Skip to main content
Log in

An engineering methodology to assess effects of weld strength mismatch on cleavage fracture toughness using the Weibull stress approach

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, \({\bar{{\sigma}}_w}\), as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • American Petroleum Institute (2005) Welding of pipelines and related facilities, 20th edn. API 1104

  • American Petroleum Institute (2007a) Fitness-for-service. API RP-579-1/ASME FFS-1

  • American Petroleum Institute (2007b) API specification for 5L line pipe, 44th edn

  • American Society of Mechanical Engineers (2004) Boiler and pressure vessel code. New York

  • American Society for Testing and Materials (2008a) Standard terminology relating to fatigue and fracture testing. ASTM E-1823, Philadelphia

  • American Society for Testing and Materials (2008b) Standard test methods for determination of reference temperature, T0, for ferritic steels in the transition range. ASTM E-1921, Philadelphia

  • American Welding Society (1987) Welding handbook: welding Technology, 8th edn, vol 1. Miami

  • Anderson TL (2005) Fracture mechanics: fundaments and applications. 3rd edn. CRC Press, New York

    Google Scholar 

  • Averbach BL (1965) Micro and macro formation. Int J Fract Mech 1: 272–290

    CAS  Google Scholar 

  • Bakker A, Koers RWJ (1991) Prediction of cleavage fracture events in the brittle–ductile transition region of a Ferritic steel. In: Blauel JG, Schwalbe KH (eds) Defect assessment in components—fundamentals and applications, ESIS/EG9. Mechanical Engineering Publications, London, pp 613–632

    Google Scholar 

  • Beremin FM (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans 14: 2277–2287

    Article  Google Scholar 

  • Brindley BJ (1970) The effect of dynamic strain-aging on the ductile fracture process in mild steel. Acta Metall 18: 325–329

    Article  CAS  Google Scholar 

  • British Standard (1991) Fracture mechanics toughness tests. BS 7448

  • British Standard Institution (2005) Guide on methods for assessing the acceptability of flaws in metallic structures, BS7910

  • Cravero S, Ruggieri C (2005) Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens—part I: plane-strain analyses. Eng Fract Mech 72: 1344–1360

    Article  Google Scholar 

  • Det Norske Veritas (2007) Submarine pipeline systems. Offshore Standard OS-F101

  • Dodds RH, Shih CF, Anderson TL (1993) Continuum and micro-mechanics treatment of constraint in fracture. Int J Fract 64: 101–133

    ADS  Google Scholar 

  • Dodds RH, Ruggieri C, Koppenhoefer K (1997) 3-D constraint effects on models for transferability of cleavage fracture toughness. In: Underwood JH (eds) et al Fatigue and fracture mechanics: 28th Volume, ASTM STP 1321. American Society for Testing and Materials, Philadelphia, pp 179–197

    Chapter  Google Scholar 

  • Donato GHB, Magnabosco R, Ruggieri C (2009) Effects of weld strength mismatch on J and CTOD estimation procedure for SE(B) specimens. Int J Fract 159: 1–20

    Article  Google Scholar 

  • Evans AG, Langdon TG (1976) Structural ceramics. Prog Mater Sci 21: 171–441

    CAS  Google Scholar 

  • Feller W (1957) Introduction to probability theory and its application vol I. Wiley, New York

    Google Scholar 

  • Freudenthal AM (1968) Statistical approach to brittle fracture. In: Liebowitz H (eds) Fracture: an advanced treatise vol II. Academic Press, NY, pp 592–619

    Google Scholar 

  • Gao X, Ruggieri C, Dodds RH (1998) Calibration of Weibull stress parameters using fracture toughness data. Int J Fract 92: 175–200

    Article  CAS  Google Scholar 

  • Gao X, Dodds RH, Tregoning RL, Joyce JA, Link RE (1999) A Weibull stress model to predict cleavage fracture in plates containing surface cracks. Fatigue Fract Eng Mater Struct 22: 481–493

    Article  Google Scholar 

  • Gao X, Zhang G, Srivatsan TS (2005) Prediction of cleavage fracture in ferritic steels: a modified Weibull stress model. Mater Sci Eng A 394: 210–219

    Article  CAS  Google Scholar 

  • Glover AG, Hauser D, Metzbower EA (1986) Failures of weldments. In: Metals handbook, vol 11: failure analysis and prevention. American Society for Metals, pp 411–449

  • Gurland J (1972) Observations on the fracture of cementite particles in a spheroidized 1.05% C steel deformed at room temperature. Acta Metall 20: 735–741

    Article  CAS  Google Scholar 

  • Gullerud A, Koppenhoefer K, Roy A, RoyChowdhury S, Walters M, Bichon B, Cochran K, Dodds R (2004) WARP3D: dynamic nonlinear fracture analysis of solids using a parallel computers and workstations. Structural Research Series (SRS) 607. UILU-ENG-95-2012. University of Illinois at Urbana-Champaign

  • Hughes TJ (1980) Generalization of selective integration procedures to anisotropic and nonlinear media. Int J Numer Methods Eng 15: 1413–1418

    Article  MATH  Google Scholar 

  • Hutchinson JW (1983) Fundamentals of the phenomenological theory of nonlinear fracture mechanics. J Appl Mech 50: 1042–1051

    Article  Google Scholar 

  • Jutla T (1996) Fatigue and fracture control of weldments. In: ASM handbook, vol 19: fatigue and fracture. ASM International, pp 434–449

  • Kendall MG, Stuart A (1967) The advanced theory of statistics. 2nd edn. Hafner, New York

    Google Scholar 

  • Kerr WH (1976) A review of factors affecting toughnness in welded steels. Int J Press Vessel Piping 4: 119–141

    Article  CAS  Google Scholar 

  • Lin T, Evans AG, Ritchie RO (1986) A statistical model of brittle fracture by transgranular cleavage. J Mech Phys Solids 21: 263–277

    Google Scholar 

  • Lindley TC, Oates G, Richards CE (1970) A critical appraisal of carbide cracking mechanism in ferride/carbide aggregates. Acta Metall 18: 1127–1136

    Article  CAS  Google Scholar 

  • Mann NR, Schafer RE, Singpurwalla ND (1974) Methods for statistical analysis of reliability and life data. Wiley, New York

    MATH  Google Scholar 

  • Matsuo Y (1981) Statistical theory for multiaxial stress states using Weibull’s three-parameter function. Eng Fract Mech 14: 527–538

    Article  Google Scholar 

  • Minami F, Brückner-Foit A, Munz D, Trolldenier B (1992) Estimation procedure for the Weibull parameters used in the local approach. Int J Fract 54: 197–210

    CAS  Google Scholar 

  • Minami F, Ohata M, Toyoda M, Tanaka T, Arimochi K, Glover AG, North TH (1995) The effect of weld metal yield strength on the fracture behavior of girth welds in grade 550 pipe. Pipeline Technol 1: 441–461

    Google Scholar 

  • Moran B, Shih CF (1987) A general treatment of crack tip contour integrals. Int J Fract 35: 295–310

    Article  Google Scholar 

  • Nevalainen M, Dodds RH (1995) Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens. Int J Fract 74: 131–161

    Article  Google Scholar 

  • O’Dowd NP, Shih CF (1991) Family of crack-tip fields characterized by a triaxiality parameter: part I—structure of fields. J Mech Phys Solids 39(8): 989–1015

    Article  Google Scholar 

  • O’Dowd NP, Shih CF (1992) Family of crack-tip fields characterized by a triaxiality parameter: part II—fracture applications. J Mech Phys Solids 40: 939–963

    Article  Google Scholar 

  • Ruggieri C, Dodds RH (1996a) A transferability model for brittle fracture including constraint and ductile tearing effects: a probabilistic approach. Int J Fract 79: 309–340

    Article  CAS  Google Scholar 

  • Ruggieri C, Dodds RH (1996b) Probabilistic modeling of brittle fracture including 3-D effects on constraint loss and ductile tearing. J Phys

  • Ruggieri C (2001) Influence of threshold parameters on cleavage fracture predictions using the Weibull stress model. Int J Fract 110: 281–304

    Article  CAS  Google Scholar 

  • Ruggieri C (2009a) WSTRESS release 3.0: numerical computation of probabilistic fracture parameters for 3-D cracked solids. EPUSP, University of São Paulo

  • Ruggieri C (2009b) FRACTUS2D: numerical computation of fracture mechanics parameters for 2-D cracked solids. EPUSP, University of São Paulo

  • Ruggieri C, Gao X, Dodds RH (2000) Transferability of elastic-plastic fracture toughness using the Weibull stress approach: significance of parameter calibration. Eng Fract Mech 67: 101–117

    Article  Google Scholar 

  • Silva LAL, Cravero S, Ruggieri C (2006) Correlation of fracture behavior in high pressure pipelines with axial flaws using constraint designed test specimens—part II: 3-D effects on constraint. Eng Fract Mech 73: 2123–2138

    Article  Google Scholar 

  • Tetelman AS, McEvily AJ (1967) Fracture of structural materials. Wiley, New York

    Google Scholar 

  • Thoman DR, Bain LJ, Antle CE (1969) Inferences on the parameters of the Weibull distribution. Technometrics 11: 445–460

    Article  MATH  MathSciNet  Google Scholar 

  • Wallin K (1984) The scatter in KIc results. Eng Fract Mech 19: 1085–1093

    Article  Google Scholar 

  • Wallin K (2002) Master curve analysis of the Euro fracture toughness dataset. Eng Fract Mech 69: 451–481

    Article  Google Scholar 

  • Weibull W (1939) The phenomenon of rupture in solids. Ingeniors Vetenskaps Akademien Handl 153: 55

    Google Scholar 

  • Weisstein EW (2009) “Ellipse” in mathWorld—a wolfram web resource. http://www.mathworld.wolfram.com/Ellipse.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Ruggieri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruggieri, C. An engineering methodology to assess effects of weld strength mismatch on cleavage fracture toughness using the Weibull stress approach. Int J Fract 164, 231–252 (2010). https://doi.org/10.1007/s10704-010-9488-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-010-9488-3

Keywords

Navigation