
Form Methods Syst Des (2014) 45:213–245
DOI 10.1007/s10703-013-0203-7

Deciding floating-point logic with abstract conflict driven
clause learning

Martin Brain · Vijay D’Silva · Alberto Griggio ·
Leopold Haller · Daniel Kroening

Published online: 20 December 2013
© The Author(s) 2013. This article is published with open access at Springerlink.com

Abstract We present a bit-precise decision procedure for the theory of floating-point arith-
metic. The core of our approach is a non-trivial, lattice-theoretic generalisation of the
conflict-driven clause learning algorithm in modern SAT solvers to lattice-based abstrac-
tions. We use floating-point intervals to reason about the ranges of variables, which allows
us to directly handle arithmetic and is more efficient than encoding a formula as a bit-vector
as in current floating-point solvers. Interval reasoning alone is incomplete, and we obtain
completeness by developing a conflict analysis algorithm that reasons natively about inter-
vals. We have implemented this method in the MATHSAT5 SMT solver and evaluated it on
assertion checking problems that bound the values of program variables. Our new technique
is faster than a bit-vector encoding approach on 80 % of the benchmarks, and is faster by
one order of magnitude or more on 60 % of the benchmarks. The generalisation of CDCL

we propose is widely applicable and can be used to derive abstraction-based SMT solvers for
other theories.

Keywords Decision procedures · Floating-point logic · Abstract interpretation · SMT

Research supported by the Toyota Motor Corporation, ERC project 280053, EPSRC
project EP/H017585/1, the FP7 STREP PINCETTE and DSTL under CDE Project 30713.
A. Griggio is supported by Provincia Autonoma di Trento and the European Community’s
FP7/2007-2013 under grant agreement Marie Curie FP7—PCOFUND-GA-2008-226070 “progetto
Trentino”, project ADAPTATION.

M. Brain · D. Kroening
Computer Science Department, University of Oxford, Oxford, UK

V. D’Silva
University of California, Berkeley, USA

A. Griggio (B)
Fondazione Bruno Kessler, Trento, Italy
e-mail: griggio@fbk.eu

L. Haller
Cadence Design Systems, Berkeley, USA

mailto:griggio@fbk.eu

214 Form Methods Syst Des (2014) 45:213–245

1 Introduction

Floating-point computations are pervasive in low-level control software and embedded ap-
plications. Such programs are frequently used in contexts where safety is critical, such as
automotive and avionic applications. It is important to develop tools for accurate and scal-
able reasoning about programs manipulating floating-point variables.

Floating-point numbers have a dual nature that complicates complete logical reasoning.
On the one hand, they are approximate representations of real numbers, which suggests
reasoning about floating-point arithmetic using real arithmetic. On the other hand, floating-
point numbers have a discrete, binary implementation, which suggests reasoning about them
using bit-vector encodings and SAT solvers. Both approaches suffer from an explosion of
cases that arises when considering the possible results of evaluating floating-point expres-
sions.

An alternative to existing approaches is to use abstractions that enable efficient but im-
precise reasoning. This approach is standard in static program analysis, including analyses
that target safety critical embedded software with floating-point variables [6]. Our solver
uses intervals for sound, efficient but imprecise reasoning about floating-point formulae. If
imprecise reasoning cannot determine whether a formula is unsatisfiable, we use decisions
to increase the precision of deduction, and then use conflict analysis to generalise the results
of deduction. Our approach combines ideas from static program analysis with satisfiability
algorithms and allows us to trade efficiency for precision in a demand-driven fashion. The
approach is generic and can be used to implement solvers for other logics and theories. The
rest of this section provides a more detailed overview of our technique and how it compares
to existing techniques for designing decision procedures.

1.1 Discussion of floating-point solver architectures

We now discuss in detail a few different possibilities for designing an SMT solver for
floating-point arithmetic. Interpreting a floating-point expression as a real arithmetic ex-
pression leads to incorrect conclusions because there are several cases where floating-point
operations differ from real arithmetic operations. Encoding all these cases as constraints in a
real arithmetic formula leads to large formulae containing several cases. Such formulae are
difficult for real arithmetic solvers to handle.

A second approach to floating-point reasoning, called bit-blasting or propositional en-
coding, currently yields better performance than a real arithmetic encoding [11]. Floating-
point operations are represented as circuits that are then translated into a Boolean formula
that is solved by a propositional SAT solver. This approach enables precise modelling of
floating-point semantics and allows high-performance SAT solvers to be reused to imple-
ment a floating-point solver. The disadvantage of this approach is that the SAT solver only
has an operational view of arithmetic operations and must reason about individual bits in
adder and multiplier circuits without the ability to simplify formulae using high-level, nu-
meric reasoning.

A third approach is to use the popular DPLL(T) architecture [5]. The DPLL(T) architec-
ture uses a SAT solver to reason about the Boolean structure of a formula and a specialised
solver for conjunctions of theory literals. Thus, two efficient solvers for fragments of a the-
ory are combined to obtain a solver for the theory. The first problem with using DPLL(T) is
that we would still require a solver for conjunctions of literals in floating-point logic, and no
off-the-shelf solution is available. A second issue is that, in some cases, separating Boolean

Form Methods Syst Des (2014) 45:213–245 215

reasoning from theory reasoning is detrimental to performance [9, 51]. Details of the the-
ory are not visible to the propositional solver and cannot guide search for a model, while
information from previous runs are not available to the theory solver for conflict analysis.

The issues with DPLL(T) mentioned above are known and have fuelled research in
natural-domain SMT procedures. The term ‘natural-domain SMT’ was first used by Cot-
ton [19] but we use it for SMT procedures that perform all reasoning directly in a theory [19,
33, 47, 48, 51]. A fourth possibility is to develop a natural-domain floating-point solver
which performs decisions, backtracking and learning using variables and atoms of the the-
ory. The challenge in pursuing this approach is identifying which elements of the theory
can be used for these operations, and developing efficient algorithms for propagation and
learning.

In this paper, we pursue the fourth approach and develop a natural-domain SMT solver
for reasoning about floating-point arithmetic formulae. We address the efficiency concerns
highlighted above by developing a natural-domain SMT solver that supports imprecise rea-
soning. For insight into the operation of our solver, consider the formula

0.0≤ x ∧ x ≤ 10.0∧ y = x5 ∧ y > 105

where the variables x and y have double-precision floating-point values. Interval propaga-
tion [54] tracks the range of each variable and can derive the fact x ∈ [0.0,10.0] from the
first two constraints, which implies the fact y ∈ [0.0,100000.0] from the third constraint.
This range is not compatible with the final conjunct y > 105, so the formula is unsatisfi-
able. The computation requires a fraction of a second with our interval solver. In contrast,
translating the formula above into a bit-vector and invoking the SMT solver Z3 requires 16
minutes on a modern processor to prove that the formula is unsatisfiable.

The efficiency of interval reasoning comes at the cost of completeness. Consider the
floating-point formula below.

z= y ∧ x = y · z∧ x < 0

After bit-vector encoding, the solver Z3 can decide satisfiability of this formula in a fraction
of a second. The interval abstraction cannot represent relationships between the values of
variables. Interval propagation will not deduce that y and z are either both positive or both
negative. The interval solver cannot conclude that x must be positive and cannot show that
the formula is unsatisfiable.

To recover completeness, we lift the Conflict Driven Clause Learning algorithm in SAT

solvers to reason about intervals. Our solver uses intervals to make decisions, propagates
intervals for deduction, and uses a conflict analysis over intervals to refine the results of
interval propagation. Our algorithm is a strict, mathematical generalisation of propositional
CDCL in that replacing floating-point intervals with partial assignments yields the original
CDCL algorithm. Our approach is parametric, allowing for abstractions such as equality
graphs, difference graphs, or linear inequalities to be used in place of floating-point intervals
to obtain natural-domain CDCL algorithms for equality logic, difference logic, and linear
arithmetic respectively.

Clause learning is not the only approach one may take to obtain a complete solver based
on interval propagation. One may eliminate imprecision by splitting intervals into ranges
that can be analysed without loss of precision. There are at least two ways to perform such
splitting.

216 Form Methods Syst Des (2014) 45:213–245

Splitting can be integrated in a DPLL(T) solver [4]. New propositions are required to rep-
resent intervals over ranges that do not occur explicitly in the original formula. Implement-
ing good learning heuristics for this approach is difficult because the propositional learning
algorithm is unaware of the intervals associated with these propositions.

Splitting can also be implemented in a natural-domain fashion. For the second example
above, the solver can consider the cases y < 0 and y ≥ 0, and can in each case conclude
that x is positive. Such splitting yields a complete, natural-domain SMT solver that only
manipulates intervals, but requires considering a potentially exponential number of cases.
Moreover, the conclusions drawn from proving one case are not used to reason about another
case, so the solver may repeatedly perform certain reasoning.

1.2 Content and contribution

In this paper, we present a Conflict Driven Clause Learning algorithm for floating-point
logic. Our work exploits the insight presented in [28] that propositional SAT solvers in-
ternally operate on a lattice-based abstraction that overapproximates the space of possible
solutions. We show how the FIRST-UIP learning algorithm [70] used in CDCL solvers can
be lifted to a wider range of domains. This lifting is non-trivial since it has to address the
additional complexity of abstractions for domains that go beyond propositional logic.

Contribution We make the following contributions.

1. We present a novel, natural-domain SMT solver for the theory of floating-point arithmetic.
Our solver is based on a new perspective of SAT and SMT algorithms as techniques that
manipulate lattice-based abstractions.

2. We lift the FIRST-UIP algorithm used for conflict analysis in modern SAT solvers to
lattice-based abstractions. Our lifting enables lattice-based analyzers access to learning
techniques that were hitherto limited to propositional SAT solvers.

3. We present a new implementation of our approach for floating-point logic as part of
the MATHSAT5 framework. The implementation outperforms approaches based on bit-
blasting significantly on our set of benchmarks.

Outline Section 2 provides a brief introduction to floating-point numbers and the theory of
floating-point arithmetic. Section 3 recaps some of the formal background on lattices and ab-
stract interpretation. Section 4 gives a high-level account of model search and conflict analy-
sis over abstract domains. The main algorithmic contribution is presented in Sect. 5: A lifting
of the FIRST-UIP algorithm to abstract domains. The implementation of our floating-point
solver, the specific heuristics we used and experiments are discussed in Sect. 6. An exten-
sive survey of related work from the areas of theorem proving, abstract interpretation, and
decision procedures is given in Sect. 7.

2 A review of floating-point arithmetic

This section provides an informal introduction to floating-point numbers and some issues
surrounding formal reasoning about floating-point. For a more in-depth treatment see [61].

Form Methods Syst Des (2014) 45:213–245 217

2.1 Floating-point arithmetic

‘Floating-point’ is a style of encoding subsets of the rational numbers using bit-vectors of
fixed width. The bit vectors are split into multiple, fixed size parts, including a fractional
part (the significand) and a integer power by which it is multiplied (the exponent). Histori-
cally there were a number of different floating-point systems in common usage. This created
significant problems when moving data between machines and made writing portable nu-
merical software prohibitively difficult. A standardisation process lead to IEEE-754, which
defines multiple floating point systems including their semantics and representation as bit
strings. Since their introduction in 1985, the IEEE-754 formats have become the dominant
floating-point system and the most common way of representing non-integer quantities.
Most systems that do not comply with IEEE-754, such as some GPUs, simply implement
a subset of its features. We focus on binary encodings of IEEE-754 for which the definitive
reference is the standard [23].

The IEEE-754 binary encodings specify several different classes of numbers; normal,
subnormal, zeros, infinities and “not a number” (NaN). Normal numbers are represented
using a triple of unsigned binary numbers (s, e,m) in which s is the sign bit and always
uses a single bit, e is the exponent and m is the significand and their width depends on
the each format. The rational number represented by this pattern is given by the formu-
lae:

(−1)S · 2e−bias ·m
where bias is fixed by the format. An example of an IEEE-754 binary16 floating-point
normal number is given below.

1 1 0 0 1 0 0 1 0 1 0 1 1 0 0 0

s e m

=−1 · 218−15 · (1+ 2−2 + 2−4 + 2−6 + 2−7)

=−10.6875

Note that the exponent is 5 bits, the significand is 10 bits and the bias is 15 (25−1 − 1).
An exponent which is a sequence of 0s or a sequence of 1s represents one of the
other types of number. Subnormal numbers have a 0 exponent and non-zero signifi-
cand. They act as fixed-point numbers between the smallest normal number and zero,
allowing the difference between two numbers to always be representable and improv-
ing the error bounds of computation. If both exponent and significand are 0, the num-
ber represents 0. Note that there are two floating-point numbers, +0 and −0 that both
represent the rational value 0. These two numbers allow distinguishing between con-
vergence to 0 from above and from below. Exponents that are all 1 with 0 signifi-
cand represent infinity. Finally, an exponent of all 1 and a non-zero significand represent
NaN.

IEEE-754 gives a precise and semi-operational semantics for common operations, in-
cluding +, −, ∗, / and √.. For example, for normal and subnormal numbers and zeros, the
standard specifies:

. . . every operation shall be performed as if it first produced an intermediate result
correct to infinite precision and with unbounded range, and then rounded.

Rounding depends on which rounding mode is used. IEEE-754 specifies five rounding
modes, three directed (rounding up, rounding down, and rounding towards zero) and two
round to nearest (with tie breaks to give an even significand or away from zero). Round to
nearest with tie break to even is the default rounding mode.

We briefly discuss floating-point addition and multiplication. Floating-point addition is
not associative even when restricted to normal numbers. Consider the two floating-point

218 Form Methods Syst Des (2014) 45:213–245

expressions below where the numbers are represented by 32 bits with a 24 bit mantissa (the
value 16777216 is 224).

(1+ 16777216)+−16777216= 0 1+ (16777216+−16777216)= 1

25 bits are required to represent the sum of 1 and 224, so rounding is applied and 224 is
returned. Thus, the expression on the left evaluates to 0. No rounding is required to represent
the result of evaluating subexpressions in the expression on the right, so the result is 1.

Floating-point multiplication is not associative either, as the example below demonstrates
with 32-bit floating-point numbers.

(3 ∗ 2049) ∗ 8191= 50350076 3 ∗ (2049 ∗ 8191)= 50350080

When the result is a normal number there are tight bounds on the difference between the
two orders of evaluation.

Moreover, floating-point addition does not distribute over multiplication because of
rounding effects, as the example below demonstrates.

2049 ∗ (8189+ 1)= 16781310 (2049 ∗ 8189)+ (2049 ∗ 1)= 16781308

In the absence of associativity and distributivity, several standard algebraic approaches to
reasoning about arithmetic expressions are inapplicable.

While few algebraic equivalences hold over floating-point numbers, ordering proper-
ties are generally preserved. All of the basic operations are piecewise monotonic (but not
strictly monotonic) over normal and subnormal numbers. This means that techniques based
on ordering, for example, interval abstractions, are particularly suitable for floating-point
numbers.

2.2 Floating-point logic

The previous sub-section demonstrated that floating-point arithmetic does not behave like
real arithmetic. It is important to develop specialised decision procedures for reasoning pre-
cisely about the results and properties of floating-point operations. The SMTLib theory of
floating-point arithmetic (FPA) is a language for expressing constraints in terms of floating-
point numbers, variables and operators. We refer to this theory as floating-point logic and
review it in this section.

Terms A term in FPA is constructed from floating-point variables, constants, standard arith-
metic operators and special operators. Examples of special operators include square roots
and combined multiply-accumulate operations used in signal processing. These operations
are parameterized by one of five rounding modes. The result of floating-point operations is
defined to match IEEE-754; the real result (computed with ‘infinite precision’) rounded to a
floating-point number using the chosen rounding mode.

Formulas in FPA are Boolean combinations of predicates over floating-point terms. In
addition to the standard equality predicate =, FPA offers a number of floating-point spe-
cific predicates including a special floating-point equality =F, and floating-point specific
arithmetic inequalities < and ≤. These comparisons have to handle all classes of numbers.
Normal and subnormal numbers are compared in the expected way. The two zeros, +0 and
−0 are regarded as equal (despite having distinct floating-point representations) as they cor-
respond to the same number. Infinities are respectively above (+∞) and below (−∞) all

Form Methods Syst Des (2014) 45:213–245 219

of the preceding classes. Finally NaN is regarded to be unordered and incomparable to all
floating point numbers, thus all comparisons involving NaN, including NaN =F NaN, are
false. Thus standard equality, =, is reflexive but floating-point equality, =F is not.

3 Background on lattices and abstraction

We now introduce abstract satisfaction, a lattice-theoretic framework for designing decision
procedures. Abstract satisfaction is based on abstract interpretation, which provides a similar
framework for reasoning about programs. An in-depth account of abstract satisfaction is
given in [31].

3.1 Review of abstract interpretation

Abstract interpretation is formulated in terms domains, which are lattices equipped with
monotone functions called transformers. The space of program behaviours is represented
by a concrete domain and the behaviour of a program, called the concrete semantics, is
characterised by a fixed-point expression. Checking properties of the concrete semantics is
usually undecidable. An abstract domain is a lattice with transformers that can represent
some but not all concrete behaviour. Checking properties of the abstract semantics is decid-
able but may be inaccurate.

Lattice and transformers A poset (C,) is a set C equipped with a partial order. A lattice
(C,	,
,�) is a partially ordered set with a greatest lower bound operator
 : C ×C→ C,
called join, and a least upper bound operator � : C × C → C, called meet. A lattice C is
complete if every subset X ⊆ C has a meet, denoted �X, and a join, denoted
X. The
powerset lattice (℘ (S),⊆) is the lattice of all subsets of S with the subset inclusion order.

A function f : C → A from a poset (C,) to (A,�) is monotone if the order x 	 y

implies the order f (x) � f (y) for all x and y in C. We use the term transformer for a
monotone function f : C→ C from a lattice to itself. A fixed point of a function f : S→ S

is an element satisfying the equality f (x) = x. On a poset, fixed points can be ordered.
Tarski’s fixed point theorem guarantees that transformers on complete lattices have least
and greatest fixed points. We denote the least fixed point of f by lfp(f) and the greatest
fixed point of f by gfp(f).

Approximation in abstract interpretation is formalised using pairs of functions. A Galois
connection between posets, written (C,) −−→←−−α

γ

(A,�), is a pair of functions α : C → A

and γ :A→ C satisfying the conditions below.

1. The functions α and γ are monotone.
2. For all x in C, x 	 γ (α(x)).
3. For all y in A, α(γ (y))� y.

We can intuitively understand these conditions by interpreting x 	 y to mean that x has
more information than y. For example, if x is a variable the bound x ∈ [1,3] is tighter than
x ∈ [0,5] and provides more information about the range of x. The monotonicity condition
above guarantees that order between elements is preserved. The second condition is about
approximation and guarantees that every element in C can be represented by an element in
A with some loss of information. The third condition is about precision and ensures that
repeatedly moving from A to C does not increase information loss.

220 Form Methods Syst Des (2014) 45:213–245

Abstract interpretation A domain (C,	,
,�, {f1, . . . , fk}) in abstract interpretation is
a lattice equipped with transformers. The number of transformers depends on the details
of the domain. A domain (A,�,�,�, {af 1, . . . ,af k}) is a sound abstraction of (C,	,

,�, {f1, . . . , fk}), if it contains a transformer af i for each fi and if the conditions below
hold.

1. There is a Galois connection (C,)−−→←−−α
γ

(A,�) between the lattices.
2. Every pair of transformers fi and af i satisfies fi(γ (x))	 γ (af i (x)) for all x in A.

The domain over C is called a concrete domain involving a concrete lattice and concrete
transformers. The domain over A is called an abstract domain involving an abstract lattice
and abstract transformers.

A powerset domain is one in which the lattice is of the form ℘(S). Assume the concrete
domain is a powerset domain. The abstract domain is overapproximating if x ⊆ γ (α(x)) for
all concrete elements x, and a transformer is overapproximating if fi(γ (y))⊆ γ (af i (y)) for
all abstract elements y. The abstract domain is underapproximating if x ⊇ γ (α(x)) for all
concrete elements x, and a transformer is underapproximating if γ (af i (y))⊆ fi(γ (y)) for
all abstract elements y.

Properties of programs are formalised using fixed points over transformers in a concrete
domain. These properties can be approximated by computing the corresponding fixed point
in the abstract domain. A key result of abstract interpretation is the fixed point transfer
theorem showing that fixed points in the abstract domain approximate fixed points in the
concrete domain.

3.2 Review of abstract satisfaction

We apply abstract interpretation to reason about formula satisfiability. The concrete domain
we consider is a set of structures over which formulae are interpreted. We consider two
different concrete semantics, one for deductive reasoning and one for abductive reasoning.
Computing the concrete deductive semantics amounts to computing all models, while com-
puting the abductive semantics amounts to computing all countermodels of a formula, with
both computations being at least as hard as deciding satisfiability.

We review abstract satisfaction, an abstract interpretation framework for deciding satisfi-
ability. The account that follows does not delve into details of specific logics. Let Forms be
a set of formulae and Structs be a set of structures. We assume the interpretation of a for-
mula over structures is specified in the standard manner by a relation |=, which is a subset
of Structs×Forms. A structure σ is a model of ϕ if it satisfies σ |= ϕ and is a countermodel
of ϕ otherwise. A formula ϕ is satisfiable if it has a model.

We now develop a framework for characterising satisfiability via lattices and transform-
ers. The concrete domain of structures, introduced below consists of all sets of structures.
We introduce two structure transformers, which map between sets of structures and encode
reasoning about models and countermodels of a formula.

Definition 1 The concrete domain of structures

(
℘(Structs),⊆,∩,∪, {modsϕ, confsϕ | ϕ ∈ Forms})

is a powerset lattice of structures containing a model transformer modsϕ and a conflict trans-
former confsϕ defined below.

Form Methods Syst Des (2014) 45:213–245 221

modsϕ =̂ S �→ {σ ∈ Structs | σ is in S and σ |= ϕ}
confsϕ =̂ S �→ {σ ∈ Structs | σ is in S or σ �|= ϕ}

The model transformer maps a set of structures S to the largest subset of S that contains
the same models as S. The conflict transformer (called the universal countermodel trans-
former in [28]) maps a set of structures S to the largest superset of S that contains the same
models as S. The model transformer can be viewed as refining an overapproximation of a
set of models while the conflict transformer can be viewed as generalising an underapprox-
imation of a set of countermodels. Observe also that modsϕ(Structs) is the set of all models
of a formula and confsϕ(∅) is the set of all countermodels of a formula.

We introduce a concrete semantics below, which characterises satisfiability by fixed
points over structure transformers. If a formula ϕ is unsatisfiable, it has no models, so
modsϕ(Structs) and the greatest fixed point of modsϕ are the empty set. Moreover, every
structure is a countermodel of ϕ, so confsϕ(∅) is equal to Structs and so is the least fixed
point of confsϕ .

Theorem 1 The following statements are equivalent for a formula ϕ.

1. The formula ϕ is unsatisfiable.
2. The greatest fixed point gfp(modsϕ) is the empty set.
3. The least fixed point lfp(confsϕ) contains all structures.

Our goal is to compute over- and underapproximations of the models and countermodels
of a formula. If an overapproximation of the set of models of a formula is the empty set,
the formula is unsatisfiable. If an underapproximation of the set of countermodels of a for-
mula contains all structures, the formula is unsatisfiable. Abstract interpretation provides a
framework for deriving these abstractions.

Consider an abstract domain
(
A,	,�,
, {amodsϕ,aconfsϕ |ϕ ∈ Forms})

that is a sound abstraction of the structures domain. If the domain is overapproximating,
the inclusion modsϕ(γ (x)) ⊆ γ (amodsϕ(x)) holds. If the domain is underapproximating,
the inclusion γ (aconfsϕ(x)) ⊆ confsϕ(γ (x)) holds. The theorem below shows that we can
iterate these transformers to obtain better approximations.

Theorem 2 Let amodsϕ be an overapproximation of modsϕ and aconfsϕ be an underap-
proximation of confsϕ .

1. If γ (gfp(amodsϕ))= ∅ then ϕ is unsatisfiable.
2. If γ (lfp(aconfsϕ))= Structs then ϕ is unsatisfiable.

Domains of floating-point numbers We introduce concrete and abstract domains of
floating-point numbers. Let F be the set of all floating-point numbers and (℘ (F),⊆) be
the set of subsets of floating-point numbers ordered by inclusion. Let Vars be the set of
variables occurring in a formula. A floating-point assignment is a function σ : Vars→ F.
Floating-point assignments are the structures over which formulae in floating-point logic
are interpreted. The concrete domain of floating-point logic structures

(
℘(Vars→ F),⊆,∩,∪, {modsϕ, confsϕ}

)

222 Form Methods Syst Des (2014) 45:213–245

is defined over the lattice of sets of floating-point assignments with ϕ ranging over floating-
point logic formulae.

We define the floating-point interval abstraction. Intervals approximate sets of numbers
by their closest enclosing range. In addition to the arithmetic ordering ≤, the IEEE-754

standard dictates a total order � over all floating-point values, including special values
such as NaN. The interval abstraction is defined with respect to this total order. The lat-
tice (I,	,�,
) of floating-point intervals is defined below. We write min� and max� for
the minimum and maximum with respect to the � order.

1. The set of lattice elements is I =̂ {[a, b]|a, b are in F and a � b} ∪ {⊥}.
2. The meet ⊥ � y = y � ⊥ = ⊥ for all y. The meet [a, b] � [c, d] is the interval
[max�(a, c),min�(b, d)] if max�(a, c)�min�(b, d) holds and is ⊥ otherwise.

3. The join ⊥
 y = y
⊥= y. The join [a, b]
 [c, d] is [min�(a, c),max�(b, d)].
We write � for the greatest element of I. Given a set of variables Vars, the interval domain
is the lattice

(
Vars→ I,	,�,
, {amodsϕ,aconfsϕ}

)

with the components defined as below. We defer the definition of the transformers to the
next two sections.

1. f 	 g for f,g : Vars→ I if f (x)	 g(x) for all variables x.
2. f � g is the function that maps a variable x to f (x) � g(x).
3. f
 g is the function that maps a variable x to f (x)
 g(x).

We denote an element of the form f : {x, y} → I as a tuple 〈x:f (x), y:f (y)〉 of variables
paired with intervals. We omit from the tuple variables that map to �. That is, if f (x) is
� and f (y) is not, we write 〈y:f (y)〉. We follow the standard lattice-theoretic convention
for overloading notation and write � for the greatest element of the interval domain. The
interval lattice is related to the lattice of floating-point structures by a Galois connection.

α : ℘(F)→ I α(∅) =̂ ⊥ α(S) =̂ [
min�(S),max�(S)

]
, for S �= ∅

γ : I→ ℘(F) γ (⊥) =̂ ∅ γ (f) =̂ {{
x �→ v | x ∈ Vars, v ∈ f (x)

}}

A standard fact in abstract interpretation is that the pair of functions defined above form a
Galois connection [20].

4 Lifting CDCL to abstractions

In this section we show how the CDCL algorithm can be generalised to abstract domains.
We call the result of this lifting Abstract CDCL (ACDCL). We focus on practical concerns.
For a more formal perspective, and for soundness and completeness proofs see [30]. We
first recall the propositional CDCL algorithm. Then we provide a detailed explanation of
how each step can be lifted to abstract lattices. In our descriptions of CDCL and ACDCL we
focus on a basic clause learning framework. Clause learning has been shown to be most
salient aspect of the CDCL algorithm with regards to efficiency [65]. Propositional CDCL

benefits from numerous further algorithmic and engineering advances [66], such as smart
variable selection heuristics for decisions, effective data structures like watched literals, and
algorithmic improvements such as restarts. Discussing all these improvements in a lattice
based setting is beyond the scope of the paper. Some, for example restarts, lift to ACDCL in

Form Methods Syst Des (2014) 45:213–245 223

a trivial manner while others, such as variable selection heuristics require domain-specific
adaptations.

4.1 Review of propositional CDCL

The CDCL algorithm is shown in Algorithm 1. CDCL consists of two interacting phases,
called model search and conflict analysis. Model search, shown in Algorithm 2, aims to find
satisfying assignments for the formula. This process may fail and encounter a conflicting
partial assignment, that is, a partial assignment that contains only countermodels. Conflict
analysis, presented in Algorithm 4, extracts a general reason which is used to derive a new
lemma over the search space in the form of a clause in a step called learning.

Input: set of clauses Φ

cdcl(Φ)
π : partial assignment;
tr: sequence of propositional assignments;
reasons: partial function from Props∪ {⊥} to Φ;

π ←∅; tr← ε; reasons←∅;

loop
if modelSearch(π , tr, reasons, Φ)= SAT then

return SAT;
end
c← analyse(tr, reasons);
Φ←Φ ∪ {c};
if not backjump(π , tr, c) then

return UNSAT;
end

Algorithm 1: The propositional CDCL algorithm

The fundamental datastructure used within the CDCL algorithm is the partial assignment,
which is a partial function from a set of logical propositions Props to the Boolean truth
constants B =̂ {t, f}. Partial assignments can be ordered by precision, and extended with a
special symbol ⊥, representing the empty set of models, to form the following lattice, as
shown in Fig. 1.

(PartAsg,	,�,
)

Partial assignments are an abstraction of the concrete lattice of propositional truth assign-
ments ℘(Props→ B). The abstraction and concretisation functions are given below.

(
℘(Props→ B),⊆)

−−→←−−α
γ

(PartAsg,)

α(∅) =̂ ⊥ γ (⊥) =̂ ∅
α(S) =̂ {

p �→ v | ∀σ ∈ S. σ (p)= v
}

γ (π) =̂ {
σ | ∀p �→ v ∈ π. σ (p)= v

}

224 Form Methods Syst Des (2014) 45:213–245

Fig. 1 The lattice of partial
assignments PartAsg

Partial assignments are refined by applying the unit rule exhaustively in a step called
Boolean Constraint Propagation (BCP). The unit rule is shown in Algorithm 3, and compares
the literals of the clause with the current partial assignment. Given a clause and a partial
assignment, the unit rule either returns a new variable assignment, a conflict element ⊥, or
the empty set, signifying that no new information could be deduced. We introduce some
notation used in Algorithm 3: A literal l is in positive phase if it is of the form p for some
proposition p; if it is of the form ¬p, it is in negative phase. The function phase returns the
phase of a literal, i.e., phase(l)= t if l is in positive phase, and phase(l)= f otherwise. For a
literal l, we denote its opposite phase literal by flip(l), and by var(l) the proposition p such
that l ∈ {¬p,p}.

From an abstract satisfaction perspective, a call to unit (C, ·) computes an overapprox-
imation of the model transformer modsC . In fact, refining a partial assignment with the unit
rule corresponds to the best abstract transformer of modsC available in the partial assign-
ments lattice [28]. We may alternately characterise the unit rule as a very natural abstract
interpretation of the formula in which logical disjunction is interpreted as a join over the
abstract lattice. For example for C = p ∨¬q ∨ r and π = {p �→ f, q �→ t}:

unit (C,π)= unit (p,π)
 unit (¬q,π)
 unit (r,π)

=⊥
⊥
 {r �→ t} = {r �→ t}
In addition to the partial assignment, the algorithm stores a trail tr, which is a sequence

of singleton partial assignments of the form 〈p:t〉 or 〈p:f〉. We denote concatenation of an
element to the trail by ·, and the ith element by tr[i], e.g., the first element of the trail is
tr[1]. The symbol ε denotes the empty trail. The trail stores the sequence of propositional
assignments made during algorithm execution in chronological order. A reasons array maps
a proposition p to a clause C if p was derived from C via the unit rule. If a conflict is
derived, the reasons array maps the conflict element ⊥ to the clause that was contradicted
by the partial assignment.

The CDCL algorithm interleaves model search and conflict analysis as depicted in Fig. 2.
Model search refines a partial assignment and extends the trail until either a satisfying as-
signment is found or a conflict is encountered. This is done in two ways: deduction with the
unit rule identifies necessary consequences of the formula under the current partial assign-
ments; decisions heuristically guess a value for unassigned propositions. If model search
finds a satisfying assignment then the algorithm returns SAT.

If a conflict is encountered, conflict analysis uses the FIRST-UIP algorithm [70] which ex-
tracts a general conflict reason from the specific partial assignment that originally caused the
conflict. The algorithm chooses as an initial generalisation R the elements of the conflict-
ing partial assignment that contradicted the clause in reasons[⊥]. It then steps backwards
through the trail, removes elements a of R, and replaces them with partial assignments that
are sufficient to deduce a. At the end of every iteration of the generalisation loop, the con-
tents of R are a sufficient reason for a conflict. This process continues until the first unique
implication point (UIP) is reached (see [70] for details). From the final conflict reason R, a

Form Methods Syst Des (2014) 45:213–245 225

Fig. 2 A schematic depiction of
the CDCL framework

clause is generated which expresses that R does not represent any models, and the result is
added to the original formula ϕ. In future model search and conflict analysis steps this new
learnt clause acts as a deduction shortcut.

After learning, backtracking resets the solver to an earlier state that is consistent with
the newly learnt clause, or if this fails, the algorithm returns UNSAT. The stopping criterion
during conflict analysis is coordinated with the backjumping step to ensure that the algorithm
automatically explores a new region of the search space after backjumping (and thus avoids
cycles). This mechanism is referred to as backjumping with asserting clauses [66, 67].

modelSearch(π , tr, reasons, Φ)
loop

repeat
// Boolean Constraint Propagation
foreach C ∈Φ do

q ← unit(C, π);
if q =⊥ then

reasons[⊥]← C;
return CONFLICT;

end
if q = {p �→ v} then

π ← π ∪ {p �→ v};
tr← tr · {p �→ v};
reasons[p]← C;

end
end

until π unchanged;
if π is a complete assignment then return SAT;
{p �→ v}← decide(π);
π ← π ∪ {p �→ v};
tr← tr · {p �→ v};
reasons[p]← nil;

Algorithm 2: Propositional model search

4.2 Complementable meet irreducibles

As demonstrated above, partial assignments are an abstract lattice and the unit rule is an
approximation of the mods transformer. We now identify specific properties of these objects
that are necessary in order to lift the algorithm to other lattices. In propositional CDCL,

226 Form Methods Syst Des (2014) 45:213–245

unit(C, π)
u← nil;
foreach l ∈ C do

p = var(l);
if π is undefined at p then

if u �= nil then return ∅;
u← l;

end
if phase(l)= π(p) then

return ∅;
end

end
if u= nil then return ⊥;
if u=¬p then

return {p �→ f};
else

return {p �→ t};
end

Algorithm 3: Propositional unit rule

analyse(tr, reasons)
R←{var(l) �→ ¬phase(l) | l ∈ reasons[⊥]};
for (i←|tr|;UIPreached(R, tr); i← i − 1) do

a← tr[i];
if a /∈R ∨ reasons[var(a)] = nil then continue;
R←R \ {a};
R←R ∪ {var(l) �→ ¬phase(l) | l ∈ reasons[var(a)]};

end
return {p | p �→ t ∈R} ∪ {¬p | p �→ f ∈R};

Algorithm 4: FIRST-UIP conflict analysis

singleton partial assignments of the form {p �→ t} or {p �→ f} have a special role in the
scope of the CDCL algorithm: (i) the unit rule returns singleton assignments as deduction
results, (ii) they are the decision elements, i.e., a decision computes a meet between the
current partial assignment and a singleton assignment, and (iii) they are stored in the trail
datastructure tr.

In lattice theoretic terms, singleton assignments have a special property in that they can-
not be expressed in terms of the meet over a set of other elements. A partial assignment
{p �→ t, q �→ f}, for example, may be represented as the meet {p �→ t} � {q �→ f}, whereas
the element {p �→ t} cannot be further decomposed in this way.

Form Methods Syst Des (2014) 45:213–245 227

Definition 2 (Meet irreducibles) A meet irreducible in a complete lattice L is an element
m ∈ L different from � such that the following implication is valid.

∀m1,m2 ∈ L m1 �m2 =m =⇒ (m=m1 ∨m=m2).

Definition 3 (Meet Decomposition) A meet decomposition of an element a ∈ A is a set
Q⊆A of meet irreducibles such that �Q= a.

In the case of partial assignments, meet irreducibles are exactly the singleton assign-
ments. An important property of these elements is that they have precise complements. For
example, a singleton assignment {p �→ t} represents the set of all propositional assignments
where p is mapped to t. The complement of this set may be represented by the singleton
assignment {p �→ f}. This property is not shared by arbitrary partial assignments, e.g., the
partial assignment {p �→ t, q �→ t} represents a set of models whose complement has no
precise representation in PartAsg.

Definition 4 (Complementable meet irreducibles) An abstract lattice A has complementable
meet irreducibles if every meet irreducible m ∈ A has a complementary meet irreducible
m ∈A such that γ (m) is the set complement of γ (m).

Example 1 The interval domain has complementable meet irreducibles. Consider the inter-
val element 〈x:[0.0,5.3], y:[−3.6,10.2]〉. We may decompose the above element into meet
irreducibles as follows.

〈x � 0.0〉 � 〈x � 5.3〉 � 〈y �−3.6〉 � 〈y � 10.2〉
Each of the elements of the decomposition above has a precise complement, e.g.,
〈x � 0.0〉 = 〈x ≺ 0.0〉.

Meet irreducibles are also returned by the unit rule. A CNF formula ϕ can then be viewed
as providing a set of sound approximations {unit (C, ·) | C ∈ ϕ} of the concrete model
transformer modsϕ . We provide a general concept which lifts the relevant properties of the
unit rule to lattices.

Definition 5 (Meet irreducible deduction) A meet-irreducible deduction transformer for a
formula ϕ over an abstract domain A is a sound approximation amodsϕ : A→ A of modsϕ

such that for any a ∈A, the element amodsϕ(a) is �, ⊥ or a meet irreducible.

Approximations of the model transformers are typically available in abstract domains
in the form of strongest post-condition operators for logical guards. The required decom-
position into meet irreducible deduction transformers can be achieved in practice by first
applying a monolithic abstract model transformer and then computing a meet decomposi-
tion.

Example 2 Let ded be the best abstract transformer of modsϕ over the intervals for
the formula ϕ = (−x = y), and let σ = 〈x:[5.0,10.0]〉. We have that ded(σ) = σ �
〈y : [−10.0,−5.0]〉. We can decompose ded into a set of complementable rules Ded =
{dedl

x ,dedu
x,dedl

y ,dedu
y} s.t. �Ded = ded, and each of the elements of Ded infers a lower

or an upper bound on x or y: dedl
x(σ)= 〈x � 5.0〉, dedu

x(σ)= 〈x � 10.0〉, dedl
y(σ)= 〈y �

−10.0〉 and dedu
y(σ)= 〈y �−5.0〉.

228 Form Methods Syst Des (2014) 45:213–245

Table 1 Propositional concepts and their abstract-satisfaction counterparts

Propositional CDCL Abstract interpretation

Partial assignments Abstract lattice with complementable meet-irreducibles

Singleton assignments Meet irreducibles

Unit rule Meet irreducible deduction transformer

CNF Set of meet irreducible deduction transformers

Learnt clause Learnt transformer

4.3 Abstract CDCL

We now show how CDCL may be lifted to abstract domains that have (i) complementable
meet irreducibles (ii) an approximation of the concrete model transformer modsϕ expressed
in terms of a set of meet irreducible deduction transformers. We reinterpret the proposi-
tional algorithm as a lattice-based procedure using the correspondences listed in Table 1 to
translate between the world of propositions and partial assignments and that of lattices and
abstraction.

The resulting ACDCL framework is shown in Algorithm 5. Partial assignments are re-
placed by an element of the abstract domain, and the set of input clauses is replaced by a set
of meet-irreducible deduction transformers. The reasons array maps elements of the trail to
the transformers that were used to derive them.

Input: Set F of meet irreducible deduction transformers for ϕ over domain A.
acdcl(F)

a: element of A;
tr: sequence of meet irreducibles;
reasons: partial function from trail indices and ⊥ to F ;

a←�; tr← ε; reasons←∅;

loop
if aModelSearch(a, tr, reasons, F)= SAT then

return SAT;
end
f ← aAnalyse(tr, reasons);
F ← F ∪ {f };
if not backjump(a, tr, f) then

return UNSAT;
end

Algorithm 5: The ACDCL algorithm

Abstract model search is shown in Algorithm 6. In place of BCP, a greatest fixed point
over the transformers in F is computed. Narrowing [20] may be used to enforce convergence
of the fixed point computation. A simple way to implement narrowing is simply to end the

Form Methods Syst Des (2014) 45:213–245 229

loop early after a fixed number of iterations. Whenever a meet irreducible is inferred, it is
put on the trail and the transformer that was used to infer it is stored as its reason.

aModelSearch(a, tr, reasons, F)
loop

repeat
// Greatest fixed point
foreach f ∈ F do

q ← f (a);
if q =⊥ then

reasons[⊥]← f ;
return CONFLICT;

end
if q �= � then

a← a � q;
tr← tr · q;
reasons[|tr|]← f ;

end
end

until a unchanged;
if a precisely represents a set of models then return SAT;
d ← adecide(a);
if a 	 d then return UNKNOWN;
a← a � d ;
tr← tr · d ;
reasons[|tr|]← nil;

Algorithm 6: Abstract model search

Once a fixed point is reached, the result is checked to see if it precisely represents a set
of models. Such a check is typically simple to implement. (In terms of abstract interpre-
tation this step corresponds to a γ -completeness check, see [30] for details.) For example,
in the propositional case one may check whether the current partial assignment assigns all
variables, or alternatively, whether it satisfies at least one literal in each clause.

If the result of fixed point computation is neither a conflict nor a witness of satisfiability,
then the abstract element is refined using an abstract decision by calling adecide (a) . The
resulting decision element d must be a meet irreducible that may be heuristically chosen. If
the decision element fails to refine the current element, then we return an unknown result,
since we have been unable to establish whether the instance is SAT or UNSAT.

5 Learning in abstract lattices

We now present our lifting of propositional conflict analysis to abstract lattices. In CDCL, the
trail implicitly encodes a graph structure. The edge information is contained in the clauses

230 Form Methods Syst Des (2014) 45:213–245

associated with each element via the reasons array. The FIRST-UIP algorithm [70] shown
in Algorithm 4 computes a set of nodes of this graph, called a cut, that suffices to produce
a conflict. Naively lifting the algorithm is insufficient to learn good reasons in the interval
abstraction as the following example will illustrate.

Example 3 Consider the FPA formula z= y ∧ x = y · z∧ x < 0 and the interval assignment
σ = 〈z�−5.0〉. Starting from σ , we can make the following deductions.

〈z�−5.0〉
〈y �−5.0〉

〈x � 25.0〉 ⊥

Arrows indicate sufficient conditions for deduction, e.g., 〈x � 25.0〉 can be deduced from
the conjunction of 〈z�−5.0〉 and 〈y �−5.0〉. The last deduction 〈x � 25.0〉 conflicts with
the constraint x < 0. A classic conflict cutting algorithm may analyse the above graph to
conclude that π = 〈z � −5.0〉 is the reason for the conflict. It is easy to see though that
there is a much more general reason: The conflict can be deduced in this way whenever z is
negative.

5.1 Abductive reasoning and heuristic choice

A central insight is that conflict analysis performs a form of abductive reasoning: in each
iteration of the conflict analysis loop, a singleton assignment a in the conflict reason is
replaced by a partial assignment that is sufficient to infer a. In terms of abstract satisfaction,
abduction corresponds to underapproximation of the conflict transformer [28, 30].

Example 4 Consider a clause p∨ q and a partial assignment {q �→ t}. In following concrete
application of confsp∨q , we write (p, q �→ v1, v2) to denote the function that maps p to v1

and q to v2.

confsp∨q

(
γ
({q �→ t}))= {

(p, q �→ f, f), (p, q �→ f, t), (p, q �→ t, t)
}

Above, confsp∨q returns the set of propositional structures that dissatisfy the formula or are
approximated by {q �→ t}. Informally, confsp∨q(γ ({q �→ t})) computes the most general set
of circumstances under which the formula implies the truth of q �→ t.

A SAT solver may decide during conflict analysis to replace the partial assignment
{q �→ t} with {p �→ f} in the conflict reason. This may be modelled as application of a trans-
former over partial assignments:

aconfsp∨q

({q �→ t})= {p �→ f}
Note that aconfsp∨q underapproximates confsϕ , since the result of applying it does not rep-
resent the case (p, q �→ t, t) that is covered by the concrete computation.

5.1.1 Abductive generalisation

Propositional conflict analysis with FIRST-UIP uses only propositional abductive reasoning.
In order to adapt the algorithm to perform domain-specific conflict analysis the use of a
separate abduction transformer is necessary. The result of abduction should generalise the
original conflict, to avoid its reexploration, and therefore the possibility of cycles. We define
an abductive generalisation transformer that has this property.

Form Methods Syst Des (2014) 45:213–245 231

Definition 6 An abductive generalisation transformer for a formula ϕ over an overapprox-
imating abstract domain A is a function aconfsϕ : A× A→ A, such that the properties (i)
and (ii) below hold for all r, a ∈A where modsϕ(γ (r))⊆ γ (a).

(i) aconfsϕ(r, a) r

(i) γ (aconfsϕ(r, a))⊆ confsϕ(γ (a))

The definition above requires some explanation. In conditions (i) and (ii) the element
r represents a semantically expressed reason for a. More formally, we require that every
model of ϕ represented by r is also represented by a. The result of calling aconfsϕ(r, a) is
then an element that generalises r and is still a reason for a.

Example 5 Consider the formula x =−y. Then 〈x � 0.0〉 is a sufficient reason to determine
that 〈y � 23.5〉 using an appropriate deduction transformer. We use abductive generalisation
to find a more general reason:

aconfsx=−y

(〈x � 0.0〉, 〈y � 23.5〉)= 〈x �−23.5〉

In some domains, it may be difficult to find good abductive generalisation transformers.
Note that the function (r, a) �→ r (that is, no generalisation) is always a sound choice and
is sufficient for implementing ACDCL. The use of generalisation is therefore an optional
opportunity to increase performance rather than a strict requirement.

The better the results of generalisation, the more powerful the results of learning. Good
generalisation can be expensive though; while powerful abductive generalisation techniques
may reduce the overall number of iterations of the ACDCL algorithm, the runtime required
for each individual iteration may increase. As we shall see in Sect. 6, it is important to strike
a careful balance to maintain overall performance.

5.1.2 Heuristic choice

Galois-connection based abstract domains have a property called best abstraction: In an
overapproximate abstraction, concrete elements, have unique, maximally precise overap-
proximate representations. Similarly, every concrete transformer is overapproximated by a
unique, maximally precise abstract transformer called the best abstract transformer. The
abductive generalisation transformer does not have this property, since it is an underapprox-
imate transformer over an overapproximate abstraction. In practice, this means that there
may be multiple incomparable choices when attempting to generalise an element.

Example 6 Consider the formula ϕ given by x = y + z, and the interval elements a = 〈x �
10.0〉 and r = 〈y � 0.0, z � 0.0〉. The element r is a sufficient reason for a, and we may
apply abductive generalisation in multiple, mutually incomparable ways.

aconfs1
ϕ(r, a)= 〈y � 10.0, z� 0.0〉 aconfs2

ϕ(r, a)= 〈y � 0.0, z� 10.0〉

Both of the abductive generalisation transformers above are sound, but they return incom-
parable results since neither reason is weaker or stronger than the other one. Moreover, the
join of the two reasons 〈y � 10.0, z � 10.0〉 is not a reason for a itself, because it allows,
for example, that x = 20.0.

232 Form Methods Syst Des (2014) 45:213–245

In propositional conflict analysis, the lack of best conflict analysis is reflected in the
cut heuristic used to extract the conflict reason. Different heuristics may produce distinct,
incomparable conflict reasons.

In ACDCL, heuristic choice between reasons plays a role during abductive generalisation.
As indicated in the example above, multiple reasons may be available. Abductive general-
isation may choose among them based on heuristic considerations such as the state of the
solver or the history of the search. We will discuss an example of an abductive generalisation
heuristic in Sect. 6.

5.2 Abstract FirstUIP

aAnalyse(tr, reasons)
m←{1 �→ �, . . . , |tr| �→�};
r ← aconfsreasons[⊥]

ϕ (�tr,⊥);
updateMarking(m, tr, |tr|, r);
for (i←|tr|;UIPreached(m, tr); i← i − 1) do

a←m[i];
if a =�∨ reasons[i] = nil then continue;
m[i]←�;
r ← aconfsreasons[i]

ϕ (�1≤j<i tr[j], a);
updateMarking(m, tr, r);

end
R←{m[i] |m[i] �= �};
return UnitR ;

updateMarking(m, tr, r)
Q← unique, subset-minimal meet decomposition of r ;
foreach q ∈Q do

j ← smallest index i s.t.tr[i] 	 q;
m[j]←m[j] � q;

end

Algorithm 7: Abstract FIRST-UIP conflict analysis

We present our lifting of FIRST-UIP to lattices in Algorithm 7. It takes as input a trail tr,
a reason array (which is required to contain a mapping for ⊥). Furthermore, we assume that
for each abstract model transformer f , we have a corresponding abductive generalisation
aconfsf

ϕ . We also assume that all abstract elements (except⊥) have a unique, subset-minimal
meet decomposition. The main data structure is a marking m which maps trail indices to
meet irreducible elements or �. This is similar to implementations of propositional conflict
analysis: There, propositions receive binary markings to indicate that they are necessary
to derive the conflict. The abstract markings we use instead store for each trail element
a generalisation, such that a conflict may still be derived. Initially, m maps all elements
to �. The procedure steps backwards through the trail, and replaces trail markings using

Form Methods Syst Des (2014) 45:213–245 233

Fig. 3 Markings in abstract
FIRST-UIP

reasons generated from abductive generalisation. The results of the generalisation step are
decomposed into meet irreducibles and added to the marking.

At the end, a transformer UnitR is returned from the final conflict reason R. We will
discuss the construction of this transformer in the next section.

An example execution of the algorithm is illustrated in Fig. 3. There, an implication graph
and corresponding trail is shown which records consequences of a decision x � 0.0. Similar
to propositional CDCL, no explicit graph is constructed. Instead, the algorithm implicitly
explores the graph via markings, which overapproximate the trail pointwise and encode
sufficient conditions for unsatisfiability. First the algorithm determines that⊥ can be ensured
whenever z� 6.0 and y � 4.0 are the case. In the first iteration, it finds that y � 4.0 can be
dropped from the reason if x � 2.0 holds in addition to z� 6.0.

It is an invariant during the run of the procedure that the greatest lower bound over all
markings is sufficient to ensure a conflict. Hence the procedure could essentially terminate
during any iteration and yield a sound global abduction result. We use the usual FIRST-UIP

termination criterion and return once the number of open paths reaches 1. This number is
defined as the number of indices j greater or equal to the index of the most recent decision,
such that m[j] �= �.

5.3 Abstract clause learning

Propositional solvers learn new clauses that express the negation of the conflict analysis
result. The new clauses open up further possibilities for deduction using the unit rule. We
model learning directly as learning of a new deduction rule, rather than learning a formula
in the logic. A lattice-theoretic generalisation of the unit rule is given below. Note that we
define the rule directly in terms of a set of conflicting meet irreducibles, rather than their
negation.

Definition 7 For an abstraction A of ℘(Structs) with complementable meet irreducibles, let
R ⊆ A be a set of meet irreducibles such that �R represents no models of ϕ. The abstract
unit rule UnitR :A→A is defined as follows.

UnitR(a) =̂

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⊥ if a 	�R

r otherwise, if r ∈R and

∀r ′ ∈R \ {r}. a 	 r ′

� otherwise

234 Form Methods Syst Des (2014) 45:213–245

Fig. 4 FP-ACDCL solver architecture

Example 7 Let c = 〈x:[0.0,10.0], y � 3.2〉 be a conflicting element of ϕ with decom-
position R = {〈x � 0.0〉, 〈x � 10.0〉, 〈y � 3.2〉}. Let a = 〈x:[3.0,4.0], y:[1.0,1.0]〉, then
Unitc(a) = ⊥, since a 	 c. Let a′ = 〈x:[3.0,4.0]〉, then Unitc(a′) = 〈y " 3.2〉, since
a′ 	 〈x � 0.0〉 and a′ 	 〈x � 10.0〉.

The unit rule UnitR for a conflicting set of meet irreducibles R soundly overapproximates
the model transformer [30]. Furthermore, it is a meet irreducible deduction transformer, so
we may add it to the set of transformers F used during model search.

6 Implementation and experiments

We have implemented our approach over floating-point intervals inside the MATHSAT5 SMT

solver [16]. We call our prototype tool FP-ACDCL. The implementation uses the MATHSAT5
infrastructure, but is independent of its DPLL(T) framework (although it may be used as
a theory solver inside DPLL(T) if required). The implementation provides a generic, ab-
stract CDCL framework with FIRST-UIP learning. The overall architecture is shown in Fig. 4.
An instantiation requires abstraction-specific implementations of the components described
earlier, including deduction, decision making and abduction with heuristic choice. We first
elaborate on those aspects of the implementation and then report experimental results.

6.1 Implementation details

6.1.1 Deductions

We implement deduction using standard Interval Constraint Propagation (ICP) techniques
for floating-point numbers, defined e.g., in [8, 54]. The implementation operates on CNF

formulae over floating-point predicates.
Propagation is performed using an occurrence-list approach, which associates with each

variable a list of the FPA clauses in which the variable occurs. Learnt unit transformers are
stored as vectors of meet irreducible elements and are propagated in a similar way. When
a deduction is made, we scan the list of affected clauses to check for new deductions to be
added to the trail. This is done by applying ICP projection functions to the floating-point
predicates in a way that combines purely propositional with theory-specific reasoning. A
predicate is conflicting if some variable is assigned the empty interval during ICP. If all
predicates of a clause are contradicting, then we have found a conflict with the current
interval assignment and ded returns ⊥. If all but one predicate in a clause are conflicting,

Form Methods Syst Des (2014) 45:213–245 235

then the result of applying ICP to the remaining predicate is the deduction result. In this case,
ded returns a list containing one meet irreducible 〈x � b〉 (or 〈x � b〉) for each new bound
inferred.

6.1.2 Decisions

FP-ACDCL performs decisions by adding to the trail one meet irreducible element 〈x � b〉
or 〈x � b〉 that does not contradict the previous value of x. Clearly, there are many possible
choices for (i) selecting a variable x, (ii) selecting a bound b, and (iii) choosing between
〈x � b〉 and 〈x � b〉.

In propositional CDCL, each variable can be assigned at most once. In our lifting, a vari-
able can be assigned multiple times with increasingly precise bounds. We have found some
level of fairness to be critical for performance. Decisions should be balanced across different
variables and upper and lower bounds. A strategy that proceeds in a “depth-first” manner,
in which the same variable is refined using decisions until it has a singleton value, shows
inferior performance compared to a “breadth-first” exploration, in which intervals of all the
variables are restricted uniformly. We interpret this finding as indication that the value of
abstraction lies in the fact that the search can be guided effectively using general, high-level
reasoning, before considering very specific cases.

FP-ACDCL currently performs decisions as follows: (i) variables are statically ordered,
and the selection on which variable x to branch is cyclic across this order; (ii) the bound
b is chosen to be an approximation of the arithmetic average between the current bounds
l and u on x; note that the arithmetic average is different from the median, since floating-
point values are non-uniformly distributed across the reals; (iii) the choice between 〈x � b〉
and 〈x � b〉 is random. Considering the advances in heuristics for propositional SAT, there is
likely a lot of room for enhancing this. In particular, the integration of fairness considerations
with activity-based heuristics typically used in modern CDCL solvers could lead to similar
performance improvements. This is part of ongoing and future work.

6.1.3 Generalised explanations for conflict analysis

In abduction, a trade-off must be made between finding reasons quickly and finding very
general reasons. We perform abduction that relaxes bounds iteratively. As mentioned earlier,
there may be many incomparable relaxations. Our experiments suggest that the way in which
bounds are relaxed is extremely important for performance. Fairness considerations similar
to those mentioned for the decision heuristic need to be taken into account. However, there
is an additional, important criterion. Learnt unit rules are used to drive backjumping. It is
therefore preferable to learn deduction rules that allow for backjumping higher in the trail.
This will lead to propagations that are affected by a smaller number of decisions, and thus
will hold for a larger portion of the search space.

Our choice heuristic, called trail-guided choice, is abstraction-independent, and is both
fair and aims to increase backjump potential. In the first step, we remove all bounds over
variables from the initial reason q which are irrelevant to the deduction. Then we step back-
wards through the trail and attempt to weaken the current element q using trail elements.
The process is illustrated below.

. . . x � 5.2 . . . y � 1.3 . . . y � 7.2 x � 0.4

Step 1: Attempt weakening x � 0.4 to x � 5.2

Step 2: Attempt weakening y � 7.2 to y � 1.3

236 Form Methods Syst Des (2014) 45:213–245

When an element trj is encountered such that trj is a bound on a variable x that is used
in q (that is, q 	 trj), the first thing we do is to attempt to weaken q by replacing the bound
trj with the most recent trail element more general than trj . If no such element exists, we
replace trj with the trivial bound 〈x �min�(F)〉. We check whether the weakened q is still
sufficiently strong to deduce d . If so, we set q as the candidate generalisation and continue
stepping backwards through the trail by processing the next element trj−1. If not, we undo
the weakening, and try to consider intermediate cases, that is elements weaker than q but
stronger than trj , but only performing a bounded number of attempts on the current variable
x. For example, if q contains x ∈ [l : u] and trj is 〈x � c〉 with u � c, we try setting the
interval for x to [l : u+ (c − u)/2] and so on, until either no further generalisation on the
upper bound of x is possible, or we reach the limit on the number of attempts. The algorithm
then terminates once no further generalisations are possible.

Since we step backwards in order of deduction, we heuristically increase the potential for
backjumps: the procedure never weakens a bound that was introduced early during model
search at the expense of having to uphold a bound that is ensured only at a deep level of the
search.

We have experimented with stronger but computationally more expensive generalisation
techniques such as finding maximal bounds for deductions by search over floating-point
values, as well as with different limits on the number of generalisation attempts on a single
bound. Our experiments, reported in Sect. 6.2.2, indicate that the cheaper technique de-
scribed above is more effective overall, and that using a small cutoff value gives the best
trade-off between cost and quality of the generalisations. However, we believe that more so-
phisticated strategies might provide further benefits. In particular, we see two main avenues
for improvement: first, for many deductions it is possible to implement good or optimal
abduction transformers effectively without search. Second, we expect that dynamic heuris-
tics that take into account statistical information may guide conflict analysis towards useful
clauses.

6.2 Experimental evaluation

We have evaluated our prototype FP-ACDCL tool over a set of 213 benchmark formulas, both
satisfiable and unsatisfiable. The formulas have been generated from problems that check

1. ranges on numerical variables and expressions,
2. error bounds on numerical computations using different orders of evaluation of subex-

pressions, and
3. feasibility of systems of inequalities over bounded floating-point variables.

The first two sets originate from verification problems on C programs performing nu-
merical computations, whereas the instances in the third set are randomly generated.
Our benchmarks and the FP-ACDCL tool are available for reproducing the experiments at
http://es.fbk.eu/people/griggio/papers/FMSD-fmcad12.tar.bz2. All results have been obtained
on an Intel Xeon machine with 2.6 GHz and 16 GB of memory running Linux, with a time
limit of 1200 seconds.

6.2.1 Comparison with bit-vector encodings

In the first set of experiments, we have compared FP-ACDCL with the current state-of-the-
art procedures for floating-point arithmetic based on encoding into bit-vectors. For this, we
have compared against all the SMT solvers supporting FPA that we were aware of, namely

http://es.fbk.eu/people/griggio/papers/FMSD-fmcad12.tar.bz2

Form Methods Syst Des (2014) 45:213–245 237

Fig. 5 Comparison of
FP-ACDCL against various SMT
solvers using bit-vector encoding
of floating-point operations

Fig. 6 Detailed comparison of
FP-ACDCL against MATHSAT5
using bit-vector encoding of
floating-point operations. Circles
indicate unsatisfiable instances,
triangles satisfiable ones. Points
on the borders indicate timeouts
(1200 s)

Z3 [26], SONOLAR [50] and MATHSAT5 [16]. All three solvers use a bit-vector encoding of
floating-point arithmetic which is then solved via reduction to SAT(bit-blasting). For each
tool, we used the default options. The results of this comparison are reported in Figs. 5 and 6.
The plot in Fig. 5 shows the number of succesfully solved instances for each system (on the
Y axis) and the total time needed for solving them (on the X axis). From it, we can see that
FP-ACDCL clearly outperforms Z3 both in number of instances and in total execution time,
and that FP-ACDCL solves one instance more than SONOLAR, but it is overall significantly
faster. Compared to MATHSAT5, the results are mixed: as can be seen in the scatter plot of
Fig. 6, on one hand FP-ACDCL is much faster than MATHSAT5 in the majority of instances
that both tools can solve, but on the other hand MATHSAT5 seems to still have an advantage
in terms of scalability, solving overall 6 more instances than FP-ACDCL. More generally,
there are some instances that turn out to be relatively easy for solvers based on bit-blasting,
but cannot be solved by FP-ACDCL. This is not surprising, since there are simple instances
that are not amenable to analysis with ICP, even with the addition of decision-making and

238 Form Methods Syst Des (2014) 45:213–245

Fig. 7 Effects of generalisations
in conflict analysis. Circles
indicate unsatisfiable instances,
triangles satisfiable ones. Points
on the borders indicate timeouts
(1200 s)

Fig. 8 Comparison of different
strategies for conflict
generalisation in FP-ACDCL

learning.1 To handle such cases, our framework can be instantiated with abstract domains or
combinations of domains [21] that are better suited to the problems under analysis. More-
over, bit-blasting approaches can take advantage of highly efficient SAT solvers, which are
the result of years of development, optimizations and fine tuning, whereas our FP-ACDCL

tool should still be considered a prototype.

1A simple example of this is the formula x = y ∧ x �= y, which requires an abstraction that can express
relationships between variables. Intervals are insufficient to efficiently solve this problem.

Form Methods Syst Des (2014) 45:213–245 239

Fig. 9 Effects of fairness in
branching heuristic. Circles
indicate unsatisfiable instances,
triangles satisfiable ones. Points
on the borders indicate timeouts
(1200 s)

6.2.2 Impact of optimizations

The second set of experiments is aimed at evaluating the impact of our variable selection
and generalisation techniques. In order to evaluate our novel generalisation technique, we
have first run FP-ACDCL with generalisation of deductions turned off, and compared it with
the default FP-ACDCL. Essentially, FP-ACDCL without generalisation corresponds to a naive
lifting of the conflict analysis algorithm. The results are summarised in Fig. 7. From the
plot, we can clearly see that generalisation is crucial for the performance of FP-ACDCL:
without it, the tool times out in 42 more cases, whereas there is no instance that can be
solved only without generalisation. However, there are a number of instances for which
performance degrades when using generalisations, sometimes significantly. This can be ex-
plained by observing that (i) generalisations come at a runtime cost, which can sometimes
induce a non-negligible overhead; (ii) the performance degradation occurs on satisfiable in-
stances (shown in a lighter colour in the plots), for which it is known that the behaviour of
CDCL-based approaches is typically unstable (even in the propositional case).

Subsequently, we have performed a more in-depth evaluation of the effects of using
different generalisation strategies. In particular, we have compared different versions of
FP-ACDCL with different cutoff values for the number of generalisation attempts in the
trail-guided procedure described in Sect. 6.1.3. The results are collected in Fig. 8. In the
figure, ‘genX’ stands for a configuration with a cutoff value of ‘X’ generalisation attempts,
‘nogen’ is the configuration where no generalisation is performed, and ‘gen inf’ in the one
which does not impose any bound on the number of generalisation attempts. From the plot,
we can see that the strategies that impose a limit to the number of generalisation attempts
significantly outperform both the unconstrained strategy and the naive one that uses no gen-
eralisation at all. The results also indicate that there is a trade-off between the quality of
the generalisation and the cost of performing it, with a ‘sweet spot’ (for our benchmarks)
reached using a cutoff value of 100 attempts per step.

Finally, we have performed a further set of experiments in order to evaluate the impact
of fairness in the variable selection herustics for branching and conflict generalisation. We
have compared the default version of FP-ACDCL (which tries to ensure fairness as described
in Sect. 6.1.2 and Sect. 6.1.3) with a version in which variables are selected randomly. The
results, shown in Fig. 9, demonstrate that fairness is a very important factor for the per-
formance of FP-ACDCL: while there are instances which are solved more efficiently when

240 Form Methods Syst Des (2014) 45:213–245

selecting variables randomly,2 overall the use of fair selection strategies allows FP-ACDCL

to solve 23 more instances.

7 A survey of related work

The work presented in this paper may be understood in the context of efforts to unify SAT

techniques and abstract interpretation: the work in [29] describes an abstract interpreter
for programs that uses SAT-style conflict-driven learning; [28] and [9] show, respectively,
that DPLL-based SAT solvers and DPLL(T)-based SMT solvers are abstract interpreters; the
ACDCL algorithm [30] is presented in ACDCL. In [10], we give an interpolation procedure
for some instances of ACDCL, including FP-ACDCL.

We now separately survey work in three related branches of research: (1) the analysis
of floating-point computations, (2) lifting existing decision procedure architectures to richer
problem domains and (3) automatic and intelligent precision refinement of abstract analyses.

7.1 Reasoning about floating-point numbers

This section briefly surveys work in interactive theorem proving, abstract interpretation and
decision procedures that target floating-point problems. For a discussion of the special diffi-
culties that arise in this area, see [59].

7.1.1 Theorem proving

Various floating-point axiomatisations and libraries for interactive theorem provers exist
[24, 40, 53, 57]. Theorem provers have been applied extensively to proving properties over
floating-point algorithms or hardware [1, 41–44, 49, 60, 64]. While theorem proving ap-
proaches have the potential to be sound and complete, they require substantial manual work,
although sophisticated (but incomplete) strategies exist to automate substeps of the proof,
e.g., [2]. A preliminary attempt to integrate such techniques with SMT solvers has recently
been proposed in [18].

7.1.2 Abstract interpretation

Analysis of floating-point computations has also been extensively studied in abstract inter-
pretation. An approach to specifying floating-point properties over programs was proposed
in [7]. A number of general purpose abstract domains have been constructed for the analysis
of floating-point programs [12–15, 46, 56]. In addition, specialised approaches exist which
target specific problem domains such as digital filters [32, 58]. The approaches discussed so
far mainly aim at establishing the result of a floating-point computation. An orthogonal line
of research is to analyse the deviation of a floating-point computation from its real counter-
part by studying the propagation of rounding errors [35, 37]. Case studies for this approach
are given in [27, 38]. Abstract interpretation techniques provide a soundness guarantee, but
may yield imprecise results.

2As can be seen from Fig. 9, this happens especially on satisfiable formulas, for which the stability consider-
ations done above when evaluating the benefits of generalisation still apply.

Form Methods Syst Des (2014) 45:213–245 241

7.1.3 Decision procedures

In the area of decision procedures, study of floating-point problems is relatively scarce.
Work in constraint programming [55] shows how approximation with real numbers can be
used to soundly restrict the scope of floating-point values. In [8], a symbolic execution ap-
proach for floating-point problems is presented, which combines interval propagation with
explicit search for satisfiable floating-point assignments. An SMTLIB theory of FPA was
presented in [63]. Recent decision procedures for floating-point logic are based on proposi-
tional encodings of floating-point constraints. Examples of this approach are implemented
in MATHSAT5 [16], CBMC [17] and Sonolar [45]. A difficulty of this approach is that even
simple floating-point formulas can have extremely large propositional encodings, which can
be hard for current SAT solvers. This problem is addressed in [11], which uses a combina-
tion of over- and underapproximate propositional abstractions in order to keep the size of
the search space as small as possible.

7.2 Lifting decision procedures

The practical success of CDCL solvers has given rise to various attempts to lift the algorith-
mic core of CDCL to new problem domains. This idea is extensively studied in the field of
satisfiability modulo theories. The most popular such lifting is the DPLL(T) framework [34],
which separates theory-specific reasoning from Boolean reasoning over the structure of the
formula. Typically a propositional CDCL solver is used to reason about the Boolean struc-
ture while an ad-hoc procedure is used for theory reasoning. The DPLL(T) framework can
suffer from some difficulties that arise from this separation. To alleviate these problems, ap-
proaches such as theory decisions on demand [4] and theory-based decision heuristics [36]
have been proposed.

Our work is co-located in the context of natural-domain SMT [19], which aims to lift
steps of the CDCL algorithm to operate directly over the theory. Notable examples of such
approaches have been presented for equality logic with uninterpreted functions [3], linear
real arithmetic and difference logic [19, 51], linear integer arithmetic [47], nonlinear integer
arithmetic [33], and nonlinear real arithmetic [48]. The work in [33] is most similar to ours
since it also operates over intervals and uses an implication graph construction.

We follow a slightly different approach to generalisation based on abstract interpretation.
The work in [28] shows that SAT solvers can naturally be considered as abstract interpreters
for logical formulas. Generalisations can then be obtained by using different abstract do-
mains. Our work is an application of this insight. A similar line of research was indepen-
dently undertaken in [68, 69], which presents an abstract-interpretation based generalisation
of Stålmarck’s method and an application to computation of abstract transformers.

7.3 Refining abstract analyses

A number of program analyses exist that use decision procedures or decision procedure
architectures to refine a base analysis. A lifting of CDCL to program analyses over abstract
domains is given in [29]. In [52], a decision-procedure based software model checker is
presented that imitates the architecture of a CDCL solver. A lifting of DPLL(T) to refinement
of abstract analyses is presented in [39] which combines a CDCL solver with an abstract
interpreter.

Modern CDCL solvers can be viewed as refinements of the original DPLL algorithm [25],
which is based on case-analysis. Case analysis has been studied in the abstract interpretation

242 Form Methods Syst Des (2014) 45:213–245

literature. The formal basis is given by cardinal power domains, already discussed in [21],
in which a base domain is refined with a lattice of cases. The framework of trace partition-
ing [62] describes a systematic refinement framework for programs based on case analysis.
The DPLL algorithm can be viewed as a special instance of dynamic trace partitioning ap-
plied to the analysis of logical formulas.

8 Conclusions and future work

We have presented a decision procedure for the theory of floating-point arithmetic based on
a strict lifting of the conflict analysis algorithm used in modern CDCL solvers to abstract
domains. We have shown that, for a certain class of formulas, this approach significantly
outperforms current complete solvers based on bit-vector encodings. Both our formalism
and our implementation are modular and separate the CDCL algorithm from the details of
the underlying abstraction. Furthermore, the overall architecture is not tied to analysing
properties over floating-point formulas.

We are interested in a number of avenues of future research. One of these is a comparison
of abstract CDCL and DPLL(T)-based architectures, and investigating possible integrations.
Another avenue of research is instantiating ACDCL with richer abstractions (e.g., octagons).
Combination and refinements of abstractions are well studied in the abstract interpretation
literature [21]. Recent work [22] has shown that Nelson-Oppen theory combination is an in-
stance of a product construction over abstract domains. We hope to apply this work to obtain
effective theory combination within ACDCL. In addition, product constructions can be used
to enhance the reasoning capabilities within a single theory, e.g., by fusing interval-based
reasoning over floating-point numbers and propositional reasoning about the corresponding
bit-vector encoding.

We see this work as a step towards integrating the abstract interpretation point of view
with algorithmic advances made in the area of decision procedures. Black-box frameworks
such as DPLL(T) abstract away from the details of their component procedures. Abstract
interpretation can be used to express an orthogonal, algebraic “white-box” view which, we
believe, has uses in both theory and practice.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Akbarpour B, Abdel-Hamid A, Tahar S, Harrison J (2010) Verifying a synthesized implementation of
IEEE-754 floating-point exponential function using HOL. Comput J 53(4):465–488

2. Ayad A, Marché C (2010) Multi-prover verification of floating-point programs. In: Proc of international
joint conference on automated reasoning. Springer, Berlin, pp 127–141

3. Badban B, van de Pol J, Tveretina O, Zantema H (2007) Generalizing DPLL and satisfiability for equal-
ities. Inf Comput 205(8):1188–1211

4. Barrett C, Nieuwenhuis R, Oliveras A, Tinelli C (2006) Splitting on demand in SAT modulo theories.
In: Proc of logic programming, artificial intelligence and reasoning, pp 512–526

5. Barrett C, Sebastiani R, Seshia SA, Tinelli C (2009) Satisfiability modulo theories. In: Handbook of
satisfiability. IOS Press, Amsterdam, pp 825–885

6. Blanchet B, Cousot P, Cousot R, Feret J, Mauborgne L, Miné A, Monniaux D, Rival X (2003) A static
analyzer for large safety-critical software. In: Proc of programming language design and implementation.
ACM, New York, pp 196–207

Form Methods Syst Des (2014) 45:213–245 243

7. Boldo S, Filliâtre J (2007) Formal verification of floating-point programs. In: Proc of computer arith-
metic. IEEE, New York, pp 187–194

8. Botella B, Gotlieb A, Michel C (2006) Symbolic execution of floating-point computations. Softw Test
Verif Reliab 16(2):97–121

9. Brain M, D’Silva V, Haller L, Griggio A, Kroening D (2013) An abstract interpretation of DPLL(T). In:
Proc of verification, model checking and abstract interpretation. Springer, Berlin, pp 455–475

10. Brain M, D’Silva V, Haller L, Griggio A, Kroening D (2013) Interpolation-based verification of floating-
point programs with abstract CDCL. In: Proc of static analysis symposium. Springer, Berlin, pp 412–432

11. Brillout A, Kroening D, Wahl T (2009) Mixed abstractions for floating-point arithmetic. In: Proc of
formal methods in computer-aided design. IEEE, New York, pp 69–76

12. Chapoutot A (2010) Interval slopes as a numerical abstract domain for floating-point variables. In: Proc
of static analysis symposium. Springer, Berlin, pp 184–200

13. Chen L, Miné A, Cousot P (2008) A sound floating-point polyhedra abstract domain. In: Proc of Asian
symposium on programming languages. Springer, Berlin, pp 3–18

14. Chen L, Miné A, Wang J, Cousot P (2009) Interval polyhedra: an abstract domain to infer interval linear
relationships. In: Proc of static analysis symposium. Springer, Berlin, pp 309–325

15. Chen L, Miné A, Wang J, Cousot P (2010) An abstract domain to discover interval linear equalities. In:
Proc of verification, model checking and abstract interpretation. Springer, Berlin, pp 112–128

16. Cimatti A, Griggio A, Schaafsma B, Sebastiani R (2013) The MathSAT5 SMT solver. In: Proc of tools
and algorithms for the construction and analysis of systems. Springer, Berlin, pp 93–107

17. Clarke E, Kroening D, Lerda F (2004) A tool for checking ANSI-C programs. In: Proc of tools and
algorithms for the construction and analysis of systems. Springer, Berlin, pp 168–176

18. Conchon S, Melquiond G, Roux C, Iguernelala M (2012) Built-in treatment of an axiomatic floating-
point theory for SMT solvers. In: SMT workshop

19. Cotton S (2010) Natural domain SMT: a preliminary assessment. In: Proc of formal modeling and anal-
ysis of timed systems. Springer, Berlin, pp 77–91

20. Cousot P, Cousot R (1977) Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints. In: Proc of principles of programming languages. ACM
Press, New York, pp 238–252

21. Cousot P, Cousot R (1979) Systematic design of program analysis frameworks. In: Proc of principles of
programming languages. ACM Press, New York, pp 269–282

22. Cousot P, Cousot R, Mauborgne L (2011) The reduced product of abstract domains and the combination
of decision procedures. In: Proc of foundations of software science and computation structures. Springer,
Berlin, pp 456–472

23. Cowlishaw M (ed) (2008) IEEE standard for floating-point arithmetic. IEEE, New York, pp 1132–1138
24. Daumas M, Rideau L, Théry L (2001) A generic library for floating-point numbers and its application to

exact computing. In: Proc of theorem proving in higher order logics. Springer, Berlin, pp 169–184
25. Davis M, Logemann G, Loveland D (1962) A machine program for theorem-proving. Commun ACM

5:394–397
26. de Moura L, Bjørner N (2008) Z3: an efficient SMT solver. In: Proc of tools and algorithms for the

construction and analysis of systems. Springer, Berlin, pp 337–340
27. Delmas D, Goubault E, Putot S, Souyris J, Tekkal K, Védrine F (2009) Towards an industrial use of

FLUCTUAT on safety-critical avionics software. In: Proc of formal methods for industrial critical sys-
tems. Springer, Berlin, pp 53–69

28. D’Silva V, Haller L, Kroening D (2012) Satisfiability solvers are static analyzers. In: Proc of static
analysis symposium. Springer, Berlin, pp 317–333

29. D’Silva V, Haller L, Kroening D, Tautschnig M (2012) Numeric bounds analysis with conflict-driven
learning. In: Proc of tools and algorithms for the construction and analysis of systems. Springer, Berlin,
pp 48–63

30. D’Silva V, Haller L, Kroening D (2013) Abstract conflict driven learning. In: Proc of principles of pro-
gramming languages. ACM Press, New York, pp 143–154

31. D’Silva V, Haller L, Kroening D (2014) Abstract satisfaction. In: Proc of principles of programming
languages (to appear). ACM, New York

32. Feret J (2004) Static analysis of digital filters. In: Proc of European symposium on programming.
Springer, Berlin, pp 33–48

33. Fränzle M, Herde C, Teige T, Ratschan S, Schubert T (2007) Efficient solving of large non-linear arith-
metic constraint systems with complex Boolean structure. J Satisf Boolean Model Comput 1(3–4):209–
236

34. Ganzinger H, Hagen G, Nieuwenhuis R, Oliveras A, Tinelli C (2004) DPLL(T): fast decision procedures.
In: Proc of computer aided verification. Springer, Berlin, pp 175–188

244 Form Methods Syst Des (2014) 45:213–245

35. Ghorbal K, Goubault E, Putot S (2009) The zonotope abstract domain Taylor1+. In: Proc of computer
aided verification. Springer, Berlin, pp 627–633

36. Goldwasser D, Strichman O, Fine S (2008) A theory-based decision heuristic for DPLL(T). In: Proc of
formal methods in computer-aided design. IEEE Press, New York, pp 1–8

37. Goubault E (2001) Static analyses of the precision of floating-point operations. In: Proc of static analysis
symposium. Springer, Berlin, pp 234–259

38. Goubault E, Putot S, Baufreton P, Gassino J (2007) Static analysis of the accuracy in control systems:
principles and experiments. In: Proc of formal methods for industrial critical systems. Springer, Berlin,
pp 3–20

39. Harris WR, Sankaranarayanan S, Ivančić F, Gupta A (2010) Program analysis via satisfiability modulo
path programs. In: Proc of principles of programming languages, pp 71–82

40. Harrison J (1999) A machine-checked theory of floating point arithmetic. In: Proc of theorem proving in
higher order logics. Springer, Berlin, pp 113–130

41. Harrison J (2000) Floating point verification in HOL light: the exponential function. Form Methods Syst
Des 16(3):271–305

42. Harrison J (2000) Formal verification of floating point trigonometric functions. In: Proc of formal meth-
ods in computer-aided design. Springer, Berlin, pp 217–233

43. Harrison J (2003) Formal verification of square root algorithms. Form Methods Syst Des 22(2):143–153
44. Harrison J (2007) Floating-point verification. J Univers Comput Sci 13(5):629–638
45. Jan Peleska EV, Lapschies F (2011) Automated test case generation with SMT-solving and abstract

interpretation. In: Proc of nasa formal methods. Springer, Berlin, pp 298–312
46. Jeannet B, Miné A (2009) Apron: a library of numerical abstract domains for static analysis. In: Proc of

computer aided verification. Springer, Berlin, pp 661–667
47. Jovanovic D, de Moura L (2011) Cutting to the chase: solving linear integer arithmetic. In: Proc of

conference on automated deduction. Springer, Berlin, pp 338–353
48. Jovanovic D, de Moura L (2012) Solving non-linear arithmetic. In: Proc of international joint conference

on automated reasoning. Springer, Berlin, pp 339–354
49. Kaivola R, Aagaard M (2000) Divider circuit verification with model checking and theorem proving. In:

Proc of theorem proving in higher order logics. Springer, Berlin, pp 338–355
50. Lapschies F, Peleska J, Gorbachuk E, Mangels T (2012) SONOLAR SMT-solver. In: Satisfiability modulo

theories competition 2012 system description
51. McMillan K, Kuehlmann A, Sagiv M (2009) Generalizing DPLL to richer logics. In: Proc of computer

aided verification. Springer, Berlin, pp 462–476
52. McMillan KL (2010) Lazy annotation for program testing and verification. In: Proc of computer aided

verification. Springer, Berlin, pp 104–118
53. Melquiond G (2012) Floating-point arithmetic in the Coq system. Inf Comput 216:14–23
54. Michel C (2002) Exact projection functions for floating point number constraints. In: Annals of mathe-

matics and artificial intelligence
55. Michel C, Rueher M, Lebbah Y (2001) Solving constraints over floating-point numbers. In: Seventh

international conference on principles and practice of constraint programming. Springer, Berlin, pp 524–
538

56. Miné A (2004) Relational abstract domains for the detection of floating-point run-time errors. In: Proc
of European symposium on programming. Springer, Berlin, pp 3–17

57. Miner PS (1995) Defining the IEEE-854 floating-point standard in PVS. PVS. Technical Memorandum
110167, NASA, Langley Research

58. Monniaux D (2005) Compositional analysis of floating-point linear numerical filters. In: Proc of com-
puter aided verification. Springer, Berlin, pp 199–212

59. Monniaux D (2008) The pitfalls of verifying floating-point computations. ACM Trans Program Lang
Syst 30(3)

60. Moore JS, Lynch T, Kaufmann M (1996) A mechanically checked proof of the correctness of the kernel
of the AMD5K86 floating-point division algorithm. Trans Comput 47:913–916

61. Muller JM, Brisebarre N, de Dinechin F, Jeannerod CP, Lefèvre V, Melquiond G, Revol N, Stehlé D,
Torres S (2010) Handbook of floating-point arithmetic, 1st edn. Springer, Berlin

62. Rival X, Mauborgne L (2007) The trace partitioning abstract domain. ACM Trans Program Lang Syst
29(5):26

63. Rümmer P, Wahl T (2010) An SMT-LIB theory of binary floating-point arithmetic. In: SMT workshop
64. Russinoff D (1998) A mechanically checked proof of IEEE compliance of a register-transfer-level spec-

ification of the AMD-K7 floating-point multiplication, division, and square root instructions. LMS J
Comput Math 1:148–200

65. Sakallah KA, Marques-Silva J (2011) Anatomy and empirical evaluation of modern SAT solvers. Bull
Eur Assoc Theor Comput Sci 103:96–121

Form Methods Syst Des (2014) 45:213–245 245

66. Silva JPM, Lynce I, Malik S (2009) Conflict-driven clause learning SAT solvers. In: Handbook of satis-
fiability. IOS Press, Amsterdam, pp 131–153

67. Silva JPM, Sakallah KA (1999) GRASP: a search algorithm for propositional satisfiability. Trans Com-
put 48(5):506–521

68. Thakur A, Reps T (2012) A generalization of Stålmarck’s method. In: Proc of static analysis symposium
Springer, Berlin, pp 334–351

69. Thakur A, Reps T (2012) A method for symbolic computation of abstract operations. In: Proc of com-
puter aided verification. Springer, Berlin, pp 174–192

70. Zhang L, Madigan CF, Moskewicz MW, Malik S (2001) Efficient conflict driven learning in a Boolean
satisfiability solver. In: International conference on computer-aided design. ACM, New York, pp 279–
285

	Deciding ﬂoating-point logic with abstract conﬂict driven clause learning
	Abstract
	Introduction
	Discussion of ﬂoating-point solver architectures
	Content and contribution
	Contribution
	Outline

	A review of ﬂoating-point arithmetic
	Floating-point arithmetic
	Floating-point logic
	Terms

	Background on lattices and abstraction
	Review of abstract interpretation
	Lattice and transformers
	Abstract interpretation

	Review of abstract satisfaction
	Domains of ﬂoating-point numbers

	Lifting CDCL to abstractions
	Review of propositional CDCL
	Complementable meet irreducibles
	Abstract CDCL

	Learning in abstract lattices
	Abductive reasoning and heuristic choice
	Abductive generalisation
	Heuristic choice

	Abstract FirstUIP
	Abstract clause learning

	Implementation and experiments
	Implementation details
	Deductions
	Decisions
	Generalised explanations for conﬂict analysis

	Experimental evaluation
	Comparison with bit-vector encodings
	Impact of optimizations

	A survey of related work
	Reasoning about ﬂoating-point numbers
	Theorem proving
	Abstract interpretation
	Decision procedures

	Lifting decision procedures
	Reﬁning abstract analyses

	Conclusions and future work
	References

