
https://doi.org/10.1007/s10707-022-00485-y

Test-data generation and integration for long-distance
e-vehicle routing

Andrius Barauskas1 ·Agnė Brilingaitė1 · Linas Bukauskas1 ·Vaida Čeikutė1 ·
Alminas Čivilis1 · Simonas Šaltenis1

Abstract
Advanced route planning algorithms are one of the key enabling technologies for emerging
electric and autonomous mobility. Large realistic data sets are needed to test such algo-
rithms under conditions that capture natural time-varying traffic patterns and corresponding
travel-time and energy-use predictions. Further, the time-varying availability of charging
infrastructure and vehicle-specific charging-power curves may be necessary to support
advanced planning. While some data sets and synthetic data generators capture some of the
aspects mentioned above, no integrated testbeds include all of them. We contribute with a
modular testbed architecture. First, it includes a semi-synthetic data generator that uses a
state-of-the-art traffic simulator, real traffic volume distribution patterns, EV-specific data,
and elevation data. These elements support the generation of time-dependent travel-time and
energy-use weights in a road-network graph. The generator ensures that the data satisfies
the FIFO property, which is essential for time-dependent routing. Next, the testbed provides
a thin layer of services that can serve as building blocks for future advanced routing algo-
rithms. The experimental study demonstrates that the testbed can reproduce travel-time and
energy-use patterns for long-distance trips similar to commercially available services.

� Simonas Šaltenis
simonas.saltenis@mif.vu.lt

Andrius Barauskas
andrius.barauskas@mif.vu.lt

Agnė Brilingait
agne.brilingaite@mif.vu.lt

Linas Bukauskas
linas.bukauskas@mif.vu.lt

Vaida Čeikutė
vaida.ceikute@mif.vu.lt

Alminas Čivilis
alminas.civilis@mif.vu.lt

1 Institute of Computer Science, Vilnius University, Vilnius, Lithuania

Geoinformatica (2023) 27:737–758

Received: 14 October 2021 / Revised: 17 November 2022 / Accepted: 20 December 2022 /

© The Author(s) 2023
Published online: 26 January 2023

http://crossmark.crossref.org/dialog/?doi=10.1007/s10707-022-00485-y&domain=pdf
http://orcid.org/0000-0002-9760-3566
http://orcid.org/0000-0001-9768-4258
http://orcid.org/0000-0002-9781-9690
http://orcid.org/0000-0002-2046-6110
mailto: simonas.saltenis@mif.vu.lt
mailto: andrius.barauskas@mif.vu.lt
mailto: agne.brilingaite@mif.vu.lt
mailto: linas.bukauskas@mif.vu.lt
mailto: vaida.ceikute@mif.vu.lt
mailto: alminas.civilis@mif.vu.lt

Keywords Semi-synthetic data generation · Testbed · Electric vehicle · Long-distance EV
routing · Time-dependent road network

1 Introduction

Like many areas of human activity, transportation is undergoing a profound transformation
influenced by the continued digitalization of all aspects of the field. The change is driven
by the emergence of new automotive technologies and business models, such as electric and
autonomous vehicles, and ridesharing. For example, the efficiency of a fleet of autonomous
electric vehicles will be highly dependent on effective routing and scheduling algorithms.
Such algorithms will, in turn, depend on data-driven travel-time and energy-use predictions.
Furthermore, as real-world routing problems are often formulated as multi-objective opti-
mization involving multiple constraints, the optimal algorithms are intractable; thus, only
heuristic algorithms are possible [1]. Only extensive experimental studies on large datasets
and workloads can verify the efficiency and efficacy of such algorithms.

Real test datasets are readily available only at very few commercial service providers
such as Google, TomTom, or HERE. Furthermore, making any such data sets public is often
burdened by privacy concerns. This means that research on advanced routing algorithms in
academia either has to resort to simplistic synthetic test data and workloads or, more often,
is not tackled at all, looking instead for more accessible problems.

Research studies that do explore advanced routing problems expend much effort to pre-
pare their experiments. For example, to implement Eur-PTV and Ger-PTV benchmarks [1],
the following data from different sources were preprocessed and integrated: road network,
elevation information, energy consumption, road traffic data, and locations of charging sta-
tions. In another study [2], to perform real-world experiments, the simulation framework
[3] was extended, and traffic patterns were taken from LuST Scenario data [4].

This paper aims to do the tedious but necessary legwork for the road-network algorithms
community. While there are a few traffic simulators and general-purpose spatial and graph
data generators, we provide, to the best of our knowledge, the first comprehensive data
generator and testbed for experimentation with advanced routing algorithms, particularly,
algorithms for e-vehicles (EVs).

Consider a long-distance EV routing query to understand the richness and complexity of
the data required by real-world routing algorithms. Such a query has to take into account
the predicted traffic to estimate both the expected travel time and the expected energy con-
sumption. Also, to plan charging stops, the algorithm has to use the latter information as
well as information about the availability and power of chargers. Both the expected traf-
fic and the expected availability of chargers are time-dependent (TD). Traffic volume and
charger demand have peaks depending on the time of day, weekday, month, season, or other
factors. Furthermore, we argue that any realistic long-distance routing system has to work
with the inherent uncertainties of predictions. Thus, the travel time, the consumed energy,
and the time waiting for charging are all modeled as intervals of expected values.

The contributions of this work are threefold. The paper contributes with a modular archi-
tecture and a data preparation workflow to generate realistic semi-synthetic EV-specific TD
traffic data that captures uncertainty. Next, we provide a layer of services on top of the gen-
erated data to be used as building blocks of future advanced routing algorithms. Another
contribution is identifying necessary data sources and tools, and the main lessons learned by
integrating them. Finally, the experiments indicate that the proposed environment provides

738 Geoinformatica (2023) 27:737–758

data patterns similar to commercial ones. Hence, the environment enables testing of the TD
routing of EVs.

This paper extends our preliminary work [5] by providing more comprehensive descrip-
tions of all the stages of data generation, covering an important topic of ensuring that
the so-called FIFO property holds for the generated data, and reporting on additional
experiments.

The remainder of the paper is structured as follows. Section 2 gives a brief overview of
related work. Section 3 introduces the theoretical background, testbed architecture, and the
main steps of semi-synthetic data generation. Section 4 gives more specific implementation
details. Section 5 presents the experimental evaluation of the testbed. Finally, Section 6
concludes the paper and discusses possible future work.

2 Related work

Developing a testbed for EV routing requires modeling traffic data and estimating travel
costs (time and energy). Data for such estimation can be either retrieved from the existing
commercial platforms, provided by other research projects [6], or generated using traffic
simulators. We survey them in turn.

Several studies apply statistical and machine learning methods to forecast travel time
and future congestion using Google Maps data. Traffic conditions on monitored locations
are identified by capturing a traffic layer image and identifying color data on road seg-
ments: green, yellow, red, and dark red [7, 8]. Another approach, proposed by Zafar and
Haq [9], is to use an Estimated Time of Arrival. They classified traffic states into five
categories: smooth, slightly congested, congested, highly congested, and blockage. A sub-
stantial amount of data has to be collected to apply machine learning algorithms. Pramanik
et al. [8] monitored traffic conditions for selected intersections and roads with 30-sec
intervals for six months; Zafar and Haq [9] gathered data for three months.

Another possible approach to forecast traffic situations is to use historical GPS traces.
Sapre et al. [10] employed raw GPS traces available in OpenStreetMap (OSM) to create a
mobility model of the city. The model of traffic demand is the percentage of trips between
two regions of the city to the total number of available trips. Traffic demand was scaled up
to mimic the city vehicle population and was used to run a simulation in SUMO (Simulation
of Urban MObility) [11]. Simulating such synthetic traffic data using the SUMO simulator
and available GPS traces is a complex task. One has to preprocess GPS traces and OSM data
before integrating them with SUMO. Raw GPS data preparation consists of several steps:
identification of separate trips, map-matching GPS points to the nearest point on the road,
and filtering of the trips. OSM data were adjusted by adding orientation and order to each
segment. The limitation of this approach is GPS data availability, especially if traffic has to
be generated for the whole country or continent, and data preprocessing.

This paper uses the Google Maps service for speed calibration purposes. The work
focuses on open traffic data generation using a traffic simulator and congestion estimation
based on typical traffic profiles.

Brinkhoff [12] pioneered a framework to generate moving objects on a road network. It
allowed the user to define various properties of object classes, e.g., the number of moving
objects and speed limits of road segments. Nevertheless, the framework did not consider
microscopic traffic models, e.g., traffic lights, lane changing, and car following. Therefore,
produced vehicle movements might be unrealistic. In contrast, the open-source micro-
scopic traffic simulation tool SUMO [13] handles large-scale road networks by design. It

739Geoinformatica (2023) 27:737–758

supports different types of moving objects, e.g., pedestrians, cars, and trains; it models lane-
changing and car-following behavior. The tool is flexible and highly configurable, providing
many features to generate desired and close-to-real traffic data. Another publicly available
microscopic traffic simulator introduced by Yu et al. [14], GeoSparkSim, integrates the
Spark-based spatial data management system GeoSpark [15]. Due to its scalability, data
preparation and simulation time is superior to other existing solutions, including the SUMO
simulator. SMARTS [16] traffic simulator allows data calibration by adjusting simulation
parameters. It is recommended to run the simulation with different adjustments until the
simulated data matches the actual data. AlDwyish et al. [17], when using the SMARTS sim-
ulator for navigation services, retrieve authentic traffic snapshots periodically and use them
to validate and calibrate the simulation.

In this work, initial traffic data was generated using SUMO due to a wide range of avail-
able features, including the Vehicle Energy Model, needed to evaluate energy consumption
along the given route.

Long-distance EV routing queries should consider battery recharging, and the data model
should include charging stations. Baum et al. [18] augment the original road network graph
with the charging-station sub-graph. Charging stations are represented as vertices, and each
such vertice has a predefined state of charge range. This feature allows the implementation
of charging restrictions caused by technical charging-station characteristics (e.g., regular or
battery-swapping station) or user preferences. Edges in the charging-station sub-graph are
energy-optimal paths between charging stations.

When an EV arrives at a charging station, it cannot be assumed that it will always find
an available charger. Live and historical charger availability data will become an essential
part of the data foundation for advanced route-planning algorithms. Thus, our Charging
Stations component calculates charging and waiting time intervals at a particular station.
Each charging station has a set of chargers with charging functions, a TD availability profile,
and a set of coordinates.

3 Semi-synthetic data generation and testbed API

First, we present the theoretical background, architecture, and the main functionality of the
proposed testbed. Then, Sections 3.3–3.6 describe the generation of semi-synthetic data.
Finally, the FIFO property is discussed.

3.1 Background

A road network is based on a directed graph G = (V ,E), where V and E represent vertices
and edges, respectively. Each edge e ∈ E is a pair (u, v) where u and v are the start and
end nodes of the edge, u, v ∈ V . The edge represents a road segment seg, i.e., a polyline
along the road with geographic properties. Notation |seg| is used for a segment length.
Path P is a sequence of adjacent edges representing the trip from start s to destination d.
P = 〈e1, . . . , eN 〉, where ∀i < N : ei .v = ei+1.u ∧ s = e1.u ∧ d = eN .v.

Electric vehicle EV has three essential features: b is an EV battery capacity, fc is a
charging function, and fe is an energy consumption function. The energy consumption along
the trip that started with the state of charge (SoC), Sc, is modeled as interval �c as it is an
uncertain quantity.

In the time domain T , notations �t and t = (t�, t�) represent duration interval and time
interval of the day, respectively. For example,�t =(15 min, 17 min), and t =(13:00, 13:30).

740 Geoinformatica (2023) 27:737–758

The charging is available at charging stations. A set of charging stations is represented by
CH. Waiting and charging times of the charging station ch are represented by time intervals
�t , and they depend on the daytime intervals, t .

The use of intervals to model travel time, energy use, and waiting time stem from a vision
of a routing or trip-planning system that relies on data-driven prediction. In the prediction
module of such a system, intervals would be computed as confidence intervals according to
some confidence threshold. Routing and planning algorithms would then conveniently work
with these predicted intervals.

3.2 Testbed architecture and functionality

As described in the introduction, generating and managing the test data calls for a multi-
component architecture (see Fig. 1).

First, driving speed depends on the traffic at a particular time. Therefore, the TD Traffic
Information component requires Traffic Simulation data and TD Traffic Statistics to define
the parameters of road edges. Second, energy consumption depends on the physical road
properties and the EV type. Thus, the Energy Consumption component includes elevation
data and the consumption function that uses the EV properties as its parameters. Finally,
long-distance EV routing requires charging stops along the road. Hence, the component of
Charging Stations is supported by TD availability data of charging stations and charging
function that uses the parameters of EV type.

While the main contribution and focus of this work is the generation of semi-synthetic
data, we also propose a thin layer of services. Such services query and aggregate the data
and can be used as the building elements of advanced routing algorithms. Figure 2 presents
five API functions with optional parameters marked by �. Function findPath uses a TD
router to construct a path P from the start s to the destination d and estimate the expected
trip duration interval, �t , and the expected energy consumption interval, �c, when leaving
sometime during the t time interval. The starting time is given as an interval, which is
helpful if the function computes a leg of a longer route. For example, if a leg is a path
between charging stops, then for the second leg and later legs, the departure time is usually
uncertain, represented as an expected interval. If the initial SoC of the EV battery, Sc, is

Fig. 1 Components of the testbed architecture

741Geoinformatica (2023) 27:737–758

Fig. 2 Testbed API

given, the returned �c is the final expected interval of the SoC of the battery rather than the
consumed energy.

Function calcPath is calculates the same travel estimates on an already known path P .
Function findClosestStations returns a set of charging stations CH ∗ containing the stations
within a Euclidean buffer δ around path P and reachable by EV when starting on the path
with Sc. If parameters EV and Sc are not given, the function simply returns all stations
within a buffer of the path. Finally, functions calcWaitingTime and calcChargingTime return
the waiting-time and charging-time intervals �t at charging station ch for EV . A waiting
time interval depends on the daytime interval when the EV reaches the charging station.
Also, a charging time interval depends on the SoC before starting the charging process. The
target SoC, ct , can be provided and the achieved SoC, ca , is returned.

3.3 Map and traffic data

The traffic data preparation process is shown in Fig. 3, where the process steps are in the
leftmost and rightmost columns of the figure, while the resulting data is modeled in the
second and third columns of the diagram. During the road network (RN) preparation, first,
map data is filtered, leaving only car roads. Next, the road network graph is made routable
(a directed graph), and finally, routable network segments are augmented with length data
and free-flow speed data (speed-limit data). This information is available at varying degrees
in most existing map data sources and can be used to build a static road-network graph.
Next, two primary sources are used to generate semi-synthetic TD weights of road-network
segments (TD segment). TD traffic statistical data for a given region describes how traffic at
large changes relative to the time of day. This property is essential to derive a traffic profile

Fig. 3 Traffic data preparation

742 Geoinformatica (2023) 27:737–758

(described in more detail later). Then, network segments are augmented with congestion
speed data, i.e., either actual statistical data, if available, or synthesized data generated by
the Traffic Simulator. Finally, the results of simulations are calibrated using commercial
traffic data providers.

We use maps from the geographical information participatory project OpenStreetMap
(OSM, [19]) for our testbed. The necessary region is directly downloaded from the repos-
itory [20]. The OSM map data includes geographical information, while traffic modeling
and routing require just road-network data. An associated command-line tool osmfilter
is used to manipulate and process large raw OSM data files and filter them for specific tags.

OSM network is not routable and has to be converted into a graph representation. The
Java-based application osm2po [21] performs the conversion and can work on continent-
wide networks. It outputs SQL INSERT scripts for a relational database management
system. Executing the generated SQL scripts creates the edge and node tables containing
the routable network data, such that each edge has links to source and target nodes in the
node table.

3.4 Traffic data simulation and calibration

As shown in Fig. 3, semi-synthetic TD segment weights are composed of three types of
information: edge-specific minimum traffic speed, edge-specific maximum traffic speed,
and region-wide TD traffic volume distribution. Given the time of day, they are used to cal-
culate edge-specific traffic speed as a weighted average of the minimum and the maximum
traffic speeds of a segment. In our testbed, the maximum speed is the free-flow speed from
OSM. The minimum speed is derived from congestion modeling using the open-source
traffic simulator SUMO [11], and TomTom is the source for the TD traffic volume distribu-
tion. First, we discuss the main challenges of using SUMO and then cover TomTom traffic
volume distribution.

SUMO takes a routable network as data input for traffic simulation and augments
it with simulated traffic data. The testbed routable network is fed to SUMO using the
netconvert tool. The simulation output is a travel time for each segment on the routable
network during peak hours.

To perform a simulation using SUMO, the whole map is divided into regions. Each region
is simulated separately as the population size and, consequently, the number of trips differ.
The random traffic generation method [22] of the SUMO tool randomTrips is used. This
method allows choosing different weights affecting the probability of selecting a segment
for routing. Segment length is used as a weight; thus, dense regions like city centers get more
traffic. Finally, the number of trips is calculated proportionally to the region’s population
size and distributed in an interval from 0 to 3600 seconds using the SUMO randomTrips
tool.

Region-wide TD daily traffic volume distribution can be sourced from the traffic data
providers such as TomTom. TomTom’s Traffic Index data contains detailed historical data
on traffic congestion levels worldwide. Congestion level shows travel time increase during
a specific hour of the day compared to the free-flow situation. The year 2019 and a specific
testing weekday, Tuesday, were chosen for our testbed. Any other weekday except Saturday
and Sunday is appropriate for such a model. In accordance with transport-modeling good
practice, Monday and Friday are also excluded due to different traveling patterns on these
days. Figure 4 presents aggregated congestion cost coefficients for the whole of Germany,
while separate daily traffic patterns are used to model traffic in major cities of Germany.
In Fig. 4, value 1 on the y-axis represents maximal congestion (minimal traffic speed) and

743Geoinformatica (2023) 27:737–758

Fig. 4 Relative Tuesday’s traffic volume distribution in Germany

value 0 corresponds to the free-flow situation with no congestion or other adverse conditions
(maximum traffic speed). Free-flow speed, congestion speed, and congestion coefficient at
a given time of day, t , are the parameters to calculate the traffic speed at t .

Definition 3.1 Each TD road segment is modeled as a 4-tuple seg = (geo, vf , vc, tp) ∈ TS
where geo = 〈n1, . . . , nm〉 is a sequence of geographic coordinates, ni , representing the
road segment, vf is a free-flow speed, vc is a congestion speed, and tp = {(t, cost) | t =
[t�, t�) ∧ cost ∈ (0; 1]} represents the traffic-profile cost coefficients during time intervals
of the day. The half-open intervals in tp are disjoint and cover the whole day. Function
v : T × TS → R returns the traffic speed at time t ∈ T for a segment seg ∈ TS, where TS
represents a set of TD segments.

Travel speed along the segment seg is a time function v(t, seg) and varies between the
two extremes. This is modeled via the cost(t) function defined by the traffic profile (see
Fig. 4):

v(seg, t) = seg.vf − (seg.vf − seg.vc) · cost(t),
where cost(t) = cost1 · t − t�

t� − t�
+ cost2 · t� − t

t� − t�
, (1)

such that (t, cost1) ∈ seg.tp ∧ (τ , cost2) ∈ seg.tp ∧ t ∈ t ∧ t� = τ�.

Note that cost values are linearly interpolated, such that cost(t) is a continuous function.

Example 1 Let us assume an EV starts to travel at 6:20 along segment seg, where
segment seg = (geo, 13.89, 7.39, tp). Therefore, a free-flow speed is 13.89 m/s (50
km/h), and a congestion speed is 7.39 m/s (26.6 km/h). Let us assume the traffic pro-
file is a set tp = {((00:00, 01:00), 0.09), . . . , ((6:00, 7:00), 0.45), ((7:00, 8:00), 0.76), . . . ,
((23:00, 00:00), 0.14)}. Time profile divides a day into one-hour intervals. At 6:00 cost
value is 0.45, at 7:00, cost = 0.76, and at 6:20, according to (1), cost = 0.55. Then traffic
speed at 6:20 along seg is equal to 10.29 m/s (37.1 km/h).

Assuring realistic generated data requires calibration of both the free-flow and con-
gestion travel times. The calibration is implemented via two coefficients that multiply
the congestion and free-flow speeds. The two coefficients are calculated by comparing
simulated travel times with Google Maps travel times. First, two sets of routes were gen-
erated, inside cities and out of cities, for congestion and free-flow travel-time calibration,
respectively. Second, travel times are computed at peak hours for the inside-cities set and
off-peak hours for the out-of-cities set. Finally, the two generalized adjusting coefficients
are obtained.

744 Geoinformatica (2023) 27:737–758

Fig. 5 Domain model of traffic data and energy consumption

3.5 Data for energy consumption estimation

Energy consumption (EC) along a given route is estimated by adapting the Vehicle Energy
Model (VEM) as introduced in the SUMO simulator [23]. In addition, the EC model con-
siders traffic information discussed in Section 3.4 to estimate TD energy use along the route
(see Fig. 5).

Energy consumption calculation uses two types of parameters, i.e., vehicle-specific and
road-network dependent.

The following EV characteristics are employed (see Fig. 5): battery, vehicle mass, front
surface area, air drag coefficient, an internal moment of inertia, radial drag coefficient, roll
drag coefficient, propulsion efficiency, recuperation efficiency, and constant power intake.
The constant power intake parameter could be extended and vary based on weather con-
ditions for more precise modeling. The EV characteristics can be collected from various
sources, including car manufacturers and EV enthusiasts that try to measure multiple param-
eters of their vehicles under specific conditions. The core road-dependent parameters, the
slope and the radius, are precomputed for each EC segment and stored in the database. In
addition, the segment inherits free-flow speed, length, and congestion speed and contains
node coordinates (see RN, TD, and EC segments in Fig. 5).

CGIAR-CSI SRTM 90 m Digital Elevation Data [24] or other isosurface data sources
can be used to calculate the slopes. Segment geometry is used to compute each segment
length and radius. We deem the slope and the radius as the essential terrain approximation
parameters. A single road segment might have several bends and/or hills. So to have a
more precise energy model, each segment could be split into sub-segments based on these
geometrical features.

3.6 Charging and waiting times at charging stations

The testbed component Charging Stations is responsible for storing charging-station data
and calculating charging/waiting time at a particular station. Each charging station (see
structure CHStation in Fig. 6) contains chargers and a TD availability profile (structure
CHProfile in the Figure). The station also encompasses geographic coordinates (location),
as it has to be mapped to the road network. There could be other features. For example,
the parking can be free of charge, available 24/7, or located in a closed area; also, some

745Geoinformatica (2023) 27:737–758

Fig. 6 Domain model of charging stations

stations can have a connection fee. Similarly, the charging price can also be a parameter.
These features can be used to set up user preferences for routing, but this paper considers
only TD data, charger characteristics, and location.

The station can contain several chargers, and each charger is described by a connector
type, power, and its availability profile. Charging station characteristics can be retrieved
from charging service providers and other open data. The testbed integrates data from Open
Charge Map [25].

Figure 7a presents two charging functions for 65 kWh battery—default and measured by
observation. The charging function depends on EV features and charger properties (see EV
type block on the right in Fig. 6). First, some EV types are limited by their own maximum
charging power, maxPower, and predefined connection type, connType. Second, the charg-
ing process is slower when the battery’s SoC is below 20% and above 80%, especially in
the case of rapid charging. This protects the health of the battery. Charging functions are
retrieved from open data available on the internet and integrated into the testbed. For exam-
ple, for a number of EV types, the Open EV Data [26] project provides maximum power
and power at different points of charging (piece-wise linear function) for different chargers.

The availability of a charging station or an individual charger can be represented by a
piece-wise linear function of time. While the station can be available all day long, the partic-
ular charger availability might depend on its type. For example, in rural areas fast charging
could be of no interest late in the evening, with a high probability that the station is available.
Features like type, e.g., rural areas, and weekdays, e.g., Sunday and Saturday, define a par-
ticular availability profile. Figure 7b illustrates charging patterns in the Netherlands [27] for

Fig. 7 Charging functions of two different 65 kWh batteries [26] and charging demands

746 Geoinformatica (2023) 27:737–758

private, public, and workplace charging points on workdays. The figure shows the percent-
age of charging cases throughout 24 hours. For example, at 9:00, the need for power is very
high at workplaces. At night the number of charging times is low in all cases. Therefore, the
availability profile can be constructed based on observation data with a high probability of
a waiting time that depends on the charger power.

We propose calculating typical waiting time intervals for charging stations and applying
usage profiles afterward. Algorithm 1 encapsulates the proposed heuristics to calculate a
typical waiting time interval, wt , at a charging station, ch, supporting fast charging (power
output ≥ 50 kW).

Algorithm 1 Heuristic calculation of waiting time intervals.

The algorithm considers several chargers of the same type, N , at the charging station and
a typical charging time, K (from almost empty to a maximum allowed state of charge for
this charging type). The latter value is chosen as a reference point, as the exact charging time
depends on EV battery, e.g., rapid charging (≥ 150 kW) takes 15 minutes, and fast 50 kW
charging takes 40 minutes (40 kWh battery). The algorithm also uses two global constants,
lower and upper bounds, L and U , to distinguish charging stations based on the number of
chargers of the same type. Bound L represents a satisfactory number of chargers, e.g., 4,
and bound U represents a big number chargers, e.g., 10 in dedicated areas.

First, the interval wt is initialized with values (0,K), as wts and wte represent the mini-
mum and maximum charging time, respectively. Then, two additional values are calculated.
Value � represents the interval part divided by the number of chargers, and value ∇ repre-
sents half of the interval. If the number of chargers is small (line 7), it might take time to
wait, and the interval values are increased (the minimum waiting time is half of the initial
interval length, and the maximum waiting time is shifted by �, too). If the number of charg-
ers is satisfactory (line 9), the interval length is smaller but shifted by �. If the charging

747Geoinformatica (2023) 27:737–758

stations contain a lot of chargers of a particular type, the waiting time interval is short, and
the minimum waiting time is 0.

The last part of the algorithm considers the closeness of the station to the highway. The
interval ends are shifted if the highway is close to the station as it might be in demand.

The availability profile of the charging station defines the demand during different times
of the day. Therefore, waiting times should differ. We assume that the availability profile
stores a coefficient p for each discrete time value of the given granularity, e.g., each hour.
For each timestamp, the coefficients of two adjacent time values are interpolated, similarly
to the cost function (see (1)). Then, waiting time is calculated using (2).

wt = (wts + (wte − wts) · p, wte + wte · p) (2)

If p = 0, waiting time is the default one, and if the charging demand for a particu-
lar time is decreased (p < 0), values of the interval are decreased, too. In the testbed,
p ∈ [−1; 0.5] (negative values are ceiled to 0 during calculations). The coefficient value
sequence is created to reflect profiles of charging stations identified by ElaadNL [27].

Waiting times for slow charging can be calculated using other heuristics. As mentioned
above, they have different profiles and demands. Slow charging can take several hours, and
an occupied charger means a long waiting time. This property would significantly increase
path costs in routing algorithms and is, thus, out of the scope of this work.

3.7 The FIFO property

To realistically model time-dependent travel times, the generated data must satisfy the FIFO
property. The property, assumed by most work on routing in time-dependent road networks,
is a natural requirement that, while vehicle B leaving at a later time than vehicle A can
take less time to traverse a path, B nevertheless can not arrive sooner than A [28, 29].
If this property were not satisfied for a single segment of a road network, optimizing the
earliest arrival time at the end of that segment may require simply stopping and waiting
at the beginning of the segment so as to get short travel time for that segment and, in this
way, overtake the cars that entered the segment earlier. This contradicts common sense and
reduces pruning opportunities in routing algorithms.

In the following, we discuss when FIFO could be violated in synthetically generated TD
weights of a road-network graph. We then show how we ensure that it is not violated both
for the road-network TD weights and the waiting times of the charging stations.

There are several reasons why FIFO might be violated in traffic simulations. The
segment-based simulation assumes that a vehicle drives at a constant speed on the entire
simulated segment. The travel speed is determined by the speed function using a traffic pro-
file (see Def. 3.1). Let us assume two e-vehicles EV1 and EV2 start a trip along segment
seg at time t�1 and t�2 , respectively, where t�1 < t�2 . E-vehicles EV1 and EV2 drive at speed
v1 and v2, respectively. As both vehicles are simulated using constant speed starting from
the segment start, the i-th vehicle will reach the segment end at time t�i (see (3)).

t�i = t�i + |seg|
vi

, i ∈ {1, 2} (3)

The FIFO property would be violated if t�1 > t�2 , i.e., vehicle EV2 which started later
were to reach the segment end sooner than EV1.

This condition can be easily violated if speed was modeled as a step function. If that were
the case, we could find two very close time points t�1 and t�2 (�t = t�2 − t�1) and while �t

748 Geoinformatica (2023) 27:737–758

Fig. 8 Example of the step function

could be made arbitrarily small, the speed difference remained constant �v = v2 − v1 = C

(see Fig. 8.) If �t is almost zero, the FIFO violation condition can be simplified as follows:

|seg|
v1

>
|seg|
v2

⇒ 1

v1
>

1

v2
(4)

This shows that FIFO will not be satisfied when speed values increase in the speed profile
(v2 > v1). This problem can be solved by eliminating the step function using interpolation
and replacing it with a piece-wise linear speed profile function. In our work, this is achieved
via a piece-wise linear cost function (see (1)). Then, �t → 0 implies �v → 0.

Piece-wise linear speed profile function alone does not guarantee the FIFO property.
Segment-based simulation assumes that vehicle speed is constant on the entire segment, i.e.,
equal to the speed at the time the EV enters the segment. Thus, EV2 that enters a segment
later than EV1 but with a higher speed will always take over EV1 in a sufficiently long
segment. Violation of FIFO can be rewritten as presented in (5).

t�1 + |seg|
v1

> t�2 + |seg|
v2

⇒ |seg|
v1

> �t + |seg|
v2

⇒ �t <
|seg|
v1

− |seg|
v2

(5)

The time difference between two vehicles starting on the same segment is represented
by �t . Thus, one way to guarantee the FIFO property is to check segment lengths. Let
a = �v/�t be an “acceleration” value of the speed profile at a given time, then FIFO
violation condition from (5) can be rewritten as a segment length estimation:

�t < |seg|(1

v1
− 1

v1 + �v
) ⇒ |seg| >

�t

�v
(v1

2 + v1�v) ⇒ |seg| >
v21

a
+ v1�t (6)

Equation (6) shows that the maximum FIFO-compliant segment length depends on the
used speed and speed profile acceleration at a given time. To find the lower bound of the
maximum FIFO-compliant length of a given segment (lb(|seg|max)), we assume �t to be
close to zero and disregard the second term of the sum. Further, taking the possible range of
speeds on the given segment—from seg.vc to seg.vf—and combining it with the largest cost
decrease per time unit using (1), we get the largest acceleration for this segment (amax(seg)).
Thus:

lb(|seg|max) = seg.v2c
amax(seg)

(7)

749Geoinformatica (2023) 27:737–758

Such a bound can be easily computed for each segment. If there is a segment that is too
long, it is broken in two or more pieces to guarantee the FIFO property.

Example 2 Let us assume a free-flow speed, vf , is 19.44 ms/s (70 km/h) and congestion
speed, vc, 1.39 m/s (5 km/h) along some segment. According to the speed values in the real
data speed profile, the biggest speed increase (and accordingly the biggest profile accelera-
tion value) is from 18:00 to 19:00 (see Fig. 4), where cost coefficient cost(t) changes from
0.638 to 0.397, and simulated traffic speed changes from 7.9 m/s (28.5 km/h) to 12.28 m/s
(44 km/h), respectively (see (1).) The profile’s speed acceleration amax is 0.0012 m/s2 in
this period of time. Thus, according to (7), the segment can be up to 7.92/0.0012 m, i.e., 52
km long without breaking FIFO.

It is easy to see that, if FIFO is not violated on every single segment of a path, then FIFO
is not violated on the entire path. If two vehicles enter segi with a positive time difference
�ti , the time difference between the two vehicles reaching the end of the segment is positive
as well when FIFO is satisfied. This time difference is then the time difference of entering
the next segment on the path. In other words, �ti > 0 implies �ti+1 > 0 and so on until
the end of the path.

At the charging stations, waiting time should satisfy the FIFO rule. The EV that came
first should be served first. Eqution (8) presents the FIFO condition for the waiting-time
function.

∀t1 < t2 : t1 +�wt1 < t2 +�wt2 ⇒ �wt1 −�wt2 < t2 − t1 ⇒ �wt1 − �wt2

t2 − t1
< 1. (8)

Example 3 Let us assume EV2 comes to the charging station 1 minute later than EV1. But
EV2 waits for 5 minutes while EV1 has to wait 15 minutes. Thus, EV2 would leave the
charging station 9 minutes earlier than EV1, and would not satisfy the FIFO rule, 15−5

1 =
10 > 1.

As this paper uses the availability profile coefficient p applied on a typical waiting time,
to satisfy FIFO the profile coefficients should satisfy the condition in (9):

�wt1 − �wt2

t2 − t1
< 1 ⇒ p1 · �wt − p2 · �wt

t2 − t1
< 1 ⇒ (p1 − p2) <

(t2 − t1)

�wt
. (9)

Finally, in the testbed, waiting times are intervals. Therefore, (8) and (9) should be
satisfied for both minimum and maximum values.

4 Testbed implementation

The testbed was implemented following the model and functionality described in Section 3.
Figure 9 summarizes the process of semi-synthetic data preparation using open tools and
data sources. PostgreSQL was chosen to support components of the testbed. Germany map
was retrieved from OSM and filtered for vehicle roads using osmfilter. The osm2po
tool generated a routable network as a sequence of SQL statements. PostGIS database exten-
sion was used to store and manage spatial road-network data in PostgreSQL. Finally, the

750 Geoinformatica (2023) 27:737–758

Fig. 9 Data sources and processing

routable network was converted into a shapefile and fed to SUMO to create traffic data in
XML.

The TomTom congestion index supplemented the traffic data. CGIAR-CSI SRTMDigital
Elevation data in the TIFF format were downloaded and applied to compute elevation gain
on each network-segment. Finally, EV features and charging stations with their availability
patterns were set up using publicly available data.

While the detailed description of the implementation of the suggested testbed services
(see Fig. 2) is out of the scope of this paper, in the following, we discuss the key aspects.
The computation of the total energy and the total driving time on a route is at the core of
findPath and calcPath functions. For each segment, the EC segment properties at a given
time are used to calculate the travel time and energy required to traverse the segment. Then,
the estimations for each route segment are added up to get the total energy and travel time.

The EC calculation evaluates each EC segment based on its properties. For some seg-
ments, it might result in a negative value. For example, going downhill, a car recuperates
and charges its battery. Thus, if the functions are invoked with an initial SoC, the EC calcu-
lation considers that the battery cannot be charged more than the designed capacity, and the
recuperated energy is lost.

The above calculations result in single-valued time and energy results for a given route.
The testbed simulates the prediction uncertainty by assuming that the timing of peaks in the
traffic profile might slightly shift from day to day. The testbed calculates two congestion
cost values for each segment at a given time t : the minimal cost value and the maximal cost
value. Cost values are calculated using the time window [t − ε, t + ε], where ε is a testbed
parameter controlling the uncertainty (see (10)).

[cost�(t), cost�(t)] = [min cost(t),max cost(t)] where t ∈ [t − ε, t + ε] (10)

The default ε value is set to 30 minutes, but can be adjusted. Note that t is a time when
an EV reaches a given segment segi along the route. Thus, it depends on the travel speed
and departure time of the previous i − 1 segments. Therefore, it is a sum of time-interval
lengths required to pass all previous segments along the route added to the trip start time

751Geoinformatica (2023) 27:737–758

tstart. Let us assume �ti is the time required to pass segment i, then segi entrance time ti is
ti = tstart + ∑i−1

n=1�tn. For the whole route, the bounds of the estimated energy and time
intervals are calculated in two iterations. The first iteration uses cost�(t) as the cost function
for the lower bound and the second iteration—cost�(t) for the upper bound.

5 Experiments and results

The testbed architecture requires a routing module that considers time-dependent weights.
The KaTCH (Karlsruhe Time-Dependent Contraction Hierarchies) [30] is an algorithmic
framework based on time-dependent contraction hierarchies. It enables queries that ask for
a minimum travel time route for a start and a destination depending on a given departure
time. The KaTCH [31] implementation was integrated into the testbed as a routing engine,
and several tests were run to illustrate realistic results and appropriate scalability within the
testbed. External forces like weather, traffic incidents, or road works are not included.

First, as a case study, sources and destinations were chosen for 8 representative trips in
Germany. Then, the travel-time and energy-consumption intervals were calculated for all of
them when traveling from a source to a destination and back—16 individual trips in total.
Also, the departure times were set to 00:00 and 16:00 as non-congestion and congestion-
time representatives. The tests were run in the testbed using the TomTom service as a
reference.

To estimate energy consumption in both testing environments, the energy usage curve
was constructed as a sequence of pairs (kWh per 100 km, km/h). The approximation of the
energy consumption curve is presented in Fig. 10a. The modeled prototype vehicle had the
set of parameters presented in Fig. 10b.

Figure 11 plots estimated travel time and energy consumption for different depar-
ture times on testbed (TB) with the results from TomTom (TT) shown for reference.
For departure time 00:00, Figs. 11a and c present travel time and consumption energy,
respectively.

The case study results show that the testbed is more conservative regarding travel time
and energy consumption when leaving at the non-congestion time. In most cases, the dif-
ference is not significant, and the testbed-generated interval is very small. For a peak hour,

Fig. 10 Energy consumption for a EV with a defined feature set

752 Geoinformatica (2023) 27:737–758

Fig. 11 Travel time and energy consumption for different departure times

the testbed is more optimistic regarding travel time and energy consumption, and the gener-
ated uncertainty intervals are longer: for long trips interval length is approximately half an
hour. The testbed has its own segment-level congestion data. Therefore, the different results
make no surprise. The testbed provides different results for forward and backward trips, as
the model considers elevation details and recuperation.

Additionally, tests were run for random trips of different lengths. For each length 125
pairs of start and destination were generated. Figure 12 shows aggregated statistical results
with interquartile range, minimum and maximum values, and outliers.

During executions, charging time was subtracted. The results of the trip duration include
only traveling time. These large-scale results show that TB underestimates trip duration for
a non-peak hour. For a peak-hour, the difference is relatively small. TB energy consumption
calculations are more conservative and predict larger consumption than TT.

Figure 13 shows scalability test results. The tests were run on a Linux workstation
with Intel(R) 16 Core(TM), i9-9880H CPU @ 2.30GHz, 32GB RAM with an equivalent
remote database server. For each trip length (air distance), 1000 source-destination pairs
were generated, their routing was executed, and routes were saved in the database. The
region was loaded into the main-memory KaTCH data structure, with approx. 21GB RAM
used. The difference in the air distance and route length is app. 30%. The results show that
the query cost without energy consumption calculation is almost constant, whereas energy
computation grows linearly to the length of the path.

753Geoinformatica (2023) 27:737–758

Fig. 12 Travel time and energy consumption for different departure times

Fig. 13 Scalability tests

754 Geoinformatica (2023) 27:737–758

6 Conclusions and future work

Motivated by the inherent complexity of testing advanced routing algorithms, the paper
proposes a testbed that integrates state-of-the-art tools and provides a systematic approach
to available open-source data. The proposed domain data models offer great opportunities
for further research in the area of advanced EV routing. We believe the provided insights
and the testbed itself will shorten the preparation phase of future experimental studies. The
scalability and reference-based tests demonstrate the merits of the testbed.

The work can be extended in several directions. First, functions to switch among EV
energy consumption and lifecycle profiles can be developed using real-world or semi-
synthetic EV templates. Furthermore, the experimental environment could be enriched with
a flexible setup for experiments with varying initial environmental or network conditions as
parameters.

Funding This project has received funding from European Regional Development Fund (project No 01.2.2-
LMT-K-718-02-0018) under a grant agreement with the Research Council of Lithuania (LMTLT).

Availability of data and materials The data and codes that support the findings of this study are avail-
able with the identifier at the National Open Access Research Data Archive (Midas) of Lithuania DOI:
10.18279/MIDAS.DALTRA.193594

Declarations

Disclosure statement The authors declare that they have no known competing financial interests or personal
relationships that could have influenced the work reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Baum M, Dibbelt J, Wagner D, Zündorf T (2020) Modeling and engineering con-
strained shortest path algorithms for battery electric vehicles. Transp Sci 54(6):1571–1600.
https://doi.org/10.1287/trsc.2020.0981

2. Åkerblom N, Chen Y, Chehreghani MH (2020) An online learning framework for energy-efficient
navigation of electric vehicles. In: IJCAI, pp 2051–2057. https://doi.org/10.24963/ijcai.2020/284

3. Russo D, Roy BV, Kazerouni A, Osband I, Wen Z (2018) A tutorial on thompson sampling. Found
Trends Mach Learn 11(1):1–96. https://doi.org/10.1561/2200000070

4. Codeca L, Frank R, Faye S, Engel T (2017) Luxembourg SUMO traffic (lust) scenario: traffic demand
evaluation. IEEE Intell Transp Syst Mag 9(2):52–63. https://doi.org/10.1109/MITS.2017.2666585

5. Barauskas A, Brilingaite A, Bukauskas L, Ceikute V, Civilis A, Saltenis S (2021) Semi-
synthetic data and testbed for long-distance e-vehicle routing. In: ADBIS, vol 1450, pp 61–71.
https://doi.org/10.1007/978-3-030-85082-1 6

6. Tempelmeier N, Dietze S, Demidova E (2020) Crosstown traffic - supervised predic-
tion of impact of planned special events on urban traffic. GeoInformatica 24(2):339–370.
https://doi.org/10.1007/s10707-019-00366-x

7. Zhao X, Spall JC (2018) Modeling traffic networks using integrated route and link data. Preprint at
arXiv:1811.01314

755Geoinformatica (2023) 27:737–758

https://doi.org/10.18279/MIDAS.DALTRA.193594
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1287/trsc.2020.0981
https://doi.org/10.24963/ijcai.2020/284
https://doi.org/10.1561/2200000070
https://doi.org/10.1109/MITS.2017.2666585
https://doi.org/10.1007/978-3-030-85082-1_6
https://doi.org/10.1007/s10707-019-00366-x
http://arxiv.org/abs/1811.01314

8. Pramanik A, Rahman M, Anam I, Ali AA, Amin A, Rahman M (2020) Modeling traffic congestion in
developing countries using google maps data. Preprint at arXiv:2011.02359

9. Zafar N, Haq IU (2020) Traffic congestion prediction based on estimated time of arrival. PLoS One,
vol 15(12). https://doi.org/10.1371/journal.pone.0238200

10. Sapre V, Kalambur S, SitaramD, Bastian R (2018) Synthetic generation of traffic data for urban mobility.
In: ICACCI, pp 2151–2157. https://doi.org/10.1109/ICACCI.2018.8554633

11. (2021). German aerospace center (DLR) and others: SUMO— simulation of Urban MObility. Accessed
28 Sept 2021. https://sumo.dlr.de/docs

12. Brinkhoff T (2002) A framework for generating network-based moving objects. GeoInformatica
6(2):153–180. https://doi.org/10.1023/A:1015231126594

13. López PÁ, Behrisch M, Bieker-Walz L, Erdmann J, Flötteröd Y, Hilbrich R, Lücken L, Rummel J,
Wagner P, WieBner E (2018) Microscopic traffic simulation using SUMO. In: ITSC, pp 2575–2582.
https://doi.org/10.1109/ITSC.2018.8569938

14. Yu J, Fu Z, Sarwat M (2020) Dissecting geosparksim: a scalable microscopic road
network traffic simulator in apache spark. Distrib Parallel Databases 38(4):963–994.
https://doi.org/10.1007/s10619-020-07306-x

15. Yu J, Wu J, Sarwat M (2015) Geospark: a cluster computing framework for processing large-scale spatial
data. In: SIGSPATIAL, pp 70–1704. https://doi.org/10.1145/2820783.2820860

16. Ramamohanarao K, Xie H, Kulik L, Karunasekera S, Tanin E, Zhang R, Khunayn EB (2017) SMARTS:
scalable microscopic adaptive road traffic simulator. ACM Trans Intell Syst Technol 8(2):26–12622.
https://doi.org/10.1145/2898363

17. AlDwyish A, Xie H, Tanin E, Karunasekera S, Ramamohanarao K (2017) Using a traffic simulator for
navigation service. In: SIGSPATIAL, pp 78–1784. https://doi.org/10.1145/3139958.3139998

18. Baum M, Dibbelt J, Pajor T, Sauer J, Wagner D, Zündorf T (2020) Energy-optimal routes for battery
electric vehicles. Algorithmica 82(5):1490–1546. https://doi.org/10.1007/s00453-019-00655-9

19. (2021). OpenStreetMap foundation: openstreetmap. Accessed 28 Sept 2021. https://www.openstreetmap.
org

20. (2021). Geofabrik GmbH: openstreetmap data extracts. Accessed 28 Sept 2021. http://download.
geofabrik.de

21. Moeller C (2021) osm2po — openstreetmap converter and routing engine for java. Accessed 28 Sept
2021. https://osm2po.de

22. (2021). German aerospace center (DLR) and others: tools/trip. Accessed 28 Sept 2021. https://sumo.dlr.
de/docs/Tools/Trip.html

23. Kurczveil T, López PÁ, Schnieder E (2013) Implementation of an energy model and a charg-
ing infrastructure in sumo. In: Simulation of urban mobility user conference. Springer, pp 33–43.
https://doi.org/10.1007/978-3-662-45079-6 3

24. Jarvis A, Reuter HI, Nelson A, Guevara E (2021) Hole-filled seamless SRTM data V4. Accessed 28 Sept
2021. http://srtm.csi.cgiar.org

25. (2021). Open charge map: the open charge map API. Accessed 7 Mar 2021. https://openchargemap.org/
site/develop/api

26. (2021). Chargeprice: open EV data. Accessed 7 Mar 2021. https://github.com/chargeprice/open-ev-data
27. (2021). ElaadNL: open data sets. Accessed 12 Mar 2021. https://platform.elaad.io
28. Sung K, Bell MG, Seong M, Park S (2000) Shortest paths in a network with time-dependent flow speeds.

Eur J Oper Res 121(1):32–39
29. Kanoulas E, Du Y, Xia T, Zhang D (2006) Finding fastest paths on a road network with speed patterns.

In: ICDE, p 10. https://doi.org/10.1109/ICDE.2006.71
30. Batz GV, Geisberger R, Sanders P, Vetter C (2013) Minimum time-dependent travel times with

contraction hierarchies. ACM J Exp Algorithmics, vol 18. https://doi.org/10.1145/2444016.2444020
31. (2021). Institut fuer theroretische informatik, karlsruher institut fuer technology (KIT): KaTCH – Karl-

sruhe time-dependent contraction hierarchies. Accessed 16 Mar 2021. https://github.com/GVeitBatz/
KaTCH

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

756 Geoinformatica (2023) 27:737–758

http://arxiv.org/abs/2011.02359
https://doi.org/10.1371/journal.pone.0238200
https://doi.org/10.1109/ICACCI.2018.8554633
https://sumo.dlr.de/docs
https://doi.org/10.1023/A:1015231126594
https://doi.org/10.1109/ITSC.2018.8569938
https://doi.org/10.1007/s10619-020-07306-x
https://doi.org/10.1145/2820783.2820860
https://doi.org/10.1145/2898363
https://doi.org/10.1145/3139958.3139998
https://doi.org/10.1007/s00453-019-00655-9
https://www.openstreetmap.org
https://www.openstreetmap.org
http://download.geofabrik.de
http://download.geofabrik.de
https://osm2po.de
https://sumo.dlr.de/docs/Tools/Trip.html
https://sumo.dlr.de/docs/Tools/Trip.html
https://doi.org/10.1007/978-3-662-45079-6_3
http://srtm.csi.cgiar.org
https://openchargemap.org/site/develop/api
https://openchargemap.org/site/develop/api
https://github.com/chargeprice/open-ev-data
https://platform.elaad.io
https://doi.org/10.1109/ICDE.2006.71
https://doi.org/10.1145/2444016.2444020
https://github.com/GVeitBatz/KaTCH
https://github.com/GVeitBatz/KaTCH

Andrius Barauskas holds a PhD in technological science from Vil-
nius Tech, Lithuania. He is a project researcher at Vilnius University
in the Institute of Computer Science. His research interests focus on
transport modeling, spatial planning.

Agnė Brilingaitė holds a PhD in computer science from Aalborg
University, Denmark. She is an associate professor at Vilnius Univer-
sity in the Institute of Computer Science. Her research interests focus
on spatial data modelling, location-based services, cybersecurity
training, and education in computer science.

Linas Bukauskas holds a PhD in computer science from Aalborg
University, Denmark. He is an associate professor in the Institute
of Computer Science at Vilnius University. His research interests
include Cybersecurity, Data processing, Database management sys-
tems, Data Mining, and Natural Language Processing.

757Geoinformatica (2023) 27:737–758

Vaida Čeikutė holds a PhD in computer science from Aarhus Uni-
versity, Denmark. She is a project researcher at Vilnius University
in the Institute of Computer Science. Her research interests include
trajectory pattern mining, geo-context in location-based services, and
intelligent transportation systems.

Alminas Čivilis holds a PhD in computer science from Vilnius
University, Lithuania. He is an assistant professor and project
researcher at Vilnius University in the Institute of Computer Science.
His research interests focus on Intelligent Transportation Systems,
Location-based Services.

Simonas Šaltenis holds a PhD in computer science from Aalborg
University, Denmark. He is a research professor at the Institute
of Computer Science, Vilnius University as well as an associate
professor at the Department of Computer Science, Aalborg Univer-
sity. His research interests focus on spatial and spatio-temporal data
management and intelligent transportation systems.

758 Geoinformatica (2023) 27:737–758

	Test-data generation and integration for long-distance e-vehicle routing
	Abstract
	Introduction
	Related work
	Semi-synthetic data generation and testbed API
	Background
	Testbed architecture and functionality
	Map and traffic data
	Traffic data simulation and calibration
	Data for energy consumption estimation
	Charging and waiting times at charging stations
	The FIFO property

	Testbed implementation
	Experiments and results
	Conclusions and future work
	Declarations
	References

