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Abstract
The formalism of general probabilistic theories provides a universal paradigm that is
suitable for describing various physical systems including classical and quantum ones
as particular cases. Contrary to the usual no-restriction hypothesis, the set of accessible
meters within a given theory can be limited for different reasons, and this raises a
question of what restrictions on meters are operationally relevant. We argue that all
operational restrictions must be closed under simulation, where the simulation scheme
involves mixing and classical post-processing of meters. We distinguish three classes
of such operational restrictions: restrictions on meters originating from restrictions on
effects; restrictions on meters that do not restrict the set of effects in any way; and
all other restrictions. We fully characterize the first class of restrictions and discuss
its connection to convex effect subalgebras. We show that the restrictions belonging
to the second class can impose severe physical limitations despite the fact that all
effects are accessible, which takes place, e.g., in the unambiguous discrimination of
pure quantum states via effectively dichotomic meters. We further demonstrate that
there are physically meaningful restrictions that fall into the third class. The presented
study of operational restrictions provides a better understanding on how accessible
measurements modify general probabilistic theories and quantum theory in particular.

Keywords Quantum foundations · General probabilistic theories · Restrictions ·
No-restriction hypothesis · Measurement simulability

1 Introduction

The framework of general probabilistic theories (GPTs) provides an abstract setting
for possible physical theories based on operational principles. Containing not only
quantum and classical theories but also countless toy theories in between and beyond,
GPTs give us means to study well-known properties of quantum theory (such as
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measurement incompatibility [1], steering [2,3], entanglement [4] and no-information-
without-disturbance [5]) in a more general setting. This allows us to formulate and
examine these properties in different theories, quantify them and even compare dif-
ferent theories to each other based on how these properties behave within them. Many
properties thatwere thought to be special features of quantum theory have actually been
shown to be general among all non-classical probabilistic theories, the no-broadcasting
theorem being perhaps the most well known example [6].

One of themost long-standingmotivations has been to provide a set of physical prin-
ciples, formulated in the GPT framework, that would lead to an axiomatic derivation
of quantum theory. In recent years, followed by the success of quantum information
theory, there has been a new boom of such efforts and many information-theoretic
axioms have been proposed from which the quantum theory has been successfully
derived [7]. In addition to a full physical axiomatization, one can focus on some spe-
cific property of interest and study it independently of the underlying theory with the
aim of finding something meaningful on the nature of the property itself.

GPTs are based on operational notions of states, effects, measurements, transfor-
mations, and composite systems so that by specifying them one fixes the theory. The
most important operational principle for describing the state space S of the theory is
the statistical mixing of states which then leads to S being a convex subset of a real
vector space. As the most simple type of measurements, the effects are then taken to be
affine functionals e : S → [0, 1] that give probabilities on states so that e(s) can then
be interpreted as the probability of observing the effect e when the system is measured
in state s ∈ S. The affinity of effects is a result of the basic statistical correspon-
dence between states and measurements. A meter that corresponds to a measurement
device can then be described as a normalized collection of effects. A meter provides
a generalization of the positive operator-valued measure (POVM) in quantum theory.

The assumption of taking all mathematically valid affine functionals that give prob-
abilities on states as physical effects of the theory has been coined as the no-restriction
hypothesis [8]. The no-restriction hypothesis is satisfied in both classical and quantum
theories, so it is usually accepted in other theories too for the purpose of mathematical
convenience. If the no-restriction hypothesis is assumed, then the (single-system) the-
ory is completely determined by the state space alone. However, as it has been pointed
out, e.g., in [9], the no-restriction hypothesis has no operational grounds. In fact, it is
possible to provide different kinds of consistent restrictions on the set of effects that
then give rise to new models and have consequences even on the way the composite
systems could be formed [9]. Other works beyond the no-restriction hypothesis are,
e.g., [10–12].

Interestingly, in the recent work [13] it was shown that the no-restriction hypothesis
plays a significant role in the correlations that can be achieved within quantum theory.
In particular, it was shown that a set of correlations that is close to the set of quantum
correlations, called the almost-quantum correlations, violate the no-restriction hypoth-
esis. Thismeans that noGPTwith the no-restriction hypothesis is able to reproduce the
almost-quantum correlations. Therefore, the no-restriction hypothesismay be a crucial
part of singling out the quantum correlations from other non-signalling theories.

Even if we restrict to the quantum theory, there is also a practical motivation
to investigate restrictions on meters and their consequences. For example, con-
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ventional measurement schemes for superconducting qubits and polarized photons
perform dichotomic measurements in the computational basis or the rotated compu-
tational basis [14]. Measurements with more than two outcomes cannot be directly
implemented for such two-level systems. To obtain more than two outcomes one
usually resorts to mixing and post-processing dichotomic observables instead. There-
fore, only effectively dichotomic observables are available in conventional quantum
experimental setups with no entanglement between the system and an ancilla. The
use of the ancilla enables one to perform measurements with a greater number
of outcomes, the number of measurement outcomes depending on the dimension
of the ancillary system. Moreover, even the dichotomic measurements are never
perfectly projective [14,15], which imposes a restriction on the noise content of
accessible meters. Another example of practical restrictions is that the effects for
fermionic systems are not arbitrary and must satisfy the parity superselection rule
[16].

In the current work we consider restrictions not only at the level of effects but also
on the level of meters, and we show that the previously studied effect restrictions
are not enough to capture all operationally valid restrictions. We propose an opera-
tional condition that any restriction on meters should satisfy, namely the simulation
closedness criterion. In accordance with the operational interpretation of GPTs, for
a given set of meters there are two classical operations one can always implement
that will lead to some outcome statistics differing from those of any other meter that
may be used. In particular, similarly to mixing states, one can choose to mix meters,
and after the measurement it is possible to post-process the obtained outcomes. The
scheme consisting of both mixing and post-processing of meters, called the measure-
ment simulability, has been previously studied in [17–19]. Our operational condition
of simulation closedness for meters then states that given a set of allowed meters as
a restriction, also all meters that can be obtained by the simulation scheme from the
allowed ones should be included in the restriction as well. A violation of this condition
would mean that some classical procedure consisting of mixing and post-processing
of outcomes is not allowed, and that would therefore be a weird and unphysical restric-
tion.

We show that the introduced operational restrictions can be divided into three dis-
joint classes: (R1) restrictions on meters that are dictated by the restrictions on effects,
(R2) restrictions on meters that do not restrict the effects in any way, and (R3) restric-
tions on meters that cannot be reproduced by any restriction solely on effects, but
nevertheless restrict the set of effects as well. We demonstrate these restrictions in
quantum theory.

Our investigation is organized as follows. A brief overview of the relevant concepts
is given in Sect. 2. In Sect. 3 we introduce the classification of operational restrictions
into three disjoint classes (R1)–(R3). In Sect. 4 we characterize those effect restrictions
that give simulation closed restrictions of type (R1) and examine convex effect algebras
and their subalgebras and see how they are related to these restrictions. Effectively
n-tomic theories are presented as a class of restrictions of type (R2) and they are
examined in Sect. 5. In Sect. 6 we give examples of restrictions that belong to (R3).
Finally, in Sect. 7 we summarize our investigation.
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2 Preliminaries

2.1 States, Effects, Meters

We start by recalling the ordered vector space formulation of GPTs (for more details
see, e.g., [20]). The state space S of a GPT is a compact convex subset of a finite-
dimensional real vector space V . Whereas compactness and the finite-dimensionality
of the state space are merely technical assumptions, the convexity follows from the
possible statistical mixing of the states: if we can prepare our system in states s1 ∈ S or
s2 ∈ S, by fixing some p ∈ [0, 1] we can choose to use state s1 with probability p and
state s2 with probability 1− p in each round of the experiment so that ps1 + (1− p)s2
must be a valid state in S.

If dim(aff(S)) = d, then V can be chosen to be (d+1)-dimensional and S forms a
compact base for a closed generating proper cone V+ 1. The cone V+ defines a partial
order in V in the usual way; we denote v ≤ w (or v ≤V+ w if we want to explicitly
write the cone to avoid confusion) if w − v ∈ V+. Thus, V+ consists of all of the
positive elements induced by this order. As a base of V+, the state space S can be
expressed in terms of a strictly positive functional u ∈ V ∗ as

S = {s ∈ V | s ≥ 0, u(s) = 1}. (1)

The effect space E(S) consists of affine functionals e : S → [0, 1] giving proba-
bilities on states: we interpret e(s) as the probability that the effect e is observed when
the system is measured in state s ∈ S. Affinity of effects is a result of them respecting
the basic statistical correspondence of states and effects:

e(ps1 + (1 − p)s2) = pe(s1) + (1 − p)e(s2) (2)

for all p ∈ [0, 1], s1, s2 ∈ S and e ∈ E(S).
In the ordered vector space formulation we can express the effect space as E(S) =

V ∗+ ∩ (u − V ∗+), where V ∗+ is the (closed generating proper) positive dual cone2 of V+
in the dual space V ∗ and u is the unit effect in V ∗+. Explicitly,

E(S) = {e ∈ V ∗ | o ≤ e ≤ u}, (3)

where o is the zero effect that gives value 0 for every state and where the partial order
is now the dual order induced by the dual cone V ∗+.

An effect f ∈ E(S) ⊂ V ∗, f 	= o, is called indecomposable if whenever a
decomposition f = f1 + f2 of f into a sum of some other nonzero effects f1, f2 ∈
E(S) implies that f = α1 f1 = α2 f2 for someα1, α2 > 0. The indecomposable effects
are precisely the effects lying on the extreme rays of the dual cone V ∗+. It was shown in

1 A subset C ⊂ V of a vector space V is a (convex) cone if C + C ⊆ C and αC ⊆ C for every α ∈ R
+.

Furthermore, C is a proper cone if C ∩ (−C) = {0} and generating if C − C = V . A subset B ⊂ C is a
base of C if for every x ∈ C \ {0} there exists unique β > 0 and b ∈ B such that x = βb.
2 Dual cone C∗ ⊂ V ∗ of a cone C ⊂ V consists of positive linear functionals on C , i.e., C∗ = { f ∈
V ∗ | f (x) ≥ 0 ∀x ∈ C}.
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[21] that every effect can be decomposed into a sum of some indecomposable effects
and that indecomposable extreme effects exist in all GPTs.

For an effect f ∈ E(S), we denote by λmin( f ) and λmax( f ) its smallest and largest
values on S, i.e., λmin( f ) = infs∈S f (s) and λmax( f ) = sups∈S f (s). We note that
these are attained because S is compact and f is continuous.

A meter A with n outcomes is a mapping A : x → Ax from an outcome set
�A = {1, . . . , n} ⊂ N to the set of effects E(S) such that the normalization condition∑

x∈�A
Ax = u is satisfied. Thus, the set �A includes all the possible outcomes of

the experiment where the meter A is used, the normalization condition guarantees that
some outcome is registered, and Ax (s) can be then interpreted as the probability that
outcome x ∈ �A was observed when the systems was in the state s ∈ S and meter A
was used to measure the system.We denote the set of meters on S asM(S), or simply
as M if the state space is understood from the context.

For the purpose of this work it is worth noting that when we presented the usual def-
inition of the effect space, no further restrictions on its elements was given. This means
that all mathematically valid functionals (i.e., affine functionals that give probabilities
on states) are also considered to be valid physical effects in the theory. This assumption
is commonly called the no-restriction hypothesis. In this work we give operationally
justifiable restrictions that we pose on the unrestricted set of effects/meters but unless
otherwise stated, the underlying set of effects of the theory is taken to be unrestricted.

Example 1 In finite-dimensional quantum theory, the state space S(H) consists of
positive trace-1 operators on a finite-dimensional Hilbert space H, i.e.,

S(H) := {� ∈ Ls(H) | � ≥ O, tr
[
�
] = 1}, (4)

where O is the zero operator onH,Ls(H) denotes the real vector space of self-adjoint
operators onH and the order is induced by the cone of positive-semidefinite operators
onH, i.e., A ≥ O if and only if 〈ϕ | Aϕ 〉 ≥ 0 for all ϕ ∈ H.

The effect space E(S(H)) can be shown to be isomorphic to the set of selfadjoint
operators between the zero operator O and the identity operator I i.e.,

E(S(H)) ∼= E(H) := {E ∈ Ls(H) | O ≤ E ≤ I }, (5)

where naturally the zero operator O corresponds to the zero functional o and the
identity operator I corresponds to the unit effect u.

Each meter on S(H) with a finite number of outcomes can be associated with a
positive operator-valued measure (POVM) A : x → A(x) from a finite outcome set
�A to the set of effects E(H) such that

∑
x∈�A

A(x) = I .

2.2 Simulation of Meters

Given a set of measurement devices (meters) one can always choose to do some clas-
sical manipulations with the measurement data outputted by the devices. For instance,
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one can consider if it is possible to construct some newmeters by classicallymanipulat-
ing the pre-existing meters and their measurement data. These type of considerations
have led to the concept of measurement simulability and have been studied in [17–
19,22].

By classical manipulations we mean mixing the meters and/or post-processing the
outcomes of the meters: If we have meters B(1), . . . , B(m) we can assign to them prob-
abilities p1, . . . , pm of using the different meters in each round of the measurement
process so that we obtain a mixed meter B = ∑

i piB
(i). In addition to mixing, we can

classically post-process the measurement outcomes of any B(i) by assigning a stochas-
tic post-processing matrix ν(i) = (ν

(i)
xy )x∈�B(i) ,y∈�A(i) to each B(i), where �B(i) is the

outcome set of the pre-existingmeter B(i) and�A(i) is some other outcome set such that

ν
(i)
xy ≥ 0 and

∑
y∈�A(i)

ν
(i)
xy = 1 for all x ∈ �B(i) , y ∈ �A(i) . We can use ν(i) to define a

new meter A(i) = ν(i) ◦B(i) with outcome set �A(i) by setting A(i)
y = ∑

x∈�B(i)
ν

(i)
xy B(i)

x

for all y ∈ �A(i) . Here the matrix element ν(i)
xy can thus be interpreted as the transition

probability that the outcome x is mapped into outcome y.
By combining bothmixing and post-processingweget the simulation schemewhich

results in a new meter A defined by

Ay =
m∑

i=1

pi (ν
(i) ◦ B(i))y =

m∑

i=1

∑

x∈�B

piν
(i)
xy B

(i)
x , (6)

for all y ∈ �A, where we have set all the outcome sets �B(i) equal, and denoted the
resulting outcome set �B, by adding zero outcomes if needed, and similarly for �A.

We denote the set of meters obtained from the meters B(1), . . . , B(m) by this sim-
ulation scheme with some probability distribution (pi )i and post-processings ν(i) by
sim({B(1), . . . , B(m)}). If we have a (possibly infinite) set of meters B, we denote by
sim(B) the set of meters that can be simulated by using some finite subset of B,
and call meters in B as simulators. One can show that sim(B) is closed both under
post-processing and mixing, i.e., sim(B) is convex and ν ◦ B ∈ sim(B) for any post-
processing ν and meter B ∈ sim(B).

Being considered as a mapping on the power set 2M, the simulation map sim(·)
can be shown to be a closure operator so that it satisfies the following three properties
for all subsets B, C ⊆ M:

(SIM1) B ⊆ sim(B)

(SIM2) sim(sim(B)) = sim(B)

(SIM3) B ⊆ C ⇒ sim(B) ⊆ sim(C)

We call a subset of meters B simulation closed if the equality holds in (SIM1), i.e.,
sim(B) = B. By the property (SIM2) we see that sim(B) is simulation closed for any
B ⊆ M. Simulation closed sets have some basic properties. In particular, if Bi , i ∈ I ,
are simulation closed sets, then also

⋂
i∈I Bi is simulation closed.
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3 Three Types of Operational Restrictions

In this work, by a restriction we will mean that the allowed or possible meters belong
to a subset M̃ ⊂ M. We require the following condition for all restrictions:

(SC) simulation closedness: sim(M̃) = M̃
As has been explained above, given a set of meters, we can always choose to mix
them or post-process their outcomes so that any meter that can be simulated this
way from the pre-existing meters should always be a feasible meter as well. Given a
non-simulation closed restriction M̃, we can make it simulation closed by taking its
simulation closure sim(M̃).

Wenote that simulation closedness implies that all trivialmeters are always included
in the restriction as they can be post-processed from any meter. By a trivial meter we
mean a meter T of the form Tx = pxu for all x ∈ �T for some probability distribution
(px )x on �T so that it does not give any information about the input state. In practice,
trivial meters can always be implemented just by ignoring the input state and choosing
an outcome according to some fixed probability distribution.

In the following, by a restriction we mean a choice M̃ ⊂ M that satisfies the
condition (SC). We recall that the range of a meter A can be expressed as ran (A) =
{∑y∈�̃ Ay | �̃ ⊆ �A}. We use the following notation.

• For a subset M̃ ⊂ M, we denote by EM̃ the set of all e ∈ E such that e ∈ ran (A)

for some A ∈ M̃.

Given a restriction M̃, the set of possible effects is then EM̃.
We can also consider restrictions on meters induced by some restriction on effects.

For this, we also use the following notation:

• For a subset Ẽ ⊂ E , we denote byMẼ the set of all A ∈ M such that ran (A) ⊂ Ẽ .

As in [9], we impose some consistency conditions for Ẽ to generate a restriction
MẼ :

(E1) u ∈ Ẽ as it is an essential part of the definition of a meter, and
(E2) for every e ∈ Ẽ , there exists A ∈ MẼ such that e ∈ ran (A), i.e., for every

physical effect e ∈ Ẽ we must have a way to implement it as a part of some
meter.

As previously, (SC) is also required to hold for restrictionsMẼ given by some effect

restriction Ẽ .
The previous considerations lead to the following classification of measurement

restrictions into three disjoint cases. Firstly, we can have

(R1) M̃ = MẼ for some Ẽ ⊂ E .
In this case the restriction takes place essentially on the level of effects and the lim-
itations on meters can be seen as a consequence. We show later in Proposition9 that
under the consistency conditions (E1) and (E2), the effect restriction Ẽ in MẼ is

unique. We further emphasize that the set Ẽ must be chosen specifically so thatMẼ is
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simulation closed. We will show that a necessary and sufficient condition for an effect
restriction Ẽ that satisfies the conditions (E1) and (E2) to be simulation closed is that
Ẽ is a convex subset of E . In particular, this is the case when Ẽ is a convex subalgebra
of E ; this will be discussed in detail in Sect. 4.

Secondly, we can have

(R2) EM̃ = E (but M̃ 	= M).

In this case, the restriction does not limit the possible effects but only how they compose
into meters. A restriction satisfying (R2) cannot satisfy (R1), as ME = M and we
are assuming that a restricted set M̃ is a proper subset of M. An important class of
restrictions of type (R2) are restrictions to effectively n-tomic meters [18,19] and, in
fact, any restriction of type (R2) contains effectively dichotomic meters. This class of
restrictions is described and studied in Sect. 5.

The third possibility is that the restriction is neither (R1) nor (R2). This means that

(R3) EM̃ ⊂ E and M̃ 	= MẼ for any Ẽ ⊂ E .
In this case there are limitations already at the level of effects, but there are also
limitations that come visible only at the level of meters. Restrictions of this type will
be considered in Sect. 6.

Finally, we note that there can also be other operational requirements that onemight
want to hold depending on the restriction. One such requirementmight be tomographic
completeness:

(TC) tomographic completeness: A(s1) = A(s2) ∀A ∈ M̃ ⇒ s1 = s2.

This requirement is relevant, e.g., if one starts from a more general framework of
convex structures and then needs to justify that the set of states is a convex subset of
a real vector space [23]. However, in this work we concentrate on (SC) and we do not
study other requirements.

Remark 1 In [9], in addition to (E1) and (E2), also convexity of Ẽ along with two other
consistency conditions are required to hold:

(E3) for any two effects e, f ∈ Ẽ such that e, f ∈ ran (A) for some physical meter
A, we must have e + f ∈ Ẽ , and

(E4) the adjoint T ∗ of a linear state transformation T : S → S, defined by
[T ∗(e)](s) = e(T (s)) for all states and effects, must give a valid effect for
all valid effects, i.e., T ∗(e) ∈ Ẽ for all e ∈ Ẽ .

In particular, one can show that the effect restrictions considered in [9] induce restric-
tions on meters that are simulation closed. We see that the condition (E3) is built in
the definition of MẼ : if e, f ∈ Ẽ such that e, f ∈ ran (A) for some physical meter
A, then according to our definition of physicality, we must have A ∈ MẼ so that in

particular e + f ∈ ran (A) ⊂ Ẽ .
The point we want to emphasize is that even if we are considering restrictions on

meters given by restrictions on effects, we must also consider how our physical effects
are connected to our physical meters. In our work this is done by defining MẼ and
in [9] this is addressed by the condition (E3). Thus, the condition (E3) is different in
nature to (E1) and (E2) as it is not expressed only in terms of effects but involves also
meters. Regarding (E4), we do not consider state transformations in our current work.
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4 Restriction Class (R1) and Convex Effect Algebras

In this section we provide a characterization of restrictions of type (R1). We then
consider a more special case of convex effect restrictions, namely the convex effect
subalgebras. This type of restriction has been used, e.g., in [11]. We derive a repre-
sentation theorem for convex effect subalgebras and we also demonstrate that there
are physically meaningful (R1) restrictions that do not have the structure of a convex
effect subalgebra. The material presented in Sects. 4.2 and 4.3 has some overlap with
the recent work [24] of one of the present authors. We include this material to make
the present investigation self-contained.

4.1 Characterization of (R1) Restrictions

As was described earlier, we consider restrictions of type (R1) to be induced by a
subset Ẽ ⊂ E of effects that satisfies the consistency conditions (E1) and (E2) such
thatMẼ describes the physical, restricted set of meters that is simulation closed. We
start by showing some simple consequences of the consistency conditions (E1) and
(E2) which will be seen useful later.

Lemma 1 Let Ẽ ⊂ E be a restriction on effects such that consistency conditions (E1)
and (E2) are satisfied. Then

(a) o ∈ Ẽ ,
(b) for each e ∈ Ẽ also the complement effect u − e ∈ Ẽ .

Proof (a) By (E1) and (E2) there exists a meter A ∈ MẼ such that u ∈ ran (A) and
since o ∈ ran (B) for any meter B ∈ M, we must have from the definition ofMẼ
that o ∈ ran (A) ⊂ Ẽ .

(b) By (E2) for any e ∈ Ẽ , there exists a meter A ∈ MẼ such that e ∈ ran (A). Since

u − e ∈ ran (A), we have from the definition of MẼ that u − e ∈ Ẽ . ��
We can now give a complete characterization of effect restrictions Ẽ that give rise

to restrictions of type (R1).

Theorem 1 Let Ẽ ⊂ E be a restriction on effects such that consistency conditions (E1)
and (E2) are satisfied. Then MẼ is simulation closed if and only if Ẽ is convex.

Proof Let first MẼ be simulation closed. If e, f ∈ Ẽ then from (E2) it follows that
there exist A, B ∈ MẼ such that e ∈ ran (A) and f ∈ ran (B). In fact, we have that

u − e ∈ ran (A) ⊂ Ẽ and u − f ∈ ran (B) ⊂ Ẽ so that if we define two dichotomic
meters E and F with effect e, u − e and f , u − f respectively, then E, F ∈ MẼ .
Now from (SC) it follows that tE + (1 − t)F ∈ MẼ for any t ∈ [0, 1] so that

te + (1 − t) f ∈ ran (tE + (1 − t)F) ⊂ Ẽ . Thus, Ẽ is convex.
Let now Ẽ be convex. Let A ∈ sim(MẼ ) so that there exist meters {B(i)}i ⊂ MẼ ,

post-processings ν(i) : �B → �A and a probability distribution (pi )i such that A =∑
i pi (ν

(i) ◦ B(i)). We need to show that A ∈ MẼ , i.e., that ran (A) ⊂ Ẽ . Since
ran (A) = {∑y∈�̃ Ay | �̃ ⊆ �A}, we take �̃ ⊆ �A and consider the effect
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∑

y∈�̃

Ay =
∑

y∈�̃

∑

i

∑

x∈�B

piν
(i)
xy B

(i)
x =

∑

i

pi

⎡

⎣
∑

x∈�B

⎛

⎝
∑

y∈�̃

ν(i)
xy

⎞

⎠ B(i)
x

⎤

⎦ . (7)

Let us denote ν̃
(i)
x := ∑

y∈�̃ ν
(i)
xy ∈ [0, 1] so that

∑

y∈�̃

Ay =
∑

i

pi

⎛

⎝
∑

x∈�B

ν̃(i)
x B(i)

x

⎞

⎠ . (8)

From the convexity of Ẽ we see that if
∑

x∈�B
ν̃

(i)
x B(i)

x ∈ Ẽ for all i , then
∑

y∈�̃ Ay ∈ Ẽ
which would prove the claim. Thus, we will fix i and focus on

∑
x∈�B

ν̃
(i)
x B(i)

x and

show that it is contained in Ẽ .
Since �B = {1, . . . , n} for some n ∈ N, we can rename the effects of B(i) such that

ν̃
(i)
x ≤ ν̃

(i)
x ′ for x < x ′. If we set ν̃(i)

0 = 0, one can confirm that

n∑

x=1

ν̃(i)
x B(i)

x =
n∑

k=1

[
(
ν̃

(i)
k − ν̃

(i)
k−1

) n∑

x=k

B(i)
x

]

. (9)

One sees that
∑n

x=k B
(i)
x ∈ ran (B(i)) ⊂ Ẽ and that ν̃

(i)
k − ν̃

(i)
k−1 ≥ 0 for all k ∈

{1, . . . , n}. Furthermore, we see that
∑n

k=1

(
ν̃

(i)
k − ν̃

(i)
k−1

)
= ν̃

(i)
n ∈ [0, 1] so that we

can make the RHS of Eq. (9) a convex sum of the terms
∑n

x=k B
(i)
x ∈ ran (B(i)) by

adding a zero element (1 − ν̃
(i)
n )o which by Lemma1 must be included in Ẽ .

Hence,
∑n

x=1 ν̃
(i)
x B(i)

x can be expressed as a convex combination of elements in Ẽ
so that from the convexity of Ẽ is follows that

∑
x∈�B

ν̃
(i)
x B(i)

x ∈ Ẽ for all i . ��

4.2 Convex Effect Algebras

We start by recalling the notion of (abstract) convex effect algebra and the operational
basis of this mathematical structure. An effect algebra [25] is a non-empty set E with
two distinguished elements 0 and 1 and a partially defined operation ⊕ that satisfies
the following conditions:

(EA1) if e ⊕ f is defined, then f ⊕ e is defined and e ⊕ f = f ⊕ e.
(EA2) if e⊕ f and (e⊕ f )⊕ g are defined, then f ⊕ g and e⊕ ( f ⊕ g) are defined

and (e ⊕ f ) ⊕ g = e ⊕ ( f ⊕ g).
(EA3) for every e ∈ E , there is a unique e′ such that e ⊕ e′ = 1.
(EA4) if e ⊕ 1 is defined, then e = 0.

A physical interpretation of an effect algebra is that E is a collection of events and
the partial operation ⊕ describes joining of events. The element 0 corresponds to the
event that never happens whereas 1 corresponds to the event that always happens. An
important example of an effect algebra is the collection of all fuzzy sets on some set X .
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An abstract effect algebra can be seen as a generalization of this structure, including
the Hilbert space effect algebra as an important example. It is clear that the set of all
effects in a GPT also forms an effect algebra.

When thinking about the interpretation of an effect algebra as a collection of events,
one could come up with some additional properties that would seem reasonable to
require as axioms. However, several such properties can be derived from the defining
conditions (EA1)–(EA4). For instance, it can be shown [25] that (e′)′ = e and that the
cancellation law holds: if e ⊕ f = e ⊕ g, then f = g.

Let us then consider an effect algebra that describes events that correspond to
outcomes, or collections of outcomes, in a measurement device or devices. An oper-
ational interpretation of the partial operation ⊕ is that two outcomes are merged into
one. Merging two outcomes is an irreversible action; if we are given the newly formed
device, we cannot know which effects have been merged. There is, however, a way
to split one outcome into two so that merging is a one side inverse to this procedure.
This splitting goes as follows. When an outcome related to an effect e occurs, we toss
a coin and, depending on the result, either record the outcome as it was, or mark it as
a new outcome. We thus obtain two effects, esame and enew. Clearly, merging of the
outcomes should give the original effect, thus esame ⊕ enew = e. In this way we have
introduced a map e �→ esame for every coin tossing probability α.

Mathematically speaking, an effect algebra E is a convex effect algebra [26] if for
every effect e ∈ E and real number α ∈ [0, 1], we can form a new effect, denoted by
αe such that the following conditions hold for every α, β ∈ [0, 1] and e, f ∈ E :
(CEA1) α(βe) = (αβ)e.
(CEA2) 1e = e.
(CEA3) If α + β ≤ 1, then αe ⊕ βe is defined and (α + β)e = αe ⊕ βe.
(CEA4) If e ⊕ f is defined, then αe ⊕ α f is defined and α(e ⊕ f ) = αe ⊕ α f .

As we have described above, the map (α, e) �→ αe can be interpreted as a splitting
of e into two effects, αe and (1 − α)e. We point out that this mathematical structure
describes the action only at the level of individual effects, not meters, which allows
for other interpretations. We can, for instance, interpret the action in a way that the
residual effect (1 − α)e does not generate a new outcome but is combined into some
already existing outcomes.

It is shown in [26] that if α, β ∈ [0, 1] with α + β ≤ 1, then αe ⊕ β f is defined
for every e, f ∈ E . This further implies that for any α ∈ [0, 1] and any e, f ∈ E , the
effect sum αe ⊕ (1 − α) f is defined. The resulting element is called a mixture of e
and f . Mixing of effects is therefore a derived notion in convex effect algebras.

4.3 Characterization of Convex Effect Algebras and Subalgebras

Aswehave seen earlier, the partial order in an effect algebra is derived from thepartially
defined effect sum. To construct concrete convex effect algebras, we can start from an
ordered vector space and use that structure to form an effect algebra. This construction
works as follows. Let W be a finite dimensional real vector space, and let C ⊂ W be
a proper cone. For any nonzero u ∈ C , we then denote [0, u]C := {e ∈ C : e ≤C u}.
Then, for any e, f ∈ [0, u]C , the combination e ⊕ f is defined if e + f ≤C u, and
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then e ⊕ f := e + f . The set [0, u]C is a convex subset of C and 0 ∈ C . Therefore,
αe ∈ [0, u]C for any e ∈ [0, u]C and 0 ≤ α ≤ 1. In this way, [0, u]C is a concrete
convex effect algebra, also called a linear effect algebra [27]. The chosen vector u is
the identity element in [0, u]C .

When forming linear effect algebras, we typically want [0, u]C to generate the
vector space W , which means that W is the linear span of vectors of the form αe,
where α ∈ R

+ and e ∈ [0, u]C . Due to the following result it is not restrictive
to consider this kind of linear effect algebras when we investigate the properties of
convex effect algebras.

Theorem 2 ([26]) Let E be a convex effect algebra. There exists a real vector space
W, a cone C and a nonzero element u ∈ C such that [0, u]C generates W and E is
affinely isomorphic to [0, u]C .

We remark that this characterization of convex effect algebras shows a natural
connection to the GPT framework. Namely, if one starts from a GPT state space
S ⊂ V (see Sect. 2.1), then W is the dual space V ∗ and C is the positive dual cone
V ∗+. More detailed discussions about this connection are provided in [28,29].

As with any algebraic structures, there are natural notions of substructures for effect
algebras and convex effect algebras. Namely, let E be an effect algebra. A nonempty
subset Ẽ ⊂ E is a subalgebra of E if the following conditions hold:

(SA1) 1 ∈ Ẽ .
(SA2) e′ ∈ Ẽ for all e ∈ Ẽ .
(SA3) e ⊕ f ∈ Ẽ for all e, f ∈ Ẽ such that e ⊕ f is defined in E .
If E is a convex effect algebra, then a subalgebra Ẽ is a convex subalgebra of E if it
satisfies also the following condition:

(SA4) αe ∈ Ẽ for all α ∈ [0, 1] and e ∈ Ẽ .
We note that every convex effect algebra E has two trivial convex subalgebras: E itself
and {α1 | α ∈ [0, 1]}. The following result characterizes all convex subalgebras.

Theorem 3 Let V be a finite-dimensional vector space, C a cone and E = [0, u]C a
convex effect algebra generating V . A subset Ẽ ⊂ E is a convex subalgebra if and
only if u ∈ Ẽ and there exist e1, . . . , en ∈ E such that

Ẽ = spanR{e1, . . . , en} ∩ E

=
{

e ∈ E : e =
∑

i

ri ei , ri ∈ R

}

. (10)

Proof Let us assume that Ẽ is a subset given in (10) by some elements e1, . . . , en ∈ E ,
and u ∈ Ẽ . It follows that u = ∑

i r̄i ei for some r̄i ∈ R. Using this fact, we see
that (SA2) is valid: if e ∈ Ẽ and hence e = ∑

i ri ei for some ri ∈ R, then e′ =
∑

i (r̄i − ri )ei ∈ Ẽ . It is clear from (10) that also (SA3) and (SA4) are valid.
Let us then assume that Ẽ is a convex subalgebra of [0, u]C . Let v1, . . . , vm be a

linear basis in V . Since [0, u]C generates V , every vi can be written as vi = c+
i v+

i −
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c−
i v−

i for some v+
i , v−

i ∈ [0, u]C and c+
i , c−

i ≥ 0. We denote ei = v+
i and em+i = v−

i
for i = 1, . . . ,m. Since {vi }mi=1 is a basis, (10) holds. ��

Using the same premises, we can also rephrase Theorem3 as follows: A subset
Ẽ ⊂ E is a convex subalgebra if and only if Ẽ = U ∩ E for some linear subspace
U ⊂ V such that u ∈ U . Thus, convex subalgebras are always determined by some
linear subspace that contains the unit effect. The smallest nontrivial convex subalgebras
are generated by u and some other effect e.

4.4 Subalgebras and Restrictions

We are now ready to explain the connection between convex effect algebras and
operational restrictions. In the following E(S) is the set of all effects on a state space
S. The following statement follows from Theorem1. Here we give a short direct proof
as a consequence of Theorem3.

Proposition 1 Let Ẽ be a convex subalgebra of E(S). ThenMẼ is simulation closed.

Proof We need to show that sim(MẼ ) ⊆ MẼ . Let A ∈ sim(MẼ ). Then

Ax =
∑

i

pi
∑

y

ν(i)
yx B

(i)
y ,

where B(i) ∈ MẼ and hence B(i)
y ∈ Ẽ . Since Ẽ is a convex subalgebra, by Theorem3

it has representation (10) for some e1, . . . , em ∈ E(S). It follows that Ax ∈ Ẽ , and
therefore A ∈ MẼ . ��

In the following we demonstrate with two propositions that there are restrictions of
the type (R1) where the restricted set of effects does not form a subalgebra.

Let A be a meter and denote M̃ = sim(A). The set M̃ is simulation closed as
sim(sim(A)) = sim(A). The restricted set of effects EM̃ is given as

EM̃ =
{

e ∈ E : e =
∑

x

rxAx , rx ∈ [0, 1]
}

. (11)

The set EM̃ satisfies the conditions (SA1), (SA2), and (SA4). However, the condition
(SA3) is satisfied only for specific choices of A; this is the content of the second part
of the following proposition.

Proposition 2 Let A be a meter such that {A1, . . . ,An} is linearly independent and let
M̃ = sim(A). Then

(a) M̃ = MEM̃ , hence M̃ is a restriction of type (R1).
(b) EM̃ is a convex subalgebra of E(S) if and only if λmax(Ax ) = 1 for every x.

Proof (a) From the definitions of EM̃ andMEM̃ it follows that M̃ ⊆ MEM̃ for any

M̃. For the other direction, let us take B ∈ M̃EM̃ , where EM̃ is given by Eq. (11).
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Thus, for each y ∈ �B there exist {r (y)
x }x∈�A ⊂ [0, 1] such that By = ∑

x r
(y)
x Ax .

From the normalization of A and B we see that

∑

x∈�A

Ax = u =
∑

y∈�B

By =
∑

x∈�A

⎛

⎝
∑

y∈�B

r (y)
x

⎞

⎠Ax (12)

so that from the linear independence of the effects ofA it follows that
∑

y r
(y)
x = 1

for all x ∈ �A. Thus, we can define a post-processing ν : �A → �B by setting
νxy = r (y)

x for all x ∈ �A and y ∈ �B so that B = ν ◦ A ∈ sim(A) = M̃. Hence,
alsoMEM̃ ⊆ M̃ holds in this case.

(b) Let us assume that λmax(Ax ) = 1 for every x . Suppose that e, f ∈ EM̃ and
e + f ≤ u. We have e = ∑

x αxAx and f = ∑
x βxAx , and thus e + f =∑

x (αx + βx )Ax . For every x , fix sx ∈ S such that Ax (sx ) = 1. Then

1 ≥ (e + f )(sx ) =
∑

y

(αy + βy)Ay(sx ) = αx + βx .

Therefore, e + f ∈ EM̃.
Let us then assume that 1 > λmax(A1) ≡ λ. Then 1

λ
A1 ∈ E(S) and 1

λ
> 1.

Let 0 < μ < 1 and μ < 1−λ
λ

. Then μA1 ∈ EM̃ and A1 + μA1 ≤ 1
λ
A1, thus

A1 + μA1 ∈ E(S). But A1 + μA1 /∈ EM̃ because otherwise we would have

(1 + μ)A1 =
∑

x

rxAx

and by linear independence r1 = 1+μ > 1, which is a contradiction to Eq. (11).
Thus, if λ < 1, then (SA3) is not satisfied. ��

Proposition 3 If Ẽ � E(S) is an effect restriction that satisfies (E1) and (E2) such
that there exists an affine bijection 	 : E(S) → Ẽ , then Ẽ is not a convex subalgebra
of E(S) but it nevertheless gives a restriction of the type (R1).

Proof Since Ẽ = 	(E(S)), E(S) is convex, and 	 is convexity preserving, we have
that Ẽ is convex. By Theorem1, we have thatMẼ is simulation closed and thus gives
a restriction of type (R1).

To see that Ẽ is not a convex subalgebra of E(S) ⊂ V for a finite-dimensional vector
space V that is spanned by E(S), we note that dim(span(Ẽ)) = dim(span(E(S))) =
dim(V ) because of the bijectivity of 	. However, from Theorem3 we see that the
only generating convex subalgebra must be the effect algebra E(S) itself: namely, if
Ẽ = U∩E(S) for some subspaceU , then from the previous equality of the dimensions
it follows that also dim(U ) = dim(V ) and this can only be the case when U = V
so that Ẽ = V ∩ E(S) = E(S). Since we have that Ẽ is a proper subset of the effect
algebra we have arrived at a contradiction and Ẽ cannot be a convex subalgebra. ��
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5 Restriction Class (R2) and Effectively n-Tomic Meters

For every integer n ≥ 2, we use the notation Mn−eff = sim(Mn), where Mn is the
set of all meters that have n or less outcomes. We call Mn−eff the set of effectively
n-tomic meters because they can be reduced to meters with n or less outcomes. The
foundational interest to investigate and test these type of restrictions has been discussed
in [30–32].

It is clear thatMn−eff ⊆ Mn+1−eff . The setM2−eff contains all dichotomicmeters,
therefore EM̃ = E for any choice M̃ = Mn−eff . We conclude that these restrictions
are of the type (R2). The restriction to effectively dichotomic meters M2−eff is the
smallest restriction of the type (R2) in the following sense, and motivates to look this
restriction in more details.

Proposition 4 Let M̃ ⊂ M be an operational restriction of the type (R2). Then
M2−eff ⊆ M̃.

Proof Since EM̃ = E , all dichotomic meters are in M̃. As M̃ is simulation closed, it

follows that all effectively dichotomic meters are in M̃. ��
Depending on the theory, it can happen thatM2−eff = M [19]. The specific nature

of these type of restrictions is hence different in different theories. There are, however,
some general properties of M2−eff and Mn−eff that are theory independent; in the
following we demonstrate some of these features.

All of the following results are related to the minimal and maximal values λmin(Ax )

andλmax(Ax ) of the effects of ameterA.We start bymaking some simple observations.
For a dichotomic meter we have A1(s) + A2(s) = 1 for all states s, and hence

λmax(A2) = 1 − λmin(A1). (13)

It follows that

λmax(A1) + λmax(A2) ≥ 1. (14)

Further, equality holds in (14) if and only if A is a trivial meter, i.e., if A is of the form
A1 = pu and A2 = (1 − p)u for some p ∈ [0, 1]. Clearly, if A is trivial meter, then
λmax(A1)+λmax(A2) = p+(1− p) = 1. On the other hand, if λmax(A1)+λmax(A2) =
1, then if we denote by s1 and s2 the states maximizing A1(s) and A2(s) respectively,
we see that

1 = A1(s) + A2(s) ≤ A1(s1) + A2(s) ≤ A1(s1) + A2(s2) = 1

for all s ∈ S so that all the inequalities must actually be equalities and particularly
from the first inequality we get that A1(s) = A1(s1) =: q for all s ∈ S. Similarly then
A2(s) = A2(s2) = 1 − q for all s ∈ S. Hence, A1 = qu and A2 = (1 − q)u so that A
is trivial.

Proposition 5 Any effectively dichotomic meter A can be simulated from dichotomic
meters B that satisfy λmax(B1) = λmax(B2) = 1.

123



Foundations of Physics (2020) 50:850–876 865

Proof It is enough to show that any dichotomic meter A can be post-processed from
a dichotomic meter A′ with λmax(A′

1) = λmax(A′
2) = 1. A trivial meter can be post-

processed from any meter, so we can further assume that A is non-trivial. We denote
α = λmax(A1) + λmax(A2) − 1 > 0 and define

A′
1 = 1

α
A1 + λmax(A2)−1

α
u, A′

2 = 1
α
A2 + λmax(A1)−1

α
u.

We have λmin(A′
1) = λmin(A′

2) = 0 and A′
1 + A′

2 = u, hence A′ is a meter. Further,
λmax(A′

1) = λmax(A′
2) = 1. Finally, A is a post-processing of A′. ��

An obvious question is: when is a meter A ∈ M with m > n outcomes effectively
n-tomic? In the following we develop some criteria.

Proposition 6 Let A be a meter.

(a) If there exists y ∈ �A such that
∑

x 	=y λmax(Ax ) ≤ 1, then A is effectively
dichotomic.

(b) If
∑

x λmax(Ax ) > n, then A is not effectively n-tomic.

Proof (a) This is a direct generalization of Lemma 5 in the Supplemental Material for
Ref. [17], where it was shown to hold for POVMs.

(b) Let A be effectively n-tomic, i.e., there exist n-outcome meters {B(i)}i , post-
processings ν(i) : {1, . . . , n} → �A, and a probability distribution (pi )i such
that Ax = ∑

i pi
∑

j ν
(i)
j x B

(i)
j for all x ∈ �A. Now we see that

∑

x

λmax(Ax ) =
∑

x

max
s∈S

Ax (s)

=
∑

i,x

pi max
s∈S

⎛

⎝
∑

j

ν
(i)
j x B

(i)
j

⎞

⎠ (s)

=
∑

i,x

pi max
s∈S

⎛

⎝
∑

j

ν
(i)
j x B

(i)
j (s)

⎞

⎠

≤
∑

i,x

pi
∑

j

ν
(i)
j x =

∑

i

pi

⎡

⎣
∑

j

(
∑

x

ν
(i)
j x

)⎤

⎦ = n.

��
The previous result already shows some tasks that may be possible in general but

not in a theory where the effective number of outcomes is restricted. Namely, perfect
discrimination of n states requires that

∑
x λmax(Ax ) ≥ n. Hence, by Proposition 6(b)

an effectively n-tomic meter can discriminate at most n states.
As a consequence of Proposition5, there exists a dichotomic meter A with∑
x λmax(Ax ) = 2. Therefore, the bound for effectively dichotomic meters in Proposi-

tion6(b) cannot be improvedwithout additional assumptions. The following statement
has specific assumptions and for that reason gives a tighter bound. In Example2 below
we show that this result has interesting implications.
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Proposition 7 Let A be an n-outcome meter such that A1, . . . ,Am are indecomposable
effects for some m ≤ n and for all i, j ∈ {1, . . . ,m} such that i 	= j we have

i) A j 	= tAi for all t > 0,
ii) tiAi + t jA j 	= u for all ti , t j > 0.

If
∑m

k=1 λmax(Ak) > 1, then A is not effectively dichotomic.

Proof Suppose A is effectively dichotomic so that there exist dichotomic meters
{B(i)}li=1, a probability distribution (pi )li=1 and post-processings ν(i) : {+,−} →
{1, . . . , n} for all i = 1, . . . , l such that

A j =
l∑

i=1

pi
(
ν

(i)
+ jB

(i)
+ + ν

(i)
− jB

(i)
−
)

for all j ∈ {1, . . . , n}, where we may assume that pi 	= 0 for all i = 1, . . . , l. By the
assumption,A j is indecomposable for all j ∈ {1, . . . ,m}. Thus, for each j , there exists

index sets I ( j)
± := {1 ≤ i ≤ l | ν(i)

± j 	= 0} such that B(i)
+ = α

( j)
i A j and B(k)

− = β
( j)
k A j

for some α
( j)
i , β

( j)
k ∈ (0, 1] for all i ∈ I ( j)

+ and k ∈ I ( j)
− .

First of all, we note that I ( j)
+ ∩ I ( j)

− = ∅ for all j ∈ {1, . . . ,m} because otherwise
A j would be proportional to u due to the normalisation of B(i)’s. Secondly, from i) it

follows that I ( j)
+ ∩ I (k)

+ = I ( j)
− ∩ I (k)

− = ∅ for all k, j ∈ {1, . . . ,m} such that j 	= k.

Thirdly, from i i) it follows that I ( j)
+ ∩I (k)

− = ∅ for all k, j ∈ {1, . . . ,m} such that j 	= k.

Thus, the sets {I ( j)
± }mj=1 form a partition of their union I := ⋃m

j=1

(
I ( j)
+ ∪ I ( j)

−
)

⊆
{1, . . . , l}.

We can now write

A j =
∑

i∈I ( j)
+

piν
(i)
+ jB

(i)
+ +

∑

k∈I ( j)
+

pkν
(k)
+ jB

(k)
+ ≤

⎛

⎜
⎝

∑

i∈I ( j)
+

pi +
∑

k∈I ( j)
+

pk

⎞

⎟
⎠ u. (15)

From the above expression and the properties of the index sets it follows that

m∑

j=1

λmax(A j ) ≤
m∑

j=1

⎛

⎜
⎝

∑

i∈I ( j)
+

pi +
∑

k∈I ( j)
−

pk

⎞

⎟
⎠ =

∑

i∈I
pi ≤

l∑

i=1

pi = 1.

��
Example 2 (Unambiguous discrimination of two qubit states) Let �1 = |ψ1〉〈ψ1| and
�2 = |ψ2〉〈ψ2| be two pure qubit states with a priori probabilities p1 = p2 = 1

2 . The
unambiguous discrimination of these states involves a 3-outcome POVM with effects
A1,A2,A? such that observation of the outcome 1 (2) guarantees that the input state
was �1 (�2). This implies

tr[�1A2] = tr[�2A1] = 0
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and hence

A1 = q1(I − |ψ2〉〈ψ2|), A2 = q2(I − |ψ1〉〈ψ1|)

for some q1, q2 > 0 such that A? = I − A1 − A2 is a valid effect, i.e., A? ≥ O .
Suppose A is effectively dichotomic. Then by Proposition7 we have q1 + q2 ≤ 1 and
the success probability is

psuccess = 1
2 tr

[
�1A1

] + 1
2 tr

[
�2A2

]

= q1 + q2
2

(
1 − |〈ψ1|ψ2〉|2

)
≤ 1

2

(
1 − |〈ψ1|ψ2〉|2

)
. (16)

However, it is known [33] that the optimal success probability without any limitations
is 1−|〈ψ1 | ψ2 〉|. This is strictly higher than the bound in (16) whenever �1 and �2 are
two different states. We conclude that the restriction to dichotomic meters decreases
the optimal success probability in unambiguous discrimination.

6 Restriction Class (R3), Noise and Compatibility

In this section we present some examples of restrictions that arise quite naturally and
belong to the class (R3).

6.1 Compatibility Restriction

We recall that twometers A and B are compatible if they can be simulated with a single
meter C, i.e., {A, B} ⊂ sim(C). Let us fix a meter A and consider all meters that are
compatible with A; we denote this set by C(A). The conditions for C(A) 	= M have
been characterized in [5]. In the following we assume that C(A) 	= M and choose
M̃ = C(A).

Proposition 8 sim(C(A)) = C(A).

Proof To see this, take D ∈ sim(C(A)) so that there exist meters {B(i)}i ⊂ C(A)

such that D = ∑n
i=1 pi (ν

(i) ◦B(i)) for some probability distribution (pi )ni=1 and post-
processings ν(i) : �B(i) → �D for all i ∈ {1, . . . , n}. If we define a new meter B̃
as B̃(i,x) = piB(i)

x for all i ∈ {1, . . . , n} and x ∈ �B(i) (where we can take �B(i) =
�B( j) =: �B for all i, j), we see that

Dy =
∑

i,x

piν
(i)
xy B

(i)
x = (ν ◦ B̃)y

for all y ∈ �D, where we have defined a post-processing ν : {1, . . . , n} × �B → �D

by ν(i,x)y = ν
(i)
xy for all i ∈ {1, . . . , n}, x ∈ �B and y ∈ �D. Thus, D ∈ sim(B̃).

SinceB(i) ∈ C(A), for any i ∈ {1, . . . , n} there existsC(i) ∈ M such that {A, B(i)} ⊂
sim(C(i)). Similarly to B̃, we can define C̃ by setting C̃(i,z) = piC(i)

z for all i ∈
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{1, . . . , n} and z ∈ �C. Since A ∈ sim(C(i)), there exists a post-processing μ(i) :
�C → �A for all i ∈ {1, . . . , n} such that A = μ(i) ◦ C(i) so that

Ak =
∑

i

piAk =
∑

i

pi (μ
(i) ◦ C(i))k =

∑

i,z

piμ
(i)
zk C

(i)
z = (μ ◦ C̃)k

for all k ∈ �A, where we have defined another post-processingμ : {1, . . . , n}×�C →
�A by μ(i,z)k = μ

(i)
zk for all i ∈ {1, . . . , n}, z ∈ �C and k ∈ �A. Thus, A ∈ sim(C̃).

On the other hand, since B(i) ∈ sim(C(i)) for all i ∈ {1, . . . , n}, there exists post-
processings κ(i) : �C → �B such that B(i) = κ(i) ◦ C(i) so that

B̃(i,x) = piB(i)
x =

∑

z

κ(i)
zx piC(i)

z = (κ ◦ C̃)(i,x)

for all (i, x) ∈ {1, . . . , n} × �B, where we have defined yet another post-processing
κ : {1, . . . , n}×�C → {1, . . . , n}×�B byκ( j,z)(i,x) = δi jκ

( j)
zx for all i, j ∈ {1, . . . , n},

z ∈ �C and x ∈ �B. Hence, B̃ ∈ sim(C̃) and D ∈ sim(C̃).
To conclude, we have shown that {A,D} ⊂ sim(C̃), i.e., A and any D ∈ sim(C(A))

are compatible, therefore sim(C(A)) ⊂ C(A) and C(A) is simulation closed. ��
Interestingly, in quantum theory the restriction C(A) can be either (R1) or (R3),

depending on A. Firstly, if A is a sharp quantum meter, i.e., every Ax is a projection
operator, then a meter B is compatible with A if and only if [Ax , By] = O for all
outcomes x, y [34]. The restriction C(A) is then of the type (R1) as C(A) = MẼ ,
where

Ẽ = {E ∈ E(H) : [E,Ax ] = O ∀x}.
Secondly, to see that the restriction C(A) can be of the type (R3) we recall the result
in [35], which demostrates the existence of quantum meters A and B in C

3 such that
A is a dichotomic, B is trichotomic, and they are coexistent but not compatible. The
coexistence of A and Bmeans that all coarse-grainings of B into dichotomic meters are
compatible with A. The union of the ranges of all dichotomic coarse-grainings of B is
the same as the range of B. This result implies that there is no Ẽ such thatC(A) = MẼ .
Finally, to see thatC(A) cannot be of the type (R2), we observe that EC(A) = E implies
that A is compatible with all dichotomic meters. If this is the case, every Ax commutes
with all projection operators and hence Ax is a multiple of the identity operator I . But
then C(A) = M and we do not have a restriction at all, which is a contradiction in
general so EC(A) 	= E .

6.2 Noise Restriction onMeters

Let us denote by P(�) the set of probability distributions on a (finite) set �. Let us
fix t ∈ [0, 1] and define a restriction M̃t on meters as

M̃t = {tB + (1 − t)pu | B ∈ M, p ∈ P(�B)}. (17)
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Clearly, if t = 1, we have M̃1 = M, and if t = 0 we have M̃0 = T , where T is the
set of trivial meters. Thus, we can interpret the parameter t as noise on the meters so
that the smaller t gets, the noisier the meters in M̃t become.

Let now t ∈ (0, 1). We will show that then M̃t is a restriction of type (R3).
First of all, we see that M̃t is simulation closed: If we take A ∈ sim(M̃t ) so that
A = ∑

i pi (ν
(i) ◦ B(i)) for some meters {B(i) = tC(i) + (1 − t)q(i)u}i ⊂ M̃t , some

post-processings ν(i) : �B → �A, and some probability distribution (pi )i , then

Ay =
∑

i,x

piν
(i)
xy B

(i)
x =

∑

i,x

piν
(i)
xy [tC(i)

x + (1 − t)q(i)
x u] = tCy + (1 − t)qyu,

where we have defined a newmeter C = ∑
i pi (ν

(i)◦C(i)) ∈ M and a new probability

distribution q ∈ P(�A) by setting qy = ∑
i,x piν

(i)
xy q

(i)
x . Thus, A = tC+ (1− t)qu ∈

M̃t so that M̃t is simulation closed.
Next we see that

EM̃t
= {te + (1 − t)ru | e ∈ E, r ∈ [0, 1]} (18)

so that EM̃t
� E since t 	= 1. Thus, M̃t is not of type (R2). What remains to show is

that M̃t 	= MẼ for all effect restrictions Ẽ ⊂ E .
Our first observation is that if a restriction on meters M̃ is induced by some effect

restriction Ẽ , i.e., M̃ = MẼ , then the effect restriction Ẽ is unique and is given by
the induced effects EM̃ = EMẼ .

Proposition 9 For a restrictionMẼ induced by an effect restriction Ẽ ⊂ E satisfying

the consistency conditions (E1) and (E2) we have that EMẼ = Ẽ .

Proof Let us take e ∈ EMẼ so that there exists A ∈ MẼ such that e ∈ ran (A). From

the definition of MẼ it follows that e ∈ ran (A) ⊂ Ẽ . Thus, EMẼ ⊆ Ẽ .
For the other direction let us take f ∈ Ẽ . As it was stated earlier, any dichotomic

meter F with effects f and u − f must be in MẼ so that from the definition of EMẼ
we see that f ∈ EMẼ . Thus, Ẽ ⊆ EMẼ . Combining EMẼ ⊆ Ẽ and Ẽ ⊆ EMẼ , we
have the claim. ��

Thus, for M̃t , the previous result implies that if M̃t = MẼ for some Ẽ ⊂ E , then
Ẽ = EM̃t

. First of all, one can readily see that EM̃t
is convex and hence, by Theorem1,

MEM̃t
is simulation closed as it should be. We will proceed by constructing a meter

A ∈ MẼ such that A /∈ M̃t .

To see when a given meter is in M̃t , we give a convenient characterization for M̃t

in terms of the noise content of a meter [36]. The noise content w(B;N ) of a meter
B ∈ M with respect to a noise set N ⊂ M is defined as

w(B;N ) = sup{0 ≤ λ ≤ 1 | ∃C ∈ M,N ∈ N : B = λN + (1 − λ)C}.
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The noise content w(B;N ) thus characterizes how much of B is in N with respect
to the convex structure of meters. When N is chosen to represent some noise in the
meters, the noise content can be interpreted as the amount of the intrinsic noise that is
present in the meter (contrary to the external noise that is typically added to a meter).
A typical choice forN is to setN = T , the set of trivial meters. In this case it can be
shown that

w(B; T ) =
∑

x∈�B

λmin(Bx ). (19)

We can now give the following characterization for M̃t :

Lemma 2 Meter B ∈ M̃t if and only if w(B; T ) ≥ 1 − t .

Proof Let first B ∈ M̃t so that there exists C ∈ M and p ∈ P(�B) such that
B = tC + (1 − t)pu = tC + (1 − t)T, where we have defined a trivial meter T ∈ T
by Tx = pxu for all x ∈ �B. From the definition of the noise content we see that
w(B; T ) ≥ 1 − t .

Let then w(B; T ) ≥ 1 − t . Since we have the noise set N = T , by Eq. (19) the
supremum in the definition of the noise content is attained so there exist D ∈ M and
T ∈ T such that B = w(B; T )T + (1 − w(B; T ))D. We have

B = w(B; T )T + (1 − w(B; T ))D

= (1 − t + t + w(B; T ) − 1)T + (1 − w(B; T ))D

= (1 − t)T + t

[
t + w(B; T ) − 1

t
T + 1 − w(B; T )

t
D
]

= (1 − t)T + tD̃ ∈ M̃t ,

where D̃ = t+w(B;T )−1
t T + 1−w(B;T )

t D ∈ M is a convex mixture of T and D. ��

Now we are ready to prove that M̃t is a restriction of type (R3) for all t ∈ (0, 1).

Proposition 10 Let t ∈ (0, 1). Then M̃t 	= MẼ for any Ẽ ⊂ E .

Proof Let us suppose that M̃t = MẼ for some effect restriction Ẽ ⊂ E . As it was
mentioned earlier, by Proposition9 we then have that Ẽ = EMẼ = EM̃t

. We will

construct a meter A ∈ MẼ such that A /∈ M̃t , which will then be a contradiction.
Let us start the construction ofA, by constructing anothermeter Bwithw(B; T ) = 0

and maxx∈�B λmax(Bx ) ∈ [t, 1). We will then use B to construct A and use Lemma2
together with the previously listed properties of B to show that A /∈ M̃t .

Let us fix an extreme indecomposable effect e ∈ E(S). If we set e1 = e and
decompose u − e into indecomposable effects u − e = ∑n

i=2 ei for some n ∈ N, we
can define a meter B̃ as B̃i = ei for all i ∈ {1, . . . , n} such that all of the effects of B̃
are indecomposable. Since indecomposable effects lie on the boundary of the positive
cone of the effect space, we have that λmin(B̃i ) = 0 for all i ∈ {1, . . . , n} so that by
Eq. (19) we have that w(B̃; T ) = 0.
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Let us relabel the outcomes of B̃ in such a way that λmax(B̃i ) = 1 for all i ∈
{1, . . . ,m} for some m ≤ n. We recall that since e is an extreme effect we know that
λmax(e) = 1, and since e ∈ ran(B̃)wemust havem ≥ 1. We take q ∈ [t, 1) and define
a new meter B with effects

Bi =

⎧
⎪⎨

⎪⎩

qB̃i , i ∈ {1, . . . ,m}
B̃i , i ∈ {m + 1, . . . , n}
(1 − q)B̃i−n, i ∈ {n + 1, . . . , n + m}

. (20)

By construction we have that w(B; T ) = 0 and lB := maxx∈�B λmax(Bx ) ∈ [t, 1).
Let us now take numbers {ri }n+m

i=1 ⊂ [0, 1] such that r := ∑n+m
i=1 ri ∈

[
lB−t

(1−t)lB
, 1

)

and define a new meter A by Ai = tai + (1 − t)ri u, where we have defined ai =
1−(1−t)r

t Bi for all i ∈ {1, . . . , n + m}. Once we show that A is well-defined and
A ∈ MEMt

, we can use Eq. (19) to see that w(A; T ) < 1− t so that by Lemma2 we

have A /∈ M̃t which completes the proof.
In order to show that A is well-defined we need to show that A is a meter and that we

can choose {ri }i likewewanted. The problematic parts in the definition of the sequence
{ri }i are that wemight have that lB−t

(1−t)lB
< 0, whichmight lead to r < 0, or lB−t

(1−t)lB
≥ 1,

which would leave the interval
[

lB−t
(1−t)lB

, 1
)
empty. However, from the definition of B

we see that lB = maxx∈�B λmax(Bx ) ≥ t so that lB−t
(1−t)lB

≥ 0, and since lB < 1 it is

easy to see that lB−t
(1−t)lB

< 1. Thus, we can choose the sequence {ri }i like we wanted.
In order to show that A ∈ MEMt

we need to show that ai ∈ E(S) for all i ∈
{1, . . . , n + m} and that

∑
i Ai = u. Since r < 1 < 1

1−t we see that 1−(1−t)r
t > 0

so that ai = 1−(1−t)r
t Bi ≥ o for all i ∈ {1, . . . , n + m}. On the other hand, we have

ai ≤ u if and only if 1−(1−t)r
t λmax(Bi ) ≤ 1 which is equivalent to r ≥ λmax(Bi )−t

(1−t)λmax(Bi )
.

Since r ≥ lB−t
(1−t)lB

≥ λmax(Bi )−t
(1−t)λmax(Bi )

, it follows that ai ≤ u for all i ∈ {1, . . . , n + m}.
Thus, ai ∈ E(S) so that Ai ∈ EM̃t

for all i ∈ {1, . . . , n+m}. Furthermore, we see that

n+m∑

i=1

Ai = (1 − (1 − t)r)

(
n+m∑

i=1

Bi

)

+ (1 − t)ru = (1 − (1 − t)r)u + (1 − t)ru = u.

Hence, A ∈ MEM̃t
.

For the noise content of A, we see that

w(A; T ) =
n+m∑

i=1

λmin(Ai ) = t

(
n+m∑

i=1

λmin(ai )

)

+ (1 − t)r

= (1 − (1 − t)r)

(
n+m∑

i=1

λmin(Bi )

)

+ (1 − t)r

= (1 − t)r < 1 − t,

which by Lemma2 shows that A /∈ M̃t . ��
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Thus, we have just demonstrated that if the noise is introduced at the level of meters
as in Eq. (17), the induced restriction cannot be reproduced by considering noise on
effects alone. However, one can of course start with Eq. (18) and use it as a restriction
on its own so that we will naturally arrive at (R1) type of restriction instead. The next
example will illustrate this point in quantum theory.

Example 3 (Depolarizing noise in quantum theory) In quantum theory, the standard
depolarizing channel 	t : L(H) → L(H) on a d-dimensional Hilbert space H is
defined as

	t (�) = t� + (1 − t)tr
[
�
] I

d
(21)

for all � ∈ L(H) with some noise parameter t ∈ [0, 1]. In the Heisenberg picture,
the depolarizing noise can be alternatively ascribed to the meters, which results in the
restricted set of effects

Ẽt = 	∗
t (E(S)) =

{

t E + (1 − t)
tr [E]

d
I : E ∈ E(H)

}

, (22)

where	∗
t is dual to	t . Clearly Ẽt ⊆ E(H) for all t ∈ (0, 1] and the equality holds only

if t = 1. For t ∈ (0, 1] it is straigthforward to verify that 	∗
t is an affine isomorphism

between E(H) and Ẽt so that by Proposition 3 we can deduce that Ẽt is a restriction
of type (R1) that does not form a convex subalgebra of E(S). For t = 0 we have that
Ẽ0 = span[0,1]{I }, which is a trivial convex subalgebra of every effect algebra.

However, ifwe consider a class of general (shifted) depolarizing channelst,ξ (�) =
t�+(1− t)tr[�]ξ with a general state ξ instead of the maximally mixed state I/d, then
a wider class of effects is achievable. This describes a physically relevant situation
when the considered qubit is coupled to a two-level fluctuator [37]. The dual map then
reads ∗

t,ξ (E) = t E + (1− t)tr [Eξ ] I so that in the case of quantum theory it can be
confirmed that {∗

t,ξ (E(H)) | ξ ∈ S(H)} = EM̃t
, i.e., we get all the effects provided

by Eq. (18). Clearly, EM̃t
	= Ẽt . The effect restrictions EM̃t

and Ẽt are depicted in
Fig. 1.

7 Discussion and Conclusions

Our primary goal in this paper was to establish a natural criterion that any operational
restriction is to satisfy and to classify such restrictions. Given a set of meters one can
always randomly switch among the meters and classically postprocess their measure-
ment outcomes. As a result, one readily gets a simulation closure of the original set of
meters. Equipped with the natural operational requirement of simulation closedness,
we have divided all operational restrictions into three classes.

Class (R1) describes such restrictions that originate from the truncation of the set of
effects.Wehave characterized such sets of effects in Theorem1.Wehave demonstrated
that a restriction to any convex subalgebra of the set of all effects induces a proper
operational restriction of class (R1). Further in Proposition3 we have proved that
there exist operational restrictions of class (R1) that do not reduce to convex effect
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I

O

EM̃tt

t

I

O

Ẽt
t

t

Fig. 1 The effect restrictions given by Eq. (18) (on left) and (22) (on right) on a three-dimensional cross
section of the qubit effect space. They are both convex subsets of effects that satisfy the consistency
conditions so that they induce valid simulation closed restrictions on meters

subalgebras. Proposition9 clarifies that the effect restriction is unique if the consistency
conditions (E1) and (E2) are satisfied.

Surprisingly enough, there exist operational restrictions of class (R2) onmeters such
that every effect within the no-restriction hypothesis is accessible, however, the set of
meters is severely truncated. The most prominent example is effectively dichotomic
meters, a simulation closure of dichotomic meters. Moreover, any restriction of class
(R2) must contain effectively dichotomic meters as a subset (Proposition4).

It is worth mentioning that effectively dichotomic meters naturally emerge in
conventional experiments with polarized photons and superconducting qubits, and
therefore are of great practical interest. Despite the fact that restrictions of class (R2)
seem quite innocent as compared to the restrictions of class (R1), they do impose
some strong physical limitations. In Example2 we have demonstrated that the success
probability of unambiguous discrimination of nonorthogonal pure qubit states with
effectively dichotomic meters is strictly less than that with trichotomic meters. From
a wider viewpoint of resource theories [38,39], Example2 opens an avenue for the
study of the resource theory of n-tomicity. Within such a resource theory, n-outcome
meters are free and any simulation scheme for meters is a free operation. A meter
that is not n-tomic may represent a resource for some task (as a trichotomic meter
in the unambiguous discrimination in Example2). As a byproduct of this research
direction, we have also derived some sufficient and (separately) necessary conditions
for effectively n-tomic observables (Propositions5–7).

Finally, we have demonstrated that there are restrictions that arise rather naturally
but belong to neither (R1) nor (R2). We have shown that such restrictions can emerge
when one considers meters compatible with a given meter (Proposition8) or when one
tries to account for noise in the meters (Proposition10 and Example3). We believe
that the operational restrictions of type (R3) can be further analyzed in subsequent
works.
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