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Abstract
With the increasing connectedness of vehicles, real-time spatio-temporal data can be col-
lected from citywide road networks. Innovative data management solutions can process the 
collected data for the purpose of reducing travel time. However, a majority of the existing 
solutions have missed the opportunity to better manage the collected data for improving 
road safety at the network level. We propose an efficient data management framework that 
uses network-level data to improve road safety for citywide applications. Our framework 
uses a graph-based data structure to maintain real-time network-level traffic data. Based 
on the graph, the framework uses a novel technique to generate driving instructions for 
individual vehicles. By following the instructions, inter-vehicular spacing can be increased, 
leading to an improvement of road safety. Experimental results show that our framework 
improves road safety, measured based on the time to collision between vehicles, from the 
state-of-the-art traffic data management solutions by a large margin while achieving lower 
travel times compared with the solutions. The framework is also readily deployable for 
large-scale real-time applications due to its low computation costs.
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1 Introduction

With the increasing connectedness of vehicles, a vast amount of spatio-temporal data can 
be collected from large road networks at real time. An example of the data is the routes that 
vehicles will follow to reach their destinations. Using the collected data, it is possible to 
enhance traditional traffic engineering systems through integrating them with information 
systems [1]. A majority of the existing data-driven solutions are focused on reducing travel 
time [1–5] and have missed the opportunity to better manage the spatio-temporal data for 
improving road safety at the network level. To maximize road safety at the network level, 
there needs a global coordination of safety arrangements for all the individual vehicles. 
Although the current development of connected autonomous vehicle (CAV) technology 
can help improve road safety, the safety improvement is generally achieved within a limited 
scope such as a vehicle platoon [6] or an intersection [7], which is different to the coordi-
nated safety arrangements at the network level. Our work is focused on network-level data 
management for improving road safety.

We aim to develop a data management solution that will give drivers detailed instruc-
tions for improving road safety based on the drivers’ routes for the future. An ideal solution 
needs to address two major challenges. The first challenge is to strike a balance between 
road safety and travel time. Without a proper management scheme, an improved traffic 
efficiency can lead to a lower safety level  [8]. On the other hand, it would be unwise to 
implement a naive data management solution that leads to the slowdown of all the vehicles. 
Such a naive solution would make road safer, but it would lead to long travel times for 
individuals. Therefore, the ideal solution needs to consider road safety improvement and its 
impact on travel time at the same time. The second challenge is to maintain a high level of 
computation efficiency for real-time applications. Due to the complexity and the amount of 
spatio-temporal data, the computation time spent on processing the data can be prohibitive 
for real-time applications. A number of emerging solutions use sophisticated techniques 
that are only computationally feasible for optimization in limited scopes such as a single 
road segment or a single intersection [9, 10]. There is a lack of computationally efficient 
solutions for improving network-level road safety.

We formalize our research problem based on the balance between road safety and travel 
time. Our research problem is named Network-Level Safety Optimization (NSO). To 
achieve the balance between the two factors, our preliminary work develops Safest Pla-
tooning Graph (SPG), which is a prototype solution to give driving directions for safety 
improvements [11]. To build SPG, we model traffic conflicts in a graph and then resolve 
those conflicts on First-Come-First-Serve (FCFS) basis to decide the vehicle passing order 
at the conflicting locations, including lanes and intersections inside the road network. Then 
we space out vehicles iteratively while obeying the vehicle passing order and build the 
SPG. Though SPG helps space out vehicles while limiting the travel time increase, it has 
some drawbacks and limitations. First, it does not maintain comprehensive information 
about traffic conflicts in the graph structure. Second, it does not consider a non-FCFS pass-
ing order that can help achieve a better balance between travel time and safety. Third, it 
uses a computationally expensive algorithm for spacing out vehicles, which makes it less 
suitable for citywide real-time traffic optimization.

In this paper, we present a data management framework that is comprehensively 
improved from SPG by addressing its limitations. Our framework is named Conflict 
Zone Graph based Motion Planning (CZMP). The proposed framework has three 
major contributions over SPG. First, it uses an enhanced data structure to better represent 
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network-level traffic information. Compared to the original data structure, the enhanced 
version contains more types of information related to traffic conflicts, enabling a more 
comprehensive view of the road network. Second, CZMP uses a delay planning algorithm 
to plan delays for vehicles based on a safety-oriented but efficient non-FCFS passing order 
at conflicting locations. The delay planning algorithm helps distribute the available spaces 
in the road network and the waiting times at vehicle queues for spacing out vehicles more 
effectively. Third, CZMP uses a significantly faster motion planning algorithm to gener-
ate vehicle trajectories based on the planned delays of vehicles. Different to SPG’s motion 
planning algorithm, CZMP’s motion planning algorithm decides the motion in a direct 
manner without incremental adjustments to the trajectories, achieving significant improve-
ments in computation time, as we show in the results. In contrast, SPG iteratively plans the 
motions of vehicles and checks the amount of delay achieved by each vehicle. SPG needs 
to adjust the plan in more iterations if there exist vehicles that can get a further delay. By 
separating delay planning from trajectory computation, CZMP avoids the iterative process, 
thus CZMP improves the quality of the results and reduces the computation complexity 
significantly.

Our framework has three components. The first component is a data structure called 
Conflict Zone Graph (CZG), which is a time-dependent graph that keeps comprehensive 
information about conflict zones where vehicles would come close to each other for a par-
ticular time horizon under consideration. As CZG is time-dependent, it is constructed using 
real-time network-level spatio-temporal information. The second component is a heuristic 
algorithm called Incremental Delay Planning Algorithm. Using the information in CZG, 
the algorithm plans delays to modify the time that individual vehicles arrive at conflict 
zones, which helps space out vehicles. The third component is an algorithm called Safer 
Network Motion Plan Generation Algorithm. Based on the planned delays, the algorithm 
performs motion planning for the vehicles. The motion plans contain detailed instructions 
for vehicles to realize the planned delays. Our framework modularizes each important step 
in the workflow for better usability and extendability. Modularization increases the applica-
bility of the framework for similar applications. The components shown in this paper can be 
replaced with other application-specific algorithm versions in the future.

We compare the CZMP framework against many existing spatio-temporal data manage-
ment solutions for traffic optimization in a variety of experimental scenarios created with 
both synthetic and real data. Our experiments show that CZMP outperforms the existing 
solutions in achieving a good balance between road safety and travel time. For example, in 
synthetic data based experiments, CZMP improves the safety level, measured based on the 
time to collision between vehicles, by up to 68% from a state-of-the-art traffic-efficiency-ori-
ented solution, Intersection Conflict Resolution (ICR) [12]. Interestingly, CZMP achieves a 
better traffic efficiency than ICR even though CZMP is safety-oriented and ICR is efficiency-
oriented. CZMP reduces travel time by up to 60% from ICR. The comprehensive advantages 
of CZMP over ICR come from two key differences between the two solutions. First, ICR 
only imposes a minimal safety constraint based on fixed-size inter-vehicular spaces, whereas 
CZMP can improve safety by enlarging inter-vehicular spaces whenever possible. Second, 
ICR only considers traffic information at individual intersections when optimizing traffic. 
Differently, CZMP coordinates traffic at a larger scope as it considers network-level traffic 
information. This makes CZMP more effective in managing safety while having a positive 
side effect on traffic efficiency. Our experiments show that CZMP not only outperforms 
ICR, but also outperforms the prototype safety optimization solution SPG which is devel-
oped in our previous work. The advantage of CZMP over SPG is mostly noticeable in com-
putation efficiency. CZMP consumes a significantly shorter computation time compared to 
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SPG. For example, CZMP can generate travel plan for 1500 vehicles within 1 second while 
SPG spends 34 seconds to compute for the same number of vehicles. Even in real data based 
experiments, we achieve similar improvements in terms of traffic safety, traffic efficiency and 
computational efficiency. The main contributions of our work are summarized as follows.

• We formalize a research problem that is important to the management of traffic data. 
The problem aims to improve road safety while minimizing the impact on travel time at 
the network level. The problem is named Network-Level Safety Optimization (NSO).

• We develop a spatio-temporal data management framework, Conflict Zone Graph 
based Motion Planning (CZMP), which incorporates a novel time-dependent conflict 
graph and two algorithms to develop motion plans that are safety focused.

• We compare road safety level, travel time and computation costs of CZMP against exist-
ing spatio-temporal data management solutions such as ICR and variants of the proto-
type solution developed in our previous work. Our results show that CZMP achieves a 
better balance between road safety and travel time compared to all other solutions, in 
both synthetic data and real data based experiment setups. With increasing levels of 
connectedness and autonomy in transport, our problem and solutions will be fundamen-
tal in optimizing traffic efficiency while considering road safety.

2  Related work

Information Systems for Traffic Management The rapid advancement of information 
systems has accelerated the development of various Intelligent Transportation Systems 
(ITSs) [1, 13–15], where information systems are integrated with traffic engineering. With 
the spatio-temporal data collected from vehicles and traffic infrastructures, ITSs can per-
form advanced real-time traffic optimization. There are different objectives of optimization 
such as minimizing the total travel delays of vehicles [5, 16] or maximizing the throughput 
of the network  [17, 18]. The optimizations can be performed at a small scale, such as a 
particular highway segment [9], an intersection [19] or a traffic corridor [20]. The optimi-
zations can also be performed at larger scales  [4, 14, 21, 22]. Large-scale traffic optimiza-
tions can give globally better results but they need to apply highly efficient spatio-temporal 
data management techniques for real-time applications.

In respect to road safety, most of the existing data management solutions for ITSs only 
impose minimum inter-vehicular spaces to prevent collisions in normal situations, which 
makes the solutions less robust for preventing accidents in many unpredictable events  [23, 
24]. There exist solutions that improve mobility while having a positive side effect on road 
safety  [5, 25, 26]. However, those solutions are not designed for optimizing inter-vehicular 
spacing. In contrast, our proposed framework is focused on improving road safety at the net-
work level by optimizing inter-vehicular spacing. Our framework is also different to routing-
based solutions that aim to provide personalized safer routes by navigating vehicles away from 
risky areas [27–29].

The connectivity and autonomy of CAVs have created more opportunities for ITSs to 
perform finer traffic optimization operations such as controlling vehicle trajectories and 
manipulating inter-vehicular spacing [30, 31]. However, many of the existing solutions are 
not suitable for globally coordinated traffic optimizations due to their high computation 
complexity. Our proposed spatio-temporal data management framework uses efficient algo-
rithms, which enables real-time network-level road safety optimization in an ITS.
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Algorithms for Collective Trajectory Optimization There exists a large body of work 
that uses well-known techniques such as linear programming, genetic algorithms, 
dynamic programming or gradient descent algorithms to optimize the trajectories of a 
group of vehicles collectively for improving mobility, safety, or fuel-efficiency [20, 30–
35]. To the best of our knowledge, all the existing solutions in this area can only work 
well within limited scopes such as individual intersections [33], individual highway seg-
ments [31], or individual traffic corridors [20] using a limited set of spatio-temporal data. 
For example, Wei et al. [35] use a dynamic programming approach to adjust the trajecto-
ries of a group of vehicles between two intersections for improving safety and mobility 
performance. In addition to the algorithms that are dedicated to trajectory optimization, 
there exist other data management techniques that help improve the quality of trajec-
tories indirectly. For example, Khondaker et  al.  [9] develop an algorithm to optimize 
variable speed limit signals for a freeway segment, which can result in better trajectories. 
Another recent study [36] develops a reinforcement learning-based approach to optimize 
traffic signals, which can result in safer trajectories. The approach performs optimization 
using a variety of spatio-temporal data such as traffic volume, queue length, shock wave 
area, and platoon ratio etc. Different to our proposed framework, none of the aforemen-
tioned solutions optimizes trajectories based on the globally optimized inter-vehicular 
spacing. Our approach produces trajectories that help improve road safety at the network 
level. In addition, our framework is more suitable for real-time applications compared 
with many existing solutions, which is due to the fact that our framework can use a novel 
graph-based data structure and heuristic algorithms to reduce computation costs.

Data Structures for Traffic Optimization Due to the complexity of traffic optimization 
problems, innovative data structures are used for efficient spatio-temporal data manage-
ment. For example, Giridhar et al.  [2] develop an approach that uses a directed graph to 
represent spatio-temporal traffic data for scheduling automated traffic. The graph is based 
on a discrete-space model of a road network, where each lane is divided into one or more 
cells and each cell corresponds to a vertex in the graph. A similar cell-based representation 
of road network is used for deadlock prevention of self-driving vehicles [37].

Graph-based data structures have been used for modelling conflicts between vehicles, 
which is important to our work on road safety. Liu et  al. [12] develop a method, which 
we  call Intersection Conflict Resolution (ICR), to optimize the order that vehicles pass 
intersections. For a specific road intersection, the method models the sequence that vehi-
cles arrive at the intersection using a type of conflict graph. Each vertex in the graph repre-
sents a vehicle and each edge connects to a pair of vehicles that will enter the intersection 
from conflicting approaches. Based on the graph, the method  determines the order that 
conflicting vehicles arrive at the intersection. Lin et  al. [38] develop a different conflict 
graph that uses three types of edges to represent different ways that traffic conflicts can be 
formed. The graph is used by a scheduling algorithm that resolves the conflicts while pre-
venting deadlocks on the road. The aforementioned graphs only model traffic conflicts at 
individual road segments or individual intersections. Different to these conflict graphs, our 
previous work [11] develops a data structure called platooning graph, which is based on a 
conflict graph that models traffic conflicts in a continuous space. The conflict graph can 
model conflict zones that span multiple road segments and multiple intersections, which 
enables a significantly more effective representation of spatio-temporal data that suits net-
work-level traffic management. In this work, we develop an enhanced version of the data 
structure for more efficient and more effective traffic safety management.
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3  Problem definition

In this section, we present the formal problem formulation considering a set of vehicles moving in 
a road network. We assume that the traffic progresses in discrete time steps with a time step size 
Δt . In the rest of the section, we introduce the key concepts then define our research problem.

Road Graph The road graph is a directed graph RG=(VR, ER), where VR is a set of ver-
tices and ER is a set of edges. An edge is connected to a pair of vertices. Each vertex vr ∈ 
VR represents the end of a traffic lane or a point where two or more traffic lanes connect. 
Each edge er ∈ ER represents a traffic lane.

Vehicles Given a set of vehicles that are present at a specific time t, A(t), the state of a 
vehicle ai ⊆ A(t) has three elements, ei(t) , xi(t) , and vli(t) . The element ei(t) is the edge 
where ai is located at the time, xi(t) is the distance between the start of edge ei(t) and the 
position of ai , and vli(t) is the velocity of the vehicle at the time. Between two successive 
time steps t and t + Δt , a vehicle ai can make an acceleration action denoted by aci(t) . The 
state of ai at time t + Δt depends on its state at time t and the acceleration aci(t).

Time To Collision Assuming two vehicles ai and aj keep moving without changing their 
speed, the period between a given time t and the future time that the two vehicles would col-
lide is the Time To Collision (TTC) between the two vehicles at time t, denoted as ttci,j(t).

TTC has been used as a surrogate safety measure for studying the safety impact of autono-
mous vehicles [39]. We assume that the TTC between any pair of vehicles must be equal to or 
larger than a minimum allowed TTC  ( TTCmn ) to guarantee a minimum safety level. There 
is also an upper limit of TTC called TTC threshold ( TTCthr ), which is a constant where 
TTCthr > TTCmn . If the TTC between two vehicles is higher than TTCthr , we assume that the 
risk of a collision would be negligible, hence not a safety concern. The TTC of a specific vehi-
cle ai at a specific time t is denoted as ttci(t) . As shown in Eq. (1), ttci(t) is either the lowest TTC 
between vehicle ai and any other vehicle at that time or the TTC threshold, whichever is lower.

Network Motion Plan A motion plan �i of a vehicle ai contains a sequence of accelerations at 
regular time intervals. A Network Motion Plan (NMP) � consists of the motion plans for all the 
vehicles under the assumption that the TTC between any pair of vehicles would be equal to or 
larger than the minimum allowed TTC ( TTCmn ) if the vehicles follow their motion plans.

Distance to TTC Threshold Given a network motion plan � and a TTC threshold TTCthr , we 
define a road safety metric, Distance to TTC Threshold (DTTC ), using Eq. (2)1, where A(t) 

(1)ttci(t) = min

(
min

aj∈A(t),∀i≠j
(ttci,j(t)),TTCthr

)

1 We chose to use a standard L2 loss function-based formulation rather than a simple sum for the equation. As 
shown later, our solution optimizes traffic based on the minimization of DTTC. During the optimization pro-
cess, the sum of squares can help even out inter-vehicular spaces, which is useful for achieving universal safety 
improvements across the whole network. The relationship between the sum of squares and the TTCs of indi-
vidual vehicles can be shown with the following example. Let ai and aj be two vehicles and the TTC threshold 
be 10s. In the first case, ttci(t) = 2s and ttcj(t) = 8s , which results in DTTC(�) = 68s2 . In the second case, 
ttci(t) = 5s and ttcj(t) = 5s , which results in DTTC(�) = 50s2 . As the example shows, a lower DTTC indicates 
that the TTCs are more uniform, which implies that the road safety is optimized more universally.
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is the set of vehicles at a particular time t and ttci(t) is the TTC of vehicle ai defined with Eq. 
(1). Our previous study also measures road safety based on DTTC [11]. DTTC is derived from 
Time Integrated TTC [40] that has been widely adopted by the research community. Based on 
our definition of TTC Eq. (1), if the minimal TTC between vehicle ai and any other vehicle 
is equal to or higher than the TTC threshold, the value of (TTCthr − ttci(t)) is 0 and does not 
contribute to DTTC. In other words, DTTC is aggregated based on the TTC values that are 
below the TTC threshold. When these TTC values are higher, the gap between the values and 
the TTC threshold is lower. Therefore, a lower DTTC corresponds to a better road safety level. 

Fastest Travel Time The fastest travel time of vehicle ai is the travel time achieved when 
the vehicle moved at the speed limit at all times. It is denoted as ftti.

Desired Maximum Travel Time Given a desired maximum travel time factor 𝛼 > 1 and 
the fastest travel time ftti of a vehicle ai , the desired maximum travel time of the vehicle is 
� × ftti.

Network‑Level Safety Optimization (NSO) Problem2 Given a road graph (RG), a set of 
vehicles (A), a minimum allowed TTC ( TTCmn ), a TTC threshold ( TTCthr ), and a desired maxi-
mum travel time factor ( � ), find the network motion plan (NMP) � , which minimizes the distance 
to TTC threshold (DTTC) while the travel time tti of each vehicle ai ∈ A is within the desired 
maximum travel time, i.e., tti ≤ � × ftti,∀ai ∈ A . The definition can be formulated with Eq. (3). 

 where Π is the set of all the possible NMPs.

Due to the complexity of traffic systems, there is no efficient way to compute the the-
oretical optimum of DTTC. For this reason, we do not aim to find the exact NMP that 
achieves the theoretical optimum. Instead, we aim to find a NMP that approximates the 
hypothetical best case of DTTC, which is 0.

4  Conflict zone graph based motion planning framework

In this section, we detail the Conflict Zone Graph based Motion Planning (CZMP) frame-
work, which we use to compute approximate solutions of the NSO problem defined in Sec-
tion 3. CZMP can be applied to a transportation system where vehicles are connected to a 
traffic management system. Our strategy for improving road safety includes two steps. First, 
we find the common lane segments and intersections shared by the vehicles. These lane seg-
ments and intersections are the areas with a risk of vehicle collision. Second, we delay the 
time that certain vehicles arrive at these areas.

The framework consists of three main components (Fig.  1), which includes a Con-
flict Zone Graph (CZG), an Incremental Delay Planning Algorithm, and a Safer Net-
work Motion Plan Generation Algorithm. Due to the dynamic nature of traffic, CZMP 

(2)DTTC(�) =
∑

t∈T

∑

ai∈A(t)

(TTCthr − ttci(t))
2

(3)�
∗ = argmin

�∈Π

{DTTC(�)}

2 NSO problem is a variation of the well-known Multi Agent Path Finding (MAPF) problem [41].
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re-optimizes traffic at a certain update interval because the effectiveness of an optimized 
motion plan may deteriorate when traffic condition changes in time. An update interval 
may last one or more time steps. During each update interval, CZMP performs optimiza-
tion by constructing a new CZG and running the two algorithms.

When constructing a CZG, CZMP finds all the safety-critical areas based on the routes of vehi-
cles moving in the road network. The safety-critical areas are called conflict zones in our work. A 
conflict zone is a part of the road network where collisions may happen in the future [12, 38]. The 
information of conflict zones is maintained in the CZG. Based on this data structure, the frame-
work uses the Incremental Delay Planning Algorithm to compute the delayed times that some of 
the vehicles should arrive at the conflict zones. The delays are planned for reducing the risk of col-
lisions while considering various constraints such as the desired maximum travel time of vehicles. 
The delays change the order that vehicles arrive at conflict zones and enable a better distribution 
of available spaces and queue waiting times among all the vehicles. As shown in Fig. 1, the CZG 
is then updated with the delay information. In order to arrive at the conflict zones with the planned 
delays, vehicles may need to adjust their motion plan, which includes the acceleration of indi-
vidual vehicles at future time steps. The framework runs the Safer Network Motion Plan (NMP) 
Generation Algorithm to compute the desired motion that is needed to achieve the delays. The 
algorithm uses a well-known car-following model, Intelligent Driver Model (IDM) [42], to gener-
ate a safe motion plan for each vehicle based on the information from the CZG. The output motion 
plan is an approximate solution to the optimization problem defined in Section 3.

As the distance that vehicles can travel within an update interval is limited by the speed limit of 
roads, CZMP only considers the conflict zones within a look ahead distance (LA) for each vehi-
cle. We conducted an experiment to evaluate the impact of LA on safety, travel time and computa-
tion cost (Section 5.3.3). Our result shows that considering conflict zones beyond certain distance 
would not improve safety and travel time significantly but would increase computation cost.

The framework modularizes each important step of the workflow to improve usability 
in future applications. For example, it is possible to replace the incremental delay planning 
algorithm easily with a different algorithm version without changing other components. 
Similarly, we could use a different NMP generation algorithm based on other car-following 
or platooning strategies without changing other components.

In the rest of the section, we describe the three main components of the CZMP frame-
work and how they work together to optimize traffic during an update interval. Table  1 
highlights the key notations which are frequently used throughout the paper.

Fig. 1  CZMP framework
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Table 1  Description of key notations

Context Notation Description

Problem Definition Δt Time step size
t A particular time
RG A road graph
vr ∈ VR An end point of a traffic lane (vr) and the set (VR)
er ∈ ER A traffic lane (er) and the set of traffic lanes (ER)
A The set of vehicles
ai A vehicle with the index i
A(t) The set of vehicles on the road graph at time t
ei(t) The edge where ai is located at time t
xi(t) The distance travelled by ai on edge ei(t) at time t
vli(t) The velocity of vehicle ai at time t
aci(t) The acceleration of vehicle ai between time t and t + Δt

ttci,j(t) The TTC between vehicles ai and aj at time t
TTCmn The minimum allowed TTC (the lower limit of TTC values)
TTCthr The TTC threshold (the upper limit of TTC values)
ttci(t) The TTC of vehicle ai at time t (Eq. 1)
T The time taken to complete trips of all the vehicles
tti The travel time of vehicle ai from its source to destination
ftti The fastest travel time of vehicle ai
� The desired maximum travel time factor
�i A motion plan of vehicle ai
� A network motion plan (NMP) satisfying minimum allowed 

TTC constraint between all vehicles
TTC constraint between all vehicles

Π Set of all possible NMPs
�∗ The NMP with minimum DTTC 

CZMP Framework U The update interval
LA The look-ahead distance
CZG A conflict zone graph
tu A particular update time
A(tu) The set of vehicle on the road graph at the update time tu
C The set of conflicts between the vehicles in the set A(tu)
di The planned delay of vehicle ai
ci,j A conflict zone between the two vehicles ai and aj
pati The projected arrival time of vehicle ai to the conflict zone ci,j
D A set of delay increments
Δdk A delay increment in the set D
Δs The time headway increment

IDM Model ACmn The desired deceleration of vehicle ai
ACmx The maximum acceleration of vehicle ai
vl
0

The desired velocity of vehicle ai
Vmx The maximum velocity allowed for vehicle ai
� The free acceleration exponent
Δv(t) The relative velocity between ai and the front vehicle aj at time t
s(t) The distance between ai and the front vehicle aj at time t
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4.1  Conflict zone graph (CZG)

A CZG = (A(tu),C) is a time-dependent graph where A(tu) is a set of vertices and C is a set of 
edges. CZMP constructs a new CZG at the start of an update interval tu based on the traffic data 
available at the time. A vertex in CZG represents a vehicle ai ∈ A(tu) that is present when the 
graph is constructed. A vertex has two attributes. The first attribute is the fastest travel time 
( ftti ), which is the shortest time that the vehicle ai can travel the look ahead distance or the 
remaining part of its route, whichever is shorter, assuming the vehicle can travel at the speed 
limit. The second attribute is the planned delay ( di ), which is the delay that should be applied 
to the vehicle. The di value is set to zero when constructing the CZG. An edge represents a 
conflict zone ( ci,j ), where i and j represent two vehicles, ai and aj , respectively (Fig. 2). A con-
flict zone is a common/shared part of the routes of the two vehicles. The size of conflict zones 
can vary in different scenarios. For example, a conflict zone maybe a single intersection where 
the routes intersect. It may also start at an intersection, where the routes of the vehicles overlap 
(meet, followed by a set of continuous traffic lanes shared by the vehicles thereafter).

We identify conflict zones based on the following two rules,

• Rule 1: If two vehicles ai, aj use the same edge er ∈ ER in their path then er is a part of 
a conflict zone.

• Rule 2: If two vehicles ai, aj use two crossing edges er, er� ∈ ER at an intersection in 
their paths then er and er′ are also a part of a conflict zone. Figure 3a shows a four-
legged intersection connecting four two-way single-lane road segments. It shows the 
edges and vertices of the road graph and three different paths that start from edge er1 . 
We consider a virtual grid inside the intersecting region based on the number of lanes 

Table 1  (continued)

Context Notation Description

s
0

The minimum distance between ai and the front vehicle aj
TH The time headway to keep between ai and the front vehicle aj

Fig. 2  Representation of a conflict zone in CZG

Fig. 3  Examples and details of conflict zones
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from intersecting road segments to determine the conflicting locations inside the inter-
section. For example, if the two intersecting roads have one lane in each direction, there 
is a 2 × 2 virtual grid at the intersection as shown in Fig. 3a. Each edge within the vir-
tual grid occupies a certain sequence of cells. If two different edges er, er� ∈ ER at an 
intersection has a shared cell as shaded in Fig. 3b, they are regarded as ‘crossing edges’.

Figure 3c  shows a road network with three consecutive intersections, where vehicle ai ’s path 
goes through the edges [er1, er4, er5, er6, er7, er8, er10] , and vehicle aj ’s path goes through the 
edges [er2, er3, er5, er6, er7, er9, er11] . For simplicity, we only show the road edges used by 
those two paths. The conflict zone ci,j between the two vehicles ai, aj is shaded in red and it 
includes the edges {er3, er4, er5, er6, er7, er8, er9} . The er5, er6, er7 are common to both vehicle 
paths (Rule 1) and edge pairs (er3, er4), (er8, er9) are crossing edges (Rule 2). Figure 3d shows 
how we extend the road graph and virtual grid for a double lane intersection scenario. Similarly, 
we could extend this formulation into other types of intersections appropriately.

When constructing the CZG, we only consider the conflict zones within the look-ahead 
distance from the current position of vehicles. The direction of an edge in CZG shows the 
car-following order, i.e., the edge points to the predecessor vehicle that enters the con-
flict zone first. An edge also maintains the projected arrival time (pat) for each of the 
vehicles, pati and patj . Initially, the value of pat is the fastest travel time that a vehicle 
can arrive at the conflict zone, assuming the vehicle always travels at the speed limit. The 
value will be increased during optimization when a delay is added to the vehicle.

A simple example of CZG is shown in Fig. 4. This example shows a scenario where 
three vehicles a1 , a2 and a3 have conflicts between their paths (Fig. 4a). For simplicity 
of the example, we assume that each road segment has one traffic lane in each direc-
tion. There are three conflict zones, c1,2 , c2,3 and c1,3 (Fig. 4b). Figure 4c shows the CZG 
based on the three conflict zones. The graph contains three vertices (vehicles) and three 
edges (conflict zones). Each edge points to the vehicle that arrives at the zone first. For 

Fig. 4  A traffic scenario, the corresponding conflict zones and the corresponding CZG
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example, for conflict zone c1,2 , pat1 is 0 and pat2 is 2, which means vehicle a1 arrives the 
conflict zone first. Therefore, the corresponding edge points to a1.

Computing CZG Given a set of vehicles at a particular update time tu ( A(tu) ), a look-ahead dis-
tance (LA) and a road network (RG), the CZMP framework uses Algorithm 1 to compute CZG.

For each vehicle in the input set of vehicles, the algorithm builds a corresponding ver-
tex in the CZG (Line 1-2). For each road lane within the look ahead distance on the path 
of a vehicle ai , the algorithm finds all the conflicting road lanes and the vehicles that use 
those lanes. An edge is built between ai and each of the found vehicles (Line 13).

Time complexity The time complexity of Algorithm 1 is O(|A(tu)|2|pmx||cmx|) , where |A(tu)| 
is the number of available vehicles at update time tu , |pmx| is the maximum number of edges on 
a path, |cmx| is the maximum number of crossing edges for an edge in the road graph.

4.2  Incremental delay planning algorithm

After building the CZG data structure, our framework uses Algorithm 2 to plan the delays 
of the vehicles’ arrival at conflict zones. Adding delay to the arrival time can change the 
order of vehicle arrivals and help enlarge the inter-vehicular space between two vehicles, 
resulting in an improvement of road safety with a reduced conflict between the vehicles. 
The algorithm runs in iterations, where each iteration increases the delay by a value from 
a predefined sequence of delay increments. There are certain constraints that need to be 
obeyed when delaying vehicles. For example, the increased travel time caused by the delay 
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cannot exceed the desired maximum travel time. If any of the constraints could not be sat-
isfied for a vehicle, the delay will not be applied to the vehicle. Otherwise, the algorithm 
updates the delay value at the vehicle’s corresponding vertex in CZG. The delay informa-
tion in the updated CZG will be used for motion planning as detailed in Section 4.3.

Algorithm  2 checks four constraints when planning delays and filters out unsuitable 
vehicles for adding delays (Line 5-10). This procedure is detailed as follows. 

1. Desired maximum travel time: As shown in the research problem definition (Sec-
tion 3), the travel time of a vehicle must be within an acceptable range when additional 
delay is applied. Specifically, for any vehicle ai , given the fastest travel time ftti in 
CZG, the current planned delay di , the additional delay Δdk and the desired maximum 
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travel time factor � , if ftti + di + Δdk > 𝛼 × ftti , the increased travel time is beyond the 
desired maximum travel time and thus the algorithm would not apply the delay to ai . 
The algorithm checks this constraint in Line 5.

2. Change of safety risk: The algorithm checks whether a delay can help reduce road 
safety risk. If not, the delay is not beneficial and should not be applied. The algorithm 
computes the change of safety risk for a vehicle ai (Line 6). The computation is based 
on Eq. (4). E(ai) is the edges (conflict zones) of vehicle ai . 

 In Eq. (4), h′
ci,j

 is the safety risk for the conflict zone between vehicle ai and vehicle aj 
when the additional delay ( Δdk ) is added to ai , and hci,j is the safety risk without con-
sidering the additional delay. If risk_changei is negative, the delay is deemed as benefi-
cial as the safety risk is reduced. The safety risk hci,j can be computed using (Eq. 5), 
where TTCthr is the TTC threshold, pati is the projected time that ai arrives at the con-
flict zone, and patj is the projected time that aj arrives at the conflict zone. We should 
note that pati should be replaced with pati + Δdk when computing the risk with the 
added delay ( h′

ci,j
 ). 

3. Dependencies of vehicle: In the event that both vehicles involved in a conflict zone get 
the same amount of delay, there would be no change to the safety risk associated with 
the conflict zone, resulting in unnecessary delays to both vehicles. The algorithm avoids 
this situation by imposing a dependency constraint. A vehicle aj has a dependency on a 
vehicle ai if a delay of ai leads to a lower safety risk at the conflict zone ci,j that involves 
the two vehicles. Under this constraint, if both vehicles have a dependency on each other, 
only one of the vehicles can get a delay. The algorithm finds the set of dependencies of 
a given vehicle in Line 7.

4. First-In-First-Out (FIFO) constraint: If a conflict zone starts with a lane, a vehicle 
that enters the conflict zone first must also be the vehicle that leaves the zone first. The 
constraint does not apply if the conflict zone starts with a road intersection because a 
vehicle may need to give way to another vehicle from a conflicting direction according 
to road rules, even when the former vehicle arrives at the intersection first. The FIFO 
constraint can be checked as follows. Given a conflict zone ci,j between vehicles ai and 
aj , assuming the conflict zone starts with a lane, if aj enters the zone first, the projected 
arrival time of ai ( pati ) must be greater than the projected arrival time of aj ( patj ). If a 
delay of Δdk is added to the predecessor aj and pati ≤ patj + Δdk , the FIFO constraint 
is violated. The algorithm checks the constraint in Line 8.

After checking the constraints, the vehicles that can get an additional delay of Δdk are 
included in a set AC . Then the algorithm updates CZG using the additional delay Δdk . For 
updating CZG, the algorithm starts from the vehicle that would get the most significant 
benefit by adding a delay (Line 14). Once the delay is added to the vehicle’s corresponding 
vertex and edges, the dependencies of the vehicle are removed from the set AC (Line 18). 
This is because delaying a vehicle and its dependencies at the same time would result in no 
benefit for any of the vehicles.

(4)risk_changei =
∑

ci,j∈E(ai)

(h�
ci,j

− hci,j )

(5)hci,j =

{
(TTCthr − |pati − patj|)2 if |pati − patj| ≤ TTCthr

0 otherwise
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After planning delays for all vehicles, the algorithm updates the direction of certain 
edges in CZG (Line 19-21). The direction of an edge shows the order that a pair of vehi-
cles arrive at the corresponding conflict zone. The order of arrival is important for making 
motion plans of vehicles, which will be detailed in Section 4.3. When delays are applied 
to vehicles, the order of arrival can change if the conflict zone starts at a road intersection 
because the vehicles have the opportunity to slow down and give way to other vehicles at 
intersections. Therefore, the algorithm updates the order of arrival for the conflict zones 
that start at road intersections. For such a conflict zone, the vehicle with the lower pro-
jected arrival time will be set as the first vehicle to reach the intersection. In the rare case 
that two vehicles have the same arrival time, the vehicle with the lower index in the data-
base will be set as the first vehicle to reach the zone.

Algorithm 2 Example Based on the scenario in Figs. 4 and 5a shows the initial status of 
a CZG when the algorithm starts. In this example, we assume that the desired maximum 
travel times of vehicle a1 , a2 and a3 are 24s, 30s and 36s, respectively. The TTC threshold 
TTCthr is 10s and the set of candidate delay increments is D = [4s, 2s] . The edge direction 
for conflict zone c1,2 is fixed from the beginning because the zone starts on a road segment, 
which means the order that the two vehicles arrive at the zone is deterministic. Differently, 
the direction of the other two conflict zones will be decided as the algorithm runs. We 
show the direction of the remaining conflict zones in Fig. 5d. Figure 5b and c  show the 
state at each iteration of the algorithm. The algorithm may need to run multiple rounds for 
a particular delay increment. We start by taking the first delay increment, 4s, from D (line 
1) and look for vehicles that are benefited from a 4s delay. 

1.  Δdk = 4s Round 1: We check the potential impact of a 4s delay on each of the three 
vehicles. When adding the delay to a1 , we see that the delay increment violates the 

Fig. 5  Example of incremental delay planning algorithm
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FIFO constraint at the conflict zone c1,2 (line 8). Therefore, a1 should not get the delay 
in this round. We find that both a2 and a3 would be benefited from the delay as they 
would get negative risk change values (line 6). As adding the delay to a2 and a3 would 
not violate other constraints, we consider them as the candidate vehicles that may 
actually get the delay (line 9, 10). Then, we apply the delay to a2 and update the CZG 
because adding the delay to a2 would result in a larger reduction of safety risk com-
pared to adding a delay to a3 (line 14-17). We update the relevant numbers for a2 in 
the CZG. The updated numbers are coloured in blue in Fig. 5b-Round 1. We then skip 
applying the delay to a3 because a3 is a dependent of a2 , which means we should not 
apply the delay to both vehicles at the same time (line 18). Since there are vehicles 
that are benefited from a delay in this round, we start a second round to see whether a 
further 4s delay would help.

2.  Δdk = 4s Round 2: In the second round, adding a further delay to vehicle a2 violates 
the desired maximum travel time constraint (line 5). Adding the further delay to both 
a1 and a3 cannot lower their safety risk as their risk changes would be non-negative 
with the delay. Therefore, we cannot find any candidate vehicle that would be ben-
efited from the further 4s delay. At this point, we are done with the 4s delay increment 
(line 11, 12). There is no change to the CZG in this round. After that, we start to try a 
new delay increment, which is 2s in D (line 1).

3.  Δdk = 2s Round 1: In this round, adding a 2s delay to a2 violates the desired maxi-
mum travel time constraint. Adding the delay to a1 gives a non-negative risk change 
value, which means the vehicle cannot be benefited from the delay. We find that vehi-
cle a3 ’s risk change value would be negative with the delay. We then apply the 2s 
delay to a3 and update relevant numbers in the CZG (Fig. 5c-Round 1). Since there is 
a vehicle that is benefited from the 2s delay in this round, we start a new round to see 
whether adding a further 2s delay would help.

4.  Δdk = 2s Round 2: In this round, adding a 2s delay to vehicle a2 violates the desired 
maximum travel time constraint. Vehicle a1 and a3 are not benefited from the further 
delay as they would give non-negative risk change values. Therefore, there is no can-
didate vehicle for applying the delay (line 11, 12). The CZG is not changed in this 
round. The algorithm terminates as we have finished all the delay increments in D.

 Finally, we decide the direction of each edge based on the final projected arrival times. 
Figure 5d shows the final direction of each edge.

Time complexity The time complexity of Algorithm 2 is O(q|D|(|A(tu)| + |C|)) , where q 
is the maximum number of delay increments for a vehicle with a particular delay increment 
Δdk , |D| is the size of increment sequence D, |A(tu)| is the number of available vehicles at 
current update time tu and |C| is the number of conflict zones between the vehicles.

4.3  Safer network motion plan generation algorithm

To achieve the planned delays, vehicles need to adjust their motion in real time so that 
they can arrive at conflict zones with the planned delays. Our CZMP framework gen-
erates a network motion plan that includes the acceleration of all individual vehicles 
for each time step during an update interval. The motion plans can be distributed to 
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connected vehicles, which can adjust their motion according to the plan. The network 
motion plan is generated with Algorithm 3.

The algorithm is based on a car-following model, Intelligent Driver Model 
(IDM) [42]. Given the state of a front vehicle aj and a back vehicle ai , the IDM model 
computes the desired acceleration of the back vehicle aci(t) at a particular time t using 
Eqs. (6) and (7).

In Eqs. (6) and (7), ACmx is the maximum acceleration of vehicle ai , vli(t) is the velocity of 
vehicle ai at time t, vl0 is the desired speed (e.g. the maximum velocity allowed Vmx ), � is 
the free acceleration exponent, Δv(t) is the relative velocity between ai and aj at time t, s(t) 
is the bumper to bumper distance between ai and aj at time t, s∗ is the effective minimum 
gap, s0 is the minimum bumper to bumper distance between vehicles, TH is the desired 
time headway for safety, and ACmn is the desired deceleration (i.e. the desired minimum 
acceleration). A key parameter of the model is time headway (TH), which is the time 
that the back vehicle takes to reach the current position of the front vehicle. When TH 
is increased, the space between the two vehicles increases, leading to a delay of the back 
vehicle and a reduction of traffic conflicts.

Algorithm 3 runs in two parts for each time step. In the first part, it finds the closest 
front vehicle (predecessor) of ai using CZG (Line 3-6). As mentioned earlier, a CZG 
edge represents a conflict zone that involves two vehicles. The direction of the edge 
points to the vehicle that arrives the conflict zone first. Therefore, an outward edge that 
starts from ai points to a vehicle in front of ai . While iterating over all the outward edges 
of ai , the algorithm finds the front vehicle that causes the lowest acceleration of ai based 
on the IDM model. This front vehicle has the most significant impact on ai ’s safety 
among all the front vehicles. For example, in the CZG in Fig. 5d, vehicle a1 does not 
have any vehicle in front and it could take the maximum acceleration ACmx . However, 
a2 has vehicles a1 and a3 in front as shown in the CZG. As the CZG in Fig. 5 is based on 
the traffic scenario shown in Fig. 4, we consider the following two cases when determin-
ing the predecessor of a2.

• Regarding front vehicle a1 : Vehicle a2 should follow vehicle a1 , and let a1 cross the 
intersection before start turning at the intersection.

• Regarding front vehicle a3 : Vehicle a2 should stop before the intersection and let a3 
cross the intersection before start turning at the intersection.

We compute a2 ’s ideal acceleration in each case using the IDM model. Based on the two 
acceleration values, we select the front vehicle which leads to the lowest acceleration 
as the predecessor of a2 . The predecessor has the most significant impact on a2 ’s safety. 
Similarly, we can find predecessors in other cases as well.

(6)aci(t) = ACmx

[
1 −

(
vli(t)

vl0

)�

−

(
s∗

s(t)

)2]

(7)s∗ = s0 + vli(t)TH +
vli(t)Δv(t)

2
√
ACmxACmn
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In the second part, the algorithm computes the best acceleration value for ai , based on the 
state of ai and the front vehicle found in the first part, using the IDM model (Line 7-9). To do 
this, the algorithm computes a set of candidate acceleration values while increasing the TH 
value in the IDM model. Increasing TH leads to an increase of inter-vehicular space, thus an 
increase of the delay for vehicle ai . The TH values are varied between TTCmn and TTCthr with 
an increment of Δs between adjacent values. With each of candidate acceleration values, the 
algorithm predicts the next state of ai , i.e., the position and velocity of ai at the next time step. 
Different acceleration values would lead to different delays, which may or may not be close to 
the planned delay for ai , i.e., the value di stored in the CZG. Among all the candidate accelera-
tion values, the value that will be assigned to vehicle ai is the one that would result in a delay 
closest to di.

Time complexity The time complexity of Algorithm 3 is O(|U||A(tu)|(|C| +
TTCthr−TTCmn

Δs
)) , 

where |U| is the number of time steps in the update interval, |A(tu)| is the number of avail-
able vehicles at time tu , |C| is the maximum number of outward edges connected to a vertex 
in CZG, and TTCthr−TTCmn

Δs
 is the number of TH values to be explored.

5  Experimental methodology

To evaluate the performance of the proposed CZMP framework, we consider two experi-
ment setups, Synthetic Data based Experiment Setup (SDE-Setup) and Real-world Data 
based Experiment Setup (RDE-Setup). First we perform comparative tests using both setups 
to evaluate the impact of several traffic parameters on CZMP and a set of baselines. Then, we 
perform parameter sensitivity tests using SDE-Setup to evaluate the impact of two parameters 
that are used by CZMP and a variant of CZMP.

Our experiments are conducted with SMARTS3  [43], a microscopic traffic simulator. 
We implement the CZMP framework and all the baseline approaches in Java 8. All the 

3 https:// proje cts. eng. unime lb. edu. au/ smarts/.

508 GeoInformatica (2023) 27:491–523

https://projects.eng.unimelb.edu.au/smarts/


1 3

experiments are conducted on a computer equipped with an Intel(R) Core(TM) i7-8550U 
1.80 GHz processor, 16 GB RAM and 64 bit Windows 10 Education operating system.

5.1  Synthetic data based experiment setup (SDE‑Setup)

5.1.1  Baselines

ICR Intersection Conflict Resolution (ICR) is a state-of-the-art traffic-efficiency-oriented 
intersection scheduling method [12]. ICR uses an intersection-level conflict graph to model 
traffic condition around intersections such as the waiting time of vehicles. Based on the graph, 
ICR determines the order that vehicles pass through the intersections for improving traffic 
efficiency. In addition, ICR performs motion planning but it uses a vastly different approach 
compared to CZMP. To make a fair comparison between ICR and our framework, we replace 
the motion planning component of ICR with the motion planning model of CZMP.

ATSC Actuated Traffic Signal Control (ATSC) is a classical traffic management solution 
that extends the active color phase if more traffic is observed in that phase [44].

FPG The Fastest Platooning Graph (FPG) algorithm is proposed in our previous work [11]. 
FPG is more focused on improving travel time rather than achieving a balance between 
travel time and road safety. FPG and CZMP use the same parameter settings where pos-
sible. We derive the following three baselines from FPG.

• FPG-1: This baseline uses the TTCmn as the spacing value in FPG (the time headway 
TH in the IDM model) such that all vehicles maintain the minimum space from other 
vehicles.

• FPG-2: This baseline uses 2 × TTCmn as the spacing value in FPG such that all vehicles 
naively improve safety by doubling inter-vehicular spaces.

• FPG-L: This baseline uses a variable spacing value based on the vehicles’ position in a 
lane for more flexible management of road safety. At the start point of a lane, the spac-
ing value is TTCmn . The value gradually increases up to TTCthr at the middle of the lane 
and then gradually decreases to TTCmn at the end of the lane. Inside intersections, the 
spacing value is set to TTCmn.

SPG The Safest Platooning Graph (SPG) is also proposed in our previous work [11]. SPG 
is similar to CZMP as it aims to achieve a balance between road safety and travel time. 
However, SPG is computationally expensive. SPG and CZMP use the same parameter set-
tings where possible.

CZMP‑U CZMP-U is similar to CZMP except that it only uses a fixed delay increment 
value, 2s. That is, CZMP-U does not allow different delay increment values as CZMP does.

5.1.2  Evaluation measures

Average Travel Time Ratio (ATTR ) As shown in our problem definition (Section  3), an 
ideal safety management solution would balance safety and travel time. We use the ATTR  
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to evaluate the solutions from the traffic efficiency perspective. For a given vehicle ai , 
tti

ftti
 is 

the ratio between the actual travel time ( tti ) and the hypothetical shortest travel time ( ftti ), 
which can be achieved when the vehicle travels at the road speed limit during its entire trip. 
ATTR  is computed as 1

n

∑
ai∈A

tti

ftti
 , where n is the number of vehicles. We evaluate traffic 

efficiency using ATTR rather than a simple summation of travel times because the later 
form is less suitable to reflect the travel time delays experienced by individual vehicles. 
The hypothetical optimum value of ATTR is 1, which is also the minimum value that can 
be achieved. A lower ATTR indicates that the actual travel times are closer to the hypo-
thetical shortest travel times, which represents a better traffic efficiency.

Average Distance to TTC Threshold (ADTTC ) We use ADTTC  to evaluate the solutions 
from the safety perspective. The value is calculated as 1

n
DTTC , where DTTC  is the road 

safety metric in our problem definition (Section 3) and n is the number of vehicles.

Update Interval Utilization (UIU) We use UIU to measure computation costs. UIU is 
defined as Computation Time

Update Interval
 . If the UIU of a solution is higher than 1, the solution is not suita-

ble for real-time optimization as the computation cannot be completed within the update 
interval. Conversely, a solution is readily deployable in terms of computation efficiency if 
its UIU is below 1.

5.1.3  Parameter settings

Based on a range of experiment parameters, we evaluate the performance of all the solu-
tions under different combinations of parameter settings. When varying the value of one 
parameter, all other parameters are set to their default values. The value ranges of param-
eters are shown in Table 2.

For a particular parameter combination, we run one simulation using each of the solu-
tions. At the start of the simulation, a set of vehicle routes is loaded into the simulator. The 
simulation runs until all vehicles finish their journeys. The TTC  values at each time step 
and the travel times of vehicles are computed and recorded. At the end of the simulation, 
we measure the performance of the solution based on the records.

To make a fair comparison between the solutions, all the solutions are tested with the 
same set of vehicle routes for a specific combination of parameter settings. The set of 
routes is generated based on the values of three parameters: road network, traffic volume 
and traffic distribution. We run a one-hour simulation using the FPG-1 baseline to generate 

Table 2  Parameter settings

Parameter Default value Value range

Traffic volume 1000 {250, 500, 750, 1000, 1250, 1500}
Road graph RG-3 {RG-1, RG-2, RG-3, RG-4}
Traffic distribution UTD {UTD, GTD}
Look-ahead distance (LA) 900m {300m, 600m, 900m, 1200m, 

1500m, 1800m, 2100m}
Desired maximum travel time factor ( �) 1.5 { 1.0, 1.25, 1.5, 1.75, 2.0, 2.25 , 2.5}
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the set of routes. The traffic volume is kept constant during this simulation, which means a 
new vehicle is put into the road network when a vehicle reaches its destination.

More details of the experiment parameters are shown below.

Road Network We use four synthetic road networks in our experimental simulations. The 
area of each of the networks is 3.75km × 3.75km . In the simulations with the double-lane 
road networks, a vehicle does not switch lanes during its trip. This constraint helps elimi-
nate the random effects of lane-changing on the performance of the solutions.

• RG-1 - Single Lane, 10 × 10 grid with 100 intersections
• RG-2 - Single Lane, 15 × 15 grid with 225 intersections
• RG-3 - Double Lane, 10 × 10 grid with 100 intersections
• RG-4 - Double Lane, 15 × 15 grid with 225 intersections

Traffic Distribution The origin and destination of vehicle routes are randomly picked 
using two traffic distributions, Uniform Traffic Distribution (UTD) and Gaussian Traffic 
Distribution (GTD). GTD can lead to a higher traffic density in the centre of the network 
compared to UTD. Given a pair of origin and destination, we use Dijkstra’s Algorithm to 
compute a vehicle route.

Other Parameters In all our experiments, the time step ( Δt ) is 1s, the minimum allowed 
TTC ( TTCmn ) is 2s, the TTC threshold ( TTCthr ) is 10s, the maximum velocity allowed 
( Vmx ) is 72kmh, the delay increment sequence (D) in Algorithm 2 is [8s, 4s, 2s], the incre-
ment of IDM’s TH parameter ( Δs ) in Algorithm 3 is 1s, and the update interval (U) is 10s. 
In IDM model, vl0 = Vmx, s0 = 2m , ACmx = 1.4ms−2 , B = −2.0ms−2 and � = 4.

5.2  Real data based experiment setup (RDE‑Setup)

In RDE-Setup, we use the same baselines and evaluation measures that are used in SDE-
Setup. To set up the realistic road network and the traffic distribution, we consider two real-
world taxi datasets, New York taxi dataset4 and Beijing (T-Drive) taxi dataset5 [45] along 
with the real maps available from Open Street Maps6.

New York Traffic Scenarios Based on the area covered by New York taxi dataset, we consider 
two map areas approximately 3km × 3km in size as shown in Fig. 6a and b. For each map, we 
extract the taxi trips in the map area within a randomly selected hour of a randomly selected 
day (For example, we consider 7 am - 8 am on 2015/04/11 for New York Midtown map). The 
two areas have different numbers of taxi trips, as shown in the real data. Then we generate 
background traffic (non-taxi vehicles) using the uniform traffic distribution (UTD) generation 
technique that we used in SDE-Setup. We consider three background traffic levels (3600, 5400 
and 7200 vehicles/hour) for both maps considering the capacities of the road networks. The 
selected background traffic levels avoid potential gridlock scenarios for all the baselines as 

4 https:// www1. nyc. gov/ site/ tlc/ about/ tlc- trip- record- data. page
5 https:// www. micro soft. com/ en- us/ resea rch/ publi cation/ t- drive- traje ctory- data- sample/
6 https:// www. opens treet map. org/
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such scenarios could not provide a comparative result. Figure 6a shows the Central Business 
District (CBD) in New York Midtown area. There were nearly 3600 taxi trips within the hour 
we consider. For this map when the background traffic level is 3600 vehicles/hour scenario, we 
simulate 3600 taxi trips with 3600 non-taxi vehicles (total of 7200 vehicles) within the one-
hour period. Figure 6b shows the New York Manhattan Bridge area, which consists of nearly 
2400 taxi trips within the period.

Beijing Traffic Scenarios Based on the area covered by Beijing taxi dataset (T-Drive), we 
consider two map areas approximately 3km × 3km in size as shown in Fig. 6c and d. For 
each map, we extract the taxi trips in the map area within a randomly selected hour of a 
randomly selected day. Then we generate background traffic considering three background 
traffic levels (5400, 7200 and 9000 vehicles/hour) similar to the New York traffic scenarios. 
Compared to the New York scenarios, we were able to add higher background traffic levels 
into the Beijing traffic scenarios, while avoiding potential gridlocks for baselines. Figure 6c 

Fig. 6  New York and Beijing road networks used in RDE-Setup
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shows an area near the Beijing railway station. There were nearly 1500 taxi trips within 
the period. Figure 6d shows a major intersection in the Beijing Chaoyang area. There were 
nearly 1200 taxi trips within the one-hour period.

Other parameters We set the look-ahead distance (LA) to 600m. As the view of driv-
ers is normally limited in real scenarios, especially for dense road networks in large cities 
like New York and Beijing, the look-ahead distance in RDE-Setup is shorter compared to 
SDE-Setup. For example, a 600m look-ahead distance in the New York Mid Town scenario 
covers around six intersections ahead, which is sufficient for city driving. The remaining 
parameter values are the same as default values in SDE-Setup.

5.3  Results

We present experimental results in three parts: comparative test results with SDE-Setup, com-
parative test results with RDE-Setup and parameter sensitivity test results with SDE-Setup.

5.3.1  Comparative tests with SDE‑Setup

Impact of Traffic Volume As shown in Fig. 7, CZMP outperforms other baselines in terms of 
road safety level and travel time in most of the cases. In that figure, lower ATTR values are better 
travel-time wise, lower ADTTC values are better safety-wise, and lower UIU values are better 
in terms of computation efficiency. The dotted red line in the bottom chart shows the UIU of 1, 
which is the maximum allowed update time utilization for real-time usage. CZMP’s advantage 
over other solutions is most visible when the traffic volume is 750. For example, CZMP achieves 
a 60% reduction of ATTR and a 68% reduction of ADTTC compared to the state-of-the-art solu-
tion ICR. This shows the benefit of our approach that optimizes delays first then makes motion 
plan for all vehicles at once. This approach is only used by CZMP and CZMP-U. The only case 
where this approach does not work better than others is when traffic volume is at the lowest level 
(250). In that case, SPG and FPG-L perform better than CZMP in terms of road safety. CZMP 
only considers delaying a vehicle when there is one or more conflict zones within the look ahead 
distance from the vehicle. If the number of vehicles is low, the number of conflict zones tends to 
be low as well, leading to a lower effectiveness of CZMP.

The result shows that CZMP and CZMP-U are computationally efficient. For example, even 
with 1500 vehicles, the UIU of CZMP is still under 0.1, which means the computation time is 
under 1 second as the update interval is 10 seconds. This shows that CZMP-based solutions are 
suitable for real-time usage. The UIU of SPG grows over 1 when the traffic volume is higher 
than 750. For example, the UIU of SPG reaches 3.44 for 1500 vehicles, which means SPG runs 
more than 30 times slower than CZMP with that traffic volume. The high computation cost 
of SPG is due to the repetitive computation of motion plans as motion planning is combined 
with delay planning in SPG. We do not present the UIU of ICR and ATSC in Fig. 7 because 
the computation time of these two baselines are negligible due to the fact that they do not pro-
cess network-level traffic information during optimization. All other solutions need to process 
network-level information, which can consume a considerable computation time. We also found 
that the construction of CZG only consumes a small portion of the computation time of CZMP. 
For example, in the 1500-vehicle scenario, only 12.5% of CZMP’s computation time is spent 
on constructing CZG while the remaining computation time is spent on running Algorithm 2 
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and Algorithm 3. Although it would be possible to save some computation time if the CZG is 
updated incrementally rather than being constructed from scratch at each interval, the time sav-
ing can be limited based on the results.

Impact of Road Network The results on different road networks are shown in the left part of 
Fig. 8. Same as Fig. 7, lower values are better in terms of ATTR, ADTTC and UIU. CZMP and 
CZMP-U achieve better safety level and travel time than other baselines in most cases. For exam-
ple, in road network RG-3, CZMP achieves a 60% reduction of ATTR and a 67% reduction of 
ADTTC compared to ICR. CZMP and CZMP-U show better performance in double-lane net-
works (RG-3 and RG-4) than in single-lane networks (RG-1 and RG-2). As the density of vehicles 
is lower when the number of lanes is doubled, CZMP-based solutions have more opportunities to 
increase the inter-vehicular spacing, resulting in better safety levels and better travel times. Inter-
estingly, in single-lane scenarios (RG-1 and RG-2), FPG-L achieves a better safety level compared 
to CZMP and CZMP-U. This is because the position-based variable spacing values in FPG-L 
encourage frequent changes of inter-vehicular spacing as vehicles move, which can help improve 
safety in dense traffic. CZMP-U and CZMP achieve similar ATTR and ADTTC except for road 
network RG-3, where CZMP performs better as inter-vehicular spacing is optimized using differ-
ent delay increment values, which allows fine-tuning of the inter-vehicular spaces.

All the solutions, except SPG, can complete optimization in less than one tenth of 
the update interval. The UIU of SPG is above 1 in some of the scenarios, which makes 
it unsuitable for real-time usage in those scenarios. The results show that CZMP-based 

Fig. 7  Results on traffic volume
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solutions can achieve a better balance between travel time and safety compared to others. 
They also have a good computation efficiency. Similar to the results in Fig. 7, the UIU of 
ICR and ATSC is not shown in Fig. 8 due to the fact that they do not process network-level 
traffic information, leading to negligible computation time.

Impact of Traffic Distribution The right part of Fig. 8 compares the solutions with two 
traffic distributions. When the distribution is Gaussian (GTD), ATSC achieves a slightly 
better safety level compared to the CZMP-based solutions. In GTD, the traffic at the centre 
of the road network is highly congested, leading to a high probability of vehicle conflicts. 
ATSC achieves a better safety level in this case as it helps to eliminate a large portion of 
safety risks at road junctions using traffic signals. However, ATSC performs worse than 
CZMP-based solutions safety-wise in all other cases in the experiments.

Discussion on the Results of the Tests with SDE‑Setup As mentioned in Section 3, our 
network-level safety optimization problem aims to find the best solution for minimizing a 
safety metric, Distance to TTC Threshold (DTTC). DTTC is aggregated from the events 
where the time-to-collision (TTC) of vehicles is below the TTC threshold, beyond which 
the safety risks are negligible. As DTTC measures the distance to the threshold, a lower 
DTTC is more preferable because a lower DTTC indicates that vehicles’ TTCs are higher, 
which means vehicles are less likely to collide with each other. The lowest value of DTTC 
is 0, which is the hypothetical optimum of the metric. When presenting our experimental 
results, we show the safety level on a per vehicle basis using ADTTC, which is DTTC 

Fig. 8  Results on traffic network and traffic distribution
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divided by the number of vehicles. We use ADTTC because comparing DTTCs directly is 
less meaningful as the number of vehicles can vary in different scenarios.

Although the ADTTCs of CZMP and CZMP-U are not exceptionally close to the hypo-
thetical optimum, they are closer to the hypothetical optimum than other baselines in most 
cases (Figs. 7 and 8). In some cases, the reduction of ADTTC achieved by CZMP-based 
solutions is significant. For example, when the traffic volume is 1500, the ADTTC of 
CZMP is 59% smaller than that of the state-of-the-art solution ICR. There are only a few 
cases that the safety levels achieved by some other baselines are closer to the hypotheti-
cal optimum than CZMP-based solutions. However, in those cases, CZMP-based solutions 
outperform other baselines in terms of the travel time metric ATTR. For example, FPG-L 
achieves a lower ADTTC than CZMP in the RG-1 network but CZMP reduces ATTR from 
FPG-L by 16.5% in the same network. Overall, CZMP-based solutions achieve a better bal-
ance between road safety and travel time. CZMP-based solutions also have low computa-
tion costs comparable to other baselines.

5.3.2  Comparative tests with RDE‑Setup

Results of New York Traffic Scenarios As shown in Fig. 9, CZMP and CZMP-U out-
perform other baselines in terms of road safety level and travel time in most cases, 
especially in moderate to high traffic volume cases. For example, in New York Mid-
town scenario (left), when background traffic rate is 5400, CZMP-U shows a 27% 
reduction of ATTR and a 63% reduction of ADTTC compared to the FPG-1 baseline. 
It shows a similar result with the 7200 background vehicle rate as well. Though FPG-L 
shows a better safety level at 3600 background vehicle rate, CZMP-U shows a better 
result travel time-wise. Although SPG shows a safety-wise better result compared to 
FPG-1 when the background traffic rate is 5400 and 7200, it is not a feasible solu-
tion at these two settings, where its UIU is greater than 1. In New York Manhattan 
Bridge scenario (right), CZMP-U outperforms all the other methods at all the back-
ground traffic levels. CZMP-U’s advantage over other solutions is most visible when 
the background traffic rate is 5400. For example, CZMP-U achieves a 15% reduction 
of ATTR and a 39% reduction of ADTTC compared to FPG-1. Different to the results 
with SDE-Setup, where ICR showed better performance compared to FPG-1, FPG-1 
performs better than ICR in the New York traffic scenarios. However, our solutions 
CZMP-U and CZMP are significantly better than both FPG-1 and ICR in New York 
traffic scenarios. When the background traffic rate is 3600, SPG’s safety level is similar 
to CZMP. However, SPG takes a significantly longer computation time compared to 
CZMP. The result also shows that CZMP and CZMP-U are computationally efficient. 
In all the scenarios, the maximum value of UIU of our methods is under 0.25, which 
means the computation time is under 2.5 seconds as the update interval is 10 seconds.

Results of Beijing Traffic Scenarios As shown in Fig.  10, CZMP and CZMP-U outper-
form other baselines in terms of road safety level and travel time in most cases, especially 
in moderate to high traffic volume cases, similar to the New York traffic scenarios. For 
example, in Beijing station area scenario, when back ground traffic rate is 7200, it shows 
a 2% reduction of ATTR and a 34% reduction of ADTTC compared to the FPG-1 base-
line. Although FPG-2 and SPG perform better than CZMP in terms of safety, when the 
background vehicle rate is 5400, CZMP and CZMP-U show better results travel time-wise. 
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In the Beijing Chaoyang area scenario (right), CZMP outperforms all the other methods 
in terms of safety at all the background traffic levels. In all cases, CZMP shows a minor 
ATTR reduction of around 1% with an ADTTC reduction ranging between 11%-22%. 
Although, the ICR baseline is the best method in terms of travel time in this scenario, it 
increases ADTTC by up to 66% compared to CZMP. SPG shows better safety levels com-
pared to FPG-1 at 7200 and 9000 background traffic rates. However, SPG’s computational 
complexity is several magnitudes higher than FPG-1 so it is not a feasible solution for these 
settings. The result shows that CZMP and CZMP-U are computationally efficient. In all 
the scenarios, the UIU of our methods is under 0.06, which means the computation time is 
under 0.6 seconds as the update interval is 10 seconds.

Discussion on the Results of the Tests with RDE‑Setup Overall our methods CZMP and 
CZMP-U show a better result when the road network is based on a grid plan, such as in the 
New York Midtown scenario. When the road network is dense (have intersections in closer 
proximity), the performance of other methods, especially ATSC and ICR, tend to degrade 
significantly. However, both CZMP and CZMP-U are capable of maintaining a good bal-
ance between efficiency and safety even in dense road networks.

5.3.3  Parameter sensitivity tests with SDE‑Setup

In this section we discuss the impact of two parameters that are used by CZMP-based 
solutions. The results on the two parameters are shown in Fig.  11. Lower values are 

Fig. 9  Results of the traffic scenarios in New York Midtown area (left) and Manhattan Bridge area (right)
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better in terms of ATTR, ADTTC and UIU. The dotted red lines in the bottom charts 
show the UIU of 1.

Impact of Look‑Ahead Distance The left part of Fig. 11 shows the results on look-
ahead distance LA. When LA increases from 300m, the performance of CZMP 
improves but the improvement becomes smaller as LA increases. The result shows 
that a long look-ahead distance, such as 2100m, does not provide significant benefits 
to safety and travel time as it is difficult to predict traffic far into the future. The com-
putation cost (UIU) increases with the look-ahead distance in a linear fashion, which 
is as expected because the amount of information that needs to be processed tends to 
increase when the look-ahead distance increases. For example, a longer look-ahead 
distance can lead to more conflict zones, which increases the computation cost of 
optimization. Based on the result, the default value of the look-ahead distance is set to 
900m. We also observe that CZMP performs better than CZMP-U as the former solu-
tion uses multiple delay increment values to optimize inter-vehicular spacing while 
the later one only uses a fixed increment value.

Impact of Desired Maximum Travel Time Factor The right part of Fig.  11 shows the 
results on the desired maximum travel time factor � . When � is 1, the framework cannot 
add delay to vehicles due to the constraint on desired maximum travel time (Section 4.2). 
With the increase of � , CZMP tends to consider more vehicles into the optimization. The 
result shows that CZMP can improve safety level and achieve a good balance between 
safety and travel time when a limited set of vehicles get delayed. For example, when � 

Fig. 10  Results of the traffic scenarios in Beijing station area (left) and Beijing Chaoyang area (right)
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increases from 1 to 1.5, CZMP’s ATTR reduces by 67% and its ADTTC reduces by 72%. 
When increasing � beyond 1.5, both ATTR and ADTTC do not change significantly for 
CZMP. In terms of safety and travel time, CZMP-U performs worse than CZMP when 
� is between 1.25 and 1.75. This shows that using a fixed delay increment (CZMP-U) is 
not as effective as using multiple delay increment values (CZMP). UIU remains largely 
unchanged when varying � for both solutions.

6  Conclusions and future work

Our proposed CZMP framework can achieve a good balance between road safety and 
travel time using network-level spatio-temporal data. The framework is particularly 
suitable for real-time applications due to its low computation costs. Our experimental 
results show the significant advantages of the framework over other data management 
solutions. CZMP improves the safety level by up to 68% while reducing the travel 
time by up to 60% against the state-of-the-art traffic-efficiency-oriented solution ICR. 
CZMP also runs more than 30 times faster than our preliminary solution SPG in cer-
tain scenarios.

The current design of CZMP assumes that all the vehicles would follow the 
instructions given by the framework. A future work can evaluate the performance of 
the framework when a portion of the vehicles cannot follow the instructions. It would 
also be interesting to incorporate more types of information, such as weather con-
ditions, into the framework. A future work can also extend CZMP for multi-modal 
transport that includes cars, trains and trams. Finally, in the current design of CZMP, 
we generate the conflict zone graph from scratch at each update interval. A future 
extension to CZMP can consider incremental updates of the graph. However, as we 
have discussed in the experimental results, only 12.5% of the computation time is 
spent on building the graph in our current design so the benefit of the incremental 

Fig. 11  Results on CZMP parameters LA and �
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version may be limited. The framework decouples each major step of the workflow, 
and it enables better usability and extendability for future applications.
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