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Abstract
There is a longstanding debate on the metaphysical relation between quantum states 
and the systems they describe. A series of relatively recent �-ontology theorems 
have been taken to show that, provided one accepts certain assumptions, “quantum 
states are real”. In this paper I investigate the question of what that claim might be 
taken to mean in light of these theorems. It is argued that, even if one accepts the 
framework and assumptions employed by such theorems, such a conclusion is not 
warranted. Specifically, I argue that when a so-called ontic state is taken to describe 
the properties of a system, the relation between this state and some quantum state as 
established by �-ontology theorems, is not of the kind that would warrant counting 
the quantum state among these properties in any way.

Keywords Reality of quantum states · Ontic models · �-Ontology theorems · MKC 
models

1 Introduction

This paper is about the central question “Is the quantum state real?”. It is a question 
that presumably arose in tandem with the first axiomatizations of quantum mechan-
ics in the early twentieth century. About as old is the more important question of 
what that central question means. In recent years, we find ourselves in the peculiar 
situation that despite a lack of consensus on what the answer to this second question 
should be, there is some consensus that the answer to the central question should be 
“yes” (provided one buys into some assumptions).

At first sight, this seems as unhelpful as giving the same “yes”-answer to the 
question “particle or wave?”. But in the present situation, the “yes” comes in the 
form of a series of formal results known as �-ontology theorems [25]. The most 
famous of these results is the PBR Theorem, named after Pusey, Barrett, and 
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Rudolph [37]. Being formal results, they can only give an answer to a specific 
well-defined reading of the central question. In this paper I clarify what this read-
ing should be taken to be. More accurately, I shall argue that, somewhat provoca-
tively, �-ontology theorems have little to say about the metaphysical status of 
quantum states.

My criticism should not be interpreted as an endorsement of an epistemic inter-
pretation of quantum states. Nor do I wish to claim that there are no good arguments 
in favor of an ontic interpretation (see e.g. [8, 47]). Instead, my aim is to clarify 
the current import of �-ontology theorems on this debate. It is my view that such 
clarification is to be welcomed, as there seems to be some confusion about it going 
around. This is not in the least place due to the peculiar circumstances in which the 
PBR Theorem was introduced to the world. The original preprint title of the paper 
was “The quantum state cannot be interpreted statistically”. It was this ambiguous 
statement that was quickly hyped with soundbites like “This strips away obscurity 
and shows you can’t have an interpretation of a quantum state as probabilistic” (Wal-
lace, as quoted in [38]). Surely, what isn’t meant here is that quantum states do not 
give rise to probabilities.

Only a few months later, confusion was added for those not following the devel-
opments closely, when Lewis et al. [27] put online a preprint of their paper with the 
title “The quantum state can be interpreted statistically” (emphasis added). Not long 
after that, the situation was mediated somewhat when Pusey, Barrett and Rudolph 
gave a modified characterization of their theorem as establishing that, under certain 
circumstances, “quantum states must be real”. More recently, Wallace [49] gave a 
more philosophically sounding characterization of what �-ontology theorems intend 
to show: the necessity of “Quantum state representationalism: The distinct states in 
quantum state space represent different physical possibilities.” In other words, one 
physical possibility cannot accurately be represented by two distinct quantum states.

There is of course a remaining ambiguity concerning what is meant with a “phys-
ical possibility” and how that is to be represented by the theory. In �-ontology the-
orems, it is assumed that these can be captured in terms of so-called ontic states 
(see Sect. 2). Clearly, Wallace takes this to be a reasonable assumption as he writes 
about �-ontology theorems that “it looks reasonably clear (without being univer-
sally accepted) that any plausible non-representational reading of the quantum state 
will have to presume instrumentalism [15] or some other radical departure from the 
usual scientific-realist conception of physical theories as giving a third-party, agent-
independent account of the world”.

Leifer [25] adopts a similar view when discerning “realist” �-epistemic views 
and “neo-Copenhagen” �-epistemic views, and clarifying that �-ontology theo-
rems only rule out the former. Ben-Menahem [5] in turn argues that these theorems 
should be interpreted as supporting a neo-Copenhagen type interpretation for those 
preferring a �-epistemic view, but denies that this means going as far as adopting 
a kind of anti-realist stance towards quantum mechanics as a whole. Oldofredi and 
Lopez [36] argue that the framework adopted in �-ontology theorems is actually 
not adequate to fully capture the realist/anti-realist dichotomy for quantum states. 
Finally, Halvorson [19] argues that the realist/anti-realist division for quantum states 
isn’t really as unambiguous as one might hope at all.
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The combined impression these papers leave us with, is that the precise implica-
tions of �-ontology theorems are not well understood, or at least up for debate. In 
this paper I will steer away somewhat from the metaphysical discussion of when 
exactly quantum state representationalism holds or one is justified in saying that “the 
quantum state is real”. Instead, my focus is on what kind of partial answers to the 
central question �-ontology theorems intend to deliver, and what partial answers 
can actually be inferred from these theorems.

Like any formal result, �-ontology theorems have to presuppose a certain math-
ematical framework within which then certain philosophically or physically moti-
vated assumptions can be formalized to play a role in the proof for the claim to be 
made. I shall not be concerned with the reasonableness of this framework or the 
adopted auxiliary assumptions in this paper. But understanding the framework is 
essential for understanding my critical stance towards �-ontology theorems. It will 
be introduced and discussed in Sect. 2, where I will also explain that the interpreta-
tion of �-ontology theorems is tied up with the interpretation of these frameworks. 
Then, in Sect. 3, I will explain that, insofar as �-ontology theorems prove the neces-
sity of quantum state representationalism, this cannot be taken to imply that quan-
tum states themselves are part of what constitutes a “physical possibility”. In Sect. 4 
it is argued that �-ontology theorems do not even establish quantum state repre-
sentationalism, even if one accepts the framework and auxiliary assumptions they 
adopt. To this end I also discuss two explicit ontic models. The first is due to Gud-
der [17] and the second due to Meyer, Kent and Clifton [9, 23, 30]. Although these 
models are shown to be �-ontic in the sense adopted in �-ontology theorems, there 
is no way of unambiguously linking quantum states to what constitutes a physical 
possibility in these models. I end on a more positive note in Sect. 5 with a discussion 
of what I do take �-ontology theorems to show.

2  Using Ontic Models

To be able to prove anything about the “real properties” of a system, one needs some 
mathematical object that is taken to represent these properties. To this end the notion 
of an ontic state � of a system is introduced. Very little is assumed about what kind 
of objects ontic states are, other than that the set of all possible ontic states � forms 
a measurable space, i.e., it comes equipped with a �-algebra � of subsets of � . This 
ensures that the introduction of probabilities is well-defined.

How exactly � represents properties of a system is left open. The minimal condi-
tion is merely that � can play the functional role for making predictions about the 
outcomes of future measurements. That is, for every physical quantity A, every ontic 
state � determines the probability pA(a|�) for every possible outcome a of a meas-
urement of A. Formally, pA is a Markov kernel from (�,�) to the measurable space 
of possible measurement outcomes for A.1 How these measurement outcomes come 

1 This means that the map � ↦ p
A
(�|�) is a measurable function for every measurable set of possible 

outcomes � and � ↦ p
A
(�|�) is a probability measure for every �.



 Foundations of Physics (2021) 51:38

1 3

38 Page 4 of 26

about is left unspecified: ontic models need not pose a solution to the measurement 
problem.

Ontic models are required to (partially) reproduce the predictions of quantum 
mechanics. In this paper I shall look specifically at fragments of quantum mechan-
ics (see also [25, §4]). A fragment of quantum mechanics consists of a triplet 
(H,P,M) , where H is a finite-dimensional Hilbert space, P is a set of density oper-
ators, and M is a set of POVMs. An ontic model for a fragment (H,P,M) consists 
of a measurable space (�,�) and further satisfies the following two conditions. 

 (I) For every physical quantity A that can be represented by a POVM 
{Ea1

,… ,Ean
} ∈ M , there is a Markov kernel pA such that 

 for every � ∈ � and
 (II) For every density operator � ∈ P there is a non-empty set �

�
 of probability 

distributions over (�,�) such that 

 for every A, ai and � ∈ �
�
.

Thus the minimal requirement for an ontic model is that on average it reproduces 
the Born rule. It is further standard practice to endow the probability distribution � 
associated with some quantum state � with an epistemic interpretation: it represents 
the ignorance regarding the true (ontic) state of the system. It further deserves to be 
noted that, in general, multiple distinct physical quantities will correspond to the 
same POVM. Or, in other words, a single POVM will have multiple distinct rep-
resentations in the ontic model, i.e., the model will be contextual. In addition, the 
set �

�
 will typically not be a singleton set, as preparation contextuality is also to be 

expected [44].
The �-ontic/epistemic distinction was introduced by Harrigan and Spekkens [20]. 

The idea is that an ontic model is �-ontic if

every complete physical state or ontic state in the theory is consistent with 
only one pure quantum state. [20, p. 126]

So the ontic state determines the quantum state and, if a particular quantum state is 
prepared, then with certainty an ontic state obtains that is associated with that quan-
tum state. This coincides with the notion of quantum state representationalism if 
one assumes ontic states encode physical possibilities. The further narrative is that, 
if a given ontic model is �-ontic, and if one interprets ontic states as encoding the 
properties of a system, then it reasonably follows that, in one way or another, pure 
quantum states correspond to possible properties of systems.

In broad terms, this all seems somewhat reasonable. But things get difficult when 
proposing a more concrete ontology. For ontic states it is less clear how exactly they 
are taken to relate to the world than it is for quantum states. Quantum states are 

∑
i

pA(ai|�) = 1

∫ pA(ai|�) d�(�) = Tr(�Eai
)
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given within a rich mathematical structure that may be taken more or less seriously 
when it comes to interpreting quantum mechanics. One popular view is to adopt a 
wave function representation of pure states in Hilbert space. Quantum states then 
correspond to (equivalence classes of) square-integrable functions � ∶ ℝ

3N
→ ℂ . It 

may then be proposed that this 3N-dimensional space is to be taken seriously as a 
candidate for representing the true space of our world [2]. Or one could insist that 
the ontology is to be given in terms of stuff in “ordinary” 3-dimensional space—a 
primitive ontology [16]—and that the relation between quantum states and this stuff 
is only indirect. Or the relation between quantum states and the emergent objects 
from daily life could be more involved still [50]. And one could go on. In short, 
within quantum mechanics there is a lot of additional structure that may be taken 
into account when reflecting on how quantum states relate to the system that is taken 
to be described by it.

Ontic models do not necessarily come equipped with a specific structure that aids 
in the interpretation of ontic states. And if all that is known of an ontic model is 
that it must be �-ontic, then this doesn’t say much about how to interpret quantum 
states, because that will depend on what the ontic state is taken to represent. This 
may be seen as a strength of �-ontology theorems. If successful, they show that pure 
quantum states represent properties of systems, while being permissive about how 
this representation is to work exactly. Even a nomic reading of quantum states as 
preferred by some Bohmians [11] may be compatible with the �-ontic claim.

But this generality also comes at a price. The interpretation of ontic states cannot 
be fixed by any �-ontology theorem and this also means that the interpretation of 
quantum states is still much up for debate even if one accepts the use of ontic mod-
els and is able to show that they must be �-ontic. To illustrate this point consider an 
extreme example. As far as quantum Bayesianism is a viable candidate for interpret-
ing quantum mechanics, “ontic model Bayesianism” may be a viable candidate for 
interpreting ontic models. That is, since the main role of ontic states is determining 
probabilities for the outcomes of measurements, there is no principled reason to not 
interpret ontic states as representing degrees of belief. If one interprets ontic states 
as possible expert opinions, then, if the ontic model is �-ontic, this only implies that 
distinct pure states correspond to poolings of expert opinions for disjoint sets of pos-
sible opinions. But that these sets of expert opinions are disjoint does not mean that 
they must necessarily attribute distinct properties to systems.2

To illustrate the point further, consider the following example. I may have com-
plete confidence in some weather app when it comes to setting my degrees of belief 
about whether it will rain tomorrow. You may have complete confidence in a dif-
ferent weather app that incidentally makes a different predictions for the probabil-
ity of it raining tomorrow. In this case, our epistemic states have zero overlap, but 
our beliefs about it raining tomorrow are not incompatible and our beliefs about the 
correctness of these weather apps is only incompatible if it is assumed that there 
is some “true probability” of it raining tomorrow. But that is specifically what is 

2 But see [34] for an argument that QBists should nevertheless adopt an ontic reading of quantum states.
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denied by Quantum Bayesians who take their views about probability from subjec-
tivists like De Finetti.

It may be noted that all these considerations about ontic states need not under-
mine quantum state representationalism. It all depends on how one wishes to 
understand “physical possibilities”. In fact, QBism itself may be seen as endorsing 
quantum state representationalism if one takes epistemic states of rational agents 
to supervene on physical possibilities. But presumably the aim of �-ontology theo-
rems is to demonstrate something stronger. The intended reading is that ontic states 
pertain in some way to the system specifically and not just to physical possibilities 
broadly construed. For the remainder of this paper I shall abide by this intended 
reading.

3  Ontic Models as Reducing Theories

When bracketing the interpretation of ontic states, �-ontology theorems may be 
understood as aiming to establish a certain inter-theoretic relation between quan-
tum mechanics and possible future theories that are to replace it. Showing that ontic 
models are necessarily �-ontic would go a long way in showing that, whatever the 
state space of such a future theory, no ontic state can be compatible with more than 
one pure quantum state. Thus there will be a bridge law between these ontic states 
and pure quantum states. The bridge law is just the rule that assigns to each ontic 
state its corresponding quantum state.3

As I shall demonstrate in Sect. 4, the existence of such a rule does not trivially 
follow from existing �-ontology theorems. But suppose the existence of such bridge 
laws can be demonstrated. Several questions would arise. Would they justify the 
claim that quantum states are part of the new theory? Does the ontic model then 
really provide a lower-level explanation of what quantum states are? And will it 
fully capture the theoretical role that quantum states are taken to play?

A good starting point is to look at how quantum states are introduced in ontic 
models. First and foremost, quantum states are associated with probability distribu-
tions over ontic states. This structure is reminiscent of probability distributions in 
statistical mechanics. In fact, ontic models seem to be based on Einstein’s idea that 
this is just how one should try to think about quantum mechanics in light of a pos-
sible future complete theory:

Assuming the success of efforts to accomplish a complete physical descrip-
tion, the statistical quantum theory would, within the framework of future 

3 The background assumption is of course that these future theories are compatible with the ontic model 
framework. It reasonable to assume that talk about ontic states of systems only occurs at some emergent 
level where it is also meaningful to talk about individual systems and interventions on such systems in 
terms of measurements. After all, we also do not expect that quantum states will be fundamental in such 
a theory [8]. The further assumption is that at this level the choice of the measurement is independent of 
the state of the system [22].
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physics, take an approximately analogous position to the statistical mechan-
ics within the framework of classical mechanics. [12]

Such an accomplishment would be a hopeful goal if statistical mechanics were a 
properly understood theory without controversy. But the justification of the use 
of probabilities and their meaning in statistical mechanics is by no means clear 
[14, 46]. Trading in the controversies of the foundations of quantum mechanics 
for those of statistical mechanics may be a jump from the frying pan into the fire. 
Nevertheless, it is worthwhile to study the analogy in some more detail.

Immediately after giving their first characterization of �-ontic models (quoted 
earlier), Harrigan and Spekkens provide a second characterization:

In �-ontic models, distinct quantum states correspond to disjoint probability 
distributions over the space of ontic states, whereas in �-epistemic models, 
there exist distinct quantum states that correspond to overlapping probabil-
ity distributions. [20, p. 126]

The idea is then that the ontic states in the support of a distribution associated 
with � can be unambiguously associated with � . As illustrated in Fig. 1, in a �
-ontic model the ontic state can tell us what the quantum state is, whereas in a �
-epistemic model this is not always the case. That this idea is not watertight is the 
main concern in the next section. But for now I will go along with it.

There is an interesting analog in statistical mechanics. For the set of micro-
canonical ensembles it is the case that the probability distributions are pairwise 
non-overlapping. A micro-canonical ensemble corresponds to the uniform dis-
tribution over the states with the same energy, for a fixed value of the energy. 
Every micro state can thus unambiguously be associated with one micro-
canonical ensemble, namely, that corresponding to the energy of that micro 
state. But not many would accept this state of affairs as an argument in favor 

Fig. 1  Pictures clarifying the intuition behind the �-ontic/�-epistemic distinction. Here f
�
 and f

�
 are 

probability densities for probability measures associated with the quantum states � and � . In this pic-
ture, no overlap suggests that ontic states can be associated with quantum states in an unambiguous way. 
When there is an overlap, the ontic states in the overlap cannot discern the quantum states � and �
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of “micro-canonical ensemble representationalism”. At least some qualifying 
remarks would have to be made.

In the case of ontic models it may be that quantum states track some property of 
systems in the same way that micro-canonical ensembles track the energy of sys-
tems. But just like how Hamiltonians and micro-canonical ensembles are not the 
same thing, it is not to be expected that the property picked out by a probability 
distribution associated with a state � is the same thing as that distribution. After all, 
the support of a probability distribution (that what is taken to pick out the relevant 
property), has a lot less structure than the distribution itself. Consequently, it is also 
not to be expected that the property picked out can in any relevant sense be identi-
fied with � itself. Again, this does not undermine quantum state representational-
ism broadly construed. But it does highlight that quantum state representationalism 
should then not be taken to imply that quantum states, as understood in quantum 
mechanics, are a part of the physical possibilities to be associated with them.

There is a further, tangent point worth making. That the probability distribution 
associated with � might be used to pick out a property of the system does not imply 
that this probability distribution should be given an objective interpretation. Regard-
ing the role the quantum state plays as giving rise to probabilities over ontic states, it 
may still be given an epistemic interpretation. Just like how micro-canonical ensem-
bles may be given an epistemic interpretation despite picking out the energy of the 
system. Moreover, the picked out property also need not correspond to the probabili-
ties associated with quantum states by the Born rule. If an ontic model is �-ontic, 
this does not imply that the probabilities from quantum theory should be interpreted 
as objective chances. Thus �-ontology theorems have little to say about the meaning 
of probability in quantum mechanics or in future theories of physics.4

It may be objected at this point that there is an important dis-analogy between the 
probability distributions associated with quantum states in ontic models and micro-
canonical ensembles in statistical mechanics. The micro-canonical ensembles are 
just a special subset of all possible probability distributions and even a special sub-
set of the stationary distributions. When an epistemic interpretation of probability 
is adopted in statistical mechanics, there is in general no principled reason why, a 
priori, certain distributions should play a special role when it comes to epistemic 
attitudes. Additional considerations are needed to single out a certain subset of prob-
ability distributions. But as part of the larger set of probability distributions, the 
micro-canonical ones do have overlaps with other distributions. One may think that 
perhaps this lies behind the legitimacy of an epistemic interpretation.

I maintain that these intuitions are misguided. Although in discussions of ontic 
models the probability distributions associated with quantum states play a special 
role, this is only because these models are investigated as possible candidate models 
that reproduce the quantum mechanical predictions. But in principle there is no rea-
son to not view these distributions as just a subset of all the admissible probability 
distributions. For example, the possibility of non-quantum probability distributions 
is a serious topic of discussion in Bohmian mechanics [48]. And one need not even 

4 There seems to have been a bit of confusion on this point, for example in [6].
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consider exotic cases. When the distributions associated with pure quantum states 
are seen as just a special subset of all distributions associated with arbitrary quan-
tum states, then there will also be overlaps. If one holds that there is no principled 
conceptual distinction between mixed and pure states, then the analogy with statisti-
cal mechanics again lines up.

To sum up, in the best case scenario, �-ontology theorems provide a bridge law 
that associates with each ontic state a unique quantum state. But the relationship 
between the property of being in an ontic state in the support of f

�
 , and the state � 

as used in quantum mechanics is unclear. If some ontic state � picks out the state � , 
this does not imply that a system in the state � should behave in any relevant sense 
as a quantum system in the state � (except in the case of measurements of observa-
bles for which � is an eigenstate). So the best case scenario doesn’t really justify the 
claim that “quantum states are real”. In the next section, I shall argue that the situa-
tion is actually worse than this best case scenario.

4  What Ã ‑Ontology Theorems Do Not Show

4.1  Ã ‑Ontic vs Ã ‑Determinate Models

When moving away from the intended interpretation of ontic models and their com-
ponents, what remains of the concept of �-onticity is that of an inter-theoretic rela-
tion. If successful, �-ontology theorems would show that in any future theory states 
can be linked up with quantum states. The general strategy to try to prove this is to 
show that probability distributions associated with distinct pure quantum states are 
non-overlapping. For example, Pusey et  al. [37, p. 477] state that “[a]n important 
step towards the derivation of our result is the idea that the quantum state is physical 
if distinct quantum states correspond to non-overlapping distributions for � .” How-
ever, if with the quantum state being physical one means that ontic states can be 
unambiguously associated with unique pure quantum states, then this inference is 
not logically valid. It is worthwhile to make the issue more precise.

The idea of a �-ontic model as introduced by Harrigan and Spekkens [20] is that 
each ontic state is compatible with at most one pure quantum state. I shall call an 
ontic model that satisfies this criterion �-determinate and reserve the term �-ontic 
for the related notion of non-overlapping distributions that is used in �-ontology 
theorems.5

Consider an ontic model (�,�) for a fragment (H,P,M) , where P also contains 
pure states. Let [�] denote the 1-dimensional projection on the line spanned by the 
vector � ∈ H . The ontic model is called �-determinate if there exists a map that 
assigns to each pure state [�] ∈ P , a measurable set �[�] ∈ � such that for all pairs 
of pure states [�], [�] ∈ P

 (i) �[�] ∩ �[�] = ∅ , whenever [�] ≠ [�],

5 Montina [32] uses the term “ �-ontic in the strong sense” instead of “ �-determinate”.
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 (ii) �(�[�]) = 1 for all � ∈ �[�].

Condition (i) ensures that if � ∈ �[�] , then one can unambiguously conclude that � 
is the corresponding quantum state (up to a phase factor). Condition (ii) implies that 
if a system is prepared according to � , then with probability one an ontic state is 
prepared for which � is the corresponding quantum state. It is allowed that the union ⋃

[�]∈P �[�] is a proper subset of � . So there may be ontic states that only corre-
spond to some mixed state, but not to any pure state. There can even be ontic states 
that do not correspond to any quantum state at all and thus truly go beyond quantum 
mechanics. Allowing for this is inconsequential for the points to be made.

It was immediately recognized by Harrigan and Spekkens [20] that �-determi-
nateness implies that distinct quantum states should correspond to non-overlapping 
probability distributions. It is this criterion that is used in most �-ontology theorems 
and formalized explicitly as the criterion of �-onticity in [25]. Specifically, an ontic 
model (�,�) for a fragment (H,P,M) is called �-ontic if for every distinct pair 
[�], [�] ∈ P the corresponding probability distributions are non-overlapping, i.e., 
the variational distance between their corresponding probability measures equals 1:

for all � ∈ �[�], � ∈ �[�] . The model is called � -epistemic if it is not �-ontic.
There is a strong intuition that any ontic model is �-determinate if and only if it 

is �-ontic. Figure 1 illustrates this. When two distributions corresponding to distinct 
pure quantum states do not overlap, their supports must be disjoint. And so one can 
associate the quantum state � with any ontic state in the support of the distribution 
corresponding to �.

But part of the work in this reasoning is being done by the familiar topology of 
the line. In Fig. 1 the supports of the distributions form neat intervals of the line. But 
using the line is just a convenient abstraction for drawing pictures. The support of a 
distribution is only defined up to sets of measure zero. In the case of Fig. 1 the natu-
ral choice is of course a single interval. But in general there need not be a natural 
way to pick out one set as the support of the distribution.

A second problem is that the choice for the support of each distribution has to 
be made in such a way that they are non-overlapping for all pairs of pure quantum 
states. To elaborate, consider an arbitrary �-ontic model. Given a pair of quantum 
states � ,� , it can be straightforward to construct distributions f

�
, f
�
 that have dis-

joint supports . But it is not trivial to introduce a single background measure with 
respect to which every quantum state � has a distribution f

�
 in such a way that f

�
 

and f
�
 have disjoint supports for every pair of quantum states.

It is true that every �-determinate model is �-ontic. This follows because the 
supremum in (1) is attained for the choice � = �[�] . In other words, if �[�] is already 
given, it is obvious that this set should be chosen as the support for the probability 
distribution. The converse, however, is not true in general. An example of a model 
for a single qubit that is �-ontic but not �-determinate was given by Montina [31].

It is not clear if more general models exist that are �-ontic but not �-determinate. 
In the next two subsections I consider two sets of ontic models for which it is relatively 

(1)sup
�∈�

|�(�) − �(�)| = 1
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straightforward to show that they are �-ontic. However, the question if they are also �
-determinate is highly non-trivial and I have only been able to show that they are by 
invoking the continuum hypothesis. Natural candidates for a map [�] ↦ �[�] tend to 
fail and the unnatural candidates are highly non-unique. This non-uniqueness implies 
that even if one counts these models as �-determinate (e.g. by accepting the continuum 
hypothesis), there is still no unambiguous way to associate a quantum state with a given 
ontic state. In the face of such complexity it is doubtful to conclude quantum state rep-
resentationalism even if one accepts the intended interpretation of ontic states and has a 
�-determinate ontic model.

4.2  Gudder’s Model

In this section I consider a value definite ontic model for the fragment (H,P,M) with 
H a Hilbert space with finite dimension d > 2 , P the set of all pure states, and M 
the set of all self-adjoint operators. It is a type of minimal hidden variable theory as 
described by Gudder [17].

The Kochen–Specker Theorem implies that it is impossible to assign unique definite 
values to all quantum observables in a consistent way. Hidden variable theories can 
deal with this obstacle by allowing the definite value assigned to a quantum observable 
to depend on the context within which the observable is measured. From an algebraic 
point of view, the most obvious choice for making the notion of a context precise, is 
by associating it with a maximal observable A, i.e., an observable with a non-degen-
erate spectrum. Such a maximal observable defines a unique orthonormal basis of 
eigenstates e1,… , ed (up to phase). Now take as the context the set of corresponding 
1-dimensional projection operators. Thus the context CA defined by A is

The possible observables that can be measured within the context CA are those 
whose operator commutes with A or, equivalently, with all of the [ei] . The set of all 
contexts is denoted by ℭ.

An ontic state is a rule that picks out for every context the “true” projection oper-
ator within that context. Thus the set of ontic states is

where L1(H) denotes the set of 1-dimensional projection operators. Each ontic state 
determines contextual definite values for all observables in a straightforward way. 
Let A be any observable and C a context such that A commutes with all projections 
in C. Then

is the value of A in the context C when the state is � . It is easy to check 
that this ensures that v

�
[A|C] is an element of the spectrum of A and that 

v
�
[f (A)|C] = f (v

�
[A|C]) for any real-valued function f. Thus within each contexts 

the functional relations between observables are respected.

(2)CA ∶= {[e1],… , [ed]}.

(3)�G ∶=
{
� ∶ ℭ → L1(H)

||| �(C) ∈ C
}
,

(4)v
�
[A|C] ∶= Tr(A�(C))
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The state space is turned into a measurable space by treating � as a stochastic 
process with ℭ playing the role of time.6 What this means is that the �-algebra is 
defined in the following way. For any finite string of contexts C1,… ,Cn and quan-
tum states �1,… ,�n satisfying [�i] ∈ Ci define

the set of ontic states that pick out [�i] as the true projection in the context Ci for 
every i. Then take �G to be the smallest �-algebra containing all sets of the form (5). 
A probability measure on (�G,�G) is completely determined by its action on the 
sets of the form (5).7

For a pure state [�] ∈ P , the corresponding probability measure �[�] is defined as

Within each context, �[�] reproduces the Born rule for all observables in that con-
text.8 On the other hand, observables in distinct contexts are treated as stochastically 
independent, even if they are associated with the same self-adjoint operator.

It is far from trivial to try to think of this model as a model in which “quantum 
states are real”. The main role of any ontic state is to assign (contextual) definite 
values to all observables. But such definite values have little to say about quantum 
states. And so, for a given ontic state, it is not clear which, if any, quantum state to 
associate with it. Nevertheless, it is not very difficult to show that the model is in 
fact �-ontic.

Consider an arbitrary pure state [�] ∈ P and let (C�

i
)∞
i=1

 be some countable 
sequence of distinct contexts such that [�] ∈ C

�

i
 for every i.9 Now define

This is a measurable set of ontic states that satisfies

for every [�] . Thus for any pair of distinct states [�], [�] the corresponding probabil-
ity measures �[�],�[�] are non-overlapping.

(5)�
�1,…,�n

C1,…,Cn
∶=

{
� ∈ �G

||| �(Ci) = [�i] ∀i
}

(6)�[�]

(
�
�1,…,�n

C1,…,Cn

)
∶=

n∏
i=1

||||
⟨
�
|||�i

⟩||||
2

.

(7)�[�] ∶=

∞⋂
i=1

�
�

C
�

i

.

(8)�[�]

(
�[�]

)
=

∞∏
i=1

||||
⟨
�
|||�
⟩||||

2

=

{
1 [�] = [�],

0 otherwise,

8 Of course, most observables occur in multiple contexts and thus underdetermine which context is to be 
used. It does not matter which context is then selected or how it is selected: the Born rule holds in each 
of them.
9 This is the point where it is relevant that d > 2 because if d = 2 every [�] belongs to only one context.

6 It is of course much more common to use ℝ or ℤ to represent time, because these sets have a natural 
ordering. But to the extend that I make use of the theory of stochastic processes here, the existence of 
such an ordering is irrelevant.
7 This follows from Kolmogorov’s Extension Theorem.
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The given construction for associating measurable sets of ontic states with pure 
quantum states (7) does not suffice to show that the model is �-determinate. For this 
it would be required that each ontic state is associated with at most one quantum 
state: condition (i) should be satisfied. But whenever [�] and [�] do not commute, if 
� ∈ �[�] , this poses no constraints on the values � can take on for the contexts C�

i
 . 

Thus �[�] ∩ �[�] is not empty and knowing that � ∈ �[�] does not allow one to infer 
that [�] is the quantum state of the system.

A natural first reaction to �[�] as defined by (7), is that it is simply too big. Think-
ing about what it means for an ontic state � to be a [�]-state, one may start with the 
requirement that � at least picks out the state [�] in any context where this is possi-
ble. That is, � should lie in the set

There are several problems when heading in this direction. First, it is still the case 
that �◦

[�]
∩ �

◦

[�]
 is non-empty whenever [�] and [�] do not commute. But more 

importantly, the set �◦

[�]
 is not �G-measurable (proven below), and so it cannot be 

used to show that (�G,�G) is a �-determinate model. One might object that this is 
just a sign that also �G is too small. There may be the intuition to insist that sets like 
�

◦

[�]
 should just be measurable. But this intuition seems to rely on taking quantum 

states as a natural ingredient to constructing ontic models, which would be question 
begging. The fact is that, from the point of view of the ontic model, there is no obvi-
ous reason to include �◦

[�]
 as a measurable set. But even if one does have a non-

question begging argument for including the set, it is not helpful as the following 
theorem demonstrates.10

Theorem 1 The set �◦

[�]
 is not �G-measurable and there exist extensions �+

[�]
 and 

�
−
[�]

 of �[�] to the smallest �-algebra containing both �G and �◦

[�]
 such that

This theorem shows that even if one includes a set like �◦

[�]
 , this does not mean 

that the set will have probability one according to the quantum state [�] . It may even 
have probability zero. The upshot is that the natural step closer to satisfying condi-
tion (i) of �-determinateness takes us a step further away from satisfying condition 
(ii). In a sense, the set �◦

[�]
 is simply too small.

A different strategy is needed to determine if the model is �-determinate. This 
requires a better grasp on what kind of maps between pure quantum states and meas-
urable subset of �G are possible. Consider again the map given by (7).

(9)

�
◦

[�]
∶=

�
⎧⎪⎨⎪⎩

C ∈ ℭ;

[�] ∈ C

⎫⎪⎬⎪⎭

�
�

C
=
�
� ∈ �G

��� [�] ∈ C ⟹ �(C) = [�]
�
.

(10)�
+
[�]

(
�

◦

[�]

)
= 1 and �

−
[�]

(
�

◦

[�]

)
= 0.

10 A proof for this theorem is given in Appendix A.1.
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Whatever the set of ontic states corresponding to [�] is going to be, it might as 
well be a subset of this set since it has �[�]-probability 1. Now consider any pair of 
distinct pure states [�], [�] . The easiest way to modify �[�] and �[�] to ensure that 
their intersection is empty, is to intersect one with the complement of the other.

For any [�] one can intersect �[�] with countably many sets �c
[�]

 and the resulting 
set is still measurable and has �[�]-probability 1. This is clearly a step in the right 
direction. But there are uncountably many �[�] that have a non-empty intersection 
with �[�] and taking the intersection with all sets �c

[�]
 again results in a non-measur-

able set. The problem may be circumvented if for any [�] for which �[�] is not modi-
fied by intersecting it with �c

[�]
 , instead, �[�] is modified by intersecting it with �c

[�]
 . 

Thus for any pair [�], [�] one needs to either intersect �[�] with �c
[�]

 , or �[�] with 
�

c
[�]

 such that for any [�] the set �[�] is being intersected with only countably many 
�

c
[�]

 . This turns out to be possible if and only if the continuum hypothesis holds.
To make this strategy more precise, consider maps m ∶ L1(H) → L1(H)ℕ that 

satisfy

For any such m call

a canonically modified � -ontic subset. The following theorem then holds.11

Theorem 2 There exists a map m such that the canonically modified �-ontic subsets 
make the ontic model (�G,�G) �-determinate if and only if the continuum hypoth-
esis holds.

Canonically modifying the �-ontic subsets is not the only possible strategy for 
trying to make the model �-determinate.12 Therefore it is not clear if the continuum 
hypothesis is necessary for showing that the ontic model is �-determinate. But it 
may well be the case that whether the ontic model (�G,�G) is �-determinate or 
not depends on whether one accepts the continuum hypothesis. If so, I don’t think 
the main lesson would be about the validity of the continuum hypothesis.13 What is 
important in that case, is that it is impossible to give an explicit map [�] ↦ �[�] that 
makes the model �-determinate. Without an explicit map, there is no meaningful 

(11)m[�]
n

∶= (m([�]))(n) ≠ [�] ∀n ∈ ℕ, [�] ∈ L1(H).

(12)�
m
[�]

∶= �[�] ∩
⋂
n∈ℕ

�
c

m
[�]
n

12 Here is another possible strategy. Suppose [�], [�] are given and non-commuting. Let �′ be any state 
such that [��][�] = 0 and [��][�] ≠ 0 and let (C�

�

i
)∞
i=1

 be a countable sequence of distinct contexts con-
taining [��] . Each set ��

′

C
i

 has �[�]-probability zero, but a positive probability according to �[�] . The count-
able union 

⋃∞

i=1
�
�
�

C
i

 therefore also has �[�]-probability zero, but �[�]-probability one. So one can modify 
�[�] and �[�] by intersecting the first with 

⋃∞

i=1
�
�
�

C
i

 and the second with the complement thereof.
13 Although it is interesting to note that the version of the continuum hypothesis used here is precisely 
the one used by Freiling [13] to argue against its validity.

11 A proof is given in Appendix A.2.
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sense in which a quantum state can be considered to be part of the ontic state of a 
system in this model, even though the model is � -determinate. Before discussing 
the further lessons from this model regardless of whether the continuum hypothesis 
is needed, I first consider a related set of ontic models.

4.3  The MKC Models

The ontic models due to Meyer [30], Kent [23] and Clifton and Kent [9] were specif-
ically designed to show the possibility of noncontextual value definite ontic models 
that can reproduce the predictions of quantum mechanics with arbitrary precision. 
Thus, even though the Kochen–Specker Theorem rules out noncontextual models 
that reproduce all of quantum mechanics, there are noncontextual models that are 
empirically indiscernible from quantum mechanics [3, 21]. They are of interest here, 
because they provide even less handles to associate quantum states with ontic states 
than the models by Gudder [17]. Nevertheless, it is again possible to show that the 
models are �-determinate with the use of the continuum hypothesis.

The construction of the models resembles the construction above. Ontic states 
assign definite values to observables within a given context. But instead of consider-
ing the complete set of contexts ℭ , one now considers a specific countable subset 
ℭMKC ⊂ ℭ . This set of contexts is chosen to satisfy the following two conditions: 

1. Any context can be approximated up to arbitrary precision. For every 
C = {[e1],… , [ed]} ∈ ℭ and 𝜖 > 0 there exists a C� = {[e�

1
],… , [e�

d
]} ∈ ℭMKC 

such that Tr([ei][e�i]) > 1 − 𝜖 for all i.
2. Every pair of contexts is totally incompatible. For any pair C1,C2 ∈ ℭMKC with 

C1 ≠ C2 and every [�] ∈ C1, [�] ∈ C2 , [�] and [�] do not commute.

The set of ontic states is now given by

Because of condition 2, every (non-trivial) observable is compatible with at most 
one context. Therefore, a definite value assigned to it is automatically noncontex-
tual. Because of the first condition, for every observable A in quantum mechanics, 
there is a context C in the model and an observable A′ that is compatible with C, 
such that A′ is a good approximation of A.

The fragment of quantum mechanics (H,P,M) is now such that P still contains 
all the pure states, but M now only contains the self-adjoint operators that have an 
orthonormal basis of eigenstates that forms a context in ℭMKC . The �-algebra �MKC 
is again introduced with the use of the sets from (5), but now with �G replaced by 
�MKC . For any pure state [�] ∈ P the corresponding probability measure is again 
given by (6).

Showing that the MKC models are �-ontic is not entirely trivial. For most 
given states [�], [�] , there are no contexts that contain [�] or [�] or a pure state 

(13)�MKC ∶=
{
� ∶ ℭMKC → L1(H)

||| �(C) ∈ C
}
.
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perpendicular to one of these. This is because only countably many pure states occur 
in some context. Thus, for almost every pure state [�] one has

for every set of the form ��1,…,�n

C1,…,Cn
.

To show that the MKC models are �-ontic nonetheless, we look at the limit 

n → ∞ . For most sequences ((Ci, [�i]))
∞
i=1

 , the probability 
∏n

i=1

����
�
�
����i

�����
2

 will go to 

zero as n → ∞ . But if the sequence is appropriately chosen, it will be finite. This is 
applied in the proof of the following theorem (see Appendix A.3).

Theorem  3 For every pure state [�] and every non-zero n ∈ ℕ, there exists a set 
�[�],n ∈ �MKC such that

for all [�] ≠ [�] . Thus the MKC models are �-ontic.

What is interesting about this theorem, is that it establishes that the models are 
�-ontic without providing a candidate for a set that is big enough to contain all the 
ontic states corresponding to some quantum state [�] . But as n increases, �[�],n gets 
closer to being such a candidate. So as a first step to getting such a set, one can 
take the union of all the �[�],n for all values of n. This in turn is much larger than 
required, for only when n approaches infinity do the ontic states in �[�],n start to 
“center around” [�] . So instead define

This set does satisfy

Like with Gudder’s model, the MKC models are not obviously �-determinate. 
Whenever [�] and [�] do not commute, �[�] ∩ �[�] will be non-empty. But as is the 
case with Gudder’s model, a canonical modification of these sets can be used to 
make the model �-determinate if one assumes the continuum hypothesis.

There is however also an interesting distinction. For an ontic state � to correspond 
to the quantum state [�] it may be taken to be a necessary condition that � ∈ �[�] . 
This set is what is known as a tail event. This means that which values � takes on 
at any finite set of contexts is irrelevant to determine if � ∈ �[�] or not; it all hinges 
on how � behaves in the limit (the tail). But for all practical purposes, if the model 
is to be used for making predictions, it suffices to know how � behaves for a large, 
but finite, set of contexts. So which quantum state corresponds to some ontic state is 

(14)0 < 𝜇[𝜓](𝛥
𝜓1,…,𝜓n

C1,…,Cn
) < 1

(15)𝜇[𝜓]

(
𝛬[𝜓],n

)
> 1 −

1

n
and 𝜇[𝜙]

(
𝛬[𝜓],n

)
= 0

(16)�[�] ∶=

∞⋂
m=1

∞⋃
n=m

�[�],n.

(17)�[�]

(
�[�]

)
=

{
1 [�] = [�],

0 [�] ≠ [�].
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more or less irrelevant from the point of view of the model. It then seems peculiar to 
attach any ontological significance to this quantum state.

This point can even be exploited a bit further. As Barrett and Kent [3, p. 159] 
have discussed, when it comes to reproducing the predictions of quantum mechanics 
up to a finite precision, one does not need the full set of contexts ℭMKC . An appro-
priately chosen finite subset will do as well. Although such a model is in principle 
discernible from quantum mechanics, there also always exists such a model that is 
not discernible given the present day finite precision of measurement. So within the 
bounds of such finite precision, the finite model is just as good as the full model. But 
such finite models are also trivially not �-determinate; they only have a finite num-
ber of ontic states, while there are uncountably many pure quantum states. Dragging 
in finite ontic models may not be an entirely fair move to make here. But it merely 
serves to drive the point home that, from the perspective of the ontic states in the 
MKC models, what the “true” quantum state is does not matter.

4.4  Conclusion

The general strategy of �-ontology theorems is to show that distinct quantum states 
correspond to non-overlapping probability distributions. But “non-overlap” is a 
somewhat misleading term here. It suggests that the probability distributions cor-
responding to distinct quantum states have disjoint supports, and that quantum states 
can unambiguously be associated with the ontic states in those supports. In other 
words, it is taken for granted that showing that a model is �-ontic is sufficient to 
show that it is �-determinate. The ontic models just discussed demonstrate that this 
is not an innocent inference.

As demonstrated, if one assumes that the continuum hypothesis is true, then these 
models are �-determinate. It is not clear if the continuum hypothesis is in fact nec-
essary. If it is, then we have here an example of �-determinate ontic models for 
which it is questionable that they endorse quantum state representationalism, even 
in the broad sense. It is true that in this case there exists a map that makes it the case 
that changing the quantum state necessitates a change in the ontic state. But since 
this map only exists in the Platonic realm as some inaccessible mathematical entity, 
there is no way of telling what kind of change in the ontic state is required. From the 
point of view of the, allegedly more fundamental, ontic state, there is also no way of 
telling what the quantum state is. And whatever the quantum state is, it is irrelevant 
from the point of view of the ontic state. So there is no merit in granting the quan-
tum state any metaphysical status here.

Would the case for quantum state representationalism be helped if the continuum 
hypothesis turned out to not be necessary? I don’t think so. In this case, it would be 
possible for any of the models to give an explicit map r ∶ P → � , r ∶ [�] ↦ �

r
[�]

 
that makes the model �-determinate. But this map would also be non-unique. So if 
� ∈ �

r
[�]

 for some such map, but also � ∉ �
r�

[�]
 for some other map r′ , how would we 

decide if [�] is the true quantum state or not if the ontic state is �?
The problem is that one can shuffle around sets of ontic states of measure zero 

from one quantum state to another to modify a given map r. Of course, shuffling 
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around such sets is always possible in probability theory. In many cases this is 
unproblematic because there is a natural candidate for how to do this like in Fig. 1. 
But in the case of the ontic models just discussed there is no natural way to remove 
the ambiguity.

The reason behind this is that the ontic states in these models do not care about 
quantum states. What matters from the point of view of the ontic model, is which 
observables have which values. These may be considered the genuine properties of 
the system. If by some rule, some attribution of definite values also gives rise to 
some quantum state, this information is irrelevant and arbitrary.

This point is even stronger in the case of the MKC models. In these models most 
quantum states14 have to be associated with so-called tail events. This means that for 
almost every quantum state [�] , any specification of a finite number of definite val-
ues of physical quantities is completely irrelevant for determining whether an ontic 
state � is to correspond to [�] or not. For a given � , only its behavior “in the limit” 
determines to which quantum state it corresponds.

Thus from within the ontic models there is no way to introduce a preferred map r 
that would establish the “true” relationship between ontic states and quantum states. 
The most natural interpretation of this state of affairs is that there simply is no such 
relationship and the existence of these maps that make the models �-determinate is 
merely a mathematical artifact.

Another way to understand the issues at hand is by looking at an analogy with 
classical mechanics. For a classical system, any physical quantity can be repre-
sented by a function on phase space. The state of the system in this way naturally 
determines the value of that quantity. But this does not mean that it is meaningful 
to interpret every function on phase space as a physical quantity. Especially when 
that function becomes rather complex or even requires the validity of the continuum 
hypothesis to warrant its existence. That would be a case of taking your mathematics 
too seriously for interpreting your physical model.

5  What Ã ‑Ontology Theorems Do Show

I want to end this paper with a more positive message. If the �-ontic/epistemic dis-
tinction is supposed to capture whether the quantum state corresponds to an objec-
tive property of an individual quantum system or not, then the formal definition 
adopted in �-ontology theorems is not appropriate. After all, these theorems do not 
settle the question whether ontic models should be �-determinate or not.

This does not imply that �-ontology theorems are void of content. The theorems 
do show that ontic models must be �-ontic in the sense that distinct quantum states 
correspond to non-overlapping probability distributions. This implies that these the-
orems do rule out some of the explanatory strategies that some have hoped to find 
in �-epistemic models and set out in Spekkens’ toy model [45]. And to be fair to 
Pusey et al. [37], their theorem seems to have been designed first and foremost to 

14 All except a countable set.
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demonstrate the impossibility of extending this toy model to more serious quantum 
systems. The grand metaphysical claims that followed after that may have been not 
much more than a (successful) marketing hype.

The untenability of these metaphysical claims also sheds new light on how exist-
ing �-ontology theorems may be compared. These theorems typically adopt addi-
tional assumptions. The PBR Theorem, for example, makes use of the assumption 
of preparation independence (a weak version of separability). Over the years, it has 
been shown that weaker versions of this assumption also suffice [18, 33, 41] (see 
also [25, §7.4]). The �-ontology theorem due to Colbeck and Renner [10] makes use 
of parameter independence. In fact, not long after Pusey et al. [37] presented their 
theorem, it was shown that additional assumptions are necessary. Without additional 
assumptions, it is always possible to construct a �-epistemic model [1, 27, 28].

The overlap in probability distributions allowed in these �-epistemic models is 
quite small though. It was shown by Maroney [29] that this is necessarily so.15 This 
result on its own suffices to rule out the perks some would hope to attribute to �
-epistemic models [25, §2]. In particular, it has been shown thoroughly, both theo-
retically and experimentally, that no such model can explain the indistinguishabil-
ity of non-orthogonal quantum states [4, 7, 24, 26, 35, 39]. Thus even if in some 
ontic model a non-negligible set of ontic states is compatible with multiple quantum 
states, this cannot be used to explain why the success rate for finding out which 
quantum state was prepared with using a single shot measurement is as low as it is 
according to quantum mechanics.

The results in this paper do nothing to counter those conclusions. The new claim 
I have made here, is that even in the limit of zero overlap, one cannot conclude that 
ontic states should determine quantum states. Therefore, the conclusions that may 
be drawn from �-ontology theorems do not go beyond the conclusions that may 
be drawn from the BCLM Theorem [4], which places constraints on the possible 
overlaps.

As a final note it is worth pointing out that from an experimental point of view 
this conclusion is not entirely novel. The notion of non-overlapping probability dis-
tributions itself is not robust with respect to measurement errors. Any �-ontic model 
can always be approximated by a �-epistemic model by introducing an arbitrarily 
small overlap in the probability distributions.16 Thus experimentally it was already 
the case that demonstrating the necessity of quantum state representationalism is 
impossible, even if one accepts all the usual premises. The novel conclusion here is 
that this also the case at the theoretical level.

15 Even though �-epistemic models can always be constructed, they cannot be maximally �-epistemic.
16 For further discussion see [40].
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Proofs of Theorems

The first two theorems require some insight in the kind of sets that are and are not 
contained in �G . For this we make use of the �-algebra �cg of countably generated 
subsets of �G.

Definition 1 For an arbitrary countable set of contexts ℭc ⊂ ℭ define

A subset 𝛥 ⊂ 𝛬G is called countably generated if there exists a countable set ℭc and 
a subset 𝛥ℭc

⊂ 𝛬ℭc
 such that

Thus a subset of 𝛥 ⊂ 𝛬G is countably generated iff for any � one only needs to 
check its action on countably many contexts to determine whether � ∈ � . The fol-
lowing lemma has a straightforward proof which is left to the reader.

Lemma 1 The set �cg of all countably generated subsets of �G is a �-algebra and 
has �G as a sub-�-algebra.

Proof of Theorem 1

The proof of Theorem 1 requires the following lemma:

Lemma 2 Let (�,�,�) be a probability space and A be a possibly non-measurable 
subset of � such that

then there exists an extension �+ of � to �A, the �-algebra generated by � and A,   
such that �+(A) = 1.

Proof The smallest �-algebra containing � and A is given by

Now define �+ ∶ �A → [0, 1] by

To see that this is well-defined, suppose A ∩ 𝛥1 = A ∩ 𝛥1 for some 𝛥1,𝛥1 ∈ 𝛴 . Then

(18)
�ℭc

∶=
{
� ∶ ℭc → L1(H)

||| �(C) ∈ C
}
,

�ℭc
∶ �G → �ℭc

,
[
�ℭc

(�)
]
(C) ∶= �(C).

(19)� = �
−1
ℭc

(
�ℭc

)
.

(20)∀� ∈ � ∶ A ∩ � = ∅ ⟹ �(�) = 0,

(21)�A ∶=
{
(A ∩ �1) ∪ (Ac ∩ �2)

|||�1,�2 ∈ �

}
.

(22)�
+((A ∩ �1) ∪ (Ac ∩ �2)) ∶= �(�1).
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From (20) it follows that 𝜇(𝛥1 ∩ 𝛥
c
1
) = 𝜇(𝛥c

1
∩ 𝛥1) = 0 and therefore

That �+ is a probability measure follows from the fact that � is a probability meas-
ure. Finally, it holds that

  ◻

We now turn to the proof of Theorem 1. The set �◦

[�]
 is not countably gener-

ated so by Lemma 1 it is not �G-measurable. For the remainder of the proof it 
only needs to be shown that both �◦

[�]
 and �G��

◦

[�]
 satisfy condition (20) and then 

Lemma 2 can be applied.
To see that �◦

[�]
 satisfies (20) let � ∈ � be any subset that satisfies 

� ∩ �
◦

[�]
= ∅ . By Lemma 1 there exists a countable set ℭc and a subset 𝛥ℭc

⊂ 𝛬ℭc
 

such that � = �
−1
ℭc

(
�ℭc

)
 . Now suppose � ∈ � . Because � ∉ �

◦

[�]
 , there exists a 

context C ∈ ℭc such that [�] ∈ C and �(C) ≠ [�] . Thus � ∈ �G��
�

C
 and, more 

generally,

Because � is the countable union of sets with �[�]-probability zero, � is itself a 
measurable set with �[�]-probability zero. Hence �[�](�) = 0 and there exists an 
extension �+

[�]
 such that �+

[�]
(�◦

[�]
) = 1.

To see that �G��
◦

[�]
 satisfies (20) let � ∈ � be any subset that satisfies 

� ∩ �G��
◦

[�]
= ∅ . It will be shown that this only holds if � is empty. Suppose 

towards a contradiction that � is not empty and � ∈ � . Let ℭc and �ℭc
 again be as in 

Lemma 1. Because ℭc is countable there is a C that contains [�] such that C ∉ ℭc . 
If �(C) ≠ [�] then � ∈ �G��

◦

[�]
 and a contradiction is obtained. If �(C) = [�] , then 

define �′ to be equal to � for all contexts except for C where it attains any value other 
than [�] . Then �� ∈ �G��

◦

[�]
 but also, since C ∉ ℭc , �� ∈ � , again giving a contra-

diction. Hence � ∩ �G��
◦

[�]
= ∅ if and only if � = ∅ . By Lemma 1 then there exists 

a measure �−
�
 which is an extension of �[�] and which satisfies �−

[�]
(�G��

◦

[�]
) = 1.

Proof of Theorem 2

Here we require the following lemma.

(23)
A ∩ (𝛥1 ∩ 𝛥

c
1
) = (A ∩ 𝛥1) ∩ 𝛥

c
1
=A ∩ 𝛥1 ∩ 𝛥

c
1
= ∅,

A ∩ (𝛥c
1
∩ 𝛥1) = (A ∩ 𝛥1) ∩ 𝛥

c
1
=A ∩ 𝛥1 ∩ 𝛥

c
1
= ∅.

(24)
𝜇(𝛥1) = 𝜇(𝛥1 ∩ 𝛥1) + 𝜇(𝛥1 ∩ 𝛥

c
1
)

= 𝜇(𝛥1 ∩ 𝛥1) + 𝜇(𝛥c
1
∩ 𝛥1) = 𝜇(𝛥1).

(25)�
+(A) = �

+((A ∩ �) ∪ (Ac ∩ ∅)) = �(�) = 1.

(26)
𝛥 ⊂ 𝛥 ∶=

⋃
C ∈ ℭc

[𝜓] ∈ C

𝛬G�𝛥
𝜓

C
.
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Lemma 3 Let X be a set with the cardinality of ℝ . Then the continuum hypothesis is 
equivalent to the existence of a map X ∋ x ↦ 𝛥x ⊂ X such that �x is countable for 
every x and for all x1, x2 ∈ X

Proof The proof takes place in X2 . For any x ∈ X define sets corresponding to rows 
and columns in X2:

It was shown by Sierpiński [42, 43] that the continuum hypothesis is equivalent with 
the existence of two subsets R,C ⊂ X2 such that X2 = R ∪ C and for every x ∈ X the 
sets R ∩ Rx and C ∩ Cx are countable.17

Now assume the continuum hypothesis holds and suppose R, C are subsets of X2 
as above. Because for every (x1, x2) ∈ X2 it holds that it is either an element of R or 
C it follows that either

or

Now take �x ∶= rx ∪ cx . Then �x is a countable set for every x and from (29) and 
(30) it follows that for all x1, x2 ∈ X either x1 ∈ �x2

 or x2 ∈ �x1
.

For the converse assume x ↦ �x is given. Define C ∶= {(x1, x2) | x2 ∈ �x1
} and 

R ∶= {(x1, x2) | x1 ∈ �x2
} . Because �x is countable, so are C ∩ Cx and R ∩ Rx and 

from Eq. (27) it follows that R ∪ C = X2 .   ◻

Proof of Theorem 2 I start with showing that if the continuum hypothesis holds, then 
(�G,�G) is �-determinate. Apply Lemma 3 to the set L1(H) and let 𝛥[𝜓] ⊂ L1(H) 
be a countable subset for every [�] such that for all [�], [�] either [�] ∈ �[�] or 
[�] ∈ �[�].

Now define canonical �-ontic subsets �m
[�]

 by choosing m such that m([�]) ranges 
over all elements of �[�] but skipping the value [�] . From property (27) it follows 
that for any pair of distinct pure states [�], [�]

Thus it follows that

Conversely, suppose there is a map m such that (32) holds for all [�], [�] . This equa-
tion holds iff

(27)x1 ∈ �x2
or x2 ∈ �x1

.

(28)Rx ∶= {(x�, x) | x� ∈ X}, Cx ∶= {(x, x�) | x� ∈ X}.

(29)x1 ∈ rx2 ∶= {x� ∈ X |(x�, x2) ∈ Rx2
∩ R}

(30)x2 ∈ cx1 ∶= {x� ∈ X |(x1, x�) ∈ Cx1
∩ C}.

(31)∃n ∈ ℕ s.t. [�] = m[�]
n

or [�] = m[�]
n
.

(32)�
m
[�]

∩ �
m
[�]

= ∅.

17 Validity of the axiom of choice is assumed here.
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Therefore, the map

satisfies the criteria of the map in Lemma 3 and the continuum hypothesis holds.  
 ◻

Proof of Theorem 3

Let [�] and n be given. Now consider the Euler function E ∶ [0, 1] → [0, 1] given 
by

For the given n there exists a qn > 0 such that E(qn) = 1 −
1

n
 . Now for every k ∈ ℕ 

choose a context Ck,n with a [�k,n] ∈ Ck,n such that 
||||
⟨
𝜓
|||𝜓k,n

⟩||||
2

> 1 − qk
n
 . Then 

define

so

For every n, �k,n gets closer and closer to � as k → ∞ . So for any [�] ≠ [�] there 

exists some 𝛿 > 0 and K ∈ ℕ such that 
||||
⟨
𝜙
|||𝜓k,n

⟩||||
2

< 1 − 𝛿 for all k > K . Therefore 

�[�]

(
�[�],n

)
= 0.
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(33)�[�] ∩
⋂
n∈ℕ

�
c

m
[�]
n

= ∅ or �[�] ∩
⋂
n∈ℕ

�
c

m
[�]
n

= ∅.

(34)[𝜓] ↦ {[𝜓]} ∪
{
m[𝜓]

n

||| n ∈ ℕ

}
⊂ L1(H)

(35)E(q) ∶=

∞∏
k=1

(1 − qk).

(36)�[�],n ∶=

∞⋂
k=1

�
�k,n

Ck,n
,

(37)𝜇[𝜓]

(
𝛬[𝜓],n

)
=

∞∏
k=1

||||
⟨
𝜓
|||𝜓k,n

⟩||||
2

>

∞∏
k=1

(1 − qk
n
) = E(qn) = 1 −

1

n
.
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mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen 
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