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Abstract
This paper provides an algebraic reconstruction of Einstein’s own argument for the 
incompleteness of quantum mechanics—the one that he thought did not make it into 
the EPR paper—in order to clarify the assumptions that underlie an understanding 
of Einstein completeness as categoricity, the sense in which it is a type of descrip-
tive completeness, and some of the various ways in which it has been more often 
misconstrued.

Keywords Einstein completeness · Categoricity · Unitary equivalence · Non-regular 
states

1 Introduction

Einstein’s argument for the incompleteness of quantum mechanics, which did not 
make it into the EPR paper [1] in the way Einstein thought it would, was clearly 
formulated in letters to Schrödinger and Popper, as well as in several publications 
(e.g. [2]). After Arthur Fine brought it to philosophical attention [3], Don Howard 
suggested that the argument might be understood as deploying a notion of complete-
ness known as categoricity, i.e., model uniqueness up to isomorphism [4]. This sug-
gestion was motivated by Einstein’s claim that quantum mechanics fails to assign 
a unique wavefunction to the real state of one subsystem of an EPR system, since 
the assignment depends on the measurement that could be performed on the other 
subsystem. If multiple wavefunctions can be assigned to the same subsystem, and 
if one is justified in considering them as non-isomorphic models, then this would 
be enough to show quantum mechanics non-categorical. If Howard’s suggestion is 
taken seriously, then Einstein completeness turns out to be a rather different type of 
completeness than the one articulated in the EPR paper.

In the present paper, I provide an algebraic reconstruction of Einstein’s argu-
ment, which I think can clarify the assumptions underlying an understanding of 
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Einstein completeness as categoricity. The key idea to be rigorously articulated is 
the following: “if one understands a theoretical state as, in effect, a model for a set 
of equations plus boundary conditions..., then Einstein’s conception of a complete-
ness requirement should really be understood as a categoricity requirement” [5, p. 
208]. To stay as close as possible to Einstein’s own argument, I focus on the original 
EPR state, with observables having a continuous spectrum, suitably defined within 
an algebraic framework [6, 7], and I explain under what conditions one would be 
justified to read Einstein completeness as categoricity. On my reconstruction, the 
argument assumes that representations on (tensor products of) Hilbert spaces are the 
models of quantum mechanics of (composite) systems. It assumes as well that the 
unitary equivalence of such representations is a necessary (though not a sufficient) 
condition for categoricity. The argument then points out that there are representa-
tions of the (tensor product of) algebras describing a subsystem of an EPR system 
that are not unitarily equivalent. As I reconstruct it, following Howard’s suggestion, 
Einstein’s argument concludes that categoricity is logically inconsistent with separa-
bility and locality.

It is, of course, difficult to say that the reconstruction I propose is actually entirely 
faithful to Einstein’s own thought. One worry one might raise is that while my recon-
struction works for the original EPR state, it does not work for entangled spins, since 
on finite-dimensional Hilbert spaces there are no unitarily inequivalent representa-
tions. But Einstein, as is well known, never cared much about Bohm’s version of the 
EPR argument.1 Focusing on the infinite-dimensional case is thus historically rea-
sonable. Moreover, for Einstein’s objection to stand, it is of course sufficient that his 
argument goes through in one case; it is not required that it should do so in all cases. 
In any event, I will argue that my reconstruction is preferable to others, according 
to which Einstein’s argument should be taken to establish “overcompleteness” [9] 
or unsoundness [10], rather than non-categoricity. Furthermore, I suggest that my 
reconstruction sheds some new light on the Bohr-Einstein controversy. Bohr’s doc-
trine of complementarity has been interpreted in terms of the unitary inequivalence 
of non-regular Hilbert space representations [11], an interpretation that vindicates 
a common view that Bohr’s notion of completeness was significantly distinct from 
the descriptive completeness articulated in the EPR paper.2 But on my reconstruc-
tion, Einstein completeness fails precisely due to this unitary inequivalence. Thus, 
from an algebraic point of view, it appears that the sense in which Bohr thought 
quantum mechanics was complete is exactly the sense in which Einstein argued it 
wasn’t. Considered from a model-theoretical perspective, their views would turn out 
to be precisely antithetical. Of course, in order to properly justify this claim, a more 
formal undertaking would be needed than what this paper can offer. In particular, 
one would need a fully articulated formal semantics of standard quantum mechanics 
that deploys a suitable logic for a formalization of the algebraic structures described 
below. Deferring this undertaking to further work seems, however, in order for now.

1 The only place where Einstein formulated a spin version of his argument appears to be in a late manu-
script from around 1955: for discussion, see [8].
2 For an expression of this view, see, e.g., [12, p. 148].
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2  Einstein Completeness

Recall the completeness condition that the EPR paper purported to argue it is not 
satisfied by quantum mechanics: “Whatever the meaning assigned to the term com-
plete, the following requirement for a complete theory seems to be a necessary one: 
every element of the physical reality must have a counterpart in the physical the-
ory.” (1935, 777) This condition has typically been understood to formulate a type 
of descriptive completeness, since it applies to a physical theory just in case that 
theory is able to describe all of the physical reality that it aims to describe. Related 
ideals of completeness were endorsed by other foundational thinkers, before and 
after the 1930 s, within and without quantum physics, and particularly with respect 
to systems of axioms. For instance, Russell and Whitehead stated that a system of 
axioms for pure mathematics (like that presented in their Principia Mathematica) is 
complete just in case it is able to capture “as much as may seem necessary” of the 
domain that it aims to describe, i.e., the entire class of theorems of ordinary math-
ematics. This was a notion of completeness that Gödel took to prove that, on some 
reasonable assumptions, it cannot be attributed to the system in the Principia.3 Simi-
larly, von Neumann considered a system of axioms for quantum mechanics (like that 
presented in his Mathematical Foundations of Quantum Mechanics), to be complete 
just in case it is able to derive all statistical formulas of quantum mechanics, and 
rejected the view that their statistical nature was due to “an ambiguity (i.e., incom-
pleteness) in our description of nature”.4

The EPR paper argued that quantum mechanics does not satisfy the complete-
ness condition because in the case of a system in an EPR state there are elements 
of physical reality, i.e., properties of a subsystem of that system, that the theory 
aims to describe, but fails to do so. As is well known, crucial to the EPR argu-
ment is the following criterion of reality: “If, without in any way disturbing a 
system, we can predict with certainty (i.e., with probability equal to unity) the 
value of a physical quantity, then there exists an element of physical reality cor-
responding to this physical quantity.” (1935, 777; italics removed) The role and 
character of this criterion, as well as the formal structure of the argument, have 
been often addressed.5 What has been often ignored is the fact that EPR com-
pleteness and Einstein completeness are not the same type of descriptive com-
pleteness.6 In one widely quoted passage from his letter to Schrödinger, Einstein 

3 See [13] for a discussion of completeness as understood by Russell and Whitehead, and an argument 
that Gödel’s own understanding of completeness, as negation-completeness, is relevantly different than 
the descriptive variety.
4 See [14] for a recent re-evaluation of (the debate on) von Neumann’s proof of completeness.
5 Perhaps the most detailed formal reconstruction of the EPR argument has been given in McGrath [15] 
where the following is also noted: “Regrettably EPR equate two notions of completeness: ‘complete rep-
resentation by a wave function’ and ‘complete theory’ are used interchangeably.” (560) See also [10] 
for a nice discussion of the EPR criterion of reality, its indispensable role within the EPR argument for 
incompleteness, and its absence from Einstein’s own argument.
6 The fact that EPR completeness and Einstein completeness are not the same type of completeness has 
been, to my knowledge, first explicitly noted by Arthur Fine: “Einstein does not give [the latter] a catchy 
name, but.. [we can] call this more technical conception bijective completeness.” [3, p. 72].
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writes: “In the quantum theory, one describes a real state of a system through a 
normalized function, � , of the coordinates (of the configuration-space).... Now 
one would like to say the following: � is correlated one-to-one with the real state 
of the real system.... If this works, then I speak of a complete description of real-
ity by the theory. But if such an interpretation is not feasible, I call the theoretical 
description ‘incomplete’.” (Letter to Schrödinger, 19 June 1935; translated in [16, 
p. 179]) Einstein completeness can thus be attributed to quantum mechanics if 
and only if there exists a one-to-one correlation between a �-function and the real 
state of a system the theory aims to describe. Einstein’s point that a one-to-one 
correlation does not exist in the case of an EPR system is meant to be supported 
by his separability and locality assumptions, so his argument can be formulated in 
the following way: 

1. Spacelike separated physical systems have real states, which cannot causally influ-
ence one another.

2. Consider a system with two subsystems, A and B, in an EPR state.
3. Thus, each subsystem has a real state, no matter what measurements can be car-

ried out on its other subsystem.
4. Quantum mechanics assigns different �-functions to A, depending on which 

observable one can choose to measure on B.
5. But if quantum mechanics is complete, these �-functions should be identical.
6. Thus, quantum mechanics is incomplete.

Most of my discussion in this paper will be focused on premises 4 and 5. It should 
be clear that the notion of completeness in premise 5 is directly implied by that 
defined in the letter to Schrödinger. In a letter to Pauli, Schrödinger put it in the 
following metaphorical terms: “He [i.e., Einstein] has a model of that which is 
real consisting of a map with little flags. To every real thing there must corre-
spond on the map a little flag, and vice versa.” (Schrödinger to Pauli, July 1935, 
translated in [4, p. 106]). It immediately follows that a map with little flags is an 
Einstein complete description of physical reality only if the map is essentially 
unique, in the sense that there is a bijection between any two maps describing 
that reality. In the case of quantum mechanics, by analogy, Einstein completeness 
requires that the �-function representing the real state of a system be essentially 
unique.

Howard’s suggestion as to how to properly understand Einstein complete-
ness, first offered in a footnote to his presentation of Einstein’s argument, is this: 
“A complete theory assigns one and only one theoretical state to each real state 
of a physical system. [Footnote: This is a curious conception of completeness, 
more akin to what is called in formal semantics “categoricity.”] But in EPR-type 
experiments involving spatio-temporally separated, but previously interacting 
systems, A and B, quantum mechanics assigns different theoretical states, dif-
ferent ‘psi-functions,’ to one and the same real state of A, say, depending upon 
the kind of measurement we choose to carry out on B. Hence quantum mechan-
ics is incomplete” [4, p. 64]. The same suggestion is then uplifted from footnote 
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to the main text of a later paper: “Let me conclude with one really outrageous 
suggestion.... the operative criterion of completeness in Einstein’s thinking was 
this: a theory is complete if and only if it assigns a unique theoretical state, such 
as a psi-function, to every unique real physical state. But if one understands a 
theoretical state as, in effect, a model for a set of equations plus boundary condi-
tions..., then Einstein’s conception of a completeness requirement should really 
be understood as a categoricity requirement. In other words, Einstein is say-
ing that a ‘complete’ (read ‘categorical’) theory is one that determines a unique 
(eindeutige) model for the reality it aims to represent.” [5, p. 208]; my emphasis 
The conception of completeness that Howard thought should be credited to Ein-
stein is that according to which a theory is Einstein complete if and only if all its 
models belong to one and the same isomorphism class.

In the background to Howard’s suggestion lies, of course, a complex model-
theoretical machinery. Models are defined as set-theoretical structures of ele-
ments in a domain that can be assigned to a formal version of the language of 
quantum mechanics (including symbols for variables, constants, functions, and 
relations) by an interpretation map. But in order to reach a good understanding 
of Howard’s suggestion, starting from my reconstruction of Einstein’s argument, 
we will not actually need this formal machinery. It will be enough to motivate 
informally an algebraic requirement for categoricity, and then argue that Ein-
stein can be understood to have doubted that quantum mechanics satisfies that 
requirement. It will then follow that what Einstein argued for is that quantum 
mechanics is descriptively incomplete in the sense that, roughly, even though it 
may be able to describe all of the physical reality that it aims to describe, it ends 
up describing a lot more besides that as well.

The reconstruction of Einstein’s argument, in an algebraic framework, will 
be given further below. That will require a preliminary consideration of prem-
ise 2, in particular, a properly algebraic definition of the original EPR state, for 
continuous observables. It will also require a discussion of premise 4, that is an 
algebraic account of the difference between the �-functions assigned to susbsys-
tem A. The outcome of all that will, I hope, be three-fold: 

 (i) A good understanding of the assumptions behind Howard’s suggestion to read 
Einstein completeness as categoricity,

 (ii) An explanation of what makes Einstein completeness different from EPR 
completeness as a type of descriptive completeness, and finally,

 (iii) An unequivocal sense of where some of the misreadings of Einstein complete-
ness have gone wrong.

Although my real emphasis will be on (i), let me briefly address (iii) right away, 
in order to candidly raise the reader’s interest in what is to come later, in Sect. 4, 
which takes care of (i). Then (ii) will be presented in Sect. 5, where I also briefly 
indicate how (i) bears on the Bohr-Einstein debate.
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3  Misconstruals

Einstein’s argument for incompleteness is sometimes considered too confused to 
take seriously. Klaas Landsman, for example, maintained that it is a “muddled” 
argument [17, p. 234] for the following reason: “Unfortunately, Einstein (and EPR) 
insisted on a further elaboration of this disjunction [i.e., completeness or separa-
bility], namely the idea that there exists some version of quantum mechanics that 
is separable... at the cost of assigning more than one state to a system (two in the 
simplest case). It is this unholy version of quantum mechanics that Einstein (and 
EPR) called ‘incomplete’. Now, within the formalism of quantum mechanics such 
a multiple assignment of states (except in the trivial sense of wave functions differ-
ing by a phase factor) makes no sense at all, for the entanglement property lying at 
the root of the non-separability of quantum mechanics is so deeply entrenched in its 
formalism that it simply cannot be separated from it.” (op. cit., 227) However, if it 
implies that Einstein’s argument requires that entanglement be relinquished, this is 
simply missing the point. One would have thought it obvious that, quite the contrary, 
the argument is essentially based on entanglement. Clearly, Landsman’s criticism 
fails insofar as it neglects the fact that Einstein separability (expressed in premise 1 
above) and entanglement (implicit in premise 2) are compatible.7 The alleged reason 
why multiple assignment of states is nonsensical doesn’t stand: there is no “unholy 
version” of quantum mechanics, i.e., a version of the theory without entanglement, 
and Einstein did not think otherwise. Furthermore, and this is a more significant 
problem, Landsman seems to misconstrue Einstein’s view on the difference between 
the �-functions assigned to subsystem A as a trivial phase difference. As we will 
see further below, the multiple assignment of �-functions that Einstein actually con-
sidered can be aptly interpreted algebraically in terms of the unitary inequivalence 
of non-regular Hilbert space representations. Were this nonsensical, Bohr’s com-
plementarity doctrine (at least as interpreted in Halvorson [11], see below Sect. 5) 
would appear to be nonsensical as well, but this is a doctrine that Landsman pro-
fesses to defend.

In The Cambridge Companion to Einstein, Christoph Lehner characterized Ein-
stein completeness, and Einstein’s argument that this cannot be attributed to quan-
tum mechanics, in these terms: “Einstein... concludes that the quantum mechanical 
description is not biunique because it is incomplete.... This conclusion is not war-
ranted logically.” [9, p. 334]. A description that is not biunique is one that assigns to 
subsystem A a �-function which is not correlated one-to-one with its real state. The 
bottom half of Einstein’s argument would, on this reconstruction, be as follows: 

4
L
.  Quantum mechanics assigns different �-functions to A, depending on which 

observable one can choose to measure on B.

7 See [18] for the point that Einstein’s argument would be trivially unsound, if separability and entan-
glement were not compatible. Landsman argues that, as a consequence of Raggio’s theorem, Einstein 
separability is mathematically equivalent to Bohr’s doctrine of the necessity of classical concepts. But his 
argument takes Einstein separability as state decomposability.
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5
L
.  Thus, quantum mechanics is incomplete.

6
L
.  Thus, quantum mechanics is not biunique.

Lehner maintained that the inference from 5 
L
 to 6 

L
 is not justified. But this 

clearly puts Einstein’s cart before his horse: the one-to-one correlation does not 
fail because of incompleteness; rather, its failure is the actual reason for incom-
pleteness, just as the reason why the one-to-one correlation fails is provided by 
the possible assignment of different �-functions to A (expressed by 4 

L
 ). More-

over, since a �-function is just a theoretical description and such “a descrip-
tion that is not invariant is not necessarily incomplete... it is ‘overcomplete’ or 
nonabsolute” (loc. cit.), i.e., it assigns to A a theoretical state that is correlated 
many-to-one with its real state, what Einstein should have allegedly argued is the 
following: 

4L
.  Quantum mechanics assigns different theoretical states to A, depending on 

which observable one can choose to measure on B.

5L
.  Thus, quantum mechanics is overcomplete.

6L
.  Thus, quantum mechanics is not biunique.

The inference from 5 L to 6 L is immediate, but trivial. However, Lehner appears 
to reduce Einstein’s incompleteness to a quite uninteresting case of empirical 
underdetermination. Jos Uffink has recently pointed out that reading Einstein 
incompleteness as overcompleteness is “surprising”, since “cases of overcom-
pleteness are ubiquitous in physics... Indeed one might wonder whether over-
completeness is a worrisome issue at all in theoretical physics.” [19, p. 557]. In 
quantum mechanics, as Uffink emphasizes, such cases of overcompleteness as 
illustrated by phase differences between �-functions are not worrisome at all. 
But, of course, Einstein did not think otherwise. As already noted, we will see 
below that the essential differences between �-functions that Einstein did think 
worrisome can be aptly interpreted algebraically in terms of the unitary inequiva-
lence of non-regular Hilbert space representations. If this is enough to conclude 
that quantum mechanics is not categorical, then Lehner’s reconstruction of Ein-
stein’s argument turns out to conflate (the problem of) categoricity and (the prob-
lem of) empirical underdetermination.

Along different lines, Márton Gömöri and Gábor Hofer-Szabó argue for a 
similar conclusion, that Einstein’s argument should not really be taken to estab-
lish incompleteness: “According to Einstein’s later [than the EPR] argument, the 
Copenhagen interpretation is committed to the existence of elements of reality 
that cannot be out there in the world—under the assumptions of locality and no-
conspiracy. Hence, given these assumptions, the Copenhagen interpretation is 
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unsound—as opposed to being incomplete.” [10, p. 13453]. Supposing it right 
that Einstein intended his argument against the Copenhagen interpretation of 
quantum mechanics, the bottom half of Einstein’s argument would change as 
follows: 

4
G
.  Quantum mechanics assigns different �-functions to A, depending on which 

observable one can choose to measure on B.

5
G
.  Thus, at least some �-functions represent states of A that cannot exist.

6
G
.  Thus, quantum mechanics is unsound.

Gömöri and Hofer-Szabó readily acknowledge that their reconstruction of Ein-
stein’s argument is in conflict with his own understanding of completeness. Pursuing 
“logical reconstruction” in spite of what “Einstein actually thought to argue”, they 
find his own notion “not quite apt”, in part because it is not identical to the EPR 
notion of completeness (loc. cit.). But one would have thought that the difference 
between EPR completeness and Einstein completeness cannot be sufficient to deny 
the latter as an apt notion, since there is nothing to indicate that EPR completeness 
is the only possible type of descriptive completeness attributable to physical theo-
ries. Still, their main reason for having Einstein’s argument conclude that quantum 
mechanics is unsound, rather than incomplete, is the incompatibility of the differ-
ent �-functions assigned to subsystem A of an EPR system. This is correct as an 
understanding of the essential difference between �-functions, expressed by premise 
4 
G

 . In the next section, this incompatibility will be precisely interpreted algebrai-
cally as the unitary inequivalence of non-regular Hilbert space representations. If 
my interpretation is adequate, I do not see why that incompatibility would make 
quantum mechanics unsound, rather than sound but non-categorical. To argue that 
my interpretation is adequate, I turn now to reconstructing Einstein’s argument in 
the framework of C ∗-algebras.

4  An Algebraic Reconstruction of Einstein’s Argument

Taking Howard’s suggestion seriously requires, as I pointed out in the introduction, 
that one consider the theoretical states assigned to a system by quantum mechanics 
as models of the physical theory. But it’s not immediately clear how a �-function, 
and in particular one that represents the EPR state of a system, can be considered in 
this way. For one thing, such a �-function cannot be construed as a unit vector in a 
standard infinite-dimensional Hilbert space H . This is for multiple related reasons, 
such as that the �-function has infinite norm, and the observables (like position and 
momentum) of the subsystems of an EPR system have continuous spectra, so their 
probability distribution will have a probability density that cannot be concentrated 
on a single point in H . This is why the definition of the EPR state for a system 
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composed of subsystems A and B as a unit vector in H
A
⊗H

B
 for observables in 

subalgebras B(H
A
)⊗ I  and I⊗ B(H

B
) is not entirely adequate [6, p. 638].

But that definition has been generalized, as we will presently see, and the EPR 
state has been identified with a normalized positive linear functional on �

A
⊗�

B
 for 

observables in the von Neumann algebras 𝜋(�
A
⊗ I)�� and 𝜋(I⊗�

B
)�� [20, 7]. The 

generalized definition will be used below to reformulate premises 4 and 5 in Ein-
stein’s argument. The essential difference between the theoretical states assigned to 
subsystem A of the EPR system will be interpreted in terms of the unitary inequiv-
alence of non-regular representations of �

A
⊗ I  on H

A
⊗ I  . This can support a 

model-theoretical approach to Einstein’s argument, suggested by Howard, provided 
one takes representations as models of quantum mechanics. But this would not be at 
all unusual. Consider, for example, R.I.G. Hughes’ view: “Quantum mechanics, we 
may say, uses the models supplied by Hilbert spaces.” [21, p. 79].8 These models are 
assumed to be definable as formal structures in a suitable metatheory of quantum 
mechanics, but as already noted at the outset, for my purposes in this paper no such 
definitions are needed.9

Let’s start by considering observables O
A
⊗ I ∈ B(H

A
)⊗ I  and 

I ⊗ O
B
∈ I⊗ B(H

B
) . As defined by Richard Arens and Veeravalli S. Varadara-

jan, � is an EPR state if and only if the joint distribution of O
A
⊗ I and I ⊗ O

B
 

is a measure on ℝ2 concentrated on the diagonal, 𝜇O
A
⊗I,I⊗O

B

𝜔 ({(x, x)|x ∈ ℝ}) = 1 . 
Such pairs of observables are typically called EPR-doubles: the outcome of meas-
uring one predicts with certainty the outcome of measuring the other. These EPR-
doubles form type I factors (isomorphic to von Neumann algebras B(H

A
)⊗ I  and 

I⊗ B(H
B
) respectively), so they have a discrete spectrum (their distributions rela-

tive to � take discrete values only) [6, p. 647]. Thus, this definition is not enough 
to characterize the original EPR state—the state that Einstein was concerned with. 
In order to overcome this limitation, Reinhard F. Werner considered �

A
⊗ I  and 

I⊗�
B
 as the mutually commuting subalgebras of �

A
⊗�

B
 , and took 𝜋(�

A
⊗ I)�� 

as a self-adjoint unital subalgebra of B(H
A
)⊗ I  , and 𝜋(I⊗�

B
)�� as a self-adjoint 

unital subalgebra of I⊗ B(H
B
) , both closed in the weak operator topology. Then 

𝜋(O
A
⊗ I) ∈ 𝜋(�

A
⊗ I)�� and 𝜋(I ⊗ O

B
) ∈ 𝜋(I⊗�

B
)�� are EPR-doubles and have 

continuous spectra, since 𝜋(�
A
⊗ I)�� and 𝜋(I⊗�

B
)�� are type II

1

 factors [7].
Now, consider the representations (𝜋,H

A
⊗ I) and (𝜋, I ⊗H

B
) of �

A
⊗�

B
 . If 

� is an original EPR state and � is faithful, then there is a state � in each of these 
representations such that for any element O

A
⊗ O

B
∈ �

A
⊗�

B
 , we will have 

𝜔(O
A
⊗ O

B
) = 𝜏(𝜋(O

A
⊗ O

B
)) [20, p. 327]. This entails, on the same conditions, 

that for any two representations (𝜋
1

,H
A
⊗ I) and (𝜋

2

,H
A
⊗ I) of �

A
⊗ I  , there are 

different states �
1

 and �
2

 in these representations, respectively, such that for two 

8 Similarly, but more recently: “The models of NRQM are Hilbert spaces, along with a suitable subalge-
bra of the bounded operators on that Hilbert space.” [22, p. 7].
9 This assumption would be problematic, if one dispensed with Hilbert space representations in the for-
malism of quantum mechanics. For the ∗-automorphisms of the Weyl algebra are unique up to unitary 
equivalence, so at the abstract algebraic level there are no non-regular states. But I think this problem for 
my reconstruction can be ignored, since Einstein, interested as he was in local wavefunctions, was surely 
not an Algebraic Imperialist of the kind introduced and described in [23] (see also [24]).
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different elements O1

A
⊗ I,O

2

A
⊗ I ∈ �

A
⊗ I  , we have the corresponding restric-

tions of � , that is 𝜔(O1

A
⊗ I) = 𝜏

1

(𝜋
1

(O1

A
⊗ I)) and 𝜔(O2

A
⊗ I) = 𝜏

2

(𝜋
2

(O2

A
⊗ I)) . 

All this suggests the following reformulation of the bottom half of Einstein’s 
argument: 

4
T
.  Quantum mechanics assigns different states, �

1

 or �
2

 , to subsystem A, depend-
ing on which EPR-double, 𝜋

1

(I ⊗ O
1

B
) or 𝜋

2

(I ⊗ O
2

B
) , one can choose to meas-

ure on B.

5
T
.  But if quantum mechanics is complete, �

1

 and �
2

 should be identical.

6
T
.  Thus, quantum mechanics is incomplete.

How should we understand premise 4 
T
 ? Within this framework, what makes �

1

 
and �

2

 different states? As we have seen above, some commentators took Einstein’s 
argument to be confused on this very point, for the reason that the only differences 
between such states allowed by standard quantum mechanics are “trivial” phase dif-
ferences. But this is not what Einstein had in mind, as Howard already pointed out: 
“Might there not be situations in which the differences between two �-functions 
(phase differences, for example) are inessential from the point of view of the sys-
tem whose real state they aim to describe? Einstein’s completeness condition would, 
indeed, be too strong if it required that literally every difference between �-func-
tions mirror a difference in the real state of the system in question; but such was not 
Einstein’s intention.” [16, p. 181]. What are then the non-trivial differences between 
theoretical states that Einstein did have in mind? Here is Howard, again: “The kind 
of difference with which Einstein was concerned is clear from his argument: [ �

1

 ] 
and [ �

2

 ] differ in the predictions they yield for the results of certain objective, local 
measurements on A.... (For example, if [ �

1

 ] attributed a definite position to [A], but 
not a definite momentum, it would be incomplete in its description of [A]’s momen-
tum; but, of course, Einstein’s argument does not require any such reference to spe-
cific parameters or ‘elements of reality’.)” (loc. cit., modified for uniform notation) 
The essential differences between �

1

 and �
2

 concern their predictions of the measure-
ment outcomes for A’s observables. For instance, �

1

 and �
2

 are essentially different 
if one of them “lives” in (𝜋

1

,H
A
⊗ I) , say a position representation, and the other 

in (𝜋
2

,H
A
⊗ I) , say a momentum representation. More generally then, �

1

 and �
2

 are 
essentially different if (𝜋

1

,H
A
⊗ I) and (𝜋

2

,H
A
⊗ I) are unitarily inequivalent rep-

resentations of �
A
⊗ I  . Taking this into account, one obtains the following recon-

struction of the bottom half of Einstein’s argument: 

4T .  Quantum mechanics allows unitarily inequivalent representations of �
A
⊗ I  , 

depending on which EPR-double, 𝜋
1

(I ⊗ O
1

B
) or 𝜋

2

(I ⊗ O
2

B
) , one can choose to 

measure on subsystem B.
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5T .  But if quantum mechanics is complete, the representations (𝜋
1

,H
A
⊗ I) and 

(𝜋
2

,H
A
⊗ I) should be unitarily equivalent.

6T .  Thus, quantum mechanics is incomplete.

I believe that there is a good chance that this captures exactly what Einstein 
thought on the matter. But one immediate criticism against this reconstruction con-
cerns the apparent conflict between premise 4 T and the Stone-von Neumann theo-
rem, conjectured by Marshall Stone [25] and then proved by John von Neumann 
[26], of which Einstein was no doubt fully aware by 1935. The theorem states that 
any irreducible faithful Hilbert space representation of the Weyl algebra generated 
by the canonical commutation relations describing a quantum mechanical system 
(or any system with a finite number of degrees of freedom) is uniquely determined 
up to a unitary transformation, and in fact unitarily equivalent to the Schrödinger 
representation.10

The Stone-von Neumann theorem applies, of course, to EPR systems. But the 
conflict with my reconstruction is merely apparent, since the representations men-
tioned in premise 4 T may be taken as non-regular and, therefore, not in the range of 
the Stone-von Neumann theorem.11 This reply, however, just seems to have opened 
the door to further criticism. For if Einstein’s argument required that regularity 
be dropped, then one might seem justified to consider it muddled after all, for it 
is not at all clear what physical meaning can be given to non-regular representa-
tions. If, besides the Schrödinger representation, both position and momentum rep-
resentations are taken to be physically significant despite their non-regularity, then 
unitary dynamics must be given up.12 But I think that this captures precisely the 
sense of incompatibility that Gömöri and Hofer-Szabó, as we have seen above, asso-
ciate with the multiple assignment of �-functions to subsystem A. The dynamical 
incompatibility between (regular and) non-regular representations not only does not 
muddle Einstein’s argument, but rather helps clarify his justification for rejecting 
completeness.

Now, if my algebraic reconstruction is correct, a formalization in a suitable 
metatheory would be required to fully support Howard’s suggestion.13 But an infor-
mal version of the reconstructed argument should be enough here: 

10 This entails that all bounded operators are intertwined by an isometric isomorphism. For details, see 
[27, 24, 28]. The existence of this isomorphism has been considered sufficient to justify an interpretation 
of the Stone-von Neumann theorem as a categoricity result for quantum mechanics. For a critical discus-
sion of such an interpretation, see [29].
11 There are other ways in which the conflict can be avoided, for example, by turning to phase spaces 
with nontrivial topologies, on which representations can be regular but unitarily inequivalent [30].
12 For details, see Feintzeig et al. [31], 126sq. This observation is essentially based on an unpublished 
result by David Malament, according to which if a free dynamics is assumed in the position representa-
tion, then exact localizabilty is violated.
13 Given the metric completeness of the mathematical structures of quantum mechanics, this formaliza-
tion would be impossible in classical first-order logic. For a survey of recent work in the formal seman-
tics of C ∗-algebras, see [32].
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4
H
.  Quantum mechanics allows non-isomorphic models of its description of A, 

depending on which EPR-double one can choose to measure on subsystem B.

5
H
.  But if quantum mechanics is categorical, these models should be isomorphic.

6
H
.  Thus, quantum mechanics is not categorical.

As noted already, this version of the argument assumes that unitarily inequivalent 
representations (in premise 4 T ) can be construed as non-isomorphic models of the 
quantum mechanical description of subsystem A (in premise 4 

H
 ). In other words, it 

assumes that unitary equivalence is a necessary, though not a sufficient, condition 
for categoricity. On this assumption, which I consider unproblematic, if the validity 
of the argument is to be preserved, premise 5 T must be reformulated as premise 5 

H
 . 

Einstein completeness should indeed be understood as categoricity. I think that this 
clarifies and supports, at least in part, Howard’s “outrageous” suggestion. Einstein’s 
no-go result is really that a local, separable, and categorical quantum mechanics 
cannot exist.

5  Consequences

Reconstructing Einstein’s argument as above points to a series of general conse-
quences often discussed, in other theoretical contexts, throughout the rich history of 
philosophical concerns with the categoricity of logic and mathematics. For instance, 
one often takes it to be the case that “A non-categorical set of sentences... does not 
give the impression of a closed and organic unity and does not seem to determine 
precisely the meaning of the concepts contained in it." [33, p. 311]. The models of 
a categorical theory agree on all theorems or predictions that can be expressed in its 
language. But only a categorical theory determines the meaning of its concepts pre-
cisely. For instance, the meaning of arithmetical terms is precisely determined only 
if Peano arithmetic is categorical with respect to the isomorphism class of an omega 
sequence. The meaning of classical logical connectives is precisely determined only 
if classical logic is categorical with respect to the isomorphism class of a two-ele-
ment Boolean algebra. This suggests that, quite similarly, the meaning of concepts 
like quantum state, observable, etc. is precisely determined only if quantum mechan-
ics is categorical with respect to the relevant isomorphism class of models. Thus, 
Einstein’s argument, if reconstructed as I proposed above, attributes to quantum 
mechanics a kind of semantic indeterminacy that may help explain the difference 
between EPR completeness and Einstein completeness as types of descriptive com-
pleteness. The question is what kind of descriptive failure is the incompleteness that 
Einstein attributed to quantum mechanics? As a non-categorical theory, quantum 
mechanics is descriptively incomplete, just not in the sense that it fails to describe all 
of the physical reality that it aims to describe, but rather in the sense that it describes 
more than just the physical reality that it aims to describe. This does not necessarily 
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imply that the theory describes states that cannot exist; rather, it describes dynami-
cally incompatible states, construed as (elements of) non-isomorphic models.

Why is the non-categoricity of quantum mechanics not considered a problem 
today? Why is it’s having fallen out of sight not itself considered as a serious prob-
lem? Why is categoricity not a primary goal of contemporary quantum physicists? 
These are important questions that I cannot address here. What I want to briefly 
emphasize before I conclude this paper are some implications I take my reconstruc-
tion of Einstein’s argument to have for our understanding of his debate with Bohr.

Let us recall one important point in that debate, that is, that Bohr’s reply to the 
EPR paper, as was well understood by Einstein, denies separability [34]. Thus, it also 
applies to Einstein’s own argument (by rejecting the first half of premise 1). Einstein 
famously commented on this point as follows: “By this way of looking at the mat-
ter it becomes evident that the paradox forces us to relinquish one of the following 
two assertions: (1) the description by means of the �-function is complete. (2) the 
real states of spatially separated objects are independent of each other.” [35, p. 682]. 
Einstein thought that relinquishing assertion (2), i.e., denying that spatially sepa-
rated objects have real states, would make physics impossible. But a second impor-
tant point made by Bohr is that EPR-doubles are complementary [36]. What does 
this point amount to, when considered in the algebraic framework described above? 
Bohr’s complementarity has been rigorously interpreted in terms of the unitary 
inequivalence of non-regular Hilbert space representations [11]. Since Einstein’s 
argument, on my reconstruction, points out that there are representations describing 
subsystem A of an EPR system that are unitarily inequivalent (premise 4 T ), Bohr’s 
reply can be understood as a rejection of premise 5 T : a complete quantum mechanics 
does not require unitary equivalence of representations. Furthermore, if it is correct 
to reformulate premise 5 T as premise 5 

H
 , then one can see Einstein and Bohr hold-

ing opposite positions in a spectrum of model-theoretical views regarding quantum 
mechanics: while Einstein would deplore its non-categoricity, Bohr would embrace 
it as a theoretical asset.

6  Conclusion

The reconstruction of Einstein’s argument offered in this paper clarifies the assump-
tions behind Howard’s suggestion to read Einstein completeness as categoricity. It 
also reinforces criticism of some of the misconstruals of Einstein completeness in 
the literature. Finally, it explains the sense in which Einstein completeness is differ-
ent than EPR completeness as a type of descriptive completeness, and it sheds some 
light on the Bohr-Einstein controversy. A more thorough understanding of these 
issues would certainly benefit from a fully articulated formal semantics of quantum 
mechanics.
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