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Abstract Spatial computing is a set of ideas, solutions, tools, technologies, and systems
that transform our lives with a new prospect of understanding, navigating, visualizing and
using locations. In this community whitepaper, we present a perspective on the changing
world of spatial computing, research challenges and opportunities and geoprivacy issues
for spatial computing. First, this paper provides an overview of the changing world of spa-
tial computing. Next, promising technologies that resulted from the integration of spatial
computing in the everyday lives of people is discussed. This integration results with promis-
ing technologies, research challenges and opportunities and geoprivacy issues that must be
addressed to achieve the potential of spatial computing.

Keywords Spatial computing · GPS · Navigation · Google Maps · Spatio-temporal ·
Future directions · Trends

1 Introduction

From virtual globes [8] (e.g., Google Maps) to global positioning system, spatial com-
puting has transformed society via pervasive services (e.g., Uber and other location-based

� Shashi Shekhar
shekhar@cs.umn.edu

Steven Feiner
feiner@cs.columbia.edu

Walid G. Aref
aref@cs.purdue.edu

1 University of Minnesota, Minneapolis, MN 55455, USA

2 Columbia University, 116th St & Broadway, New York, NY 10027, USA

3 Purdue University, 610 Purdue Mall, West Lafayette, IN 47907, USA

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s10707-015-0235-9-x&domain=pdf
mailto:shekhar@cs.umn.edu
mailto:feiner@cs.columbia.edu
mailto:aref@cs.purdue.edu


800 Geoinformatica (2015) 19:799–832

services), ubiquitous systems (e.g., geographical information system, spatial database man-
agement system), and pioneering scientific methods (e.g., spatial statistics). These tools
are just the tip of the iceberg. In the coming decade, spatial computing researchers will be
working to develop a compelling array of new geo-related capabilities. For example, where
GPS route finding today is based on shortest travel time or travel distance, companies are
now experimenting with eco-routing, finding routes that reduce fuel consumption [43]. For
example, United Parcel Service (UPS) uses a smart routing service that avoids left turns and
reduces the fuel consumption of its vehicles caused by idle waits for left turns [89]. Such
savings can be multiplied many times over when eco-routing services become available for
consumers and other fleet owners (e.g., public transportation) [59]. New geo-related capa-
bilities will also change how we use the Internet. Currently, users access information based
on keywords and references, but a large portion of information has an inherent spatial com-
ponent. Storing and referencing data by location may allow for more intuitive searching and
knowledge discovery. It would then be possible to draw correlations and find new informa-
tion based on relative locations, rather than keywords [54]. The incorporation of location
information for Internet users, documents, and servers will allow a flourishing of services
designed around enhanced usability, security and trust. Moreover, the data collection is
facilitated thanks to the breakthrough on sensor technology. Now, using the rich geospatial
data collected from these sensors, we can analyze, model, and visualize Earth as a complex
entity. For example, Fig. 1 illustrates how the Earth would be affected by gravity changes on
its surface that was impossible to visualize previously. Clearly, spatial computing is crucial
for understanding Earth as a complex system and its physics, biology and sociology.

The expected economic benefits of these and other spatial computing technologies are
significant. According to a recent McKinsey report, location-based services will provide
a significant portion of the estimated 150,000 new deep-analytical jobs and 1.5 million
data-savvy manager and analyst positions are needed for the upcoming push by companies
into big-data analysis [59]. Along with that, a potential consumer surplus of “$600 billion
annually” is possible through the use of personal location data [59].

While such opportunities are undoubtedly exciting, they also raise a host of new chal-
lenges for spatial computing that will need to be addressed with creativity, dedication, and
financial resolve. This paper presents a perspective on spatial computing based on the dis-
cussions at the 2012 Computing Community Consortium (CCC) visioning workshop. A

Fig. 1 Figure illustrates the
gravitational difference on the
surface of the earth. Areas of
strongest gravity are in yellow
and weakest in blue. Distortions
are magnified 10000 times for
visualization [1]
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staggering number of ideas came out of these discussions. We initially synthesized them for
a broader audience in [84]. This version refines our synthesis further. Although we explain
several aspect of recent advances and application of spatial computing, readers interested
in more detailed exploration of spatial computing are encouraged to consult textbooks [16,
23, 24, 80, 83], monographs [78, 81] and encyclopedias [51, 85]. The rest of this paper is
organized as follows:

Section 2 reviews the recent changes in spatial computing, Section 3 presents research
opportunities and challenges for spatial computing to be addressed and Section 4 reviews
the geo-privacy policy issues. Finally, Section 5 presents final considerations for spatial
computing. In addition, Appendix A presents emerging applications for different sections
of community, Appendix B shows several spatial computer science questions that are
worth brainstorming and finally Appendix C gives examples of platform trends for spatial
computing.

2 The changing world of spatial computing

Traditionally, map creation was a cumbersome job that was not only costly and but also
time consuming. Moreover, not only map creation but also using those maps and Geo-
graphic Information System (GIS) technologies required a sophisticated training that could
be afforded only by government agencies (i.e. Department of Defense) or big companies
(i.e. Oil Exploration Companies). Such organizations depended on highly specialized soft-
ware such as ArcGIS and Oracle Spatial Databases for editing or analyzing geographic
information and their expectations did not extend much beyond the distribution of paper
maps and their electronic counterparts.

By the recent changes and technological advances in spatial computing, now the roles
of people changed dramatically as outlined in Table 1. Today, “everyone” is a mapmaker
and every phenomenon is observable, “everyone” uses location-based services, and every
platform is location-aware.

However, due to the extreme success and widespread use of spatial computing, two issues
arose: (a) people’s expectations starts to overwhelm the advances [63] and (b) People start

Table 1 Cultural shift in spatial computing

Late 20th Century 21st Century and Beyond

Only sophisticated groups (e.g., Department of Everyone is a mapmaker and every

Defense, oil exploration) used GIS technologies phenomenon is observable

Maps were produced by a few highly trained Everyone uses location-based services

people in government agencies and surveying

companies

Only specialized software (e.g., ArcGIS, Every platform is becoming location aware

Oracle SQL) could edit or analyze geographic

information

User expectations were modest (e.g., assist in Rising expectations due to vast potential and risks

producing and distributing paper maps and

their electronic counterparts)
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Fig. 2 Figure shows the mistake a 2003 Economist article made which underestimates the range of North
Korean missiles. In a Earth is assumed as flat which caused the underestimation, whereas in b the correct
range is shown [29]. (Best in color)

to get more concerned about their privacy. We describe these challenges in more detail as
follows.

2.1 Everyone is a mapmaker and every phenomenon is observable

The fact that users with cell phones and access to the Internet now number in the billions is
a new reality of the 21st century. Increasingly, the sources of geo-data are smartphone users
who are untrained in GIS technology [36] (e.g., Mercator projection, World Geodetic Sys-
tem, etc) as well as hobbyists acting as volunteer geographic information (VGI) providers.
Data quality is often uncertain since the sources are generally untrained in making and
verifying specific measurements and may unwittingly contribute erroneous information.
Figure 2 is a well known example of erroneous distance information computed on a planar
map using circular distance, an easy mistake without the help of GIS supporting spherical
measurements.

In addition, more phenomena are also becoming observable in the sense that sensors are
getting richer for 3D mapping (e.g., LiDAR, ground-penetrating radar) and broader spectra

Fig. 3 Figure shows the levels
of underground water in 2013
compared with the past. Red
color indicates significant
deficiency [NASA]
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at finer resolutions are being captured. This makes it possible to observe more phenomena
at higher levels of precision. For example, Fig. 3 shows the visualization of ground water
levels over time that were measured by ground water sensors and remote sensing imagery.
However, richer and more precise sensor data presents new challenges due to increased data
volume, velocity and variety which are exceeding the capacity of current spatial computing
technologies.

2.2 Everyone uses location-based services

The proliferation of web-based technologies, cell-phones, consumer GPS-devices, and
location-based social media has facilitated the widespread use of location-based ser-
vices [81]. Internet services such as Google Earth and OpenStreetMap have brought GIS to
the masses (e.g., Google Earth has received over a billion downloads [14]). Services such
as Enhanced-911 (E-911) and navigation applications are consumed by billions of individu-
als. Facebook check-in and other location-based social media are also used by over a billion
people around the world.

2.3 Every platform is becoming location aware

Spatial computing and cell-phones continue to influence each other due to the increas-
ing need by individuals to know their spatial context, use navigation applications, etc.
Recently, smart phone sales have eclipsed those of personal computers [21]. As a result,
computing platforms are being increasingly shaped by cell-phones, and thus by spatial
computing. This new reality will require reimagining the various layers of the com-
puting stack. Support for geospatial notions within the general computing eco-system
has been rich at the application level (e.g., hundreds of projections are supported by
ArcGIS). However, more support will be needed at lower layers (e.g., operating system,
runtime system) for next-generation spatial computing. Support for geospatial notions
will be needed for compilers and computer network security. The possibility exists that
GPS circuits will be needed on-chip and that geodetic and Internet infrastructure will be
linked.

2.4 Expectations are rising and so are the risks

Recently, spatial computing has become one of the main components of people’s social
needs. People use spatial computing in every day of their life such as location-based
services, route suggestion and navigation, and virtual globes. The vast variety of spatial
computing applications and their convenience gained people’s trust as well as increased their
expectations. However, spatial computing also raised serious concerns over geo-privacy.
These concerns must be addressed to avoid skepticism among people, reduce public’s dis-
comfort of location aware services and make economic entities less liable over geo-privacy
issues. Sustainable geo-privacy policy must emerge from civil society. The needs of policy
stakeholders must be balanced to ensure public safety as well as economic prosperity. Con-
versation starters centering on special cases such as emergencies are needed to initiate the
extremely challenging but necessary geo-privacy policy discussion.

These profound changes will define the frontiers of future spatial computing research.
Today, the field abounds with exciting opportunities at every turn but the stakes have been
raised. If spatial computing is to achieve its full transformative potential, it will need to both
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Table 2 Spatial computing opportunities

20th Century 21st Century

Spatial Fusion (few Synergetics (long time-series of maps Cross-Cutting issues

Computing snapshots from from growing set of sensors and VGI - Understanding

Science few sensors, - Spatial-Temporal (ST) Prediction Geo-Privacy

Bayesian approaches, - Manipulating qualitative ST Data - Ubiquitous

authoritative - Multiple projections of past and future Computing

sources) - Spatial and ST computing standards - Persistent Sensing

and Monitoring

- Trustworthy Trans-

portation Systems

Spatial Few Platforms All Platforms from Sensors to Clouds

Computing (e.g. PC, SQL, - Spatial Computing Infrastructure

Systems custom) - Augmented Reality

- Collection, Fusion and Curation of

Sensing Data

- Computational Issues for Spatial

Big Data

Spatial Services for Services for Everyone: Spatial

Computing GIS-trained Cognition First

Services few - Spatial Cognitive Assistance

- Spatial Computing for Human-Human

Interaction/Collaboration

- Context-Aware Spatial Computing

- Spatial Abilities

expand and deepen its research horizons even further. The rest of this document summarizes
the promising technologies followed by the research opportunities and challenges that lie
ahead.

3 Research opportunities and challenges

Spatial computing’s success to date has created significant new research opportunities in
four broad areas: science, systems, services and crosscutting as detailed in Table 2. First,
overcoming the challenges of everyone being a mapmaker and every phenomenon being
observable will require Spatial Computing science to move from fusion of data from a few
trusted sources to synergizing data across numerous volunteers. Second, facilitated use of
location-based services will be needed to make these services available for everyone as
opposed to only the GIS-trained few. Third, surmounting the challenge of equipping every
platform to be location-aware will move spatial computing from a few platforms (e.g., PCs)
to all platforms (e.g., sensors, clouds). Other opportunities due to rising expectations are
crosscutting a number of interdisciplinary fields such as navigating the human body. The
profound changes outlined above have opened exciting new frontiers in spatial computing:
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3.1 Spatial computing sciences: from fusion to synergetics

Historically, spatial computing science dealt with geographic data from highly trained GIS
professionals in authoritative organizations with data quality assurance processes. Today,
an ever-increasing volume of geographic data namely volunteered geographic information
(VGI) is coming from average citizens via check-ins, tweets, geo-tags, geo-reports from
Ushahidi [72], and donated GPS tracks. Due to the nature of VGI data, there are several
issues that should be addressed, such as the quality of the collected data, preventing spa-
tial data fraud, etc. Such data requires transformation of traditional data fusion ideas into
a broader paradigm of data synergetics, thereby raising many new issues. For example,
we need to be able to manipulate qualitative spatio-temporal data in order to reason about
and integrate the qualitative spatial and temporal information that may be gleaned from
VGI (e.g., geo-tags, geo-reports, etc.). Spatio-temporal prediction may assist in inferring
the described location of a tweet from its content. Additionally, since contending narratives
in VGI data may lead to alternative maps of a common area from different perspectives,
handling multiple competing spatial descriptions from the past and future is essential.
Furthermore, spatial and spatio-temporal computing standards are needed to more effec-
tively utilize VGI such as geo-tags with known geographical locations via history-aware
gazetteers.

3.1.1 Qualitative volunteered data and next generation sensor measurement

Qualitative volunteered data and next-generation sensors provide tremendous potential in
spatial computing [33]. Much volunteered geographic data today is qualitative, i.e., non-
metric, linguistic, topological, contextual, descriptive, cultural, crowd-sourced. Integrating
qualitative spatial and temporal information from geo-tags, tweets regarding places, and
other VGI into existing data collections will allow us to automate the organization and
manipulation of a range of data currently unavailable for use with traditional data [8, 68].
It will make it possible to reason about the relevant and salient features of large, com-
plex data sets. For example, it will allow us to develop and evaluate potential scenarios
for humanitarian crises or to perform a post mortem analysis of a natural disaster (e.g.,
Haiti earthquake [70]). New challenges emerge such as: How does one manage hybrid
quantitative and qualitative spatio-temporal data? How should one interpret statements
such as “he crossed the street”, “crossed the room”, or “crossed the ocean”? How do we
merge existing work on spatial relationships with natural language? How do we develop
computationally efficient methods of spatial reasoning with hybrid quantitative/qualitative,
discrete/continuous descriptions? How do we deal with the mismatch between qualitative
spatio-temporal data and its relationship to the continuous nature of space and time?

Next-generation sensors are becoming richer for 3D mapping (e.g., LiDAR (Light Detec-
tion And Ranging) and ground penetrating radar) and our ability to capture broader spectra
at finer resolutions is improving. Next-generation sensors exist on many platforms such as
UAVs (Unmanned Arieal Vehicle) and cellphones that number in the billions. However,
spatial heterogeneity is a key challenge. Retrofitting every sensor (e.g., every traffic cam-
era) with specialized equipment such as heated enclosures depending on its spatial location
(e.g., Minnesota during the winter) may not be economically feasible. Thus, new ways of
determining which parts of the spectrum are most robust to fog, rain, and hail must be inves-
tigated. Furthermore questions such as: “what energy sources (e.g., solar, vibration, heat,
etc.) are most efficient across various geographies, sensors, and climates of interest?”, must
be addressed.
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Fig. 4 Figure portrays a significant hotspot analysis using the deaths’ locations and water pump sites of the
infamous London cholera epidemic in 1854 [86]. (Best in color)

3.1.2 Spatio-temporal prediction

Geospatial information can also be helpful when making spatio-temporal predictions about
a broad range of phenomena such as the next location of a car, the risk of forthcoming
famine or cholera, a criminal’s potential residence [27] or the future path of a hurricane.
For example, in Fig. 4 disease cases from the 1854 London cholera outbreak were used to
identify the outbreak hotspot around the Broad Street water pump which is the potential
cause of the outbreak using spatial scan statistics. Models may also predict the location of
probable tumor growth in a human body or the spread of cracks in silicon wafers, aircraft
wings, and highway bridges. Such predictions would challenge the best of machine learn-
ing and reasoning algorithms, including leveraging geospatial time series data. We see rich
problems in this realm. Many current statistical techniques assume independence between
observations and stationarity of phenomena. However, spatio-temporal data often violate
these common assumptions. Novel techniques accounting for spatial autocorrelation (the
degree of dependency among observations in a geographic space), domain-specific models,
and non-stationarity may enable more accurate predictions.

For spatio-temporal prediction to be used effectively, several questions should be
addressed: How to use traditional machine learning techniques and address the challenges
specific to spatio-temporal data (autocorrelation, spatial uncertainty [64, 75], heterogene-
ity etc.)? How can we handle the data imperfections that occurred due to losses? When
modifying traditional machine learning techniques to be used with spatio-temporal data,
how can we achieve computational efficiency? How can we keep privacy when mining
spatio-temporal data?

3.1.3 Synthesizing multiple viewpoints of past, present and future

Given the wide variety of data sources, it is not easy to synergize data, fusing various types
of spatial data, synthesize new information from the available data, and conflate or combine
related sources of spatial data. Automating map comparisons to identify differences across
competing perspectives will enable data analytics on multi-source spatial data. For example,
comparing and visualizing the various geo-political claims on the South China Sea requires
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extensive analysis of past and present claims by a number of legal entities. On the surface
this synergetics problem may appear to be traditional data integration but the problem has
more structure in the context of spatio-temporal data, which may allow a larger degree of
automation and computational efficiency. The domain semantics offer constraints such as
a common, finite, and continuous embedding space (e.g., the surface of the Earth), thus
allowing for interpolation and autocorrelation. Equally important is the challenge of how to
semantically annotate data and define metadata in a way that ensures its meaning will be
reconstructible by future generations [82].

In order to support all of these tasks, it will first be necessary to develop representa-
tions that capture both the data and any associated metadata about multiple views of past,
present, and future. So how can we keep the accuracy and provenance without comprising
semantics of data? Which techniques are needed to integrate data from various sources and
not lose its metadata and semantics? How can we produce new sources that can be accu-
rately described. The integration and analysis techniques must also deal with the various
modalities and resolutions of the data sources.

3.1.4 Spatial and spatio-temporal computing standards

Spatial data can be used more effectively if events, objects, and names can be easily associ-
ated with known geographical locations. These locations can be countries, states, cities, or
well known named places. In this context, there are two main challenges: how to associate
an event to a known location using some kind of text and location matching algorithm, and
once a match is made in two different systems, how to identify if they both map to the same
location. The first problem is well known and several commercial solutions exist to solve
this problem. The second problem is relatively new and requires support from the standards
bodies. For example, a document might have a reference to Bombay and a geo-extraction
tool can identify that the document is referring to the business capital of India. Once this
association is made, the tool might tag the document with the text Bombay, India? (before
1996). Another tool looking at the same document might tag it with the text Mumbai, India?
(since 1996). When this sort of information is exchanged, further processing is required to
reconcile the fact that both documents refer to the same location.

Which sub-areas of spatial computing are ripe for standardization i.e., where is consensus
emerging on a set of common concepts, representations, data-types, operations, algebras,
etc.? Which spatial computing sub-areas have the greatest standardization needs from a
societal perspective (e.g., emergency responders)? How may consensus be reached in areas
of greatest societal need?

3.2 Spatial computing systems: from sensors to clouds

Earlier, spatial computing was only used by a highly trained group of people who could
afford and needed specialized hardware and software platforms (ESRI Arc, Oracle Spatial,
etc.). Today, from enterprise level computers to wearable devices, spatial computing is used
by almost all computing platforms due to the advances on computing technologies and abun-
dant GPS enabled devices. Since spatial computing is used more diversely across platforms,
new spatial computing platforms are needed. These platforms not only should support spa-
tial computing at lower layers of the computing stack to allow uninterrupted operation over
devices with less hardware capabilities (i.e. IoT, embedded and wearable devices) but also
should allow interoperability across different hardware platforms. New augmented reality
technologies with better accuracy and scalability are needed to use with wearable displays
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(i.e. Google eyeglasses [95]) and mobile devices. Spatial computing systems needs to be
adapted to allow real time centimeter scale remote sensing [16, 32, 66, 97] via UAVs and
Satellite Imagery to be for applications of emergency, precision agriculture [4, 9] and food,
energy and water management. Moreover, spatial big data will provide new opportunities
of cloud computing and will address the current limitations of traditional spatial computing
that is inadequate for the current size, variety and velocity of the spatial big data.

3.2.1 Spatial computing infrastructure

Internet infrastructure consists of hardware and software systems essential to Internet
operation. Location is fast becoming an essential part of Internet services, with HTML
5 providing native support for locating browsers. “Check-in” and other location-based
services are becoming increasingly popular in social networks such as Facebook and
FourSquare. Geo-location services (e.g., Quova, IP2Location) are increasingly popular
for jurisdiction regulation compliance, geo-fencing for digital rights management, fraud-
detection, etc. Current localization techniques on the Internet rely on distance-bounding
protocols using networks of transmitter, receivers, computers, cameras, power meters, etc.
Spatial computing infrastructure can be expanded throughout the computing stack (e.g., OS,
Network, Logical, Physical) to enable routers, servers, even TVs, to locate themselves in
the world and provide location-based services (e.g., evacuation [53] targeting to TVs based
on location).

Next-generation infrastructure will enable higher resolution applications, scalability and
reliability, and new representation and analysis on more complex domains. Which spa-
tial primitives must be implemented in silicon chips for secure authentication of location
(similar to encryption-on-chip)? Can we utilize graphical processing units (GPU) for spa-
tial computations? How can upper-layer software (e.g., OS, GIS applications [60, 85]) take
advantage of GPU support without specialized coding? Could we integrate the National
Geodetic Survey (ground-based location broadcasts for GPS) with the Internet to more
accurately use distance-bounding protocols for location estimation? What is the appropri-
ate allocation of spatial data types [73] and operations across hardware, assembly language,
OS kernel, run-time systems, network stack, database management systems, geographic
information systems and application programs?

3.2.2 Augmented reality

Augmented reality gives information and alters the view about the real world using com-
puter graphics that is spatially aligned with the space in real time. Augmented reality can
give historic information about a place as well as numeric data about the world around the
user. It already is used in a variety of places, such as heads-up displays in airplanes, and has
become popular with smartphone applications. Augmented reality will play a crucial role in
assisted medicine (e.g., clinical, surgical as well as diagnostic and therapeutic), training and
simulation (e.g., medicine, military, engineering, teaching, etc.), in-situ architecture, engi-
neering, and construction, civil/urban planning, assembly and maintenance (Fig. 5), in-situ
contextualized learning, and intelligence amplification.

The new spatial computing research challenges in this space stem from the need for new
algorithms as well as cooperation between users and the cloud for full 3D position and
orientation pose estimation of people and devices and registration of physical and virtual
things.
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Fig. 5 Experimental Augmented Reality Assistance for an Aircraft Engine Assembly Task. Head tracked
optical see-through head-worn display overlays graphics on the user’s view of components to be assembled.
View through the head worn display shows dynamic 3D arors and labels that provide assistance in spatially
aligning components [48]. (Best in color)

In order to leverage the benefits of augmented reality, there are several spatial comput-
ing challenges that needs to addressed. These include new algorithms and user and cloud
coordination techniques to align physical world with the virtual reality. The questions arise
from the challenges can be listed as: What are natural interfaces leveraging all human senses
(e.g., vision, hearing, touch, etc.) and controls (e.g., thumbs, fingers, hands, legs, eyes,
head, and torso) to interact with augmented reality across different tasks? How can we cap-
ture human bodies with their full degrees of freedom and represent them in virtual space?
Can we provide automated, accurate, and scalable retrieval/recognition for AR, presenta-
tion/visualization of augmented information, and user interfaces that are efficient, effective,
and usable? What are the most natural wearable AR displays (e.g., watches, eyewear, cell-
phones) for different tasks (e.g., driving, walking, shopping [15])? How do we visualize and
convey uncertainty about location, value, recency, and quality of spatio-temporal informa-
tion? How can ubiquitous interactive room-scale scanning and tracking systems change the
way in which we interact with computers and each other? How do we visualize alternative
perspectives about a contested place from different stakeholders?

3.2.3 Collection, fusion, and curation of sensing data

Due to rapid improvements and cost reductions in sensor technology, the amount of sen-
sor data available is exploding and much of this sensor data has a spatial component to
it. In the past, datasets traditionally consisted of values along a single dimension (e.g.,
space or time). As we begin to collect detailed data along both dimensions, we need new
techniques to collate and process this data (Fig. 6). Currently we are able to conduct eco-
nomical, time persistent monitoring of a location by placing a sensor at that location.
We also have the ability to do economical, space persistent monitoring by using a sen-
sor to scan a location or space periodically. However, inexpensive, space-time persistent
monitoring of a large area (e.g., country) over long durations (e.g., year, decade) remains
an open problem despite recent advances such as wide-area motion imagery (WAMI).
WAMI is an important technology which can provide pervasive infrastructure for real-
time localization for things such as emergency response and health management, and
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Fig. 6 This schematic plots the precision of current applications that use spatial positioning as a function
of the required time interval. The most demanding applications at the shortest time intervals include GPS
seismology and tsunami warning systems. At the longest time intervals, the most demanding applications
include sea level change and geodynamics [61]. (Best in color)

real-time situation awareness for societal scale applications, such as water and energy
distribution.

How do we create the infrastructure for the continuous and timely collection, fusion, and
curation of all of this spatio-temporal data? How do we develop participatory sensing system
architectures to support the multi- spectral and multi-modal data collection through both
physical and virtual means; can we increase spatio- temporal resolution to achieve real-time
decimeter scale localization? How do we exploit existing sensor networks for capturing and
processing events?

3.2.4 Computational issues for spatial big data

Increasingly, location-aware datasets are of a volume, variety, and velocity that exceed the
capability of spatial computing technologies. Spatial big data examples can be listed as GPS
tracks collected using mobile devices, vehicle engine measurements, temporally detailed
road maps, etc. Spatial Big Data poses an enormous set of challenges in terms of analytics,
data processing, capacity, and validation. Specifically, new analytics and systems algorithms
are needed that deal with partial data (as the data is distributed across data centers), and the
ability to compute global models from partial (local) models is essential. Also needed are
novel ways of validating global models computed from local models as well as processing
streaming data before the data is refreshed (e.g., traffic, GPS).

Spatial Big Data (SBD) requires a next-generation computational infrastructure that min-
imizes data movement and performs in-situ analysis (before data hits secondary storage) and
data summarization of the most frequently used, or intermediate results; it creates a plethora
of new technology with transformative potential. Can SBD be used to remove traditional
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issues with spatial computing, such as the common problem of users specifying neighbor-
hood relationships (e.g., adjacency matrix in spatial statistics) by developing SBD-driven
estimation procedures? How might we take advantage of SBD to enable spatial models
to better model geographic heterogeneity, e.g., via spatial ensembles of localized models?
Lastly, how can we modify traditional big data tools to calculate spatial algorithms, which
tend to be iterative and interdependent (a problem for the MapReduce framework due to the
expensive Reduce step)?

3.3 Spatial computing services: spatial cognition first

Traditionally, spatial computing was a skill achieved by only a small number of people and
those people were using sophisticated GIS tools that could not be used by ordinary people.
Recent advances on GPS enabled mobile devices and location aware applications allowed
ordinary people to use location based services. Therefore, there is a need for understanding
people’s requests [62] and develop new design approaches to make those spatial tools “user-
friendly” for ordinary people [39]. In addition, spatial cognitive assistance may allow a more
natural way to describe routes that are not named (e.g., alleys behind buildings) and may
allow people use landmarks (e.g., turn when you pass the church) for routing purposes. Also,
spatial computing may benefit from understanding crowd movement behavior instead of
individual’s movement behavior. New opportunities arise from the social media context as
well. Tweets, messages, posts, etc. may reveal interesting information about the location as
well as an early revelation of emergency situation (e.g., hurricane, accident, tsunami, etc.).
Finally, people’s spatial skills should be improved to leverage more benefits from spatial
computing.

3.3.1 Spatial cognitive assistance

Spatial cognition is the study of knowledge and beliefs held by the general public (in con-
trast to people trained in GIS technology) about location, size, distance, direction and other
spatial properties of places and events in the world [62]. As the community of spatial com-
puting technology users grows (to billions), it is crucial that user interfaces employ spatial
cognitive language understood by the general public. For example, navigation maps on cell-
phones use egocentric map orientation (e.g., the top of the map points east if the user is
heading east instead of the north- up orientation used by professionals). Second, spatial
skills (e.g., localizing, orienting, and reading maps) differ across individuals. Third, spatial
information of interest depends on the task at hand. The importance of matching the spatial
tool with the spatial abilities of the user has been well documented, with the appropriate
feature set varying greatly with the spatial domain [92]. For example, an automated method
to provide routing information not based on street names and addresses but on major land-
marks aligns much better with traditional human spatial cognition. Spatial systems are now
being specialized for a myriad of users including drivers, bicycle riders (both on-street and
trail), wheel-chair users, public transit riders, etc.

While providing greater capabilities, there are ways in which the spatial knowledge once
held by users has been given over to the system. Spatial cognitive assistance can greatly
improve human task performance but also has long-term risks such as de-skilling of the
human, promoting a deficit of spatial awareness, and vulnerability to infrastructure failure.
Thus, the challenge of spatial cognitive assistance lies in (1) determining which cognitive
skills are important to preserve, and which may be allowed to atrophy, (2) identifying the
trade-offs between task performance and skill retention (and robustness to disaster), (3)
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designing spatial cognitive assistance to improve users knowledge and skills (not just imme-
diate task performance), and (4) developing means of evaluating the effectiveness of spatial
cognitive assistance systems Investigating what it will take to avoid these problems will be
an important undertaking in realizing the potential gains of improving the knowledge and
skills of technology users in the population, increasing task engagement while reducing dis-
traction and improving safety, and making populations more robust in the face of disaster
or infrastructure failure.

3.3.2 Spatial computing for human-human interaction/collaboration

Human-centered spatial computing is a fundamental and overarching set of principles gov-
erning the design, implementation, and use of spatial technologies that goes far beyond the
design of effective user interfaces. It promises new interactive environments for improv-
ing quality of life [6] for all humans (e.g., enabling human to human interaction via spatial
technology). Already, spatial computing has enabled new types of interaction with location-
based social media, organizing activities such as Smart Mobs (spontaneous groupings of
people for a single purpose such as coordinating location movement) and Participative
Planning (e.g., collaborative design of a landscape, bridge, etc.). It points towards the aug-
mentation of human cognition through the careful design of technologies to improve natural
spatial abilities and discourage atrophy of key critical talents and skills. Research in this area
could lead to dramatic advances in multiple fields, including more effective management
of and response to emergency situations, the minimization of the technology gap between
diverse segments of the population, the efficient and ethical use of crowdsourcing and
social sensors for spatial data, and making energy consumption transparent in order to
empower users to conserve resources with less effort, potentially saving billions of dollars
every year.

Key research directions include understanding spatial human interaction in small (e.g.,
proximal interactions) and large (crowd-sourcing, flash-crowds) settings. Additional ques-
tions that merit investigation are: How are geo-social groups formed? How are geo-social
groups spatio-temporally organized? What are the spatio-temporal signatures of group
behaviors of interest (e.g., compliant, non-compliant)? What factors influence spatio-
temporal cognition? What are the dynamics of spatial cognition in a group? What are the
shared perceptions of space and time?

3.3.3 Context-aware spatial computing

Context refers to the set of circumstances or facts that surround a particular event or situation
(e.g., who is tweeting or speaking, where they are, physical features in the situation, etc.).
The spatio-temporal context of a person or device includes their location, places, trajectory,
as well as related locations, places, and trajectories. Today, spatial computing systems often
use the current location of a user to customize answers. For example, a search by a traveler
for a gas station or ATM often lists the nearby instances. However, the context of the route
and destination may enhance the place recommendation so that gas stations or ATMs that
the traveler has already passed are not recommended.

Interesting future research directions in spatial cognition that account for context include
investigating how average users interpret Tobler’s first law of geography, i.e., the notion
that “Everything is related to everything else, but near things are more related than dis-
tant things” [90], as a basis for map visualization (spatialization) of other information (e.g.,
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news topics). Do people assume that distances between items in visualizing a map are prox-
ies for similarities between items? In general, do maps and geographic context affect the
spatial cognition, abilities, and skills of people, and local populations? If spatial cognition
varies across different geo-contexts (e.g., places, countries, regions), how should spatial
computing systems accommodate the geographic heterogeneity? How may one predict the
favorite places for a person in a new city based on his/her home city trajectories in a privacy
protected manner? Next-generation spatial computing will aim to identify the fundamental
axes/ dimensions of context-aware computing (space, time, and purpose), as well as include
common variables, taxonomies, and frameworks to fuse these axes. Future technologies [40]
will strive towards building systems, products, hardware, methods, and services that can
ally/differentiate computation along these axes. Finally, there is an important exception to
Tobler’s first law, known as teleconnections, which will also demand attention. Teleconnec-
tions (e.g., El Niño/ La Niña events) play a crucial role in climate science and must also be
accounted for in next-generation spatial computing systems.

3.3.4 Improving spatial abilities and skills in students

Spatial abilities and skills can be described as the ability of using and working with spatial
data. Such abilities include navigation, learning spatial layouts as well as mental rotation,
transformation, scaling and deformation of physical objects across space-time (e.g., spa-
tial reasoning), etc. Spatial skills strongly predict who will go into and succeed in science,
technology, engineering, and math (STEM) fields [90]. While spatial skills are a particu-
larly important component of scientific literacy, they are often overlooked. As the National
Science Board [91] recently observed, “a talent highly valuable for developing STEM excel-
lence - spatial ability - is not measured and hence missed” (p. 9). Nowadays, there is a
need for people who have STEM skills and can handle STEM intensive jobs. People can
be recruited for STEM education using spatial training. Also people’s spatial skills can be
improved using education programs in different levels of educations (i.e., K-12, undergrad-
uate, graduate). Significant challenges lie in how to improve the knowledge and skills of
technology users in the general population. How do we increase spatial task engagement
and reduce distraction, while improving safety? Which spatial skills are weakened from use
of spatial computing (e.g., map localization)? How can people’s skills be altered on spatial
thinking and STEM learning? How do we effectively structure educational opportunities to
serve students talented in spatial ability? How may STEM talent be further developed by
using advances in spatial computing? How may spatial computing be designed to further
strengthen spatial abilities of interest to STEM disciplines?

3.4 Cross-cutting issues and interfaces

Emerging spatial computing sciences, systems, and services give unprecedented opportuni-
ties for research and application developments that can revolutionize our ways of life and in
the meantime lead to new spatial-social questions about privacy. An example of the potential
may be seen in the ubiquity of GPS-enabled devices (e.g., cell-phones) and location-based
services. As localization infrastructure and map data sets reach indoors, there is expectation
that the support that existed for an outdoor context will also be available indoors [52]. An
example of the risks is the issue of geo-privacy. While location information (GPS in phones
and cars) can provide great value to users and industry, streams of such data also introduce
privacy concerns of stalking and geo-slavery [25, 35]. Since they think location information
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may affect their privacy, many people still does not use mobile commerce [49, 55]. More-
over, attempts from computer science field caused more harm than good. Spatial computing
research is needed to address many questions such as whether people reasonably expect that
their movements will be recorded and aggregated [71].

3.4.1 Ubiquitous computing

Ubiquitous computing is computing everywhere, anytime. It is computing indoors as well
as outdoors, bio-spatial as well as geo-spatial, spatially aware, but also spatially contexual-
ized. We believe, in the coming decade, spatial computing will need enable location based
services indoors where people spend 90 % of their lives. As localization infrastructure and
map data sets reach indoors, there is an expectation that the support that existed for an
outdoor context will also be available indoors. For example, visitors to an office building
may expect GPS service on their phone to lead to them to a particular room in the build-
ing. How do notions such as nodes, edges, shortest paths, average speed, etc., translate in
an indoor context? In other words, localization infrastructure and map data sets are being
challenged to keep up with us wherever we go. How should scalability, where architectures
are faced with handling massive amounts of spatial data in real time be addressed? How
may the spatiotemporal data collected at various resolutions be served (commensurate with
the application requirements)? How do we verify the quality of the spatiotemporal data,
enabling error propagation that flows with the served data?

Although spatial databases have traditionally been used to manage geographic data,
the human body is another important low-dimensional physical space that is extensively
measured, queried and analyzed in the field of medicine. The 21st century promises a spatio-
temporal framework for monitoring health status over the long term (automated analysis
of dental X-rays, mammograms, etc.) or predicting when an anomalous decay or growth
will change in size. A spatial framework may play an important role in improving health-
care quality [18] by providing new avenues of analysis and discovery on the progression
of disease and the treatment of pathologies (e.g., cancer). Answering long term questions
based on spatial medical data sets gathered over time poses numerous conceptual and com-
putational challenges such as developing a reference frame analogous to latitude/longitude
for the human body, implementing location determination methods to know where we are
in the body, developing routing techniques [80, 83, 85] in a continuous space where no
roads are defined to reduce the invasiveness of certain procedures, defining and capturing
change across two images for understanding trends, and scalability to potential petabyte-
and exabyte-sized data sets. Developing a reference frame for the human body entails defin-
ing a coordinate system to facilitate looking across snapshots. Rigid structures in the body
such as bone landmarks provide important clues as to the current spatial location in relation
to soft tissues. This has been used in Stereotactic surgery to locate small targets in the body
for some action such as ablation, biopsy or injection [20, 56]. Although the reference frame
might be useful in defining a coordinate system, location determination is needed to pin-
point specific coordinates in the body. An analogy is using GPS to determine one’s location
on the earth. If we know our location in the body, it becomes possible to answer routing
questions but routing based on the body’s spatial network over time is a difficult task given
that the space is continuous. An example of this problem is to find the shortest path to a
brain tumor that minimizes tissue damage. What are corresponding definitions of shortest
path weight and paths for routing in the human body?
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Fig. 7 Simulation and the actual picture of the pedestrians at the Shibuya Crossing, Tokyo [44](Best in color)

3.4.2 Persistent sensing and monitoring

Advances in Sensing and Monitoring will enable the next frontier in human and environ-
mental health. For example, tele-health is a critically emerging market that is expected to
become a significant portion of the $2.5 trillion health- care market. Supporting emerging
applications of sensor-based environmental monitoring with relevance to human security
and sustainability will be of critical importance. The possibilities are endless and include
micro-robots within the human body for real-time and active health monitoring; detecting,
extracting, modeling, and tracking anomalies and abnormalities (new phenomena); large-
scale monitoring and modeling of the surrounding environment to study its effect on public

Fig. 8 Air samples from 150 sites (a) across the five neighborhoods of New York in 2009. Pollutants such
as NO2 (b) can cause serious health problems [3]
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health [12, 57, 75, 77, 88]; and empowering the interactions between the physical and vir-
tual worlds, e.g., through augmentation, personalization, context awareness, immersion, and
integration. The research challenges stem from modeling user intent and behavior, present-
ing outcomes of user inquires using new 3D interfaces that provide understandable context
and enable early error detection, on-demand disparate data integration that evolves with
emergent behavior, and real-time data analysis, modeling, and tracking of crowd move-
ments (Fig. 7), human [96] and environmental events and phenomena. The late 20th century
saw focus mainly on historical records or very short-term forecasts of a few days. The
21st century requires future projections for the medium term extrapolating sensor data via
geographical models such as with climate data [76]. For example in Fig. 8 the output of
a traffic density monitoring system is compared with a NO2 air pollution levels to deter-
mine the effect of vehicles on air quality [3]. Such examples gives rise to questions such
as: How do we conceptualize the spatio-temporal world measured by sensors? How do we
explain sensor-observed spatio-temporal phenomena through the application of appropriate
methods of analysis, and models of physical and human processes? How do we use spatio-

Fig. 9 GPS data highlighting road segments of traffic congestion. Road network modifications may help
reduce congestions [30]. (Best in color)
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temporal concepts to think about sensor-observed spatio-temporal phenomena? What are
scalable and numerically robust algorithms for spatial statistical [38] modeling? What are
algorithm design paradigms [46] for spatio-temporal problems that are NP-hard? Or that
violate the dynamic programming assumptions of stationary ranking of candidates?

3.4.3 Trustworthy localization and transportation systems

Spatial Computing is expected to produce tools, procedures, and an infrastructure for
rapid development, evaluation, and deployment of Intelligent Transportation Systems. With
potential savings of 2.9 billion gallons of wasted fuel, six million crashes per year, 4.2 bil-
lion hours of travel delay, and $80 billion in the cost of urban congestion, next-generation
trustworthy intelligent transportation systems (e.g. Waze [93]) have tremendous transfor-
mative potential for society [59]. Figure 9 illustrates this by an example and shows hotspots
of congested route segments that may help drivers to avoid congestions as well as help offi-
cials plan road network modifications. In order to realize increased safety, optimized travel,
reduced accidents and fuel consumption, and increased mobility of objects, there are sev-
eral challenges that must be overcome including understanding the privacy issues that users
have in sharing their spatio-temporal trajectories and creating a trusted environment for the
release of location data; online auditing that enables users to verify the usage of their loca-
tion, activity, and context data (who is using the user’s data and for what purpose and at
what time); establishing quality- based user contracts that mandate systems to offer qual-
ity guarantees with error correction mechanisms; and enabling collaborative use of spatial
computing systems by communities of location-based social network users.

A significant research challenge toward the realization of trustworthy transportation sys-
tems is to develop privacy- preserving protocols for efficiently aggregating spatio-temporal
trajectory data with the goal of providing information about motion flows without revealing
individual trajectories. Another major research direction toward enabling trust in transporta-
tion systems is the verification of the integrity and completeness of the results of geospatial
queries to defend not only against inadvertent data loss and corruption (e.g., caused by faulty
hardware and software errors) but also against malicious attacks (e.g., aimed at causing traf-
fic congestion). Relevant research should evaluate recent advances in applied cryptography
and secure data management, such as authenticated data structures (e.g., [42]), differential
privacy (e.g., [26]), and oblivious storage (e.g., [41]) in the context of spatial computing
needs, e.g., location authentication and geo-fencing of entities. How can we ensure loca-
tion authentication and authenticity despite GPS-spoofing and other location manipulation
technology? Even if location authentication is secure, is it robust and precise enough to
guarantee usability for consumers? What type of location authentication is possible without
requiring all-new Internet infrastructure?

3.4.4 Understanding geo-privacy concerns

Spatial computing has been advanced by the state of the art technologies in GPS devices
and wireless communications (previously in eighteenth century, even longitude problem
was one of the hardest problems [87]) [28, 34, 74]. On the end-user side, the widespread
use of smart-phones, handheld devices and tablets has added new dimensions to spatial and
temporal computing. Every click on a smart-phone bears information about the individual’s
behavior. Every screen touch and every step we take with a smart-phone in our pocket indi-
cates where we’ve been and where we’re heading, what we’ve been doing and what we plan
to do, where we live and where we work, the places we visit and the movies we watch, our
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likes and our dislikes, what we do on our own and what we do jointly with friends [94].
The future calls for data management systems that pay attention to the knowledge discov-
ery and behavior mining of individuals given their spatio-temporal footprints. At the same
time, however, addressing user geo-privacy concerns will have to remain a priority. Indi-
viduals and groups are keenly interested in the ability to seclude geospatial information
about themselves and thereby reveal their geospatial information selectively. Already, many
location-based services are held back in the marketplace due to perceived threats to user
privacy [59]. Optimists predict that a new generation of location-based services can be built
that fully respects individual user privacy. Others fear that the geo-privacy problem is a dead
end and that the only feasible solution is to “secure” users’ personally identifying infor-
mation (PII), including their location, in cages that are accessible by (and only by) trusted
parties.

4 Geo-privacy policy

United States policy makers have the opportunity to take the lead in the global race to estab-
lish a new geo-privacy paradigm. Achieving a consensus across American society, public
safety will increase the likelihood that the United States will establish industry clusters in
the geo-privacy realm, without spooking consumers. If we don’t clarify soon what can and
can’t be done with users’ geo-data, we will lack the legislation and directives needed to
protect U.S. jobs as well as its competitive advantage on a global scale as many European
countries have already began work in this area [37].

4.1 Geo-privacy groups, interests and risks

Given the competing interests and risks among stakeholders, it is extremely challenging to
develop geo-privacy policies acceptable to all groups. There is a need for deep conversations
spanning these groups to identify common ground. We suggest a few possible approaches to
begin this conversation. As summarized in Table 3, sustainable geo-privacy policy emerges
from the balance of civil society, economic prosperity, public safety, and policy makers.

Geo-privacy policy affects civil society, economic prosperity, public safety, and policy
makers. Consumers may reap the rewards of location-based services and other spatial com-
puting related technologies while being provided with certain basic protections. Companies
are concerned with reducing liability amid policy uncertainty. Geo-privacy policy is critical
due to the increased consumer concern about intrusion into their daily lives and the mount-
ing pressure on Internet giants such as Facebook, Google [31], and Microsoft to adjust to
the new mobile world. For example, the New York Times (NYT) reported: “Making money
will now depend on how deftly tech companies can track their users from their desktop com-
puters to the phones in their palms and ultimately to the stores, cinemas and pizzerias where
they spend their money. It will also depend on how consumers - and government regulators
- will react to having every move monitored.” Public safety will benefit from improved geo-
targeting and geo-precision during emergencies and increasing public trust and compliance.
On the other hand, public safety officials risk false alarms due to lack of geo-precision lead-
ing to mistrust and lower compliance as well as potential loss of lives both by the public
and first responders. Policy makers have a tremendous opportunity to spur the economy by
unleashing m-commerce market through geo-innovations but they risk public trust. Tech-
nology has many possibilities but geo-privacy policy is indispensable in unleashing its full
potential.
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Table 3 Groups, interests and risks to consider for geo-privacy policy

Group Interests/Opportunity Risks

Civil Society free services - one rogue employee away from

better guarantees major geo-privacy breach due to

on privacy and location trace collection by many orgs,

legal, recourse - open web apprehensive orgs may

move away from open computing

platforms (e.g., web) reducing

transparency and equal access.

- increase technology divide

between haves and have-nots

Economic Entities Reduce liability - liability, major lawsuits, backlash

of services - policy uncertainty, draconian

- Policy uncertainty legislation,,reputation

is reduced by, balance

of civil society

(avoid spooking

consumer).

Public Safety - better geo-targeting, - false alarms due to lack of

geo-precision of geo-precision leading to mistrust

warnings, and lower compliance

- increasing public - potential loss of lives of

trust and compliance public and first offenders

Policy Makers - spur economy - lowering public trust by

by unleashing not protecting rights

m-commerce

market through

geo-innovations

4.2 Geo-privacy policy conversation starters

The U.S. needs to have a public discussion of geo-privacy issues. Starting and maintaining
such a discussion is challenging, but essential to timely policy formulation. Table 4 lists
several geo-privacy policy conversation starters.

Table 4 Geo-privacy policy conversation starters

1. Emergencies are different (E-911)

2. Differential geo-privacy can improve saftey (E-911 PLAN, CMAS)

3. Send apps to data, not vice-versa (e.g., eco-routing)

4. Transparent transactions for location traces for increased consumer confidence

5. Responsible entities for location traces (Credit-bureau/census,

HIPPA++ for responsible parties)
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Fig. 10 Laborshed of Morrison,
NJ. Anonymous location data
from cellular phone networks
illustrates how people live and
work [13]. (Best in color)

We believe the conversation needs to begin where there is likely to be easy agreement
among stake holders, such as natural disasters and emergency response. Policy must facil-
itate response to emergency scenarios such as was done in the past for enhanced 911
(E-911) [47]. The second conversation starter extends this idea for differential geo-privacy
where the chance of learning new information about an individual is minimized while max-
imizing the accuracy of queries. An example is geo-targeting during emergencies such as
hurricanes or earthquakes where affected populations are warned without the need to store
their locations (e.g., the Commercial Mobile Alert System (CMAS)). The third conversation
starter advocates sending applications to data on personal devices (e.g., cellphones, vehicle-
embedded personal computers) instead of vice-versa, which has tremendous promise in
facilitating fuel-saving eco- routing services as otherwise people may hesitate to send their
GPS trace information to a third party. Geo-privacy risks are minimized assuming such
applications are tested and certified to avoid data leaks. The fourth conversation starter
calls for maintaining transparent transactions where information such as the location traces
and volume of transactions are made available to an individual by entities that collect such
information. Additionally, the purposes for which such information is collected should be
specified up front (i.e., before or at collection) and the subsequent use of location traces
should only be for the previously agreed upon purposes. The fifth conversation starter con-
cerns the creation of responsible entities for storing location traces (e.g., the credit bureau
or census) for publishing geo-statistics while protecting confidentiality. For example, geo-
statistical data such as hourly population counts of different areas could be aggregated to
support urban planning, traffic management, etc. For example in Fig. 10, anonymous loca-
tion data from cell phone network was used to determine the work and life trends of people
in Morrison, NJ which may help urban informatics planning tasks. The idea behind GPS
data collection is to not widely distribute any of the GPS-tracks and instead “secure” the
user’s personally identifying information, including location, in caches that are accessible
by (and only by) trusted parties or applications that are sent to the data. Geo-privacy in spa-
tial computing is a unique discipline, as it requires experts from both a data mining and
security perspective.

4.3 Cross cutting benefits of geo-privacy policy

Policy makers have already had a major impact on spatial computing through policies that
enabled Enhanced 911 (E-911) [47] for linking with appropriate public resources, GPS for
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use by the general public, and CMAS. Great opportunities lie ahead in the leveraging of
users’ locations and expected routes in proactive services and assistance, ad impressions,
and healthcare. Many of these benefits are described in the 2011 McKinsey Global Institute
report, which estimates savings of “about $600 billion annually by 2020” in terms of fuel
and time saved [59] by helping vehicles avoid congestion and reduce idling at red lights
or left turns. With proper geo-privacy policies in place, spatial computing may more effec-
tively assist vehicles avoid congestion via next-generation routing services. Eco-routing
may leverage various forms of Spatial Big Data to compare routes by fuel consumption or
greenhouse gas emissions rather than total distance or travel-time. Policy makers have an
opportunity to improve consumer confidence in the use of eco-routing by paving the way
for the construction of a new generation of location based services while fully respecting
individual user privacy.

5 Final considerations

In the following years, spatial computing will create huge number of opportunities for
scientists. However, societal impact needs to be taken into account. It is vital that U.S.
policymakers clarify users’ geo-privacy rights. Without that it will be difficult for spatial
computing to achieve its full transformative potential. We must also acknowledge the unique
and daunting computational challenges that working with spatio- temporal data poses.

Successfully harnessing the potential of these datasets will require significant U.S.
investment and funding of spatial computing research. Currently most spatial computing
projects are too small to achieve the critical mass needed for major steps forward. Fed-
eral agencies need to strongly consider funding larger and bolder efforts involving a dozen
or more faculty groups across multiple universities. Bolder ideas need to be pursued per-
haps by leveraging existing mechanisms such as: NSF/CISE Expeditions in Computing,
NSF Science and Technology Centers (STC), NSF Engineering Research Centers (ERC),
U.S.-DoD Multi-disciplinary University Research Initiative (MURI), NIH Program Project
Grants (P01), U.S.-DoT University Transportation Centers (UTC), U.S.-DoE Advanced
Scientific Computing Research (ASCR) Centers, and U.S.-DHS Centers of Excellence.

Furthermore, spatial computing scientists need more institutional support on their home
campuses. Beyond one- time large grants, it will be necessary to institutionalize spatial com-
puting research programs to leverage enduring opportunities as acknowledged by a large
number of research universities establishing GIS centers (akin to computer centers of the
1960’s) on campus to serve a broad range of research endeavors including climate change,
public health, etc. Given its cross-cutting reach, NSF/CISE can establish computer science
leadership in this emerging area of critical national importance by creating a dedicated
enduring research program for spatial computing parallel to CNS, IIS, and CCF.

A number of agencies have research initiatives in spatial computing (e.g., the National
Cancer Institute’s Spatial Uncertainty: Data, Modeling, and Communication, and the
National Geospatial Intelligence Agency’s Academic Research Program (NARP)). How-
ever, spatial computing and the agencies themselves could benefit from multi- agency
coordination to reduce competing projects and facilitate interdisciplinary and inter-agency
research. Spatial computing already shows its success with various economic benefits and
these benefits can be multiplied by spatial computing research.
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Appendix A: Emerging applications

Spatial computing is paving the way for the realization of compelling visions in many
domains. Below, we provide some examples, which include applications in national security,
climate data analytics, and transportation, to name a few.

A.1 National security agency (NSA)

Of interest is knowing where more attention should be focused, knowledge discovery
about entities, relationships, events, and questions, gleaning sufficient information to
answer relevant questions and knowing what questions can be answered with current
information. Challenges include big data, heterogeneous data (with differing resolution,
confidence/trust/certainty, diagnosticity, and intentionality), data with spatial and temporal
bias, and the ability to detect changes, trends, and anomalies.

A.2 National geospatial-intelligence agency (NGA) [22]

With the exponential growth in influx of images from a large variety of sensors (still through
motion), high-end analytical processes that rely on accurate geospatial data as starting point
are needed for registration, fusion, and activity-based intelligence or human geography ana-
lytics. Expectations of continuous improvements to geolocation accuracy continue to grow
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and rigorous Photogrammetry- based geo-positioning capabilities have become critical in
developing a foundation for advanced GEOINT production [65] and exploitation [67].

A.3 National institute of environmental health sciences (NIEHS)

Spatial aspects, e.g., neighborhood context [88], are critical in understanding many con-
tributors to disease including environmental toxicant exposure as well as human behavior
and lifestyle choices. This exposome, a characterization of a persons lifetime exposures, is
becoming an increasingly popular subject of research for public health [77].

A.4 National cancer institute (NCI)

Epidemiologists use spatial analysis techniques [12] to identify cancer clusters [75] (i.e.,
locations with unusually high densities) and track infectious disease such as SARS and bird
flu.

A.5 National aeronautics and space administration (NASA)

Climate data is becoming more important to a wide range of applications. Spatial com-
puting is important in the climate domain for climate data analytics which involves large,
complex data sets. Server-side analytics and agile delivery of capabilities will be crucial for
supporting spatio-temporal analytic code development and the technical capacity to build
high-performance, parallel storage systems for spatio-temporal data collection (e.g., the idea
of canned, canonical spatio-temporal ops is very appealing).

A.6 NSF earthcube

Both science and society are being transformed by data. Modern geo-science involves large
heterogeneous datasets and computationally intensive, integrative, and multi-scale meth-
ods. Multidisciplinary collaborations across individuals, groups, teams, and communities
are needed to address the complexity. The current sea of data from distributed sources,
central repositories, sensors, etc., is ushering a new age of observation and analytics.
Earthcube is trying to address these new realities by developing a distributed, community-
guided cyber infrastructure to publish, discover, reuse, and integrate data across the
geosciences.

A.7 NSF SEES

Support is needed for the constellation of problems in the geosciences the core evolving
basic and applied sciences of understanding the entire Earth and its physics (e.g., ocean,
atmosphere and land), biology (e.g., plants animals, ecology), sociology (e.g., sustainable
economic development, human geography), etc. For example, there is a growing need for a
cyber- infrastructure [11] to facilitate our understanding of the Earth as a complex system.
Technological advances have greatly facilitated the collection of data (from the field or
laboratory) and the simulation of Earth systems. This has resulted in exponential growth
of geosciences data and the dramatic increase in our ability to accommodate complexity in
models of Earth systems. These new data sources, referred to as Spatial Big Data, surpass
the capability of current spatial computing systems to process efficiently. New research
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into massively scalable techniques for processing and mining Spatial Big Data via novel
cyber-infrastructures will be key for Geo-Informatics.

A.8 U.S. department of transportation (DOT)

With the advances in spatial computing technologies (e.g., IntelliDrive, navigation, gps,
etc.), novel transportation interactions are being sought such as vehicle to vehicle commu-
nications (speed, location, brake status, etc.) and vehicle to infrastructure communications
(e.g., curve speed warning, red light violation warning, etc.) for improving situational
awareness (where a vehicle can see? nearby vehicles and knows roadway conditions that
remain unseen to the driver) and reducing or even eliminating crashes through driver
advisories, warnings, or vehicle control augmentation. Spatial Computing will enable con-
nections among moving objects such as cars, pedestrians, and bicycles, to help avoid
collisions or coordinate movement using Dedicated Short Range Communications (DSRC).
Transportation agencies and automotive manufacturers are pursuing this vision under the
IntelliDrive initiative [34, 79]. For example, the U.S.DOT recently announced a challenge
to explore the question: When vehicles talk to each other, what should they say?, aiming to
make driving safer and more efficient [5].

A.9 U.S.DOJ/NIJ

Public safety professionals use spatial analysis to identify crime hotspots to select police
patrol routes, social interventions, etc.

A.10 FAA

Current air-traffic control systems rely on radar. Due to the imprecision of this technology,
large gaps between aircraft are required to ensure safety and avoid collisions. Consequently,
the air space over America has become more and more congested, with the military needing
to open up reserved air space over holiday weekends. If air traffic control systems were
switched to a next-generation GPS-based system, the large gaps between aircraft would no
longer be needed as the traffic controllers would have much more precise data. The Federal
Aviation Administration (FAA) is actively exploring this vision to relieve congestion in
many air corridors [34].

A.11 U.S.DOE

Interesting new opportunities exist for bio-fuels and eco-routing. For bio-fuels, there is the
challenge of diminishing returns due to their relatively low energy content and the inherent
trade-off between the energy required for processing and transportation versus the energy
produced. Therefore, determining the location of bio-fuel processing plants is an important
consideration. GPS navigation services [28] are just beginning to experiment with providing
eco-routes which aim to reduce fuel consumption, as compared to reducing distance trav-
eled, or time spent. These techniques along with smarter suggestions for ride sharing and
public transportation will enable significant fuel conservation. The rise of Spatial Big Data
may enable computers to suggest not only compatible ride- share partners, but they may
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lead to retooled bus routes based on the spatio-temporal movements of individuals. With
these new data sources, can we develop efficient and privacy-preserving techniques to auto-
matically suggest public transportation, compatible ride-share partners and smart driving
routes [5, 79]?

A.12 DHS

The Department of Homeland Security provides the coordinated, comprehensive federal
response in the event of a terrorist attack, natural disaster or other large-scale emergency
while working with federal, state, local, and private sector partners to ensure a swift and
effective recovery effort. They focus on three critical components of emergency manage-
ment: incident management, resource management, and supply chain management. Overall,
the efficacy and performance of emergency management depend not only on how well
each individual component performs but, more important, on the performance of the overall
integrated system.

A.13 FCC

The Federal Communications Commission is collaborating (with FEMA and the wireless
industry) on the Commercial Mobile Alert System (CMAS) for geo-targeting emergency
alerts to specific geographic areas through cell towers, which pushes the information to ded-
icated receivers in CMAS-enabled mobile devices. The potential of this system is already
evident due to recent events when hurricane Sandy flooded the streets of Manhattan and
many New Yorkers received text message alerts on their mobile phones that strongly urged
them to seek shelter.

A.14 IBM smarter planet

The initiative seeks to highlight how forward-thinking leaders in business, government and
civil society around the world are capturing the potential of smarter systems to achieve
economic growth, near-term efficiency, sustainable development and societal progress [69,
98].

A.15 ESRI geo-design

Geodesign [10] provides a design framework and supporting technology for professionals
to leverage geographic information, resulting in designs that more closely follow natu-
ral systems. These systems can be used for monitoring a variety of Earth resources (e.g.,
agriculture fields, fresh water lakes, etc.) and trends (e.g., deforestation, pollution, etc.)
for timely detection and management of problems such as impending crop failures and
crop-stress anywhere in the world.

A.16 Many more

In addition to these examples, numerous problems faced by many organizations are pushing
the limits of spatial computing technology.
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Appendix B: Representative spatial computer science questions

B.1 Collaborative systems

How can computation overcome geographic constraints such as transportation cost, lan-
guage [2] and cultural variation across locations?

B.2 Theory and algorithm design

Can we design new algorithm paradigms for spatio-temporal problems, as these problems
violate the dynamic programming assumptions of stationary ranking of candidates? How
can one design robust representations and algorithms for spatio-temporal computation to
control the approximation errors resulting fro discretization of continuous space and time?
What are scalable and numerically robust methods for computing determinants of very large
sparse (but not banded) matrices in context of maximum likelihood parameter estimation
for spatial auto-regression mode?

B.3 Software

For the best balance between performance and flexibility, what it the appropriate alloca-
tion of spatial data-types and operations across hardware, assembly language, OS kernel,
run-time systems, network stack, database management systems, geographic information
systems and application programs?

B.4 Hardware

Which spatio-temporal computations are hard to speed up with GPUs? multi- core? map-
reduce? Which benefit? How may one determine location of a person (or device) despite
challenges of motion, GPS-signal jamming, GPS-signal unavailability indoor, etc.?

B.5 Security and privacy

How may one authenticate location of a person or device despite the challenges of motion,
location-spoofing, physical trojan-horses, etc.? Does GPS-tracking violate privacy? What
is the relationship between the resolution of spatio-temporal data and privacy? How do we
quantify privacy of spatio-temporal data? What computational methods can enhance the
privacy of spatio-temporal data?

B.6 Networks

How may one determine, authenticate and guarantee the location of an Internet entity (e.g.,
client, server, packet) despite autonomy, heterogeneity, transparency, etc?

B.7 Data - database

Howmay we reduce the semantic gap between spatio-temporal computations and primitives
(e.g., ontology, taxonomies, abstract data-types) provided by current computing systems?
How do we store, access, and transform spatio-temporal concepts, facilitating data sharing,
data transfer, and data archiving, while ensuring minimum information loss? How do we
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fuse disparate spatial data sources to understand geographic phenomena or detect an event,
when it is not possible via study of a single data source?

B.8 Data - data analytics

How may machine learning techniques be generalized to address spatio-temporal chal-
lenges of auto-correlation, non-stationarity, heterogeneity, multi-scale, etc.? How can we
elevate data analytics above current engineering practices to incorporate scientific rigor
(e.g., reproducibility, objectiveness)? How can spatio-temporal data be analyzed without
compromising privacy? How can frequent spatio-temporal patterns [19] be mined despite
transaction-induced distortions (e.g., either loss or double-counting of neighborhood rela-
tionships)? How can data analytic models be generalized for spatio-temporal network
data (e.g., crime reports in cities) to identify patterns of urban life? What can be mined
from geo-social media logs, e.g., check-ins, mobile device trajectories, etc.? How may one
estimate evacuee population? Traffic speed and congestion? Urban patterns of life?

B.9 Visualization, graphics

How may one visualize spatio-temporal datasets with uncertainties in location, time and
attributes? How can we automate map creation similar to attempts in the database field to
automate database administration tasks (e.g., index building, etc)?

B.10 Artificial intelligence

What are components of spatial intelligence? Can computers have as much spatial intelli-
gence as humans?

B.11 Spatial reasoning

How can computational agents reason about spatio-temporal concepts (e.g., constraints,
relationships)?

B.12 Spatial cognition

How can spatial thinking enhance participation in STEM fields? How do humans represent
and learn cognitive maps? What is impact of GPS devices on human learning? What is the
spatial computing impact of changing to a mobile ego-centric frame of reference from an
earth-centric frame such as latitude, longitude, and altitude?

B.13 Human computer interaction

How can user interfaces exploit the new generation of miniature depth cameras that will
be integrated with mobile and wearable devices? What kinds of interaction tasks can be
performed more efficiently and more accurately with these systems? How can ubiquitous
interactive room-scale scanning and tracking systems change the way in which we interact
with computers and each other? How can we create user interfaces that bridge the gap
between spatial computing “in the small” (typically on indoor desktop systems with stereo
displays and precise 3D tracking) and spatial computing “in the large” (typically outdoors
using coarse GNSS on mobile/wearable devices)?
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Appendix C: Platform trends

The main platform trends stem from Graphics and Vision, Interaction Devices, LiDAR,
GPS Modernization, Cell Phones, Indoor Localization, Internet Localization, and Cloud
Computing. These platform trends are summarized below.

C.1 Graphics and vision

Increases in the scale and detail of virtual models are driven by the desire for worlds that are
more complete, detailed, varying, and realistic. Significant advances in graphics hardware
will make it feasible to deal with much larger scales. For larger scale and more detailed
models, representation, creation, and usage must be considered. Representation needs to
be considered because all details cannot be stored for highly detailed models. Creation is
important because precise manual descriptions of virtual models are not possible. Usage is
critical because processing with new models is non-trivial and things are possible that were
not possible before.

C.2 Interaction devices

The democratization of technology has lead to ubiquitous computation and sensing. Com-
monly available interaction devices include smartphones (with multi-core CPU, GPU,
Wi-Fi, 4G, GNSS, accelerometers, gyros, compass, cameras), game controllers (with
Accelerometers, gyros, compass, cameras, depth cameras, electromagnetic trackers), and
desktop peripherals (e.g., cameras). New challenges arise in bridging the gap between
geospatial and 3D user interfaces (e.g., large to small, outdoors to indoors, coarse to fine,
position/ orientation to full body pose, Hz to kHz).

A key trend here is the proliferation of depth camera systems. These first entered con-
sumer devices through game console peripherals designed to sense users a few meters
away from the display (Kinect for Xbox). However, there is now a new generation of inex-
pensive camera-based depth tracking systems for desktop applications that work in the
sub-meter and even sub-foot range: Microsoft Kinect for Windows, PrimeSense Carmine,
PMD Technologies, SoftKinetic DepthSense, Creative Interactive Gesture Camera). These
devices and their SDKs support interactive tracking of 3D full body pose (at a distance),
head/hand/finger tracking (up close), and modeling of the environment when the device can
be moved around (e.g., KinectFusion).

C.3 Localization

Next generation localization includes image-based, indoor-based, and internet-based tech-
niques. Due to the prevalence of mobile/handheld devices [50] with numerous sensors (e.g.,
smart phones) and the recent advances in computer vision and recognition, image-based
localization is an emerging trend for both indoor and outdoor localization. The idea is to take
a query image with a mobile device equipped with sensors (e.g., gyros, GPS, accelerom-
eters), build a geo-tagged image database (preferably 3D), retrieve the “best” match from
the database, and recover the pose of the query image with respect to the retrieved image
database. This has application in augmented reality and location-based advertising and ser-
vices. For indoor localization, augmented reality has interesting challenges when dealing
with a wide range of scales/resolutions and conditions. Examples of scale include find-
ing a meeting room in a building, finding a paper in the room, finding an equation on
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the paper, determining which variable is the weighting in the equation, etc. Trends involve
optimization for what matters and using all sources (e.g., large + detailed models, con-
straints, inferences, cloud, etc.). For internet-based localization, tremendous possibilities
exist as we move to cm/dm real-time starting with networked differential GPS at sub-meter
scales.

C.4 GPS modernization

With land area of approximately 1.5×108 km2, human population of about 7 billion people,
number of cell phones at 5.6 billion (80 % of the world), and number of seconds per year at
3.14 x 107, mapmaking at human scales, particularly in developing countries, is a challenge.
Interesting opportunities have arisen in geodetic support for disaster relief amid very little
data, validation, crowd sourcing, and crowd mapping.

C.5 Mobile devices

With the ubiquity of cellphones, interesting questions arise such as how may one overcome
challenges of limited user attention, display, power, etc? How can one accurately determine
location (and orientation) of mobile clients in GPS-denied spaces such as indoors and under-
ground? What can be mined from geo-social media logs, e.g., check-ins, mobile device
trajectories, etc [45]?

C.6 Cloud computing

The advent of big spatio-temporal data has raised interesting challenges such as which
spatio- temporal computations are hard to speed up with cloud computing and which ben-
efit. New challenges in spatio- temporal graphs, streaming spatial data, load balancing,
distributed query processing [58] and data partitioning should be considered.
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