly

distribution of reported

cases of leptospirosis in Sri

Lanka, 2008
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an administrative centre for the LTTE. Further

study could investigate the impact of these events

on disease risk and disease reporting.

Map interdependencies

Examining the surveillance data, the largest number of

reported cases in September was reported from the

Homagama area; part of the Colombo District in

Western Province. This represents a 445 % increase

over the next highest reported month in this district,

which otherwise follows expected seasonal dynamics.

The cause(s) of this spike remains to be investigated,

and could range from a simple data entry error,

misdiagnoses, to linkages with the activities associ-

ated with the end of civil conflict in the north. Looking

at the weekly surveillance data, the fact that these

cases were relatively evenly distributed across the

weeks suggest a disease-causing event did occur

during this time frame.

Examine outcomes

In order to obtain system-level inferences on the

leptospirosis-landscape system being investigated

here, several additional studies would be required.

Fig. 3 Monthly total rainfall estimates in Sri Lanka, 2008

Table 7 Monthly correlations between rainfall and annual

incidence of reported leptospirosis in Sri Lanka, 2008

Month Pearson’s R t value Rank

January -0.07 -1.071 11

February -0.052 -0.79 12

March -0.24 -3.734 2

April 0.215 3.346 3

May 0.186 2.871 7

June 0.186 2.872 6

July 0.24 3.766 1

August -0.179 -2.774 8

September 0.14 2.2 9

October 0.134 2.062 10

November -0.203 -3.149 4

December -0.194 -3.01 5
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We would suggest that these ‘higher-level’ inferences

tend to be qualitative in nature, collaborative in their

genesis, and built from shared interpretations of the

more quantitative approaches to analyses described

earlier. This aspect of analyses, though rarely formally

articulated, should constitute a significant step in GLE,

especially given the highly multi and interdisciplinary

nature of team-based research projects including

ecologists, biologists, veterinarians, geographers, and

social scientists. Knowledge translation activities that

include workshops, videos, tutorials, and others that

optimally translate scientific knowledge to user-com-

munities and knowledge-users is a critical integrative

step for realizing ‘decision-support’ capacity of

advanced spatial and statistical modelling efforts.

Conclusions

We have presented a framework for GLE that provides

a categorization of methods commonly used to

investigate landscape–disease interactions, can be

used to design and frame future studies, and to provide

a functional mapping between knowledge uses and

methods. The framework is general and extendable,

and will situate stronger research design for spatially

focused projects in LE. Additionally, the framework

may be a useful educational tool for introducing

newcomers to the extensive library of models and

methods available for spatially explicit data. This may

enhance multidisciplinary research teams working on

complex disease–landscape interactions.

Fig. 4 Cross correlation of

reported cases of

leptospirosis and rainfall at

the monthly scale in Sri

Lanka, 2008 (red negative,

white no correlation, blue

positive) for a 0 to f 5 month

lags. (Color figure online)
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