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Abstract The promising phase-fieldmethod has been
intensively studied for crack approximation in brit-
tle materials. The realistic representation of material
degradation at a fully evolved crack is still one of
the main challenges. Several energy split formula-
tions have been postulated to describe the crack evo-
lution physically. A recent approach based on the con-
cept of representative crack elements (RCE) in Storm
et al. (The concept of representative crack elements
(RCE) for phase-field fracture: anisotropic elastic-
ity and thermo-elasticity. Int J Numer Methods Eng
121:779–805, 2020) introduces a variational frame-
work to derive the kinematically consistent material
degradation. The realistic material degradation is fur-
ther tested using the self-consistency condition, which
is particularly compared to a discrete crack model.
This work extends the brittle RCE phase-field model-
ing towards rate-dependent fracture evolution in a vis-
coelastic continuum. The novelty of this paper is tak-
ing internal variables due to viscoelasticity into account
to determine the crack deformation state. Meanwhile,
a transient extension from Storm et al. (The concept
of representative crack elements (RCE) for phase-field
fracture: anisotropic elasticity and thermo-elasticity.
Int J Numer Methods Eng 121:779–805, 2020) is
also considered. The model is derived thermodynamic-
consistently and implemented into the FE framework.

B Yin · J. Storm· M. Kaliske (B)
Institute for Structural Analysis, Technische Universität
Dresden, Dresden, Germany
e-mail: Michael.Kaliske@tu-dresden.de

Several representative numerical examples are inves-
tigated, and consequently, the according findings and
potential perspectives are discussed to close this paper.

Keywords Viscoelasticity · Representative crack
elements · Rate-dependent fracture · Phase-field
method

1 Introduction

Fracture is one of the crucial failure mechanisms for
engineering structural applications and the reliable pre-
diction of fracture is of great importance and necessity.
Experimentally motivated, the theory of classical brit-
tle fracture is outlined by Griffith (1921) that crack
formation irreversibly dissipates a specific amount of
elastic strain energy. The amount of energy consumed
per unit crack surface to evolve fracture is definedby the
fracture toughness Gc, or known as the critical energy
release rate. The condition to evolve fracture based on
the classical Griffith definition has to satisfy that the
instantaneous energy release rate G reaches or exceeds
the critical value G ≥ Gc. Nevertheless, the classical
Griffith fracture theory is not capable to predict crack
propagation pathology. The recent promising phase-
field approach, which is originated from a variational
framework by minimizing the total energy, approxi-
mates a discrete crack as a numerically smeared rep-
resentation. This variational theory for discontinuities,
seeMumford and Shah (1989) for image segmentation,
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is subsequently regularized by De Giorgi and Carriero
(1989) and Ambrosio and Tortorelli (1990) to yield
smeared approximations of the discontinuities. Based
on a similarmethodology, Francfort andMarigo (1998)
incorporate the classicalGriffith theory to formulate a
brittle fracture theory by minimizing the internal strain
energy potential and the fracture energy. For detailed
introduction, it is referred to the work of Bourdin et al.
(2008). In the sequel, similar works for brittle frac-
ture simulation can be found in Bourdin et al. (2000),
Hakim and Karma (2009), Miehe et al. (2010), Pham
et al. (2011) to name a few. Meanwhile, the reliabil-
ity of crack approximation by phase-field modeling is
discussed by studying classical �-convergence theory,
see Borden et al. (2014), Linse et al. (2017), Cham-
bolle et al. (2018) for representative contributions. The
advantages of this method are that crack initiation,
propagation aswell as branchingwith complex patterns
can be properly captured to show good agreement with
experimental results.

Another key aspect, the physically realistic mate-
rial degradation, plays significantly important role to
obtain the trustworthy crack kinematics. The simple
definitions proposed by Amor et al. (2009) and Freddi
and Royer Carfagni (2009) are to split the energy into
volumetric and deviatoric parts. The volumetric energy
only contributes to evolve the crack when the material
is expanding. Another alternative outlined by Miehe
et al. (2010) defines the material degradation accord-
ing to a spectral decomposition of the strain tensor, that
only tensile components drive crack evolution, also see
Hofacker (2013). Nevertheless, as pointed out in May
et al. (2015), Strobl and Seelig (2015), Schlüter (2018),
Steinke and Kaliske (2019), both the volumetric–
deviatoric (V–D) split and spectral split phase-field
modeling fail to predict the force transferring through
the crack correctly for arbitrary crack deformations. To
overcome this issue, several efforts are subsequently
carried out. Restricted within isotropic, linear elastic-
ity at small deformations, the conceptual directional
decomposition (Steinke and Kaliske 2019; Strobl and
Seelig 2016) overcomes the observed discrepancies of
the V–D and spectral split by deriving the constitu-
tive law according to the local crack coordinate sys-
tem, which is determined by a local crack orientation.
As a result, a reasonable material degradation equiva-
lent to a discrete crack is obtained. In particular, taking
advantages of the variational homogenization concept
(Blanco et al. 2016), a Representative Crack Element

(RCE) concept is formulated in Storm et al. (2020)
by considering a kinematic coupling of the phase-
field model (continuous crack approximation) to a dis-
crete crackmodel (discontinuous crack representation),
which allows to evaluate complex crack behaviors, e.g.
crack surface contact and friction, in a smeared and con-
tinuous domain. This novel framework is formulated
by a consistent variational derivation. The simulation
results regarding the self-consistent test indicate the
kinematic consistency for arbitrary crack deformations.
These approaches aforementioned strongly depend on
the determination of a local crack orientation, espe-
cially at the crack tip. Nevertheless, finding the local
crack orientation is not convincingly solved yet. Sev-
eral contributions define this characteristic direction by
the gradient of the phase-field (Strobl and Seelig 2016),
the maximum principal stress direction (Steinke and
Kaliske 2019) and the direction ofmaximumdissipated
fracture energy (Bryant and Sun 2018).

In addition to brittle phase-field modeling (Bourdin
et al. 2000; Hakim and Karma 2009; Miehe et al. 2010;
Pham et al. 2011), several subsequent extensions are
postulated as well, e.g. for dynamic fracture studies
(Kuhn and Müller 2010; Schlüter et al. 2014; Steinke
et al. 2016; Yin et al. 2020), for ductile fracture sim-
ulation (Duda et al. 2015; Kuhn et al. 2016; Borden
et al. 2016; Miehe et al. 2016; Ambati et al. 2016;
Alessi et al. 2018; Aldakheel et al. 2018; Kienle et al.
2019; Yin and Kaliske 2020a), for anisotropic fracture
(Storm et al. 2020; Hakim and Karma 2005; Nasseri
and Mohanty 2008; Raina and Miehe 2015; Gültekin
et al. 2016; Clayton and Knap 2014, 2015; Gültekin
et al. 2018; Teichtmeister et al. 2017; Li et al. 2014;
Yin and Kaliske 2020b) as well as for fatigue fail-
ure prediction (Alessi et al. 2018; Carrara et al. 2020;
Seiler et al. 2020). Nevertheless, very limited applica-
tions of phase-field modeling for viscoelastic materials
are available. Based on classical V–D split, Shen et al.
(2019) presents a viscoelastic phase-field formulation
by defining the driving force consisting of the elastic
energy and a portion of the dissipated energy simul-
taneously at small strains. Besides, Schänzel (2015),
Loew et al. (2019), Yin and Kaliske (2020c) extend the
viscoelastic phase-field application to finite deforma-
tion to sufficiently capture the behavior of polymeric
materials fracture. None of the viscoelastic phase-field
applications is based on the spectral split, since this
algorithm is mainly motivated by pure elasticity. So
far, nearly no contribution has applied the spectral
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decomposition to inelasticity yet. Regarding viscoelas-
tic characteristics, it significantly increases complexity
to express the elastic strain energy density functional
as a spectral split form.

The purpose of this contribution is, on the one hand,
formulating a viscoelastic phase-field model by tak-
ing advantage of the RCE framework for phase-field
fracture to achieve physically accurate crack kinemat-
ics. The rheological constitutive model of linear vis-
coelasticity depends on the classical convolution inte-
gral algorithm. Following Schänzel (2015), Yin and
Kaliske (2020c), the phase-field driving force depends
on the total elastic strain energy, excluding the viscous
dissipation. This strictly follows the criteria of classical
Griffith-type fracture. On the other hand, extending
the developments (Storm et al. 2020) from elasticity to
inelasticity, this contribution is meant to examine the
application of the RCE approach to more comprehen-
sive and complex analyses. Thus, inelastic deformation
behavior of the crack ismodeledby introducing internal
variables. Furthermore, another progress out of Storm
et al. (2020) is that this work takes the inertia effects
into consideration, consequently yielding a consistent
transient analysis.

The framework of this paper is outlined as follows.
In Sect. 2, the fundamental constitutive formulation of
the classical viscoelastic material is introduced along
with a derivation of the stress tensor and the consistent
tangent. In Sect. 3, the concept of the RCE formulation
for viscoelastic materials is developed, and the govern-
ing equations for the multi-field problem is derived. To
validate and demonstrate the capability of the present
approach, several representative numerical simulations
are outlined in Sect. 4. Consequently, Sect. 5 summa-
rizes the findings and closes the paper with potential
perspectives.

2 Constitutive law for viscoelastic material

2.1 General Helmholtz free energy functional with
internal variables

The derivation of a generalized viscoelasticMaxwell
model is based on a one-dimensional setup at small
strains,which is subsequently straightforward extended
to a three-dimensional framework. In order to achieve a
general description of theHelmholtz free energy den-
sity, the concept of internal variable ε I

v is employed to

Fig. 1 Rheology of the generalized Maxwell element for lin-
ear viscoelastic material by illustratively showing only one non-
equilibrium branch

represent the strain quantities of the dash-pot for each
non-equilibrium viscoelastic branch I = 1, 2, . . . ,m,
see Fig. 1. Accordingly, the elastic strain of the spring
in each non-equilibrium branch ε I

e and the effective
strain energy stored in the spring read

ε I
e = ε − ε I

v and ϕne,I = ϕ
(
ε I
e

)
, (1)

respectively. The total elastic strain is defined by ε,
which is illustrated in Fig. 1. The general form of the
Helmholtz free energy is isothermally defined by

ϕtot
(
ε, ε1v, . . . , ε

m
v

)
= ϕeq (ε) +

m∑
I=1

ϕne,I
(
ε, ε I

v

)
.

(2)

It is noteworthy that, this paper considers a linear
viscoelastic model, which characterizes the spring
devices and the dash-pot devices at the non-equilibrium
branches as linear responses simultaneously. In the
sequel, the total stress is obtained as

σ tot = ∂ε ϕeq (ε) +
m∑
I=1

∂ε ϕne,I
(
ε, ε I

v

)

= σ eq +
m∑
I=1

σ ne,I , (3)

which is sum of the equilibrium stress σ eq and all
non-equilibriumstressesσ ne,I . According toHolzapfel
(1996), SimoandHughes (1998), the conjugate descrip-
tion of σ ne,I also reads

σ ne,I = ∂ε I
e
ϕne,I

(
ε, ε I

v

)
= ∂ε ϕne,I

(
εε I

v

)

= −∂ε I
v
ϕne,I

(
ε, ε I

v

)
. (4)
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2.2 Stress and material tangent tensors

The rheological generalizedMaxwellmodel has been
validated to exhibit the time-dependent or frequency-
dependent properties. According to Holzapfel (1996),
Kaliske and Rothert (1997), Simo and Hughes (1998),
the evolution of the non-equilibrium stress σ ne,I is
obtained by a convolution integral algorithm

σ̇ ne,I + 1

τ I
σ ne,I = χ I σ̇ eq , (5)

where the material parameter τ I represents the relax-
ation time for the I th non-equilibrium response. The
factor χ I describes the ratio of the material param-
eters of the non-equilibrium branches with respect
to the equilibrium branch, i.e. χ I = λne,I /λ =
μne,I /μ. TheLamé constants for the viscoelasticmate-
rial are denoted by λ,μ for the equilibrium branch
and λne,I , μne,I for the I th non-equilibrium branch.
According to the derivation in Kaliske and Rothert
(1997), the time integral is numerically discretized and
the internal stress at the non-equilibrium branch even-
tually yields

σ
ne,I
tn+1 = exp

(
−�t

τ I

)

︸ ︷︷ ︸
β I ·β I

·σ ne,I
tn

+ χ I · exp
(

− �t

2 τ I

)

︸ ︷︷ ︸
β I

·
(
σ
eq
tn+1 − σ

eq
tn

)

= β I · β I · σ
ne,I
tn + χ I · β I ·

(
σ
eq
tn+1 − σ

eq
tn

)

(6)

where the terms σ
eq
tn and σ

ne,I
tn are two history vari-

ables at the previous time step tn regarding the
stress responses of the equilibrium and the non-
equilibrium branches, respectively. It is noteworthy
that, the non-equilibrium stress σ

ne,I
tn+1 is not straightfor-

wardly obtained by the derivation in Eq. (3), neverthe-
less, the strain quantity ε I

e can be reversibly computed
due to the linear elastic spring at the non-equilibrium
branch, which also leads to the analytical solution of
the strain energy ϕne for the non-equilibrium branches.
In order to consider a consistent algorithm, the general
relation in Eq. (3) is assumed to exist, which yields
the total stress response for the rheological generalized
Maxwell model

σ tot
tn+1 = ∂εtn+1 ϕtot

tn+1 = ∂ε ϕ
eq
tn+1 (ε)

+
m∑
I=1

∂ε ϕ
ne,I
tn+1

(
ε, ε I

v

)
(7)

= σ
eq
tn+1 +

m∑
I=1

σ
ne,I
tn+1

=
(
1 +

m∑
I=1

χ I β I

)

︸ ︷︷ ︸
α

σ
eq
tn+1

+
m∑
I=1

β I
(
β Iσ

ne,I
tn − χ Iσ

eq
tn

)

︸ ︷︷ ︸
htn

= α σ
eq
tn+1

(
εtn+1

)
+ htn

(
σ
eq
tn , σ ne

tn

)
,

and the linearized material tangent

C
tot
tn+1 = ∂εtn+1 σ tot

tn+1

= ∂εtn+1

(
α σ

eq
tn+1

(
εtn+1

)
+ htn

(
σ
eq
tn , σ ne

tn

))

= αC
eq
tn+1

(8)

with the definition of the coefficient α in Eq. (7).
Furthermore, the linear elastic isotropic tangent is
expressed as Ceq = λ 1⊗ 1+ 2μ I by using the fourth
order identity tensor I.

Remark: Motivated by Holzapfel (1996), the inter-
nal strain-type quantity ε I

v is introduced in this work
to yield a straightforward variational framework with
respect to the present internal stress governed vis-
coelastic constitutive law, since the total Helmholtz
energy density potential can be simply defined as a
strain based functional. Due to the linearity of the pre-
sented viscoelastic constitutive model, the strain of the
elastic spring device at the non-equilibrium branch is
characterized as ε I

e = (
ε − ε I

v

)
, which can actually

be obtained by ε I
e = D

ne,I : σ
ne,I
tn+1 . The conjugate

elasticity tensor D
ne,I is constant due to assumption

of linearity and is determined by the model parame-
ters λne,I and μne,I . Thus, the elastic strain energy
density of the linear spring at the non-equilibrium
branch is alternatively obtained by ϕne,I

(
ε, ε I

v

) =
(1/2)σ ne,I

tn+1 : (
ε − ε I

v

) = (1/2)σ ne,I
tn+1 : Dne,I : σ

ne,I
tn+1 .

The superposition of the elastic strain energy density
of the equilibrium and the non-equilibrium branches,
ϕtot = ϕeq + ∑m

I=1 ϕne,I , is subsequently considered
for the phase-field evolution within the RCE frame-
work.
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Fig. 2 Discrete and diffusive crack topology

3 Rate-dependent RCE phase-field approach

3.1 Phase-field topology

Within a continuous solid domain, a sharp crack can
be numerically approximated by a diffusive phase-field
distribution,which is illustrated in Fig. 2.A scalar order
parameter, namely the phase-field variable d(x, t), is
introduced to identify the material state, i.e. the sound
material is denoted by d = 0 and the fully cracked state
is represented by d = 1. Mathematically motivated
by a one-dimensional bar with an infinite length L ∈
[−∞,+∞], which is assumed to be cracked at position
x = 0, the closed form solution for a continuous phase-
field according to Miehe et al. (2010) is approximated
by an exponential function

d(x) = exp

(
−|x |

l

)
. (9)

Nevertheless, this function is not the unique approxi-
mation of phase-field profile for one-dimensional rep-
resentation. This solution inEq. (9) is appropriately and
naturally bounded by (0 < d ≤ 1). Another important
parameter, the length scale l, is employed to govern
the width of the transition zone between fractured and
sound state of thematerial. Extending to a two- or three-
dimensional framework, the second order functional of
the crack surface density is defined as

γl = 1

2l

(
d2 + l2|∇xd|2

)
, (10)

where ∇x (∗) denotes the spatial gradient operator.
Highlighted in Borden et al. (2014), the crack domain
�̄ is approximately obtained by the phase-field crack
domain �l as long as l → 0, i.e.

�̄ ≈ lim
l→0

�̄l = lim
l→0

∫

Ω

γl dV, (11)

which is known as �-convergence condition for frac-
ture.

The defined crack surface density function in Eq.
(10) is also known as the AT2 model, which yields an
exponentially shaped crack profile as described by Eq.
(9). By applying this function, the numerical deriva-
tion and implementation is straightforward and effi-
cient without additional numerical treatment due to
the differentiable (except for d = 0) and continuous
properties of the phase-field solution in Eq. (9). Nev-
ertheless, this model does not present an elastic limit
and the simulation result largely depends on the length
scale parameter l.AsHofacker (2013) investigatedwith
regard to the FEM application, a minimum element
size he ≤ l/2 in the potential crack region is neces-
sary in order to achieve realistic results. Meanwhile, in
addition to the AT2 model, another common alterna-
tive to approximate the crack surface density function
is the classical AT1model. One of the main differences
between these models is that the AT1 model only con-
sists of the linear term d rather than the quadratic term
d2 in Eq. (10), see Pham et al. (2011). The AT1 model
can guarantee an ideally linear elastic response up to
the elastic stress limit. Nevertheless, due to the lack of
differential continuity, additional numerical treatments
are of importance to avoid negative phase-field evolu-
tion, which may lead to a non-linear phase-field evolu-
tion. In this contribution, a standard AT2 model based
on Eq. (10) is taken into account.

3.2 Concept of the representative crack elements
(RCE)

The concept of the representative crack elements (RCE)
developed in Stormet al. (2020) is a novel framework to
derive phase-field fracture models with realistic crack
kinematics. The fundamental formulation is motivated
by classical homogenization theory. For the assump-
tions and the derivations in detail, it is particularly
referred to Storm et al. (2020). The aim of the RCE
concept is to explain the crack kinematics of a discrete
crack explicitly and transfer it to the diffusive phase-
field formulation.One of themain advantages is that the
numerical degradation of a fully crackedmodel leads to
physically expected results in case of different loading
modes, i.e. no resistance for tension and shear (parallel
to the crack) whereas fully contact for compression.
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(a) (b)

Fig. 3 Crack kinematics of the RCE approach

According to Storm et al. (2020), the RCE model
describes the deformationof an arbitrarymaterial point,
where it is fully cracked, by the relative deformation of
the two crack surfaces, see Fig. 3. The core formulation
of the RCE approach for small strain problems reads

ε = ε̄ − �, (12)

where ε̄ represents the total strain at the material point.
The quantity ε defines the uniform strain for the two
blocks (see Fig. 3), which may contain internal vari-
ables in case of inelastic material, e.g. ε I

v aforemen-
tioned for viscoelastic strain. Another important strain
quantity �, namely the so-called crack deformation,
is derived to describe the relative deformation of the
crack surfaces of the blocks. Particularly, the form of
the crack deformation � reads

� =
3∑

a=1

�a Pa with

Pa = 1

2

(
na ⊗ n1 + n1 ⊗ na

)
, (13)

where �a with a = 1, 2, 3 are three non-unit scalar
quantities to measure the crack deformation along the
crack normal direction n1 and two tangential direc-
tions n2 and n3. The detailed mathematical derivation
is based on variational homogenization theories and it
is referred to Storm et al. (2020). The orientation of
the orthogonal local RCE system Ec ∼ {n1, n2, n3}
with respect to the global coordinate system Ee ∼
{e1, e2, e3} is determined by a subsequent crack ori-
entation criterion. Nevertheless, it is still a challenge to

determine a robust crack orientation around the crack
tip for the standard phase-field method. In this work,
the orthogonal eigen-space of the total stress tensor at
the previous time step σ tn is employed to characterize
the local crack orientation in the RCE. With this algo-
rithmic setup, the derivation work is largely simplified
due to ∂ε̄tn+1 ni = 0.

The effective mechanical energy density for the
phase-field model is defined by

ϕmech = ϕtot
c + g (d) · (

ϕtot
0 − ϕtot

c

)
, (14)

where the Helmholtz free strain energy for the intact
material and the fully broken state are denoted by ϕtot

0
and ϕtot

c , respectively. The energy density functional
of intact material is also applied to the bulk material
of the RCE. Considering homogeneous deformation
and stress distribution, the homogenized energy density
ϕtot
c of the cracked material is characterized to have

the same form of the bulk material energy density ϕtot
0 ,

which are interpreted as

ϕtot
0 = ϕtot

(
ε̄, ε10,v, . . . , ε

m
0,v

)
and

ϕtot
c = ϕtot

(
ε̄, ε1c,v, . . . , ε

m
c,v,�

)
, (15)

respectively. The internal variables ε I
0,v and ε I

c,v (I =
1, 2, . . . ,m) are involved to describe the inelastic
behavior for the intact and the fully broken material.
Thus, the effective stress tensor and the consistent tan-
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gent are straightforward obtained as

σmech
tn+1 = ∂ε̄tn+1 ϕmech

tn+1

= σ tot
c,tn+1

(
ε̄, ε1c,v, . . . , ε

m
c,v,�

)

+ g (d) ·
(
σ tot
0,tn+1

(
ε̄, ε10,v, . . . , ε

m
0,v

)

− σ tot
c,tn+1

(
ε̄, ε1c,v, . . . , ε

m
c,v,�

) )
(16)

and

C
mech
tn+1 = ∂ε̄tn+1 σmech

tn+1 = C
tot
c,tn+1

+g (d) ·
(
C
tot
0,tn+1 − C

tot
c,tn+1

)
, (17)

respectively. The quantitiesσ tot
0,tn+1 ,C

tot
0,tn+1 andσ tot

c,tn+1 ,

C
tot
c,tn+1 represent the intact and the broken state of stress

and tangent, which consist of the response of both
the equilibrium and non-equilibrium branches of vis-
coelastic model. It is noteworthy to point out that, due
to the argumentation of homogeneous deformation and
stress distribution aforementioned, the resultant forms
of the stress terms σ tot

0,tn+1 and σ tot
c,tn+1 are the same,

which are based on Eq. (7) expressed as

σ tot
0,tn+1 = α σ

eq
0,tn+1 + h0,tn

(
σ
eq
0,tn , σ

ne
0,tn

)
and

σ tot
c,tn+1 = α σ

eq
c,tn+1 + h0,tn

(
σ
eq
c,tn , σ

ne
c,tn

)
. (18)

Therefore, solving the unknown crack deforma-
tion �i yields the consequent constitutive law of the
RCE approach. According to Storm et al. (2020), the
unknown �i can be solved by applying a minimization
principle of the total Helmholtz free energy of the
RCE, which reads

∂�i ϕ
mech

(
ε̄, ε10,v, . . . , ε

m
0,v, ε1c,v, . . . , ε

m
c,v,�

)
= 0.

(19)

In the sequel, the extremal problem with respect to the
unknown crack deformations reads

�i = arg

{
min

�1,2,3∈R
ϕmech

(
ε̄, ε10,v, . . . , ε

m
0,v ,

ε1c,v, . . . , ε
m
c,v,�

) }
(20)

in case there are no constraints on the crack deforma-
tions (for an open crack). Subsequently, crack surface
penetration has to be tested via �1 < 0 and, possi-
bly, a closed crack solution can be determined from the
constrained minimization problem that

Fig. 4 Solution procedure for the RCEwith homogeneous block
deformations

�2,3 = arg

{
min

�2,3∈R
ϕmech

(
ε̄, ε10,v, . . . , ε

m
0,v,

ε1c,v, . . . , ε
m
c,v,�

) ∣∣∣∣
�1=0

}

for �1 < 0,

�1 = 0,

(21)

in order to take crack surface contact into account.
Hence, the unconstrained and the constrained mini-
mization problem provide the solutions for an open
crack and a closed crack, respectively. With the crack
deformations �i at hand, the strain relation of the RCE
model is fully defined and the corresponding stress and
the material tangent of the smeared crack model are
obtained straightforward. The algorithmic examination
of the open or closed crack is illustrated in Fig. 4.

In particular, the solution of�i according to Eq. (19)
for an arbitrary phase-field value is subsequently
expanded as

∂ ϕmech

∂ �a
= 0

⇒ ∂ ϕtot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)

∂ �a

= ∂ ϕtot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)

∂ �
: ∂ �

∂ �a
= 0. (22)

Due to the fundamental definition of the RCE approach
in Eq. (12), the relationship ∂� ϕtot

c = −∂ε̄ ϕtot
c =

−σ tot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)
naturally exits, which further
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simplifies Eq. (22) as

∂ ϕtot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)

∂ �
: ∂ �

∂ �a
= 0

⇒ −∂ ϕtot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)

∂ ε̄
: ∂ �

∂ �a
= 0

⇒ −σ tot
c

(
ε̄, ε1v, . . . , ε

m
v ,�

)
: Pa = 0.

(23)

As a result, the minimization problem turns to the free
surface condition σ tot

c : Pa = 0. Hence, the stress does
not contribute to any work regarding the strain resulted
in by opening a crack. According to the form in Eq.
(18), Eq. (23) is rewritten as
(
α σ

eq
c,tn+1 (ε̄,�) + hc,tn

(
σ
eq
c,tn , σ

ne
c,tn

) )
: Pa = 0,

(24)

which leads to the closed form solution for the unknown
crack deformations �i as

�1 = λ

λ + 2μ
tr

(
ε̄tn+1

) + 2μ

λ + 2μ
ε̄tn+1 : P1

+ hc,tn : P1

α (λ + 2μ)
,

�2 = 2 ε̄tn+1 : P2 + hc,tn : P2

α μ
,

�3 = 2 ε̄tn+1 : P3 + hc,tn : P3

α μ
.

(25)

A similar solution structure can be found in Storm et al.
(2020) for isotropic linear elasticity, nevertheless, the
history terms are not involved compared to Eq. (25) due
to the viscoelastic constitutive law. Furthermore, as the
result of the bilinear algorithmic definition of RCE in
Eqs. (19) and (21), the cracked stress and tangent for a
crack closure (�i ≤ 0) read

σ tot
c,tn+1 = α

(
λ tr

(
ε̄tn+1 − �2 P2 − �3 P3

)
1

+ 2μ
(
ε̄tn+1 − �2 P2 − �3 P3

))

+ hc,tn
(
σ
eq
c,tn , σ

ne
c,tn

)
(26)

and

C
tot
c,tn+1 = α

(
λ 1 ⊗ 1

+2μ
(
I − 2 P2 ⊗ P2 −2 P3 ⊗ P3

) )
,

(27)

respectively. Alternatively, in the case of crack separa-
tion (�i > 0), the cracked stress and tangent yield

σ tot
c,tn+1

= α

(
λ tr

(
ε̄tn+1 − �1 P1 − �2 P2 − �3 P3

)
1

+ 2μ
(
ε̄tn+1 − �1 P1 − �2 P2 − �3 P3

))

+ hc,tn
(
σ
eq
c,tn , σ

ne
c,tn

)

(28)

and

C
tot
c,tn+1

= α

(
2 λ μ

λ + 2μ

(
1 ⊗ 1 − 1 ⊗ P1 − P1 ⊗ 1

)

+ 2μ

(
I − 2μ

λ + 2μ
P1 ⊗ P1

−2 P2 ⊗ P2 − 2 P3 ⊗ P3
) )

,

(29)

respectively. Meanwhile, the total intact stress σ tot
0,tn+1

and tangent Ctot
0,tn+1 are simply following the formu-

lation of Eqs. (7) and (8). Thus, the total effective
stress σmech

tn+1 and tangent Cmech
tn+1 in the RCE framework

are consequently obtained according to Eqs. (16) and
(17), respectively. Meanwhile, observing the conse-
quent tangent modulus, a constant quantity is obtained
regardless the crack projection tensor P i and yields a
linear problem, which appropriately capture the linear-
ity of the proposed viscoelastic model.

3.3 Dissipation

The second law of thermodynamics, namely the
Clausius- Plank inequality, describes the entropy
of a closed system either constant or growing, see
Holzapfel (1996). Restricted by an isothermal pro-
cess, the dissipation rate of the viscoelastic material
is defined by

Dvis

= σmech : ˙̄ε − ϕ̇mech ≥ 0, ∀ t ∈
[
0, tn+1

]
,(30)

where ϕ̇mech denotes the internal energy rate and can
be written as
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ϕ̇mech

= ∂ε̄ ϕmech : ˙̄ε +
m∑
I=1

∂ε I
0,v

ϕmech : ε̇ I
0,v

+
m∑
I=1

∂ε I
c,v

ϕmech : ε̇ I
c,v + ∂� ϕmech : �̇

= σmech : ˙̄ε

+
m∑
I=1

∂ε I
0,v

ϕmech : ε̇ I
0,v +

m∑
I=1

∂ε I
c,v

ϕmech : ε̇ I
c,v

+ ∂ ϕmech

∂ �i
· ∂ �i

∂ �
: �̇

︸ ︷︷ ︸
=0,see Eq.(19)

,

(31)

Applying Eqs. (3) and (4) and (31) to Eq. (30), the
dissipation rate Dvis due to the viscous effect is
obtained as

Dvis = −
m∑
I=1

∂ ϕmech

∂ ε I
0,v

: ε̇ I
0,v −

m∑
I=1

∂ ϕmech

∂ ε I
c,v

: ε̇ I
c,v

= −
m∑
I=1

g (d)
∂ ϕtot

0

∂ ε I
0,v

: ε̇ I
0,v

−
m∑
I=1

(
1 − g (d)

)∂ ϕtot
c

∂ ε I
c,v

: ε̇ I
c,v

=
m∑
I=1

g (d) σ
ne,I
0 : ε̇ I

0,v

+
m∑
I=1

(1 − g (d)) σ ne,I
c : ε̇ I

c,v.

(32)

Thus, the computation of the accumulated total dissi-
pation is approximated by

W vis
tn+1 =

∫ tn+1

0
Dvis dt

=
∫ tn

0
Dvis dt

︸ ︷︷ ︸
+

∫ tn+1

tn
Dvis dt

︸ ︷︷ ︸
≈ W vis

tn + Dvis
tn+1 · �t

≈ W vis
tn

+
m∑
I=1

(
g (d) σ

ne,I
0,tn+1 : � ε I

0,v

+ (1 − g (d)) σ
ne,I
c,tn+1 : � ε I

c,v

)
,

(33)

where W vis
tn+1 and W

vis
tn are the amount of total internal

dissipation at the current step tn+1 and at the previous
step tn , respectively.

3.4 Governing equations of multi-field problem

In this section, a variational phase-field model for rate-
dependent fracture in a viscoelastic continuum is devel-
oped. The governing equations of the multi-field prob-
lem are derived straightforward according to the bal-
ance of energy equilibrium, which reads

DK
Dt

+ Pint = Pext . (34)

The kinetic energy and the external power quantities
are defined as

K =
∫

Ω

1

2
ρ u̇ · u̇ dV and

Pext =
∫

Ω

b · u̇ dV +
∫

∂Ω

t · u̇ d A, (35)

respectively. The material density, velocity, body force
and surface traction quantities are expressed by ρ, u̇,
b and t, respectively. The internal power Pint in Eq.
(34) is

Pint

=
∫

Ω

{
∂ε̄ ϕmech : ˙̄ε +

(
∂d ϕmech + Gc ∂d γl

)
ḋ

+ Gc ∂∇xd γl · ∇x ḋ

}
dV

=
∫

Ω

{
σmech : ˙̄ε +

(
∂d ϕmech + Gc ∂d γl

)
ḋ

+ Gc ∂∇xd γl · ∇x ḋ

}
dV

=
∫

Ω

{
− ∇x · σmech · u̇

+
(

∂d ϕmech + Gc
l
d − Gc l ∇x · d

)
ḋ

}
dV+

∫

∂Ω

{
σmech · n · u̇ + Gc l

(
∇x d · n

)
ḋ

}
d A.

(36)

The divergence operator is denoted by ∇x · (∗). The
governing equations for this multi-field problem are
obtained by inserting Eqs. (35) and (36) into Eq. (34),
yielding

ρ ü − ∇x · σmech − b = 0 in Ω and

σmech · n = t at ∂ Ω (37)

and

∂d g (d)
(
ϕtot
0 − ϕtot

c

) + Gc
l

(
d − l2 ∇x · d

)
= 0

in Ω and ∇xd · n = 0 at ∂ Ω, (38)
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for the mechanical response and the phase-field evo-
lution, respectively. In order to avoid healing dur-
ing phase-field evolution, several options to define the
driving force are available. Following the proposal of
Miehe et al. (Miehe et al. 2010),

(
ϕtot
0 − ϕtot

c

)
in Eq.

(38) is replaced by an internal variable

H = Max
0≤t≤tn+1

(
ϕtot
0

(
ε̄, ε10,v, . . . , ε

m
0,v

)

−ϕtot
c

(
ε̄, ε1c,v, . . . , ε

m
c,v,�

))
, (39)

where amonotonically increasing phase-field is numer-
ically achieved. Furthermore, outlined by Kuhn et al.
in Kuhn and Müller (2010), Dirichlet conditions are
imposed to the phase-field variables as soon as the
material is assumed to be cracked, i.e. d ≥ 0.9999. The
driving force does not depend on the history variable
and is calculated promptly at current step. In this con-
tribution, Miehe’s approach is employed for the vis-
coelastic RCE modeling at small strain and Eq. (38) is
rewritten as

∂d g (d) H + Gc
l

(
d − l2 ∇x · d

)
= 0. (40)

Subsequently, the algorithmic derivation is numerically
implemented into a standard finite element method,
which is not presented in this context.

Remark: It is noteworthy that the resultant phase-
field modeling yields a rate-dependent fracture evolu-
tion. The governing mechanism is the phase-field driv-
ing energy consisting of the elastic strain energy for
both the equilibrium and non-equilibrium responses.
The fracture toughness Gc in the work at hand is not
characterized as rate-independent. As a result, the
overall fracture response is rate-dependent since the
elastic strain energy for the non-equilibrium branch is
depending upon the loading rate.Nevertheless, a recent
publication (Yin et al. 2020) has addressed the strain
rate-dependent fracture toughness for linear elastic
solids. Coupling of these two different rate-dependent
mechanisms in theRCE frameworkwill be a subsequent
priority for the future perspective.

4 Representative examples

4.1 Self-consistent compression test

Phenomenologically, an open-crack leads to a stress-
free boundary and the surface tractions between two
crack surfaces naturally vanish. Nevertheless, a closed

and friction-free crack at a compressive state is sup-
posed to fully transfer the normal compressive stress,
which is characterized as an equivalent contact mecha-
nism. Furthermore, a pure shearing deformation along
the friction-free crack surface should not transfer any
force neither. The aforementioned characteristics have
been studied in Steinke and Kaliske (2019), Strobl and
Seelig (2016), Stormet al. (2020) to evaluate the correct
crack kinematics for realistic applications, nonetheless,
their material constitutive laws are restricted within a
linear elastic property. The first numerical example fol-
lows the examinations of crack kinematics in Steinke
and Kaliske (2019), Strobl and Seelig (2016), Storm
et al. (2020) to demonstrate the advantages of the pre-
sentedRCEphase-fieldmodeling compared to classical
spectral split and V–D split approaches with respect to
tension, compression and shearing deformation.

Both, linear elasticity and viscoelasticity, are taken
into consideration for the comparisons. Nevertheless, it
is necessary to point out that the spectral split accord-
ing to Miehe et al. (2010) is not included for linear
viscoelasticity due to difficulties in application . The
coupled constitutive equations of the spectral split in
Miehe et al. (2010) are straightforwardly and consis-
tently derived out of a predefined strain energy den-
sity functional involving the spectral decomposition
of the strain tensor. However, the present linear vis-
coelastic model is governed by internal stress-type
quantities, which cannot be obtained by a straight-
forward variational algorithm of strain based energy
density function. Furthermore, the elastic energy for
the non-equilibrium branches is obtained based on the
non-equilibrium stress and the conjugate elastic ten-
sor due to the constitutive linearity characteristics, see
Sect. 2.1. Therefore, the spectral split of the internal
stress governed viscoelastic model has shown signifi-
cant complexities. As a result, several existing phase-
field models regarding fracture of viscoelastic mate-
rial, see Shen et al. (2019), Schänzel (2015), Loew
et al. (2019), Yin and Kaliske (2020c), are developed
dependingon the frameworkof theV–Dsplit. Insteadof
the spectral split, a classical contact model is addition-
ally considered for a representative reference for the
crack kinematics demonstration in viscoelastic materi-
als.

The two-dimensional boundary value problem is
depicted in Fig. 5, which consists of a contact model
and a phase-field model with same dimensions. The
contact model consists of two blocks and a contact pair
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Fig. 5 Geometric setup for
contact surface and
phase-field crack

Fig. 6 Displacement
loading function a tension,
compression and shear
deformation for linear
elasticity and b only
compression and relaxation
for linear viscoelasticity

(a) (b)

and the phase-field model describes the straight crack
by prescribing the phase-field value d = 1 at the nodes
attached to the middle row of element. Both models
are discretized by 2500 four-node elements uniformly
with the element size he = 2mm. The upper and lower
edges are fully bounded and a displacement load is
subjected to the upper edge with a loading function
given in Fig. 6a for tension, compression and shear
deformation in a linear elastic body. The simulations
consist of the spectral split, V–D split as well as the
RCE phase-field modeling. Furthermore, another load-
ing function in Fig. 6b describes a pure compression
and a subsequent relaxation for the viscoelastic solid.
The spectral split simulation is replaced by a classical
contact modeling. In a detailed description, the vis-
coelastic response of the material is supposed to relax
from t = 1 s to t = 6 s at a compressive state and
from t = 7 s to t = 10 s at a non-external load state.
The material parameters are given as λ = 19.6MPa,
μ = 2.06MPa for linear elasticity. Regarding vis-
coelasticity, only one Prony series is considered and
the parameters are given as τ = 0.98 s and χ = 0.6.

Since this numerical study concentrates on the cor-
rect and robust crack kinematics, the crack evolution
is out of consideration. Hence, the fracture toughness
is assumed to be sufficiently large to prevent the phase-
field evolution, i.e.Gc = 5 e20 J/mm2.The length-scale
parameter is given as l = 4mm. All simulations are
performed using a quasi-static analysis.

First of all, the linear elastic simulations subjected
to the loading in Fig. 6a are shown in Fig. 7. Appar-
ently, all three simulations, the spectral split, the V–
D split and the RCE approach, have obtained realistic
crack opening deformations, i.e. non residual material
deformations exist in the upper and lower blocks at the
maximum separation t = 1 s. In the sequel, the mate-
rial is compressed and both the spectral and the V–D
split simulations are not capable to capture the realistic
crack closing deformations at t = 3 s. A slight unphys-
ical lateral expansion by the spectral split is investi-
gated. Unfortunately, this lateral expansion is signifi-
cantly increased by the V–D split result. Nevertheless,
this unphysical behavior is not shown at all for the pro-
posed RCEmodeling. As a further evaluation, the reac-
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Fig. 7 Crack deformation
at t = 1 s, t = 3 s and
t = 5 s regarding the
loading function in Fig. 6a
for spectral split, V–D split
and RCE approach

(a)

(b)

(c)

Fig. 8 Reaction forces of
fx and fy with respect to
the loading time

(a) (b)

tion forces fy are measured as well in Fig. 8a, where
the difference of the minimum loads for three methods
is the result of the unphysical lateral expansion at the
crack region. When the vertical loading returns to the
initial 0 state, the subsequent horizontal load leads to

a pure shear deformation. This procedural principally
should not yield any reaction forces along both x- and
y-directions considering a friction-free crack surface.
Meanwhile, non residual deformations of the upper and
lower blocks should be observed. From this point of
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Fig. 9 Deformed shape at
t = 1 s regarding
compressive load by a the
RCE and b V–D split
approaches

(a) (b)

(a) (b) (c)

(d) (e) (f)

Fig. 10 Comparison of the distribution of the vertical stress σy for contact modeling, RCE simulation and V–D split simulation at t = 1
s (a–c) and t = 6 s (d–f), respectively

view, the spectral split result fails to capture a realistic
shear deformation at the crack, see Figs. 7a and 8c.

Then, the material compressive relaxation in vis-
coelastic solids is evaluated by using a classical con-
tact model, the V–D split and the RCE approach. In this
case, a compressive vertical displacement is applied to
the structure and horizontal displacement is not con-
sidered any more, see Fig. 6b. As aforementioned, the

V–D split model is not capable to capture an appro-
priate compressive deformation in a viscoelastic body
neither due to an unrealistic lateral stretch. Neverthe-
less, the RCE simulation properly addresses this issue
and shows similar behaviors compared to the contact
model, see Figs. 9 and 10. Meanwhile, the contour dis-
tributions of the vertical stress σy for three approaches
are compared at t = 1 s and t = 6 s in Fig. 10, where
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(a) (b)

(c) (d)

Fig. 11 Investigation of energy components: elastic strain
energy ϕmech , viscous dissipation energy Wvis and their sum-
mation ϕ̂ = ϕmech +Wvis for a contact modeling, b RCE simu-

lation and c V–D split simulation. Reaction force f for the three
approaches compared as well in d

the RCEmodeling successfully predicts the results that
the contact model shows.

Furthermore, the effective strain energy ϕmech , the
viscous dissipation Wvis as well as their summation
ϕ̂ = ϕmech +Wvis for three models are observed. The
V–D split model uses the standard form of ϕmech =
ϕ− + g (d) ϕ+, where the detailed algorithmic setup
is referred to the Schänzel (2015), Yin and Kaliske
(2020c). In the sequel, by a post-processing tech-
nique of volume integration of these two quantities,
the total elastic strain energy and dissipation energy
are obtained. Then, the quantity ϕ̂ = ϕmech + Wvis

is also evaluated, since it straightforward indicates the
external work induced into the closed system. Observ-

ing the energy components evolution in Figs. 11a–
c, ϕmech and Wvis increase initially along with the
external load application. Subsequently, the constant
load leads to a slight decrease of ϕmech and a gradual
increase ofWvis up to the situation that the specimen is
fully relaxed. The summation ϕ̂ stays almost constant
during the relaxation. It is explained that the external
work does not change as long as the external load is kept
constant. After the displacement returns to u = 0 mm
and the material is fully relaxed, e.g. t = 10 s, ϕmech

returns to 0 kJ and the total external work is fully dis-
sipated due to viscous effects. Comparing these three
approaches, theRCEapproach sufficiently agrees to the
results of the contact modeling. However, the V–D split
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always underestimates the results, also see the reaction
forces shown in Fig. 11 (d). Based on the aforemen-
tioned comments, the RCE approach is demonstrated
to capture realistic crack kinematics for a closing crack
within linear elastic and viscoelastic materials.

4.2 Spallation of a viscoelastic bar

Motivated by Yin et al. (2020), Steinke et al. (2017),
the second example studies the transient analysis of the
spallation of a viscoelastic bar. The main purpose of
this simulation is to demonstrate the capabilities of the
RCE approach for transient analysis by incorparating
the stress wave propagation phenomena in a viscoelas-
tic solid. Simplified from classical Split- Hopkinson
pressure bar test, an academic model is postulated in
Steinke et al. (2017) to investigate the bar spallation at
a tensile stress wave in an elastic solid. In the sequel,
Yin et al. (2020) studies the example by strain rate-
dependent fracture toughness. In particular, a portion
of energy dissipation is introduced during the fracture
evolution, nevertheless, the material is still character-
ized as linear elastic. These two works are developed
based on a spectral split phase-field model, since the
V–D split yields unphysical results in the pressure bar
test. As aforementioned, the complexity of viscoelastic
material for the spectral decomposition, this example
is postulated to examine the RCE framework for vis-
coelastic phase-field fracture analyzed dynamically.

The geometric setup of the two-dimensional bound-
ary value problem,which is assumed to be a plane strain
problem, is depicted in Fig. 12a. All the boundaries
are constraint-free, and a half-sinusoidal compressive
stress wave is subjected to the specimen from the left
end. The surface load is defined by σ(t) = σ̂ · f (t),
where the magnitude is given as σ̂ = 1MPa. f (t) is a
half-sinusoidal function defined as

f (t) =
⎧
⎨
⎩
sin

(
π · t
32 μs

)
, if 0 ≤ t ≤ 32 μs

0, if 32 μs < t
(41)

and is visualized in Fig. 12b. Therefore, the exter-
nal work is introduced only during the initial period
0 ≤ t ≤ 32μs and the sum of internal energy (includ-
ing kinetic energy, elastic strain energy and viscous
dissipation) of the whole system is expected to be
constant for t > 32μs. The FE model is discretized
by 6400 four-node quadratic elements with the size

he = 0.25mm along the longitudinal direction. Only
one branch of Prony series is considered and the
model parameters are λ = 4.5GPa, μ = 6.7GPa,
χ = 0.96 and ρ = 2300 kg/m3. A set of trial relax-
ation times τ = [1e4, 1e3, 1e2] μs is chosen to exam-
ine viscoelastic responses by impact loading. More-
over, the length scale is l = 0.5mm and the fracture
toughness is Gc = 7.2e2 J/m2. The transient analy-
sis is carried out by classical Newmark time integra-
tion scheme with constants β = 0.25 and γ = 0.5,
which leads to solutions without numerical dissipa-
tion and unconditionally stable. According to Steinke
et al. (2016), the time step �t = 0.005μs is suffi-
ciently small to obtain an effective wave propagation.
One of the major scopes of this example is the inves-
tigation of the global energy balance, which consists
of effective elastic strain energy ϕmech , kinetic energy
K, fracture energy W f rac = Gc

∫
Ω

γl dV and viscous
dissipation energy Wvis . The summation is defined as
E = ϕmech +K+W f rac +Wvis , which reflects to the
external work.

Thefirst simulationdoes not involve phase-field evo-
lution, and only examines the stress wave propagation
in a viscoelastic solid with τ = 1e3 μs. The phase-field
fracture evolution can be numerically avoided by set-
ting a sufficiently large value of the fracture toughness,
e.g. Gc = 1020 J/m2. Therefore,W f rac remains nearly
zero due to the lack of fracture evolution. The com-
pressive stress wave propagates to from the left edge of
the specimen and reaches the rear end, where a tensile
stress wave is reflected. The quantities K and ϕmech

are converting to compensate each other, meanwhile, a
portion of energy is dissipated due to viscous effects.
However, the total energy E keeps constant after the
external stress wave completely induced, see Fig. 14
(a). The visualization of this stress wave propagation
is shown in Fig. 13 at different time steps. The mag-
nitude of axial stress components σx is represented by
the wave-shape profile outwards of the plane direction,
which provides a clear and apprehensible visualization
of the stress wave propagation and reflection.

The next simulations include the fracture evolution
by reducing the fracture toughness toGc = 7.2e2 J/m2,
where the first reflected tensile stress wave has poten-
tial to generate crack surfaces as long as the phase-field
driving force is sufficiently large. A set of relaxation
times is evaluated, where the viscous effect increases
along with the decrease of relaxation time. Applying a
comparatively large relaxation time (τ = 1e4 μs), less
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Fig. 12 a Geometry and
compressive stress wave
setup for the longitudinal
bar test and b proportional
loading function

(a) (b)

(a) (b) (c)

(d) (e) (f)

Fig. 13 Visualization of the stress wave propagation of a non-fracture simulation by a three-dimensional setup. Magnitude of σx
represented by the wave-shaped profiles towards out-plane direction

viscous dissipation leads to the first reflected tensile
stress wave strong enough to generate a fully evolved
phase-field crack, which naturally results in an increase
of the fracture energy W f rac, see Fig. 14b. After the
fully evolved phase-field crack, the bar is broken into
two separated components by the crack surface.Within
each of these segments, stress waves propagate and are
reflected as well. The simulation with τ = 1e3 μs dis-
sipates more energy due to viscose effect, nevertheless,

it still obtains a similar crack profile compared to the
result for τ = 1e4 μs, see Figs. 14c and 15b. Further
reducing the relaxation time to τ = 1e2 μs yields a
high viscous dissipation rate, which largely decreases
the tensile stress wave magnitude after the first reflec-
tion. Therefore, the remaining elastic energy ϕmech is
not sufficient enough to yield a complete fracture with
d = 1. As a result, the crack only starts to evolve until
the phase-field value d ≈ 0.21, see Fig. 15, which
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(a) (b)

(c) (d)

Fig. 14 Evolution of energy components during the wave propagation

(a) (b) (c)

(d) (e) (f)

Fig. 15 Phase-field evolution d and axial stress σx distribution for different relaxation times τ
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Fig. 16 Geometry setup for classicalMode I test

does not have the physical explanation. Thus, no crack
has finally initiated and the phase-field should return
to zero when the tensile wave has faded away. How-
ever, the aforementioned irreversibility algorithm from
Miehe et al. (2010) does not allow the phase-field heal-
ing.

It is noteworthy that, due to lack of crack singu-
larity in this example, the fracture initiation is gov-
erned by material strength instead of fracture tough-
ness. According to the work of Tanné et al. (2018), the
material strength is also represented by the phase-field
model, but here, the length scale parameter needs to be
considered as a material parameter and cannot chosen
freely.

4.3 Rate-dependent failure ofMode I test

This example studies rate-dependent fracture evolution
by examining a classical Mode I benchmark, where
the geometric setup of the two-dimensional boundary
value problem is depicted in Fig. 16. The left and right
boundaries are constraint and a monotonically increas-
ing displacement is subjected horizontally at the right
edge. The FE model is uniformly discretized by 62625
four-node quadratic elements and the element size is
h = 2mm. The model parameters are λ = 1.12GPa,
μ = 0.48GPa, χ = 1.2, Gc = 500 J/m2 and l =
4mm. A set of relaxation times τ = [0.05, 0.1, 0.2] h
and a set of loading rates u̇ = [2.5, 5, 50] mm/h are
applied to evaluate the rate-dependency of phase-field
fracture. This example considers a quasi-static analy-
sis, which is numerically solved based on a staggered
solution scheme.

The general phase-field evolution at different load-
ing steps is shown in Fig. 17a, that crack initiates at
the notch tip and propagates straight towards the bot-
tom. Particularly, the crack orientation n1 along the
evolved crack path and around the phase-field crack tip
is shown in Fig. 17b. To obtain an effective crack ori-
entation, a simple definition of ni is based on the prin-
cipal direction of the stress at the previous step, since
this assumption can avoid the derivative term ∂ε̄ ni to
largely reduce the complexity of the RCE constitutive
law. Apparently, the normal direction of the crack n1
in Fig. 17b always shows approximately perpendicular
to the evolved as well as potentially evolving phase-
field crack. The reaction forces are measured at dif-
ferent loading rates for the same relaxation time and
for different relaxation times at the same loading rate
in Figs. 18a and b, respectively. An important obser-
vation is that the peak load increases and the ultimate
displacement decreases along with increasing the load-
ing rates, see Fig. 18a. Meanwhile, Fig. 18b indicates
that a smaller relaxation time τ leads to a decreasing
peak force but an increasing ultimate displacement.
This finding completely agrees to the observation of
viscoelastic polymer rupture in Loew et al. (2019), Yin
and Kaliske (2020c).

Furthermore, the numerical convergence for the
staggered solution scheme is evaluated as well. The
convergence criteria of the multi-field problem for the
staggered solution are generally based on the converged
solution of the decoupled equilibriums. In particular,
two evolution equations at current step are solved by
classical Newton- Raphson algorithm in an iterative
manner up to their residual norms are lower than the
tolerance. For simplification, the same tolerance is used
for both solutions of the RCE and the phase-field evo-
lution. The numerical tolerance 10−8 with respect to
a reference residual norm is considered for both the
RCE and the phase-field solution simultaneously. In
this example, taking advantages of High Performance
Computation, the simulation is solved by an iterative
staggered scheme. Based on the result of τ = 0.1 h
and u̇ = 5 mm/h, the numerical convergence is investi-
gated by evaluating the logarithmic value of the residual
norm (lg(R)) before the phase-field initiation (d ≈ 0.2)
and the crack propagation (d = 1) in Figs. 19a and
b, respectively. Due to the linearity of the viscoelas-
tic material formulation and the phase-field evolution,
only twoNewton- Raphson iterations are required to
solve the mechanical and the phase-field solution once.
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(a)

(b)

Fig. 17 Visualisation of the stress wave propagation of a non-fracture simulation by a three-dimensional setup. The magnitude of σx
represented by the wave-shaped profiles towards out-plane direction

Observing Fig. 19a, before the phase-field crack initi-
ation, the phase-field already converges from the third
solution onward, nevertheless, the interactive feedback
to themechanical evolution does not converge yet up to
the 15th solution. As a result, the consequent solution
for the decoupled evolutions are simultaneously con-
verged, ending up with a total of 45 iterations. During
the crack propagation, the total iterations significantly
increase up to 557 steps, where the first 20 steps and the
last simultaneously converged steps are shown in Fig.
19b. Based on this investigation, more solution itera-
tions are required during the crack propagation than
that before crack initiation.

4.4 Three-point bending of viscoelastic asphalt
concrete

The last example studies a three-dimensional boundary
value problem based on a three-point bending test of
asphalt concrete, which is characterized by a viscoelas-
tic bulk material and is studied in Song et al. (2006).
According to Song et al. (2006), a bilinear cohesive
zone model is developed to investigate the fracture
evolution. The cohesive elements are imposed in the
potential region to allow cracks to propagate in any
possible direction. As a result, the simulation result
appropriately captures the experimental observation.
In the sequel, Shen et al. (2019) ncorporates phase-
field modeling of viscoelastic material to simulate this
benchmark, nevertheless, using a classical volumetric-
deviatoric split.Meanwhile, unlike the phase-field driv-

123



158 B. Yin et al.

(a) (b)

Fig. 18 Reaction force for a different loading rates for τ = 0.1 h and b different relaxation times for u̇ = 5 mm/h

ing force definition in Shen et al. (2019), the present
model does not include theviscous dissipation to evolve
the phase-field evolution. Furthermore, using a V–D
split, a concentrated displacement load on the top sur-
face cannot yield the phase-field crack initiation from
the tip of pre-notch. The fracture evolution straightfor-
ward evolves at the concentrated loading edge, due to
the limitation of the V–D split for compression status.
Therefore, Shen et al. (2019) applies uniform surface
loading instead of concentrated line loads. Neverthe-
less, theRCEphase-field approach can effectively over-
come this issue by applying concentrated line loading
in accordance to the setup of Song et al. (2006).

The fundamental geometry and boundary setup are
depicted in Fig. 20 and the FE discretization consists
of 57960 eight-node brick elements. A local refine-
ment is applied at the potential region where cracks
may propagate. The uniform element length in x–y
plane is he ≈ 1.6mm. The prescribed notch is located
at left the bottom vertically towards the top surface
with a length of 19 mm and the external loading is
applied to the mid-span of the beam downwards at the
top surface. The viscoelastic material model involves
fiveMaxwell branches and the model parameters are
λ = 34765MPa, μ = 9481MPa, χ1 = 0.133, τ 1 =
0.17 s, χ2 = 0.133, τ 2 = 2.29 s, χ3 = 0.235, τ 3 =
26.16 s, χ4 = 0.266, τ 4 = 246.86 s, χ5 = 0.228,

τ 5 = 6574.81 s. Furthermore, the parameters for the
phase-field approach are given as Gc = 345 J/m2 and
l = 4mm. A quasi-static analysis is applied and the
loading rate is u̇ = 1 mm/min. The evolution of the
phase-field crack is shown in Fig. 21 by plotting the iso-
surface of d = 0.95, which indicates a mixed-mode of
fracture. Furthermore, the crack trajectories obtained
by the cohesive approach as well as the experimental
investigation (Song et al. 2006) are compared to the
simulation result by present model, which show com-
plete agreement with each other, see Figs. 22a and b.
As aforementioned regarding the V–D split simulation,
the concentrated line load does not evolve the crack at
the pre-notched tip. Instead of that, the initial damage
is exactly located at the loading region, see Fig. 22c.
It is noteworthy that, so far in literature, a viscoelastic
phase-field model with spectral split is not available.

5 Conclusion

The promising phase-fieldmethod has been intensively
studied to simulate fracture evolution and a variety
of approaches are developed to appropriately capture
realistic crack kinematics in complex crack patterns.
Nonetheless, the standard V–D split and the spectral
decomposition only yield realistic predictions in lim-
ited conditions. The recent approaches presented in
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(a)

(b)

Fig. 19 Convergence study for τ = 0.1 h and u̇ = 5 mm/h, a before crack initiation (d ≈ 0.2) and b during the crack propagation
(d = 1), the first 20 steps and the consequently converged status

Steinke and Kaliske (2019), Strobl and Seelig (2016)
consider a consistent degradation, leading to physical
crack kinematics. Nevertheless, their formulations are
restricted to isotropic and linear elasticity. The com-
prehensive RCE approach proposed in Storm et al.
(2020) develops a general variational phase-field evolu-
tion, which allows to derive realistic and kinematically

consistent material degradation without any restric-
tions of material properties. The contribution (Storm
et al. 2020) has analyzed isotropic, anisotropic linear
elasticity and thermo-elasticity in the framework of
RCEmodeling. As a meaningful application, this work
incorporates the conceptual RCE approach to investi-
gate fracture within viscoelastic materials, which con-
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Fig. 20 Geometry and
boundary setup of
three-point bending test

Fig. 21 Visualization of the phase-field crack by plot the iso-surface at d = 0.95 in a transparent gray solid

siders other internal variables in addition to the crack
deformation in a comprehensive derivation.

Several viscoelastic rheological models coupled to
phase-field modeling are studied as well. This work
takes the classical linear viscoelastic approach based
on the convolution theorem into consideration to sim-
ulate viscoelastic solids at small strains. Due to the
linearity of the elastic response at the non-equilibrium
branch, the strain energy of the entire system can be
obtained analytically based on the introduced stress-

type internal quantity. As a result, the phase-field driv-
ing force can be explicitly defined by summing the
elastic strain energy from both the equilibrium and
the non-equilibrium branches, which strictly follows
the definition of Griffith-type fracture. Nevertheless,
Shen et al. (2019) postulates the fracture driving force
including a portion of viscous dissipation as well in
addition to the elastic strain energy.

To further demonstrate the capability of viscoelastic
phase-field modeling using the novel RCE framework,
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Fig. 22 Comparison of the
crack profiles for a
numerical and experimental
results in Song et al. (2006),
b simulation by the present
RCE approach and c by the
V–D split modeling.
According to Song et al.
(2006), red line representing
the numerical crack by
cohesive element approach
and the cracks obtained
experimentally denoted by
green and blue lines in a

(a)

(b)

(c)

several representative benchmark studies are exam-
ined. For material relaxation during compressive load-
ing, a contact approach is compared to the RCEmodel-
ing,where full agreement is identified. Then, a transient
analysis is performed for a bar spallation test, which
evaluates the evolution of energy components in detail.
The classical Mode I test shows the rate-dependent
fracture and the numerical convergence for staggered
solution is studied. The last three-point bending test of a
pre-notched asphalt concrete specimen shows complex
mixed-mode fracture.

In addition to current content in this publication,
other inelastic characteristics, e.g. plasticity or vis-
coplasticity can be formulated by incorporating it into

the RCE approach. Furthermore, the extension of the
RCE to finite deformation is the next priority, for frac-
ture of polymeric materials. One of the main chal-
lenges of the RCE framework extending towards finite
deformation is that an appropriate solution scheme for
the crack deformation �i is required, which cannot be
obtained as a closed solution anymore due to geomet-
ric and material nonlinearity. To address this issue, an
internal Newton iteration is necessarily adopted to
yield the numerical solution of �i , which is an interest-
ing topic in an upcoming paper.
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