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Abstract Dynamic fracture behavior in both fairly
continuous materials and discontinuous cellular mate-
rials is analyzed using a hybrid particle model. It is
illustrated that the model remarkably well captures
the fracture behavior observed in experiments on fast
growing cracks reported elsewhere. The material’s
microstructure is described through the configuration
and connectivity of the particles and the model’s sen-
sitivity to a perturbation of the particle configuration
is judged. In models describing a fairly homogeneous
continuous material, the microstructure is represented
by particles ordered in rectangular grids, while for mod-
els describing a discontinuous cellular material, the
microstructure is represented by particles ordered in
honeycomb grids having open cells. It is demonstrated
that small random perturbations of the grid representing
the microstructure results in scatter in the crack growth
velocity. In materials with a continuous microstruc-
ture, the scatter in the global crack growth velocity is
observable, but limited, and may explain the small scat-
tering phenomenon observed in experiments on high-
speed cracks in e.g. metals. A random perturbation of
the initially ordered rectangular grid does however not
change the average macroscopic crack growth velocity
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estimated from a set of models having different grid
perturbations and imply that the microstructural dis-
cretization is of limited importance when predicting
the global crack behavior in fairly continuous materi-
als. On the other hand, it is shown that a similar per-
turbation of honeycomb grids, representing a material
with a discontinuous cellular microstructure, result in
a considerably larger scatter effect and there is also a
clear shift towards higher crack growth velocities as the
perturbation of the initially ordered grid become larger.
Thus, capturing the discontinuous microstructure well
is important when analyzing growing cracks in cellular
or porous materials such as solid foams or wood.

Keywords Dynamic fracture - Crack growth
velocity - Particle method - Heterogeneous material

1 Introduction

Recently the authors proposed a three-dimensional
mechanical model to capture dynamic fractures in het-
erogeneous materials (Persson and Isaksson 2014).
The focus in the previous study was on discontinu-
ous fiber-based materials, but the model is equally well
suited for more continuous materials, as will be further
revealed here. Modeling dynamic fractures has evolved
from the classical static fracture criterion by Griffith
(1920) via quasi-static crack growth to full dynamics
(cf. Nilsson 2001; Freund 1998). Some of the differ-
ent methods of modeling dynamic cracks are analytical

@ Springer



192

J. Persson, P. Isaksson

(Gehlen et al. 1987; Popelar and Gehlen 1987), while
others are numerical, such as the finite element method
(Ramulu and Kobayashi 1985), the extended finite ele-
ment method (Belytschko et al. 2009) and so-called
“mesh-free methods” (Mos et al. 1999). Lattice mod-
els (LM) pioneered by Hrennikoff (1941) are concep-
tually near to the FE models but with a different his-
tory. While FEM stems from discretizing a contin-
uum, LMs share a history with molecular dynamics
(MD) and has later been adapted to deal with effective
material points rather than atoms cf. Ostoja-Starzewski
et al. (1996). A third class of models is the morphol-
ogy based models where the discretization is made
to correspond to actual physical micro structures. In
resent years particle methods have entered the scene,
e.g. hybrid particle element methods (Fahrenthold and
Horban 2001; Rabb and Fahrenthold 2010; Monteiro
Azevedo and Lemos 2006) and peridynamics (Silling
and Bobaru 2005; Silling and Askari 2005; Ha and
Bobaru 2010) or discrete element methods (Persson
and Isaksson 2013, 2014). The distinction between par-
ticle and hybrid particle element method is not absolute,
however the hybrid methods often have the possibility
to model new contacts and use interactions known from
mechanics such as trusses and shells (Rabb and Fahren-
thold 2010) whilst in the general case other potentials
are common such as the Lenord-Jones cf. (Gao 1996),
or longer reaching interactions cf. (Silling and Bobaru
2005, Wang et al. 2009). There is also a class of mor-
phology based particle methods, such as the one used
in this paper. All three classes of particle models are
examples of LM. The traditional analytical solutions
have limited usefulness for practical problems, but they
provide a basis on which the computational (numerical)
models stand and serves as benchmark problems. Finite
element models are perhaps the most established meth-
ods to model stationary cracks and fractures. However,
they are less suited for modeling growing cracks for
mainly two reasons: (1) the material description needs
to be continuous and, (2) re-meshing strategies are
needed to capture the changed geometry when a crack
grows. The first problem has been partly solved by
the introduction of the extended finite element method,
also known as the generalized finite element method, in
which a crack can extend through split elements. The
second problem has been met by introduction of “mesh-
free” methods such as the boundary element method.
However, a significant drawback of the boundary ele-
ment method is the difficulty to include material non-
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linearities and anisotropy, cf. Zang and Gudmundson
(1988). Moreover, while analytical methods are com-
putationally inexpensive they are of limited practical
use when analyzing fracture in engineering structures
of arbitrary geometry because of the complex interac-
tions between the crack and other surfaces (e.g. bound-
aries). In this case, numerical models become neces-
sary (cf. Nilsson 2001). Even though e.g. crack paths
often can be fairly accurate estimated by a quasista-
tic method, the crack growth velocities needs to be
determined by other means cf. (Ooi and Yang 2011).
In the LM class any lattice-lattice interaction may be
used, and for modeling linear elastic fracture a popu-
lar choice is spring network models (Ostoja-Starzewski
et al. 1996). Some extensions to the simple springs
are made to adjust the Poisons ratio by the introduc-
tion of torsion spring and beams cf. (Ostoja-Starzewski
et al. 1996; Wang et al. 2009). Such models are com-
monly used to model fracture with implicit solutions
cf. (Ostoja-Starzewski et al. 1996; Suiker et al. 2001;
Marder and Liu 1993) or by solving embedded dif-
ferential equations to compute favorable crack speeds
cf. (Marder and Liu 1993). To model a growing crack
with a physical dynamic behavior, it is possible to use
a particle representation of the material with mechan-
ical interaction laws and advance in time using New-
ton’s equation of motion rather than the quasi-static
motion favored in e.g. traditional finite element models.
The interaction laws might be based on e.g. piecewise
continuum mechanics, like the hybrid particle element
method, or non-local interaction laws such in peridy-
namics cf. (Silling and Bobaru 2005; Silling and Askari
2005). These methods are inherently dynamic in the
sense that the crack velocity is a result of the mate-
rial parameters, rather than a separate material para-
meter to be set (cf. Persson and Isaksson 2014). If the
previously mentioned models are sorted by mathemat-
ical similarities new groupings would arise, with the
major groupings; non linear versus linear radial inter-
actions, radial versus radial and angular interactions
eg. spring type versus beam type interactions, in the
case of angular interactions rigid versus elastic versus
freely rotating connections between elements, whether
or not the discretization represent a physical entity or
is an arbitrary discretization. Finally there is the option
whether to advance in time explicit or implicit, which
refers to advancing in time using Newtonian mechan-
ics or some quasistatic means of time dependent evo-
lution and an explicit integration does not exclude the
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possibility of an implicit integration scheme such as
Rungekutta.

Lets explore the last choice first: Depending on the
available computational resources, advancing in time
implicitly without inertia may be the only realistic pos-
sibility and it is thus a popular choice cf. (Ostoja-
Starzewski et al. 1996; Suiker et al. 2001; Marder and
Liu 1993; Gerstle et al. 2007; Bolander and Saito 1998).
Including inertia and accelerate nodes explicitly comes
with the added benefit of true dynamic and is made pos-
sible by modern computers even for large systems cf.
(Zhang and Chen 2014). The availability of computa-
tional power is of the utmost importance when choosing
complexity of interactions and the computers of today
favors better descriptions, e.g. beams over springs since
reading from memory takes more time than comput-
ing. There is also the added benefit of the possibility
of solution stability with a larger time step. The bene-
fits of including angular interactions and its effect on
poissons ratio is extensively examined by cf. Ostoja-
Starzewski et al. (1996). Each part of the theoretical
assumptions used in the model in this paper is thus not
novel by them self, but combined in the currently most
favorable combination for computational purposes.

The strategy used in this study is based on a mechan-
ical particle interaction model and utilize known phys-
ical interactions and explicit solver/integration in time.
The model’s ability to capture real material behavior is
firstexamined by comparing numerical results to exper-
imental results found in literature. Then investigations
are made on the microstructure’s particle discretiza-
tion: the role of the discrete particles’ initial positions
and the impact of any perturbations on the macroscopic
global behavior.

2 The model

The model is based on a particle representation of the
material. The movement of the particles governs the
material behavior, and each particle holds a portion of
the mass and moment of inertia of the material volume
it represents, as illustrated in Fig. 1 for a grid represent-
ing a continuum. For the case when an element repre-
sents a separate physical entity such as a cell wall, the
two particles representing it share mass and moment of
inertia equally. The forces acting on each particle due
to connections to surrounding particles are computed
using algorithms picked from well-established geomet-

Fig.1 Each particle holds mass m and moment of inertia / of the
material volume element it represents. The interaction between
particles are indicated by solid lines while the dashed lines indi-
cates the small portion of volume each particle represent. Hence,
material volumes may be shared (but not overlapped) by several
particles such as in the case of the shaded volume I" that is shared
by particles i, j, k and /

Fig. 2 A connection between the two particles i and j

rically nonlinear engineering beam theories (cf. Reiss-
ner 1972 or Krenk 2009) capable of capturing large
rotations and deformations and fairly low length-to-
width ratios of represented regions. Thus, each parti-
cle interacts with its neighbors and when the material
deforms, each particle may be displaced and rotated.
The present rotations of particle i and j are represented
by ¢; and ¢;, respectively. This model does not utilize
a stiffness matrix nor the cumbersome contact search
and is thus computationally efficient. With reference to
Fig. 2, in a local Cartesian coordinate system (x, y),
with its x-axis oriented along the line connecting the
particle i:s and j:s initial positions, the initial distance
between the two particles is given by /;; while the hori-
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zontal and vertical displacements of particle i are given
by uy; and uy;. It is assumed that the potential energy
®;; in the connection between particles i and j is given
by:

@;j = _/0 EAije; + GAijify + ELjkdx, (1)

where €;; = (1+ x;;)0> +n;;01 — 11is the current axial
strain, §;; = n;;02 — (1 + x;;)01 is the current shear
strain, k;; = (¢; — ¢;)/[;; is the current bending strain
(here, 0 = sin(¢; /2 +¢;/2), 02 = cos(¢i /2 +¢;/2),
Xij = (uxj —uxi)/lij and m;; = (uy; — uy;)/lij), cf.
Persson and Isaksson (2014). The Young’s modulus is
given by E and the shear modulus by G, while the con-
nection between particle i and j has width £;;, height
b;j, cross section area A;; = b;jh;; and area moment
ofinertia I;; = b; jh?j /12. The forces acting in the local
coordinate system on each particle i due to the connec-
tion to particle j is obtained using their associated con-
jugate variables (i.e. displacements) according to f; =
8<Dl-j/aux,-, fyi = aqﬁij/auy,- and f¢i = 3®ij/8u¢i.
Using (1), the axial forces fy; and f; , the transverse
forces fy; and fy;, and the bending moments fj; and
f¢; are in the local coordinate system (x, y) readily
given by (Fig. 2):
fei = —fxj = EAij62 [1 — 62(xij + 1) — O1nij]

+ GA;jby [62mij — 61 (xij + D]
fyi = —=fyj = EAijb1 [1+ 6200 + 1) — 61mij]

—GA;jbr [62mij — 01(xij + D]
foi = EAijlij [02(xij + 1) + O1mij — 1] [62mij

-0+ 1] /2

—GAjjlij [02mi — 01 (xij + D] [02(xij + D

+61mi5] /2

— El;jkij
Toj = Joi +2Eijkij 2
For more details on the beam model the interested
reader is directed to the work of Krenk (2009) or
Persson and Isaksson (2013) for instructions con-
cerning implementation. It is convenient to gather
the forces due to the connection between particles
i and j at time ¢ in a vector according to ' fj; =

Ufxis fyis Jois fxjs frjs f¢j]T. For computational pur-
poses, ! f;;, given in the connection’s local coordinate
system, is rotated to a fixed global Cartesian system
(X, Y),Fig. 2, before the summation of all forces affect-
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ing the particles are computed. This is achieved by
using the well-known 2D rotation matrix ’S_Zij, with
¢ij being the angle between the local x-axis and the
global X-axis:

cos¢;j —sing;; 0 0 0 0
sing;;  cos¢;; 0O 0 0 0
S 0 0 1 0 0 0
v 0 0 0 cos¢j; —sing;; 0
0 0 0 sing;; cos¢;; 0
0 0 0 0 0 1
(3)

Using (3), the relations between forces and displace-
ments in global and local systems are

ti‘,‘j = t.(}i;l tﬁj and ll,_t,'j = t.@,‘thij, (4)

where ! Uij is the vector containing particle i:s and
j:s displacements in the global coordinate system at
time ¢ (IU,"/' = [Um', Uyi, i, Uyj, Uyj, ¢j]T), note
that ¢; = Uy, as a result of the element formulation
(Fig. 2). Hence, the forces on the two particles due
to their interaction only, is given in the vector tﬁ,- i
in the global coordinate system at time ¢. All forces
and moments acting on a specific particle i at time ¢,
according to (4), are summed up, in the global frame
of reference, to a force vector ’ F;. It is noticed that
each particle may interact with an arbitrary number
of particles, depending on the geometry and how the
connections of the particles are defined, i.e. a grid. A
semi-implicit Euler method (cf. Cromer 1981) governs
the advancement in time, i.€.

z+Atl7i _ Mi_l 'F,
t+Athi = (1 _)\)tﬁi + t+At(jiAt
t+Atl_]l_ — t[]i + t+AtUiAt (5)

where At is a small time-step increment, a dot (') denote
atime derivative of the variable, 2 adamping coefficient
simulating internal friction and M; is a mass matrix
given by

: m; 0 0
Mi=| 0 m O (6)
0 0 oam;
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In (6), m; = % Zj Ajjlijpij is the mass of particle i,
which is connected to particle j with element crossec-
tional area A;;, initial length /;; and density p;;. The
arbitrary constant « is chosen to represent the angular
moment of inertia and is supposed to be small. For this
model, « = 1/1000 has proved to yield good results.
Then, when the global displacements of all particles
have been updated, they are rotated back to the global
systems according to (4). Needless to say, at every time
step ¢, particle i:s position in the global coordinate sys-
tem is given by the position vector ! R;

'Ri = =R +' U;. )
Finally, when the strain energy density in the connec-
tion segment between particles i and j exceeds a spe-
cific critical strain energy density ¥y, the connection
fractures instantly whereupon the interaction between
the two involved particles is immediately canceled. The
strain energy density '¥;; at time 7 is calculated at the
position initially located exactly in-between the two
particles i and j, using (1), and is a function of the
present deformations according to

t E 2
Yij = 3[1 — 0 (xij +1) — 01n;5]

Elj ,
24;; 1
When deriving (8) it is assumed that the strain energy
density is constant in the volume element. This is a
fair physical approximation for sufficiently small vol-
ume elements. Cracks may nucleate, propagate or coa-
lesce at any time at arbitrary connection segments if
the local fracture criterion is fulfilled during the simu-
lation. Hence, there is no need for any predefined crack
path or crack growth criterion. For more details con-
cerning the model, the interested reader is directed to
Persson and Isaksson (2013; 2014).

G
+ < [02mij = 01 (xij + D + (8)

3 Comparisons to experiments

Two different geometries are used for numerical com-
parisons to experiments found in literature. In both
examples it is assumed that linear elasticity prevails
and that the material can be considered isotropic.

3.1 Geometries

The first test geometry is picked from Fred Nilsson’s
pioneering work (Nilsson 1974). A strip specimen,

—>»X 2h

Fig. 3 Illustration of a strip specimen with clamped edge dis-
placement of v

illustrated in Fig. 3, of width w = 30.5 cm, height
2h = 23 cm and thickness B = 0.1 mm, has a station-
ary initial edge crack with length ag. A state of plane
stress prevails. The material has the Young’s modulus
E = 196 GPa, the Poisson’s ratio v = 0.3, the shear
modulus G = ﬁ = 75.4 GPa, a density p = 7900
kg/m?, a fracture toughness K. = 106 MN/m>/? and
shear wave speed

e = [G/p]"? = 3100 mis. )

The top and bottom horizontal edges are slowly dis-
placed in opposite directions, as illustrated in Fig. 3,
so that the existing crack opens. The classical crite-
rion for crack growth initiation is applied, i.e. crack
growth is assumed to initiate when the opening mode
stress intensity factor K1 > K. For the loading situa-
tion considered here (cf. Nilsson 1974), this means that
when the magnitude of the displacements vy reaches
vo = Ve = hK (1 — Uz)/[E\/JT_a()] the crack starts to
propagate. This is in the model accomplished by set-
ting the local fracture energy density ¥ equal to the
highest present energy density in the body. The global
energy density required to drive the crack is given by
the fracture surface energy density y,

yr = v2E/[2h(1 — )], (10)

and is uniquely related to both the stress intensity factor
K7 and the propagation velocity (Nilsson 1974). When
the crack is released, it initially grows with a fluctuating
velocity v which soon reaches a plateau, or steady state,
that holds until the crack tip approaches the opposite
vertical boundary.

The second test geometry is an impulse loaded three-
point bending test (cf. Zehnder and Rosakis 1990). A
hammer with mass m;, = 195 kg and velocity v, is
dropped on the center of a steel cantilever with an
impact velocity of A, = vy = —5.0 m/s at time ¢=0,
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Fig. 4 Illustration of a three-point impulse loaded bending test
of a cantilever. The radius of the crack tip is given by dy/2

illustrated in Fig. 4. The cantilever has length L = 30.4
cm, height ~ = 12.8 cm, thickness B = 0.95 cm,
density p = 7900 kg/m?, Young’s modulus E = 196
GPa, a fracture toughness K, = 62 MPa,/m and an
edge crack of length ap = 0.29h positioned at the cen-
ter of the cantilever. The fracture toughness needs to
be translated to a critical strain energy density for the
model. This could of course be done analytically, but
for simplicity it is done in a separate simulation where
the cantilever is loaded with a force F', applied at the
center of the beam, such that the stress intensity factor
K 1 = Kc, ie.

FL
3
Bhz

K; = fao/h), (1)

where f(ap/h) = 1.5 (cf. Nilsson 2001). The resulting
strain energy density at the crack tip is utilized as the
fracture energy density ¥ in the following dynamic
simulations.

3.2 Results

Both experimental geometries are here discretized by
regular rectangular square grids having equal spac-
ings in vertical and horizontal directions. In the first
example, which simulates the experiments by Nilsson
(1974), the specimens are represented by grids consist-
ing of 200 particles in the horizontal direction and 75
particles in the vertical direction, giving an initial sepa-
ration length between particles of [p = w/199 (the par-
ticles are positioned at the grid intersections). A small
part of a grid, with the crack slightly opened, is illus-
trated in Fig. 5. The time-integration parameters are
set to At = 0.01 ns and A = 3 - 107, The simulated
results are shown in Fig. 6 with ag varied in the interval
1 < ap/lp < 10. The high steady-state velocities are
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Fig.5 A small part of aregular square grid with an opened crack

101
= = = Analytic solution (Nilsson 2001)

O Present study
8" % Nilsson (1974)

Jf 6r
Yo

Fig.6 Comparison of the simulated results, using regular square
grid cells, with the experimental results of Nilsson (1974). Stars
represent the experimental results and diamonds the results of the
simulations. The results are contrasted with an analytical solution
(dashed line) given by Nilsson (2001). The quasi-static fracture
surface energy density is given by yg

obtained for low initial crack lengths ag. The quasi-
static solution gives yp = vgnaoE/[th(l — v2)2].
Nilsson also presented an analytical solution to the
problem of the crack in an infinite strip (Nilsson 2001).
This solution neglect energy dissipation in the material,
and thus over-estimates the crack propagation speed,
and it is included as a reference with that in mind.
Notice that there is a considerable difference between
the simplified analytical solution and the experimental
results as well as the numerical results, both in the mag-
nitude of the speed and the shape of the curve, which
will be further discussed later on.
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Fig.7 Comparison of the simulated results, using regular rectan-
gular grids, with the experimental results of Zehnder and Rosakis
(1990). Crack growth versus time in the impulse loaded three-
point bending model

In the second example, which simulates the exper-
iments by Zehnder and Rosakis (1990), the crack tip
has a finite radius of dy/2 = 0.7 cm. In the simula-
tions, the distance dy is set as the spacing of the regular
grid meaning that a grid consist of 218 by 92 parti-
cles in horizontal and vertical directions, respectively.
The two lower supporting corners are held fixed in the
vertical direction during the simulation while 10 par-
ticles in contact with the hammer moves along with
the hammer, i.e. l_]i = [O, fot vutdt, O]T for particle
i which is one of the 10 particles in contact with the
hammer. The reaction force from the particles slows
down the hammer according to v, = v; —i—fot F,/mydt,
where F, = >, F! and F/ is the vertical component
(Y-direction) of the reactive force vector of particle i,
which is in contact with the hammer. The integration
parameters are At = 0.01 nsand A = 10~". The result-
ing crack growth is shown in Fig. 7.

3.3 Discussion of the experimental comparisons

In the two compared examples, i.e the results in Figs. 6
and 7, it is shown that the model captures the dynamic
fractures remarkably well. In the first example, the
strip, the cracks advances as the external boundaries
are held stationary when the crack growth has initiated,
while in the second example, the impulse loaded beam,
the crack propagates when the external boundaries

moves, which demonstrates the diversity of the model.
In Fig. 6 there is a considerable difference between the
experimental data and the analytical model. There are
a few plausible explanations for this, but energy dis-
sipation is most likely the main reason. In the region
of the experimental data the numerical model agrees
well with the experiments, and outside this region the
behavior agrees phenomenological with the analytical
model, however with a shift in the maximum crack
propagation speed. Nilsson (1972) speculate that plas-
ticity processes in the crack tip region might have an
importantrole in the crack propagation in this case. This
might agree with our results since fairly large amounts
of energy dissipation takes place in the model. The first
data point in Fig. 6 is special in the sense that it does
not represent a continuous growth but a series of inter-
rupted cracks. It should thus not to be seen as having a
lower crack speed than the limiting 0.28¢; established
by Marder and Liu (1993).

The modeling of the beam impacted by a drop
hammer, i.e. the ballistic experiment of Zehnder and
Rosakis (1990), also agree well with the experiments.
However, the simulation shows some oscillations in
the crack speed that the experimental resolution is to
course to capture. At the instances when the crack
grows, it grows at a constant speed of 0.5¢,. Between
the times of growth are moments of crack arrest, and
together this results in an average crack propagation
of 0.3¢, on the global scale which corresponds well to
the reported experimental one, Fig. 7. Both this crack
growth speed of 0.5¢,, and the slowing effect of the
oscillations agrees with the work with double cantilever
beam by Kanninen (1974). With a shear wave speed c¢;
of roughly 3100 m/s, the 3us of the first diversion from
the initial crack speed corresponds to the time a shock-
wave, originating at the first crack growth event, need
to reach the closest free edge, reflect and meet the mov-
ing crack. This interference phenomenon seems to have
a great influence and somewhat slows down the crack
growth velocity.

4 Material discretization
4.1 Cellular microstructure
To investigate a material with cellular (or porous)

microstructure, a honeycomb grid is used to simulate
the materials in the experiments by Nilsson (1974),
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Fig. 8 Illustration of a part of a regular honeycomb structure
with an opened crack. Each cell wall have length [

10
= = = Analytic solution (Nilsson 2001)

— Present study

e
Yo

Fig. 9 Crack surface energy density versus steady-state veloc-
ity for regular honeycomb grids, the diamonds are the computed
values and the dashed line is the analytical solution to the con-
tinuous infinite strip cf. Nilsson (2001)

Fig. 10 Illustration of a
part of a perturbed square
grid with an opened crack
(left). Illustration of a
perturbed square (right)
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Fig. 11 Illustration of a part of a perturbed honeycomb grid with
an opened crack

instead of the previously used rectangular grids. The
honeycomb structures are built of regular hexagons
as illustrated in Fig. 8. The cell walls have length
lp = w/50 and thickness /10, resulting in 46 by
35 cells and an effective density of 0.12p. Note that
this discretization represent an ideal honeycomb mate-
rial, it is not another discretization of the same con-
tinuous specimen as above because the microstructure
has now regularly spaced open cells. The particles are
positioned at each end of each cell wall and the cell
walls are made of the same material as in the example
above. The time integration parameters are At = 0.01
nsand A = 31075, The result is shown in Fig. 9, with
5 < ap/lp < 50, i.e. 3 to 30 prefractured cells out of
46. The graph shows the fracture surface energy as a
function of the crack propagation velocity. Note that
although the effective density of the structure is less
than the density of the material, and the proper shear
wave speed might be different in a honeycomb structure
than in a continuous material, the shear wave speed c3,
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Fig. 12 Fracture propagation energy versus steady-state velocity for perturbed rectangular grids. The solid line represents the average
values and the bars are the standard deviation. Stars are the experimental results of Nilsson (1974)

as well as the crack propagation energy density y, is
calculated for the bulk material in accordance to (9) and
(10). This example is included because the numerical
results are interesting.

4.2 Results and discussion

The numerical crack propagation speed versus fracture
surface energy is displayed in Fig. 9. The analytic solu-
tion for the undamped continuum of Nilsson (2001) is
included as a reference. There is a phenomenological
similarity between the analytic solution and the numer-
ical results in that there is a significant increase in crack
surface energy once certain crack speed is reached.

Although there is a considerable difference in when
this shift occurs, once the shift is reached the increase
in fracture surface energy is similar.

5 Perturbation of the particles’ initial positions
5.1 Irregular grid configuration

So far, the material has been discretized by regular
grids. However, any real world material is likely to
differ from a perfect regular grid. For the purpose of
capturing the mechanical fracture behavior of imper-
fect material microstructures, the grids used in pre-
vious sections are slightly perturbed. A perturbation
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is in this case a random shift of the grid-nodes, i.e.
a shift of the particles’ initial positions. Figures 10
and 11 shows parts of perturbed grids with opened
cracks.

The regular rectangular grid of the strip specimen
in Sect. 3.1 is subjected to a random perturbation,
Ax and Ay (different at all grid-nodes), as illustrated
in Fig. 10. The magnitude of the perturbation rn =
[Ax? + Ay?]'/? is small enough to ensure the connec-
tion order of the particles is kept and that the mate-
rial is still isotropic on the global scale. For the dif-
ferent grids the average perturbation 74 varies in the
interval 0.002 < 75/lp < 0.16, where [y is the con-
stant distance between initial particle positions in the
undisturbed grid. The time integration parameters are
At =0.01nsand A = 3-107°. The computed fracture
surface energies in terms of the average and standard
deviations from 10 different grids for each level of per-
turbation, are shown in Fig. 12. The initial crack length
varied in the interval 1 < ag/lop < 10. Similarly, the
honeycomb geometry in Sect. 4 is randomly perturbed,
as illustrated in Fig. 11. Also here, the perturbation is
limited so the connection order of the particles is kept.
Twenty different structures, for each level of fracture
surface energy, all having 74 /lp = 0.16 are simulated
and the result is presented in Fig. 13, with time integra-
tion parameters Ar = 0.01 ns and A = 3 - 107, The
initial crack length varied between 3 and 30 cells.

5.2 Results and discussion

The computed crack growth velocity versus fracture
surface energy for the perturbed grids are displayed in
Figs. 12 and 13. The result in Fig. 12 demonstrates
that even a small perturbation of initially ordered reg-
ular grids (continuous microstructure) may change the
crack growth behavior, and with 75/lp = 0.04 the
scatter in the results closely match the scattering in
the experimental data. With 74/lp = 0.16 the scat-
ter in the numerical model greatly exceeds those of the
experiments in Nilsson (1974). However, even with the
highest level of perturbation, there is no change in the
shape of the curve and there is no categorical shift in the
relation between crack speed and crack surface energy.

When comparing the perturbed honeycomb (discon-
tinuous microstructure) in Fig. 13 with the unperturbed
in Fig. 9 there is a slight shift towards higher crack
growth speeds. A possible explanation is that energy
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Fig.13 Fracture propagation energy versus steady-state velocity
for irregular honeycomb grids. The solid line represents the aver-
age values and the bars are the standard deviation. The dashed
line is the analytical solution cf. Nilsson (2001)

travels the shortest/fastest path in the material. A per-
turbed honeycomb cell may be both stiffer and less stiff
than the regular geometry, and even though the aver-
age path may be slower, the fastest path may be faster
in the perturbed honeycomb. This phenomenon is very
small in the rectangular grids representing continuous
microstructures and is not observable.

6 Conclusions

In the examples in Sect. 3.1 it has been shown that the
model captures dynamic fracture both driven by elastic
energy with stationary boundaries and cracks driven by
energy supplied by moving boundaries, which demon-
strates the diversity of the model. The comparison to
the impact experiment is of particular interest since
the numerical model have a higher resolution of the
crack growth behavior and is on a length scale that
is below the detection limit of most instruments, and
which is essential to the crack growth. The model has
been used to illustrate difference in crack growth behav-
ior in materials having fairly continuous and discontin-
uous (cellular) microstructures. The influence of per-
turbations in a discontinuous microstructure is signifi-
cantly larger than the influence of perturbations in con-
tinuous microstructures. A perturbed regular grid, i.e. a
fairly continuous microstructure, might be interpreted
as a grained material microstructure, and may explain
the scatter in the experimental data observed in Nilsson



Modeling rapidly growing cracks in planar materials

201

(1974). It is interesting to note that although all frac-
ture in this study has been of a truly brittle manner, it
captures the fracture behavior of more ductile materi-
als such as a steel plate. This support the hypothesis
that heat and sound (vibrations) are important parts of
the energy dissipation in dynamic fracture and may
be of a greater importance than the energy lost due to
plastic deformation. Finally, capturing a discontinuous
microstructure well is very important when analyzing
growing cracks in cellular materials such as solid foams
or wood, and the accuracy of the predictions on solid
foam fracture, which for most foams have a ductile
component will be investigated in a forthcoming study.
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