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Abstract
We show that the big bang is a coordinate singularity for a large class of k = −1 
inflationary FLRW spacetimes which we have dubbed ‘Milne-like.’ By introducing 
a new set of coordinates, the big bang appears as a past boundary of the universe 
where the metric is no longer degenerate—a result which has already been inves-
tigated in the context of vacuum decay (Coleman and De Luccia  in Phys Rev D 
21:3305–3315, 1980). We generalize their results and approach the problem from a 
more mathematical perspective. Similar to how investigating the geometrical prop-
erties of the r = 2m event horizon in Schwarzschild led to a better understanding of 
black holes, we believe that investigating the geometrical properties of the big bang 
coordinate singularity for Milne-like spacetimes could lead to a better understanding 
of cosmology. We show how the mathematics of these spacetimes may help illumi-
nate certain issues associated with dark energy, dark matter, and the universe’s miss-
ing antimatter.

Keywords  Big bang · Milne · Singularity · Dark energy · Dark matter · Antimatter

1  Introduction

In this paper we show that the big bang is a coordinate singularity for a large class of 
k = −1 inflationary FLRW spacetimes which we have dubbed ‘Milne-like.’ This may 
seem surprising and one may justifiably ask: don’t the singularity theorems imply 
that this cannot happen? In Appendix 1 we show why the singularity theorems don’t 
apply to inflationary spacetimes. Indeed Milne-like spacetimes can almost always be 
used as counterexamples [12].

The coordinate singularity appearing in Milne-like spacetimes may offer a new geo-
metrical perspective of our universe. We believe that understanding the geometry of the 
coordinate singularity for Milne-like spacetimes could lead to a better understanding 
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of cosmology. One of the goals of this paper is to demonstrate how the mathematics of 
these spacetimes may help illuminate certain issues associated with dark energy, dark 
matter, and the universe’s missing antimatter. Our solution to the antimatter problem is 
similar to the solution presented in [6].

We remark a previous time when understanding the geometry of a coordinate sin-
gularity led to advances in theoretical physics. The r = 2m event horizon in Schwar-
zschild is a coordinate singularity. Understanding the geometry of event horizons 
led to Hawking’s area theorem for black holes [11, 19, 40] which played a pivotal 
role in the development of black hole thermodynamics [40].

Throughout this paper we set constants G = c = ℏ = 1 . Our signature convention 
is (−,+,+,+).

1.1 � Summary of Results

In this section we give a brief summary of our results. We highlight four main 
points. 

(1)	 The big bang is a coordinate singularity for Milne-like spacetimes.
(2)	 The geometric solution to the horizon problem.
(3)	 The cosmological constant appears as an initial condition.
(4)	 Lorentz invariance and its implications for dark matter and antimatter.

(1) The big bang is a coordinate singularity for Milne-like spacetimes
The Milne universe is the k = −1 FLRW spacetime with manifold 

M = (0,∞) ×ℝ
3 and metric

and scale factor a(�) = � . Here we are using hyperbolic coordinates (�,R, �,�) . By 
introducing coordinates (t, r, �,�) via t = � cosh(R) and r = � sinh(R) , the metric is

which is just the Minkowski metric. Notice that � = 0 corresponds to the lightcone 
t = r at the origin O . Hence the big bang is a coordinate singularity for the Milne 
universe.

A Milne-like spacetime is a k = −1 FLRW spacetime with scale factor assumed 
to satisfy a(�) = � + o(�1+�) for small � . Letting � = 1∕2 shows that this condi-
tion is satisfied for any Taylor expansion a(�) = � + c2�

2
+ c3�

3
+⋯ . Since this 

is a limiting condition, Milne-like spacetimes can include an inflationary era, a 
radiation-dominated era, a matter-dominated era, and a dark energy-dominated era. 
Therefore they can model the dynamics of our universe. We introduce coordinates 
(t, r, �,�) via t = b(�) cosh(R) and r = b(�) sinh(R) where b satisfies b� = b∕a . Put-
ting Ω = 1∕b� = a∕b , the metric is

(1.1)g = −d�2 + a2(�)
[
dR2

+ sinh2(R)(d�2 + sin2 �d�2
)

]

(1.2)g = −dt2 + dr2 + r2(d�2 + sin2 �d�2
)

(1.3)g = Ω
2
(�)

[
− dt2 + dr2 + r2(d�2 + sin2 �d�2

)

]
.
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The condition a(�) = � + o(�1+�) implies 0 < Ω(0) < +∞ where 
Ω(0) ∶= lim�→0 Ω(�) . Therefore there is no degeneracy at � = 0 in these coordi-
nates. Thus the big bang is a coordinate singularity for Milne-like spacetimes. See 
Sect. 3.3 for the full proof (Fig. 1).

Figure 2 shows how the big bang is a coordinate singularity for the Milne uni-
verse and Milne-like spacetimes. In both cases the lightcone at the origin O acts as a 
past boundary of the universe. It separates our universe from the extension.

The discussion so far has been informal. In Sect. 2 we give precise mathemati-
cal definitions to what we mean by coordinate and curvature singularities. We then 
apply these definitions in Sect. 3 to show the big bang is a coordinate singularity for 
Milne-like spacetimes. In Sect.  3.4 we show Milne-like spacetimes admit no cur-
vature singularities provided the second derivative of the scale factor satisfies an 
asymptotic condition.

(2) The geometric solution to the horizon problem
We briefly recall the horizon problem in cosmology. It is the main motivating reason 

for inflationary theory [42, p. 208]. The problem comes from the uniform temperature 
of the CMB radiation. From any direction in the sky, we observe the CMB temperature 

Fig. 1   Left: The scale factor for the Milne universe. Right: The scale factor for a Milne-like spacetime 
modeling the dynamics of inflation

Fig. 2   Left: the Milne universe sits inside the future lightcone at the origin O of Minkowsi space. Right: 
a Milne-like spacetime sits inside the future lightcone at the origin O of a spacetime conformal to 
Minkowski space. In both caes the spacetime extends through the lightcone at the origin O
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as 2.7 K. The uniformity of this temperature is puzzling: if we assume the universe 
exists in a radiation-dominated era all the way down to the big bang (i.e. no inflation), 
then the points p and q on the surface of last scattering don’t have intersecting past 
lightcones. So how can the CMB temperature be so uniform if p and q were never in 
causal contact in the past? See Fig. 3.

An inflationary era before the radiation-dominated era would allow for causal con-
tact in the past. This is depicted in Fig.  4. For a Milne-like spacetime the solution 
becomes apparent in the conformal Minkowski coordinates. Since the spacetime is 
conformal to Minkowski space, the lightcones are given by 45°  angles. Therefore any 
two points p and q in a Milne-like spacetime will have past lightcones which intersect 
at some point above the origin O.

(3) The cosmological constant appears as an initial condition
Here we show how the cosmological constant Λ appears as an initial condition for 

Milne-like spacetimes. This may help explain the origin of Λ . If dark energy is really 
modeled by a cosmological constant and not by some other model (e.g. quintessence), 
then Λ would have been fixed at the big bang.

The Einstein equations with a cosmological constant are

(1.4)R�� −
1

2
Rg�� + Λg�� = 8�T�� .

Fig. 3   The horizon problem. Without inflation the past lightcones of p and q don’t intersect

Fig. 4   An inflationary era widens the past lightcones to solve the horizon problem. This is depicted in the 
figure on the left. The figure on the right depicts the solution for Milne-like spacetimes in the conformal 
Minkowski coordinates
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Let u = �∕�� denote the four-velocity of the comoving observers and let e be 
any unit spacelike orthogonal vector (its choice does not matter by isotropy). We 
define the energy density � and pressure function p in terms of the Einstein ten-
sor: � =

1

8�
G��u

�u� and p =
1

8�
G��e

�e� where G�� = R�� −
1

2
Rg�� . We define the 

normal energy density �normal(�) and normal pressure function pnormal(�) in terms 
of the energy-momentum tensor �normal = T��u

�u� and pnormal = T��e
�e� . Therefore 

� = �normal + Λ∕8� and p = pnormal − Λ∕8�.
If �normal = pnormal = 0 (e.g. de Sitter), then the equation of state for the cosmo-

logical constant is fixed for all �.

In Sect.  4.2 we show that this equation of state appears as an initial condi-
tion for Milne-like spacetimes. Specifically, we show if the scale factor satisfies 
a��(�) = �� + o(�) , then

Consequently, if �normal(�) and pnormal(�) → 0 as � → 0 (i.e. if the cosmological con-
stant was the dominant energy source during the Planck era), then we have Λ = 3� . 
Note that � = a���(0) . Therefore we have

This provides a connection between the cosmological constant Λ and the initial con-
dition of the scale factor.

(4) Lorentz invariance and its implications for dark matter and antimatter
In Sect. 4.3 we show the Lorentz group L = O(1, 3) acts by isometries on Milne-

like spacetimes at the origin O . Therefore these spacetimes have a notion of Lorentz 
invariance. This follows because the Minkowski metric is Lorentz invariant and the 
conformal factor Ω appearing in Eq. (1.3) is Lorentz invariant. Since Lorentz invari-
ance plays a pivotal role in QFT (e.g. the field operators are constructed out of finite 
dimensional irreducible represenations of the Lorentz group [38, 41]), Milne-like 
spacetimes are a good background model if one wants to develop a quantum theory 
of cosmology with Lorentz invariance.

A Possible Dark Matter Particle?
There are two different kinds of symmetries in quantum theory. The local (gauge) 

symmetry group SU(3) × SU (2) × U(1) of the standard model and the global spa-
cetime symmetry group.

The irreducible unitary representations of SL(2,ℂ) (which is the simply con-
nected double cover of the connected component of O(1, 3) containing the iden-
tity) are characterized by two different types of particles. See Theorem  10.9 in 
[38]. The first class of particles is the principal series. These particles are char-
acterized by the parameter � = −iw where w is real and spin j = 0, 1∕2, 1,… The 

(1.5)� = −p =

Λ

8�
.

(1.6)�(0) = −p(0) =
3

8�
�.

(1.7)Λ = 3a���(0).
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second class of particles is the complementary series. These particles are charac-
terized by the parameter −1 ≤ � ≤ 1 and spin j = 0 . The terminology ‘principal’ 
and ‘complementary’ comes from the classification of irreducible unitary repre-
sentations of semi-simple Lie groups [37].

Since the comoving observers emanate from the origin O  in a Milne-like spa-
cetime (see Fig. 5), a possible physical interpretation of this classification would 
be that these are the particles created at the big bang. If this interpretation is cor-
rect, then the principal series would correspond to the particles of the standard 
model (in analogy to Wigner’s classification of the Poincaré group [43]). But this 
leaves the complementary series up to interpretation. Perhaps

But is there any evidence that dark matter is comprised of spin 0 particles? 
Yes. Scalar field dark matter (SFDM) [17, 18, 26, 36] also known as Bose–Ein-
stein condensate (BEC) dark matter [22, 27, 32–34, 39] also known as wave dark 
matter (WDM) [7, 8, 15, 29] also known as fuzzy dark matter (FDM) [20, 21] all 
use the Klein–Gordon wave equation (i.e. the wave equation for spin 0 particles) 
to model dark matter. The difference in name comes from a difference in motiva-
tion. One reason for introducing models of dark matter based on the Klein–Gor-
don equation is to alleviate the cusp problem associated with the weakly inter-
acting massive particle (WIMP) models of dark matter [23]. Furthermore, the 
models based on the Klein–Gordon equation reproduce the observed spiral pat-
tern density in disk galaxies (see Figs.  1–4 in [8]) which makes these models 
promising.

If the identification “principal series = normal matter” and “complementary 
series = dark matter” is true, then the distinguishing feature could be related to 
the parameter � which is determined by Casimir operators built out of rotations 
and Lorentz boosts (see Eq. 10.3-1 in [38]). Perhaps this could offer an explana-
tion for dark matter’s lack of interaction with electromagnetism.

What Lies Beyond � = 0?
Recall the Lorentz group L = O(1, 3) has four connected components L↑

+

 , L↑

−

 , 
L↓

+

 , L↓

−

 . The ± corresponds to detΛ = ±1 , the ↑ corresponds to Λ0
0
≥ 1 , and the ↓ 

complementary series = dark matter particles?

Fig. 5   The comoving observers 
in a Milne-like spacetime. They 
all emanate from the origin O
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corresponds to Λ0
0
≤ −1 . Since Milne-like spacetimes are defined for t > 0 , only 

the subgroup L↑
= L↑

+

∪ L↑

−

 acts by isometries on Milne-like spacetimes.
What about L↓

= L↓

+

∪ L↓

−

 ? If L↓ also acts by isometries, then there would 
be a universe isometric to ours with the isometry given by the PT transformation 
(t, x, y, z) ↦ (−t,−x,−y,−z) . Given the CPT theorem [35], perhaps the universe’s 
missing antimatter is contained in the PT symmetric universe. In Sect. 4.5 we show 
how one can interpret the PT symmetric universe as an antimatter universe via a 
Lorentz invariant Dirac equation.

We remark this idea is closely related to the same idea in [6]. There the authors 
consider a k = 0 FLRW spacetime with metric g = −d�2 + a2(�)

[
dx2 + dy2 + dz2

]
 

in a radiation dominated era a(�) ∝
√
� . By moving to conformal time 𝜏 given by 

d𝜏 = d𝜏∕a(𝜏) , one arrives at the metric g = a2(𝜏)
[
− d𝜏2 + dx2 + dy2 + dz2

]
 where 

a(𝜏) ∝ 𝜏 . They then analytically extend the function a(𝜏) from (0,+∞) to ℝ and call 
the (−∞, 0) part the ‘CPT-symmetric’ universe. However, at 𝜏 = 0 , the metric is 
g = 0 . Hence it’s degenerate. Therefore this is not a spacetime extension (Fig.  6).

1.2 � Open Problems

(1)	 Is � = 0 a coordinate singularity for k = 1 and k = 0 FLRW spacetimes? From 
[13] it is known that no extension can exist with spherical symmetry.

Open problems (2)–(4) refer to the past boundary �−M of a spacetime (Definition 
2.4). 

(2)	 Is � = 0 a coordinate singularity for Milne-like spacetimes with compact �
-slices? The null expansion � of the future lightcone in Minkowski space diverges 

Fig. 6   The figure on the left represents the universe/antimatter universe pair in [6]. The metric is degen-
erate at 𝜏 = 0 , so the pair together do not form a spacetime. The figure on the right represents the uni-
verse/antimatter universe pair for a Milne-like spacetime. In this case the pair coexist in a single nonde-
generate spacetime. They are causally connected at the origin O where Lorentz invariance holds
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as one approaches the origin O along the cone. This suggests that, in the compact 
case, the past boundary �−M cannot be compact (if nonempty).

(3)	 To understand what can lie beyond � = 0 , it is desired to understand the maximal 
analytic extension whenever Ω is analytic on M ∪ �−M . Minkowski space is the 
maximal analytic extension of the Milne universe. De Sitter space is the maximal 
analytic extension of the Milne-like spacetime with scale factor a(�) = sinh(�) . 
Therefore we suggest

	   Conjecture: Let (M, g) be a Milne-like spacetime with an analytic Ω on 
M ∪ �−M . If (M, g) is asymptotically flat (i.e. admits a null scri structure), then 
the maximal analytic extension contains a noncompact Cauchy surface. If (M, g) 
is asymptotically de Sitter (i.e. admits a spacelike scri structure), then the maxi-
mal analytic extension contains a compact Cauchy surface. A discussion of 
analytic spacetime extensions and when they are unique can be found in Sect. 4.6 
of [10].

(4)	 Eventually one would want to study models that are not perfectly homogeneous 
and isotropic. This poses a natural question: what is the correct initial value 
problem for the lightcone �−M which adequately describes our universe? For 
example, the null geodesics on �−M emanating from O never focus and so there 
are no null conjugate points on �−M . How does this constrain the initial data? 
Some other ideas/questions for initial conditions on �−M are listed below.

–	 Perhaps a constant scalar curvature on �−M should be assumed. This could 
offer a geometric origin for how the cosmological constant Λ appears as an 
initial condition.

–	 Perhaps one should assume the Weyl curvature tensor vanishes on �−M which 
would be in accordance with Penrose’s Weyl curvature hypothesis.

–	 What initial conditions would adequately describe Lorentz invariance?
–	 What initial conditions force a rigidity result like the one in Sect. 3.5?

2 � Definition of Coordinate and Curvature Singularities

2.1 � Spacetimes

Let k ≥ 0 be an integer. A Ck manifold of dimension n + 1 is a topological space 
M endowed with a maximal Ck-atlas A of dimension n + 1 . A coordinate system 
is an element � ∈ A . Specifically, a coordinate system is a Ck-diffeomorphism 
𝜙 ∶ U → 𝜙(U) ⊂ ℝ

n+1 where U is an open subset of M. The coordinate system 
� introduces coordinates which are Ck maps x� ∶ U → ℝ via x� = ��

◦� where 
��

∶ ℝ
n+1 → ℝ is the canonical projection and � runs over the indices 0, 1,… , n . 

The coordinate systems allow us to define Ck curves over M. For k ≥ 1 we use C1 
curves to generate tangent vectors at a point p ∈ M . This construction yields the 
tangent space TpM and the corresponding Ck−1 tangent bundle TM.

Let k ≥ 0 . A Ck metric on a Ck+1 manifold M is a nondegenerate symmetric ten-
sor g ∶ TM × TM → ℝ with constant signature whose components g�� in any coor-
dinate system � ∈ A are Ck functions. Symmetric means g(X, Y) = g(Y ,X) for 
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all X, Y ∈ TM . Nondegenerate means g(X, Y) = 0 for all Y ∈ TM implies X = 0 . 
With constant signature means there is an integer r such that at each point p ∈ M , 
there is a basis e0,… , er,… , en ∈ TpM such that g(e�, e�) = −1 for 0 ≤ � ≤ r and 
g(e�, e�) = 1 for r + 1 ≤ � ≤ n . If g(e0, e0) = −1 and g(ei, ei) = 1 for all i = 1,… , n , 
then g is called a Lorentzian metric and (M, g) is called a Ck Lorentzian manifold. If 
g(e�, e�) = 1 for all � = 0, 1,… , n , then g is called a Riemannian metric and (M, g) 
is called a Ck Riemannian manifold. We will only work with Lorentzian manifolds in 
this paper. Our convention will be that greek indices � and � will run through indices 
0, 1,… , n and latin indices i and j will run through 1,… , n.

Fix k ≥ 0 . Let (M, g) be a Ck Lorentzian manifold. A nonzero vector X ∈ TpM is 
timelike, null, or spacelike if g(X,X) < 0, = 0, > 0 , respectively. A nonzero vector 
is causal if it is either timelike or null. A Lorentzian manifold (M, g) is time-oriented 
provided there is a C0 timelike vector field X ∈ TM . A causal vector Y ∈ TpM is 
future-directed if g(X, Y) < 0 and past-directed if g(X, Y) > 0 . Note that −X defines 
an opposite time-orientation, and so a future-directed causal vector Y with respect to 
X is a past-directed causal vector with respect to −X.

Definition 2.1  (Spacetime). Let k ≥ 0 . A Ck spacetime is a pair (M, g) where M is a 
connected, Hausdorff, and second-countable Ck+1 manifold and g is a Ck Lorentzian 
metric such that (M, g) is time-oriented.

Remarks 

–	 The Einstein tensor R�� −
1

2
Rg�� requires two derivatives of the metric. There-

fore the relevant differentiability class for general relativity is C2.
–	 We assume M is connected because we can not make any observations of any 

other connected components.
–	 The Hausdorff condition guarantees uniqueness of limits.
–	 The second-countable property allows us to construct partitions of unity when-

ever needed (e.g. to construct a complete Riemannian metric on M).

Fix k ≥ 0 . Let (M,  g) be a Ck spacetime. A timelike curve � is a piecewise C1 
map � ∶ [a, b] → M such that � �(t) is future-directed timelike at all its differen-
tiable points, and in the case t0 ∈ [a, b] is a break point, we have limt↗t0

� �(t) and 
limt↘t0

� �(t) are both future-directed timelike. If t0 = a or t0 = b , then we only 
require this for the one-sided limit. Note this means that �|

[b−�, b) can be extended 
to a C1 timelike curve for 𝜀 > 0 small enough. Letting timelike curves be piecewise 
C1 allows us to concatenate two timelike curves to form another timelike curve. A 
unit timelike curve is a timelike curve � such that g(� �, � �) = −1 at all its differen-
tiable points. Note that ‘future-directed’ is implicit in our definition of a timelike 
curve. Given a timelike curve � ∶ [a, b] → M , we will often write 𝛾 ⊂ U instead of 
𝛾
(
[a, b]

)
⊂ U . Likewise with � ∩ U (Fig. 7).

Given a point p ∈ M and an open set U ⊂ M , the timelike future of p within U, 
denoted by I+(p,U) , is the set of all points q ∈ M such that there is a timelike curve 
� ∶ [a, b] → U from p to q. The timelike past of p within U, denoted by I−(p,U) , is 
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defined with the opposite time-orientation. If we wish to emphasize the Lorentzian 
metric g being used, then we will write I+

g
(p,U) . From Proposition 2.6 in [30], we 

know that these are open sets.

Proposition 2.2  I+(p,U) and I−(p,U) are open sets.

We reproduce the proof of this proposition in Appendix 2.

2.2 � Spacetime Extensions

Coordinate singularities coincide with spacetime extensions. For example, the 
r = 2m coordinate singularity in Schwarzschild extends the r > 2m region to the 
maximal analytic extension which contains the r < 2m region. Therefore an under-
standing of spacetime extensions is needed to understand coordinate singularities.

Fix k ≥ 0 . Let (M, g) be a Ck spacetime. Let 0 ≤ l ≤ k . A Cl spacetime (Mext, gext) 
with the same dimension as (M, g) is a Cl-extension of (M, g) if there is a proper iso-
metric Cl+1-embedding

We identify M with its image under the embedding. The topological boundary of M 
within Mext is denoted by �(M,Mext) = M ⧵M . If (Mext, gext) is a Cl-extension for all 
l ≥ 0 , then we say (Mext, gext) is a smooth or C∞-extension.

For the rest of this section, we will fix a Cl-extension (Mext, gext) of a Ck space-
time (M, g).

Proposition 2.3  �(M,Mext) ≠ �.

(M, g) ↪ (Mext, gext).

Fig. 7   The curve on the left is a 
timelike curve. The curve on the 
right is not a timelike curve even 
though it is timelike at all its 
differentiable points. We don’t 
consider it a timelike curve 
because it approaches a null 
vector at its break point
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Proof  If this were not true, then M = M , and so Mext would be the disjoint union 
of the nonempty open sets M and Mext ⧵M . However, this implies Mext is not con-
nected which contradicts the definition of a spacetime. 	�  ◻

Definition 2.4  Let (M, g) be a Ck spacetime and (Mext, gext) a Cl-extension. A time-
like curve � ∶ [a, b] → Mext is called future terminating for a point p ∈ �(M,Mext) 
provided �(b) = p and 𝛾

(
[a, b)

)
⊂ M . It is called past terminating if �(a) = p and 

𝛾
(
(a, b]

)
⊂ M . The future and past boundaries of M with respect to Mext are

Remark  If (Mext, gext) is clear from context, then we will simply write �+M for 
�+(M,Mext) . Likewise for �−M and �M (Fig. 8).

Lemma 2.5  Let � ∶ [a, b] → Mext be a timelike curve from p to q. 

(1)	 If p ∈ M and q ∉ M , then � intersects �+M.
(2)	 If p ∉ M and q ∈ M , then � intersects �−M.

Proof  Consider case (1). Define t
∗
= sup{t ∈ [a, b] ∣ 𝛾

(
[a, t)

)
⊂ M} . Since M is 

open we have t
∗
> a . Since q ∉ M , we have �(t

∗
) ∉ M . On the other hand �(t

∗
) is an 

accumulation point of M. Hence �(t
∗
) ∈ �M . The restriction �|

[a, t
∗
]
 is a future termi-

nating timelike curve for �(t
∗
) . Hence �(t

∗
) ∈ �+M . Case (2) follows by reversing 

the time orientation. 	�  ◻

Proposition 2.6  �+M ∪ �−M ≠ �.

Proof  Fix p ∈ �M . Let U ⊂ Mext be an open set around p. Fix q ∈ I−(p,U) . Let 
𝛾 ⊂ U be a timelike curve from q to p. We either have q ∈ M or q ∉ M . First assume 
q ∈ M . Then Lemma 2.5 implies � ∩ �+M ≠ � . Now assume q ∉ M . Since p ∈ �M , 
the open set I+(q,U) of p contains a point r ∈ M . Hence there is a timelike curve 
𝜆 ⊂ U from q to r. Then Lemma 2.5 shows � ∩ �−M ≠ � . 	�  ◻

�+(M,Mext) = {p ∈ �(M,Mext) ∣ there is a future terminating timelike curve for p}

�−(M,Mext) = {p ∈ �(M,Mext) ∣ there is a past terminating timelike curve for p}

Fig. 8   Various points of �+M 
and �−M are shown. p ∈ �M is 
neither in �+M nor in �−M
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Proposition 2.6 can be used to show a spacetime (M, g) is Cl-inextendible (i.e. 
it admits no Cl-extension). Suppose one assumes (M, g) has a Cl-extension and 
then proves �+M = � and �−M = � , then Proposition 2.6 yields a contradiction. 
This is how Sbierski proves the C0-inextendibility of Minkowski space and the 
Schwarzschild spacetime [30, 31].

2.3 � Definition of Coordinate Singularities

In this section we give a precise definition of what we mean by a ‘coordinate 
singularity.’ Our goal is to identify when we have made a ‘poor’ choice of coordi-
nates. Before giving the definition, we start with a couple of motivating examples.

Motivating Examples

(1)	 Consider the smooth spacetime (M, g) where M = (0,∞) ×ℝ with the metric 
g = −�2d�2 + dx2 . Since the metric becomes degenerate at � = 0 , we cannot 
extend (M, g) using the coordinates (�, x) . However, if we introduce the coor-
dinate t = 1

2
�2 , then, with respect to these coordinates, the spacetime manifold 

becomes (0,∞) ×ℝ with metric −dt2 + dx2 . Since the metric is nondegenerate at 
t = 0 , we have no problem extending the spacetime using the coordinates (t, x). 
As such, we say (�, x) were a ‘poor choice’ of coordinates, and � = 0 merely 
represents a coordinate singularity. This example demonstrates that a coordinate 
singularity depends on a spacetime being inextendible within one coordinate 
system while being extendible in another.

(2)	 Consider the smooth spacetime (M,  g) where M = (0,∞) ×ℝ and 
g = −f (t)dt2 + dx2 where f ∶ (0,∞) → ℝ is the smooth function given by 
f (t) = 1 +

√
t . In this case (M, g) extends through t = 0 via the spacetime 

Mext = ℝ ×ℝ and gext = −dt2 + dx2 for t ≤ 0 and gext = g for t > 0 . However 
(Mext, gext) is not a smooth extension of (M, g). It is only a C0-extension. In this 
case we would not say that (t, x) are a ‘poor’ choice of coordinates for (M, g), 
since the coordinates (t, x) can still be used to extend the spacetime just not 
smoothly.

Fix k ≥ 0 . Let (M, g) be a Ck spacetime with dimension n + 1 . Recall a coordinate 
system is an element of the maximal Ck+1-atlas for M. Specifically, a coordinate 
system is a Ck+1-diffeomorphism 𝜙 ∶ U → 𝜙(U) ⊂ ℝ

n+1 where U is an open subset 
of M.

Let � ∶ U → ℝ
n+1 be a coordinate system for a Ck spacetime (M,  g). Let 

Ω = 𝜙(U) ⊂ ℝ
n+1 . Then (U, g) is Ck-isometric to (Ω, �

∗
g) where �

∗
 is the push 

forward. Let 0 ≤ l ≤ k . Suppose there exists an open set Ω� ⊂ ℝ
n+1 which properly 

contains Ω and a Cl-Lorentzian metric g′ on Ω� such that (Ω�, g�) is a Cl-extension 
of (Ω, �

∗
g) . Then we say (Ω�, g�) is a Cl-coordinate extension of (Ω, �

∗
g) . If such 

an (Ω�, g�) exists, then we say � is not Cl-maximal. If no such (Ω�, g�) exists, then 
we say � is Cl-maximal. For example, the coordinates (�, x) in the first example 
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above are C0-maximal. The coordinates (t, x) in the second example are C1-maxi-
mal but not C0-maximal.

Remark  Intuitively, a coordinate system � is C0-maximal if the metric components 
g�� with respect to � are maximally extended. If they were extended any further, 
then there would be a degeneracy in the metric (e.g. Schwarzschild).

Definition 2.7  (Coordinate singularity). Fix k ≥ 0 and 0 ≤ l ≤ k . Let (M,  g) be a 
Ck spacetime and let � ∶ U → ℝ

n+1 be a coordinate system which is C0-maximal. 
We say � admits a Cl-coordinate singularity for (M,  g) if there is a Cl-extension 
(Mext, gext) and a coordinate system � ∶ V → ℝ

n+1 for Mext such that

Remark  In the definition � represents the ‘poor’ choice of coordinates. � represents 
the ‘better’ choice of coordinates.

For example consider (M,  g) from example (1) above. The coordinate system 
� = (�, x) is a C∞-coordinate singularity for (M, g). This follows because

–	 � is C0-maximal
–	 (Mext, gext) is a C∞-extension of (M, g) where Mext = ℝ

2 and gext = −dt2 + dx2.
–	 In this example we simply take U = M and V = Mext and � = (t, x).

2.4 � Definition of Curvature Singularities

In this section we give a precise definition of what we mean by a ‘curvature singu-
larity.’ Before doing so, let’s fix notation by recalling the definition of curvature.

Fix k ≥ 2 . Let (M, g) be a Ck spacetime and ∇ its unique compatible affine con-
nection. Then the Riemann curvature tensor is the (3, 1) tensor defined by

where [X, Y] is the Lie derivative of Y with respect to X. Let {��} be a coordinate 
vector basis with dual one-form basis {dx�} . The components of the Riemann curva-
ture tensor with respect to {��} are defined by R �

��� = dx�
(
R(��, ��)��

)
 . Using index 

notation ∇XY = (X�
∇�Y

�
)�� and the linear and Leibniz properties of the affine con-

nection, we have

Here we see the non-commutativity of the second covariant derivatives of Z 
expressed in terms of the components of the curvature tensor.

Since gravitation is mathematically described by curvature (e.g. the Einstein 
equations and tidal acceleration), we can use divergences in the curvature tensor 
as a way to identify the breakdown of general relativity. Since we want to measure 

V ∩M = U and V ∩ (Mext ⧵M) ≠ �.

R(X, Y)Z = ∇X(∇YZ) − ∇Y (∇XZ) − ∇
[X,Y]Z

R �
���

Z�
= (∇�∇� − ∇�∇�)Z

� .
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divergences in a coordinate-independent way, we construct curvature invariants out 
of scalar quantities.

Definition 2.8  Fix k ≥ 2 . Let (M,  g) be a Ck spacetime. A curvature invariant on 
(M, g) is a scalar function which is a polynomial in the components of the metric 
g�� , its inverse g�� , and the curvature tensor R �

��� .

Examples of Curvature Invariants

(1)	 The scalar curvature R = g��R�� = g��R �
���

.
(2)	 The Kretschmann scalar R����R

����.
(3)	 R��R

��.

Fix k ≥ 0 . Let (M, g) be a Ck spacetime. A future inextendible timelike curve is a 
curve � ∶ [a, b) → M such that for any a < c < b , the restriction �|

[a,c] is a timelike 
curve, and for all p ∈ M the extended function �p ∶ [a, b] → M is not continuous 
where �p is given by �p(t) = �(t) for all a ≤ t < b and �p(b) = p . Past inextendible 
timelike curves are defined time-dually.

Definition 2.9  (Curvature singularity). Fix k ≥ 2 . Let (M, g) be a Ck spacetime. We 
say (M, g) admits a future curvature singularity if there is a future inextendible time-
like curve � ∶ [a, b) → M and a curvature invariant C such that C◦�(t) diverges as 
t → b . Time-dualizing the definition gives past curvature singularities.

2.5 � A Classical Example: The Schwarzschild Spacetime

In this section we apply our definitions of coordinate and curvature singulari-
ties to the Schwarzschild spacetime. We will show how the r = 2m event hori-
zon in Schwarzschild is just a coordinate singularity and how r = 0 is a curvature 
singularity.

Definition 2.10  Let m > 0 . Define two manifolds

and the metric

where (S2, dΩ2
) is the usual round two-sphere. Then (Msafe, g) and (Munsafe, g) are 

the safe and unsafe Schwarzschild spacetimes.

Msafe = ℝ × (2m,∞) × S2

Munsafe = ℝ × (0, 2m) × S2

(2.1)g = −

(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1

dr2 + r2dΩ2
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Let 0 < 𝜃 < 𝜋 and 0 < 𝜙 < 2𝜋 be the standard coordinates on S2 . Let U ⊂ Msafe 
be the open set U = ℝ × (2m,∞) × (0,�) × (0, 2�) . Then the metric in the coordi-
nate system � = (t, r, �,�) ∶ U → ℝ

4 is

Note that the coordinate system � ∶ U → ℝ
4 is C0-maximal.

Now we introduce other coordinates (v, r, �,�) given by v = t + r∗(r) where 
r∗(r) = r + 2m log(r∕2m − 1) . The metric in these coordinates is

There is no degeneracy at r = 2m with respect to these coordinates. Therefore we 
can define a C∞-extension (Mext, gext) where Mext = ℝ

2
× S2 and

Let V = ℝ × (0,∞) × (0,�) × (0, 2�) . Then � = (v, r, �,�) ∶ V → ℝ
4 is a coordinate 

system for (Mext, gext) such that V ∩Msafe = U and V ∩ (Mext ⧵Msafe) ≠ � . Thus

Proposition 2.11  � = (t, r, �,�) admits a C∞-coordinate singularity for (Msafe, g).

It’s not hard to see that (Munsafe, g) is C∞-isometric to the region r < 2m of 
(Mext, gext) . We end this section by demonstrating that (Munsafe, g) admits a future 
curvature singularity.

Proposition 2.12  (Munsafe, g) admits a future curvature singularity.

Proof  Consider the future inextendible timelike curve � ∶ [m, 0) → Munsafe given 
by �(r) = (t0, r, �0,�0) . Recall that �∕�r is timelike on Munsafe . Let C = R����R

���� 
denote the Kretschmann scalar. Then a calculation shows C = 48m2

∕r6 . Therefore 
C◦�(r) → ∞ as r → 0 . 	�  ◻

3 � The Coordinate Singularity for Milne‑Like Spacetimes

Let I ⊂ ℝ be an open interval. Let (Σ, h) be a three-dimensional complete Riemann-
ian manifold with constant sectional curvature. We say (M, g) is an FLRW spacetime 
if M = I × Σ and g = −d�2 + a2(�)h where a ∶ I → (0,∞) is a continuous function 
called the scale factor. The integral curves of �∕�� are called the comoving observ-
ers. Physically, they model the trajectories of galaxies.

Remark  We don’t assume any differentiability assumption on the scale factor. There-
fore the lowest regularity class for FLRW spacetimes is C0.

(2.2)g = −

(
1 −

2m

r

)
dt2 +

(
1 −

2m

r

)−1

dr2 + r2(d�2 + sin2 �d�2
).

(2.3)g = −

(
1 −

2m

r

)
dv2 + (dv⊗ dr + dr⊗ dv) + r2(d𝜃2 + sin2 𝜃d𝜙2

).

(2.4)gext = −

(
1 −

2m

r

)
dv2 + (dv⊗ dr + dr⊗ dv) + r2dΩ2.
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Let (ℝ3, h) be hyperbolic space with sectional curvature k = −1 . Let (M,  g) 
be the corresponding FLRW spacetime. We use the standard coordinates 
� = (�,R, �,�) for M where � ∶ U → ℝ

4 and U = I × (0,∞) × (0,�) × (0, 2�) . 
With respect to the coordinate system � = (�,R, �,�) , the metric is

We will first demonstrate how � = (�,R, �,�) admits a C∞-coordinate singularity for 
(M, g) in two familiar cases: (1) when (M, g) is the Milne universe and (2) when 
(M, g) is the open-slicing coordinate system for de Sitter space. Then we will show 
how � = (�,R, �,�) admits a C0-coordinate singularity for a class of inflationary 
spacetimes which we have dubbed ‘Milne-like.’ The justification for calling these 
‘inflationary’ comes in Sect.  4.1 where we show that these spacetimes solve the 
horizon problem in cosmology.

In Sect. 3.4 we show that Milne-like spacetimes do not admit curvature sin-
gularities provided the scale factor satisfies a��(�) = �� + C�3 + o(�3) with 
�,C ∈ ℝ . In Sect. 3.5 we show a rigidity result: if a Milne-like spacetime sat-
isfies both the weak and strong energy conditions, then it must be the Milne 
universe.

3.1 � The Milne Universe

Let (ℝ3, h) be hyperbolic space with sectional curvature k = −1 . The Milne uni-
verse is the corresponding FLRW spacetime (M, g) given by M = (0,∞) ×ℝ

3 and 
with scale factor a(�) = � . With respect to the coordinate system � = (�,R, �,�) , 
the metric is

We introduce a new coordinate system � = (t, r, �,�) where � and � are unchanged, 
but t and r are given by

Then we have −dt2 + dr2 = −d�2 + �2dR2 , so that the metric in the coordinate sys-
tem � = (t, r, �,�) is

which is just the usual Minkowski metric. The coordinate system � = (�,R, �,�) is 
C0-maximal, but we can find a C∞-extension via � = (t, r, �,�) . Therefore

Proposition 3.1  � = (�,R, �,�) admits a C∞-coordinate singularity for (M, g).

The constant � slices are hyperboloids sitting inside the future lightcone 
of the origin. We take the extension to be (Mext, gext) = Minkowski space. As 

(3.1)g = −d�2 + a2(�)
[
dR2

+ sinh2(R)(d�2 + sin2 � d�2
)

]
.

(3.2)g = −d�2 + �2
[
dR2

+ sinh2(R) (d�2 + sin2 � d�2
)

]
.

(3.3)t = � cosh(R) and r = � sinh(R).

(3.4)g = −dt2 + dr2 + r2(d�2 + sin2 � d�2
)
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� → 0 , these slices approach the lightcone at the origin O  in Minkowski space 
where the extended metric gext is nondegenerate (Fig. 9).

3.2 � De Sitter Space

The open slicing coordinate system for de Sitter space is a k = −1 FLRW spacetime 
M = (0,∞) ×ℝ

3 with scale factor a(�) = sinh(�) . With respect to the coordinate sys-
tem � = (�,R, �,�) , the metric is

We introduce a new coordinate system � = (t, r, �,�) where � and � are unchanged, 
but t and r are given by

where b(�) = tanh(�∕2) = sinh �∕(1 + cosh �) . Then b�(�) = b(�)∕a(�) , and so we 
have the following relationship between (t, r) and (�,R).

Therefore the metric is

which is conformal to the Minkowski metric. Using b(�) = tanh(�∕2) 
and b2(�) = t2 − r2 , we have � = 2 tanh−1(

√
t2 − r2) . Therefore 

1∕b�(�) = a(�)∕b(�) = 2∕(1 − t2 + r2) . Thus the metric in the coordinate system 
� = (t, r, �,�) is

(3.5)g = −d�2 + sinh2(�)
[
dR2

+ sinh2(R) (d�2 + sin2 � d�2
)

]
.

(3.6)t = b(�) cosh(R) and r = b(�) sinh(R),

(3.7)
(
a(�)

b(�)

)2(
− dt2 + dr2

)
= −d�2 + a2(�)dR2.

(3.8)g =

(
a(�)

b(�)

)2[
− dt2 + dr2 + r2(d�2 + sin2 � d�2

)

]
,

Fig. 9   The Milne universe sits 
inside the future lightcone of 
the origin O in the extension 
which is just Minkowski space. 
It’s foliated by constant � slices 
which are hyperboloids
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The coordinate system � = (�,R, �,�) is C0-maximal, but we can define a C∞-exten-
sion via � = (t, r, �,�) . Thus

Proposition 3.2  � = (�,R, �,�) admits a C∞-coordinate singularity for (M, g).

The constant � slices are hyperboloids sitting inside the future lightcone at the 
origin. We take the extension to be (Mext, gext) = a smooth spacetime conformal to 
Minkowski space. As � → 0 , these slices approach the lightcone where the extended 
metric gext is nondegenerate (Figs. 10 and 11).

(3.9)g =

(
2

1 − t2 + r2

)2[
− dt2 + dr2 + r2(d�2 + sin2 � d�2

)

]
.

Fig. 10   The open slicing coor-
dinates of de Sitter space sits 
inside the future lightcone at the 
origin O in a spacetime confor-
mal to Minkowski space

Fig. 11   A Milne-like spacetime sits inside the future lightcone at the origin O in a spacetime extension 
(Mext, gext) which is conformal to Minkowski space
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3.3 � Milne‑Like Spacetimes

Now we wish to show that � = (�,R, �,�) is a coordinate singularity for scale factors 
that can model the dynamics of our universe. That is, we wish to show � = 0 is a 
coordinate singularity for suitably chosen scale factors a(�) which

–	 begin inflationary a(�) ∼ sinh(�)

–	 then transitions to a radiation dominated era a(�) ∼
√
�

–	 then transitions to a matter dominated era a(�) ∼ �2∕3

–	 and ends in a dark energy dominated era a(�) ∼ e

√
Λ

3
�

If we assume for small � , the scale factor satisfies a(�) ∼ � , then, by curve fitting, 
we can use a(�) to represent each of the above eras, thus modeling the dynam-
ics of our universe. To make this precise, we assume for small � , the scale fac-
tor satisfies a(�) = � + o(�1+�) for some 𝜀 > 0 (i.e. 

[
a(�) − �

]
∕�1+� → 0 as � → 0 ). 

In particular any convergent Taylor expansion a(�) =
∑

∞

n=1
cn�

n (with c1 = 1 ) will 
satisfy this condition.

Definition 3.3 

(1)	 Let (M, g) be an FLRW spacetime. We say (M, g) is inflationary if the scale 
factor for small � satisfies a(�) = � + o(�1+�) for some 𝜀 > 0.

(2)	 We say (M, g) is Milne-like if it is an inflationary FLRW spacetime such that 
(Σ, h) = (ℝ

3, h) where h is the hyperbolic metric with sectional curvature k = −1 . 
We assume the coordinate system � = (�,R, �,�) is C0-maximal.

Remarks 

–	 The motivation for the word ‘inflationary’ comes in Sect.  4.1 where we 
show that the particle horizon is infinite for scale factors which obey 
a(�) = � + o(�1+�).

–	 A Ck Milne-like spacetime is one such that the spacetime is Ck (i.e. the scale 
factor a(�) is a Ck function).

–	 For inflationary spacetimes we have a(0) ∶= lim�→0 a(�) = 0.
–	 The coordinate system � = (�,R, �,�) is defined for all � ∈ I = (0, �max) where 

�max ∈ (0,+∞] . For our universe, we expect �max = +∞ due to dark energy.

The next theorem improves and refines Theorem 3.4 in [13].

Theorem  3.4  � = (�,R, �,�) admits a C0-coordinate singularity for Milne-like 
spacetimes.

Proof  Let (M, g) be a Milne-like spacetime. With respect to the coordinate system 
� = (�,R, �,�) , the metric is
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Fix any �0 ∈ I . The specific choice does not matter; any �0 will do. Define a new 
coordinate system � = (t, r, �,�) by

where b ∶ I → (0,∞) is given by

Note that b(�) is an increasing C1 function and hence it’s invertible. Therefore � as a 
function of t and r is

Note that t and r are defined for all points such that t2 − r2 < b2(𝜏max) . With respect 
to the coordinate system � = (t, r, �,�) , the metric takes the form

where

Now we prove � = (�,R, �,�) admits a C0-coordinate singularity for (M,  g). For 
this it suffices to show Ω(0) ∶= lim�→0 Ω(�) exists and is a finite positive number. 
Indeed this will imply the Lorentzian metric given by Eq. (3.14) extends continu-
ously through � = 0 which corresponds to the lightcone t = r , i.e. this will imply 
that (M, g) is C0-extendible via � = (t, r, �,�).

To show 0 < Ω(0) < ∞ , put b�(0) ∶= lim�→0 b
�

(�) = lim�→0 b(�)∕a(�) . 
By our definition of an inflationary spacetime, there is an 𝜀0 > 0 such that 
a(�) = � + o(�1+�0) . Therefore lim�→0 f (�)∕�

1+�0 = 0 where f (�) is given 
by a(�) = � + f (�) . Therefore for any 𝜀 > 0 , there exists a 𝛿 > 0 such 
that for all 0 < 𝜏 < 𝛿 , we have |f (𝜏)| < 𝜀𝜏1+𝜀0 . Choosing � = 1 , we have 
𝜏 − 𝜏1+𝜀0 < 𝜏 + f (𝜏) < 𝜏 + 𝜏1+𝜀0 . Thus b(�)∕a(�) is squeezed between

Evaluating the integrals, we find

Since this holds for all 0 < 𝜏 < 𝛿 , we have Ω(0) = 1∕b�(0) = �0 . 	�  ◻

(3.10)g = −d�2 + a2(�)
[
dR2

+ sinh2(R)(d�2 + sin2 � d�2
)

]
.

(3.11)t = b(�) cosh(R) and r = b(�) sinh(R)

(3.12)b(�) = exp

(

∫
�

�0

1

a(s)
ds

)
.

(3.13)� = b−1
�√

t2 − r2
�
.

(3.14)g = Ω
2
(
�(t, r)

)[
− dt2 + dr2 + r2(d�2 + sin2 �d�2

)

]

(3.15)Ω(�) =
1

b�(�)
=

a(�)

b(�)
.

(3.16)

1

a(𝜏)
exp

(
−∫

𝜏0

𝜏

1

(𝜏 − 𝜏1+𝜀0)
ds

)
<

b(𝜏)

a(𝜏)
<

1

a(𝜏)
exp

(
−∫

𝜏0

𝜏

1

(𝜏 + 𝜏1+𝜀0)
ds

)

(3.17)1

𝜏0

(
𝜏

a(𝜏)

)(
1 − 𝜏𝜀0

1 + 𝜏
𝜀0
0

)
−1∕𝜀0

<
b(𝜏)

a(𝜏)
<

1

𝜏0

(
𝜏

a(𝜏)

)(
1 + 𝜏𝜀0

1 + 𝜏
𝜀0
0

)
−1∕𝜀0
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Remark  The past boundary �−M acts as a Cauchy horizon for the Milne-like space-
time. As such the white region beyond �−M cannot be uniquely determined.

3.4 � Milne‑Like Spacetimes Without Curvature Singularities

The scalar curvature for a k = −1 FLRW spacetime is given by

For a Milne-like spacetime, we have a�(0) = 1 . If the second derivative of the scale 
factor satisfies a��(�) = �� + o(�) , then we have a�(�) = 1 +

1

2
��2 + o(�2) . Plug-

ging these into R(�) , we find lim�→0 R(�) = 12� . Thus the scalar curvature does not 
diverge at the big bang.

In this section we generalize the above result and show that Milne-like space-
times do not admit any curvature singularities provided the second derivative of 
the scale factor satisfies

(i.e. [a��(�) − �� + C�3]∕�3 → 0 as � → 0 ). Here �,C ∈ ℝ are constants. The limit-
ing condition implies � = a���(0) . This limiting condition applies to any convergent 
Taylor expansion a(�) =

∑
∞

n=1
cn�

n with c1 = 1 and c2 = 0 and c4 = 0 . Indeed this 
limiting condition applies to a(�) = sinh(�) (i.e. the open-slicing of de Sitter space). 
This agrees with the fact that de Sitter space has no curvature singularities.

An example of a Milne-like spacetime where we do have a curvature singular-
ity is given by the scale factor a(�) = � + �2 . The scalar curvature diverges as 
� → 0 . Indeed in this case we have a��(�) = 2 ≠ �� + C�3 + o(�3).

Lemma 3.5  Fix k ≥ 2 . Let (M, g) be a Ck Milne-like spacetime. Suppose the second 
derivative of the scale factor satisfies a��(�) = �� + C�3 + o(�3) where �,C ∈ ℝ . 
Then for any p ∈ �−M , the limits of

as (t, r, �,�) → p all exist and are finite.

The proof of Lemma 3.5 is in Appendix 2.

Theorem 3.6  Fix k ≥ 2 . Let (M, g) be a Ck Milne-like spacetime. Suppose the second 
derivative of the scale factor satisfies a��(�) = �� + C�3 + o(�3) where �,C ∈ ℝ . 
Then (M, g) admits no past curvature singularities.

Proof  Let � ∶ (0, b] → M be any past-inextendible timelike curve parameterized 
by � (we can parameterize by � since it’s a time function). Since � is past inex-
tendible and timelike, Fig.  12 shows that there exists a point p ∈ �−M such that 

R(�) =
6

a2(�)

[
a(�)a��(�) + a�(�)2 − 1

]
.

a��(�) = �� + C�3 + o(�3)

�Ω

�t
,

�Ω

�r
,

�2Ω

�t2
,

�2Ω

�r2
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p = lim�↘0 �(�) . More rigorously, the point p can be determined by writing out � in 
the � = (t, r, �,�) coordinate system.

The existence of these limits follows from � being past-inextendible and timelike. 
Since any curvature invariant is constructed out of first and second derivatives of the 
metric coefficients (i.e. the first and second derivatives of Ω in this case), Lemma 
3.5 implies any curvature invariant has a finite-value quantity at p. Thus there are no 
past curvature singularities for (M, g). 	�  ◻

3.5 � A Rigidity Result

In this section we will establish the following rigidity result.

Theorem 3.7  Fix k ≥ 2 . Suppose (M, g) is a Ck Milne-like spacetime which satisfies 
both the weak and strong energy conditions. Then (M, g) is the Milne universe.

Before proving Theorem 3.7, we recall the definitions of the weak and strong 
energy conditions.

Definition 3.8  Fix k ≥ 2 and let (M,  g) be a Ck spacetime. The Einstein tensor is 
G�� = R�� −

1

2
Rg�� . We say (M, g) satisfies

t(p) = lim
�→0

t◦�(�) r(p) = lim
�→0

r◦�(�)

�(p) = lim
�→0

�◦�(�) �(p) = lim
�→0

�◦�(�)

Fig. 12   A past-inextendible timelike curve � inside a Milne-like spacetime (M, g) terminates at a past 
endpoint p ∈ �−M . If a��(�) = �� + C�3 + o(�3) , then any curvature invariant along � will limit to a 
well-defined finite value at p 
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–	 the weak energy condition if G��X
�X� ≥ 0 for all timelike X.

–	 the strong energy condition if R��X
�X� ≥ 0 for all timelike X.

Let (M, g) be an FLRW spacetime. Following [28], we define the energy density � 
and pressure function p in terms of the Einstein tensor. If u = �∕�� and e is any unit 
spacelike vector orthogonal to u (its choice does not matter by isotropy), then

We make use of the following proposition. See also Eqs. (9.2.19) and (9.2.20) in 
[40].

Proposition 3.9  Let (M, g) be an FLRW spacetime. 

(a)	 The weak energy condition is equivalent to � ≥ 0 and � + p ≥ 0.
(b)	 The strong energy condition is equivalent to � + 3p ≥ 0 and � + p ≥ 0.

The proof of Proposition 3.9 is in Appendix 2.

Proof of Theorem 3.7  Friedmann’s equations are (see Eqs. (5.2.14) and (5.2.15) in 
[40]):

The weak energy condition implies � ≥ 0 . Therefore a�(�) ≥ 1 for all � by Eq. (3.18). 
The strong energy condition implies � + 3p ≥ 0 . Therefore a��(�) ≤ 0 for all � by Eq. 
(3.19). Hence a′ is decreasing. Since a�(0) ∶= lim�→0 a

�

(�) = 1 , we have a�(�) ≤ 1 
for all � . Therefore a�(�) = 1 identically, and so a(�) = � for all � . Thus (M, g) is the 
Milne universe. 	�  ◻

4 � Cosmological Properties of Milne‑Like Spacetimes

4.1 � The Geometric Solution to the Horizon Problem

Our definition for an inflationary FLRW spacetime was one whose scale factor satis-
fies a(�) = � + o(�1+�) for some 𝜀 > 0 . Our motivation is that these spacetimes solve 
the horizon problem, and this is true for k = +1 , 0, or −1 . However, what’s unique 
about Milne-like spacetimes is that they extend into a larger spacetime because the 

� =

1

8�
G��u

�u� and p =

1

8�
G��e

�e�

(3.18)8�� =

3

a2

[
(a�)2 − 1

]

(3.19)8�(� + 3p) = −6
a��

a
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big bang is just a coordinate singularity. This offers a new geometrical picture of 
how Milne-like spacetimes solve the horizon problem as we discuss below.

We briefly recall the horizon problem in cosmology. It is the main motivating 
reason for inflationary theory [42]. The problem comes from the uniform tempera-
ture of the CMB radiation. From any direction in the sky, we observe the CMB tem-
perature as 2.7 K. The uniformity of this temperature is puzzling: if we assume the 
universe exists in a radiation dominated era all the way down to the big bang (i.e. no 
inflation), then the points p and q on the surface of last scattering don’t have inter-
secting past lightcones. So how can the CMB temperature be so uniform if p and q 
were never in causal contact in the past? (Fig. 13)

By using conformal time 𝜏 given by d𝜏 = d𝜏∕a(𝜏) , it is an elementary exercise to 
show that there is no horizon problem provided the particle horizon at the moment 
of last scattering is infinite:

This condition widens the past lightcones of p and q so that they intersect before 
� = 0 . See Fig. 14.

Proposition 4.1  The particle horizon for an inflationary spacetime is infinite.

(4.1)∫
�recombination

0

1

a(�)
d� = ∞.

Fig. 13   The horizon problem. Without inflation the past lightcones of p and q never intersect. But then 
why does the Earth measure the same 2.7 K temperature from every direction?

Fig. 14   Inflation solves the horizon problem by widening the past lightcones
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Proof  From the definition of an inflationary spacetime, we have

Therefore for any 𝜀 > 0 there exists a 𝛿 > 0 such that |a(𝜏)∕𝜏 − 1| < 𝜀 for all 
0 < 𝜏 < 𝛿 . Hence 1∕a(𝜏) > 1∕(1 + 𝜀)𝜏 for all 0 < 𝜏 < 𝛿 . Then the particle horizon at 
the moment of last scattering is

Thus the particle horizon is infinite. 	�  ◻

For Milne-like spacetimes, the origin O  plays a unique role. The lightcones of 
any two points must intersect above O  . This follows from the metric being con-
formal to Minkowski space, g�� = Ω

2
(�)��� . As such the lightcones are given by 

45° angles; see Fig. 15 which clarifies the situation depicted in Fig. 14.
Also we observe that the comoving observers all emanate from the origin 

O  . Indeed a comoving observer �(�) is specified by a point (R0, �0,�0) on the 
hyperboloid.

In the (t, r, �,�) coordinates introduced in Eq. (3.11), the comoving observer is 
given by

where

(4.2)lim
�→0

a(�)

�
= 1.

(4.3)�
�recombination

0

1

a(�)
d� ≥ �

�

0

1

a(�)
d� ≥ �

�

0

1

(1 + �)�
d� = ∞

(4.4)�(�) = (�,R0, �0,�0).

(4.5)�(�) =
(
t(�), r(�), �0,�0)

(4.6)t(�) = b(�) cosh(R0) and r(�) = b(�) sinh(R0).

Fig. 15   A Milne-like spacetime modeling our universe. The points p and q have past lightcones which 
intersect at some point above O



410	 Foundations of Physics (2020) 50:385–428

1 3

Thus the relationship between t and r for � is t = coth(R0)r . Therefore for any 
comoving observer, we have t = Cr for some C > 1 . Thus the comoving observers 
emanate from the origin.

4.2 � The Cosmological Constant Appears as an Initial Condition

In this section we show how the cosmological constant Λ can appear as an initial 
condition for Milne-like spacetimes. This may help explain the origin of Λ . If 
dark energy is really modeled by a cosmological constant and not by some other 
model (e.g. quintessence), then Λ would have been fixed at the big bang.

Another interesting result in this direction is [1]. In their paper the authors 
show how the cosmological constant may arise from a topological quantity via 
Chern–Simons invariants. The authors make use of exotic 4-manifolds admit-
ting hyperbolic geometry which are ultimately expressed as hyperbolic FLRW 
spacetimes.

Fix k ≥ 2 . For this section let (M, g) denote a Ck Milne-like spacetime. Con-
sider the Einstein equations with a cosmological constant

Let u = �∕�� denote the four-velocity of the comoving observers and let e be any 
unit spacelike orthogonal vector (its choice does not matter by isotropy). We define 
the normal energy density �normal(�) and normal pressure function pnormal(�) in 
terms of the energy-momentum tensor

Then the energy density � and pressure function p in terms of �normal and pnormal are 
given by

If �normal = pnormal = 0 (e.g. de Sitter), then the equation of state for the cosmologi-
cal constant is fixed for all �.

We show that this equation of state appears as an initial condition. For the follow-
ing theorem, we define �(0) ∶= lim�→0 �(�) . Likewise with p(0) and �normal(0) and 
pnormal(0).

(4.7)G�� + Λg�� = R�� −
1

2
Rg�� + Λg�� = 8�T�� .

(4.8)�normal = T��u
�u�

(4.9)pnormal = T��e
�e�

(4.10)� =

1

8�
G��u

�u� = �normal +
Λ

8�

(4.11)p =

1

8�
G��e

�e� = pnormal −
Λ

8�

(4.12)� = −p =

Λ

8�
.
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Theorem 4.2  Suppose the scale factor satisfies a��(�) = �� + o(�) . Then

We prove Theorem 4.2 at the end of this section. First we understand its impli-
cations. If the cosmological constant Λ is the dominant energy source during the 
Planck era, then we have the following connection between Λ and the initial con-
dition of the scale factor.

Proposition 4.3  Suppose the scale factor satisfies a��(�) = �� + o(�) , and we have 
�normal(0) = pnormal(0) = 0 . Then

Proof  This follows from Theorem 4.2 and Eq. (4.10). 	� ◻

Remark  In (3+1)-dimensional de Sitter space we have T�� = 0 and Λ = 3 . In the 
open slicing coordinates of de Sitter, we have a(�) = sinh(�) . Hence � = a���(0) = 1 . 
Therefore de Sitter space is a special example of Proposition 4.3.

Now we examine how an inflaton scalar field behaves in the limit � → 0 . We 
will demonstrate that slow-roll inflation follows if the initial condition for the 
potential is given by the cosmological constant: V|�=0 = Λ∕8� . Recall the energy-
momentum tensor for a scalar field � is

And its energy density and pressure function are

The following proposition shows that when the initial condition for V is determined 
by the cosmological constant, then one obtains a slow-roll era.

Proposition 4.4  Suppose the scale factor satisfies a��(�) = �� + o(�) , and we have

 

(1)	 If V
(
�(0)

)
= 3�∕8� , then ��

(0) = 0.
(2)	 If �normal(0) = pnormal(0) = 0 and V

(
�(0)

)
= Λ∕8� , then ��

(0) = 0

Proof  (1) follows from Theorem 4.2 and (2) follows from Proposition 4.3. 	�  ◻

�(0) = −p(0) =
3

8�
�.

Λ = 3� = 3a���(0).

(4.13)T�
��

= ∇��∇�� −

[
1

2
∇

��∇�� + V(�)
]
g�� .

(4.14)��(�) =
1

2
��

(�)2 + V
(
�(�)

)
and p�(�) =

1

2
��

(�)2 − V
(
�(�)

)
.

� → �� and p → p� as � → 0.



412	 Foundations of Physics (2020) 50:385–428

1 3

Proof of Theorem  4.2  Friedmann’s equations are (8�∕3)� = H2
− 1∕a2 and 

8�p = −2a��∕a − (8�∕3)� where H = a�∕a is the Hubble parameter. Using 
a(�) = � + f (�) , the Friedmann equations become

and

By definition of an inflationary spacetime, we have f �(0) ∶= lim�→0 f (�)∕� = 0 . 
Also, since a��(�) = �� + o(�) , we have 0 = a��(0) = f ��(0) = lim�→0 f

�

(�)∕� 
and � = lim�→0 f

��

(�)∕� . Therefore for all 𝜀 > 0 , there is a 𝛿 > 0 such 
that |f ��(𝜏)∕𝜏 − 𝛼| < 𝜀 for all 0 < 𝜏 < 𝛿 . Integrating this expression gives 
(𝛼 − 𝜀)𝜏∕2 < f �(𝜏)∕𝜏 < (𝛼 + 𝜀)𝜏∕2 . Plugging this into the first Friedmann equa-
tion yields 8��(0)∕3 = � . Using this for the second Friedmann equation yields 
−8�p(0) = 3� . 	�  ◻

4.3 � Lorentz Invariance

In this section we show that the isometry group for Milne-like spacetimes contains 
the Lorentz group. Since Lorentz invariance plays a pivotal role in QFT (e.g. the 
field operators are constructed out of finite dimensional irreducible represenations 
of the Lorentz group [38, 41]), Milne-like spacetimes are a good background model 
if one wants to develop a quantum theory of cosmology.

Remark  In this section Λ will always denote an element of the Lorentz group (i.e. a 
Lorentz transformation) and not the cosmological constant.

Let ��� be the Minkowski metric. The Lorentz group is

A Lorentz transformation Λ shifts elements in Minkowski space via x� ↦ Λ

�
�x

� , but 
it leaves the hyperboloids fixed. More generally this applies to any Milne-like space-
time by the same map (Fig. 17).

For a Milne-like spacetime, we have g�� = Ω
2
(�)��� where ��� is the usual 

Minkowski metric. Since a Lorentz transformation leaves hyperboloids invariant, we 
have

(4.15)

8�

3
�(�) =

(
a�(�)

a(�)

)2

−

1

a(�)2
=

2f �(�) + f �(�)2

[
� + f (�)

]2 =

(
f �(�)∕�

)[
2∕� + f �(�)∕�

]

(
1 + f (�)∕�

)2

(4.16)−8�p(�) = 2
a��(�)

a(�)
+

8�

3
�(�) =

2f ��(�)∕�

1 + f (�)∕�
+

8�

3
�(�).

(4.17)L = O(1, 3) = {Λ ∣ ��� = Λ
�
�
Λ

�
�
���}.

(4.18)Ω(�) = Ω(�◦Λ).
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Recall the Lorentz group L = O(1, 3) has four connected components L↑

+

 , L↑

−

 , L↓

+

 , 
L↓

−

 . The ± corresponds to detΛ = ±1 , the ↑ corresponds to Λ0
0
≥ 1 , and the ↓ cor-

responds to Λ0
0
≤ −1.

Lorentz transformations fix the origin (i.e. ΛO = O  ) and are isometries on 
the spacetime manifold with boundary (M ∪ �−M) ⧵ {O} . We will say that any 
map which fixes O  and is an isometry on the spacetime manifold with boundary 
(M ∪ �−M) ⧵ {O} is an isometry on M ∪ �−M . Note that the set of isometries on 
M ∪ �−M forms a group via composition. Since Milne-like spacetimes are defined 
for t > 0 , only the subgroup L↑

= L↑

+

∪ L↑

−

 acts by isometries on Milne-like space-
times. If (M, g) admits a C2-extension, then we obtain an isomorphism.

Theorem 4.5  Let (M, g) be a Milne-like spacetime. Then any Λ ∈ L↑ is an isometry 
on M ∪ �−M.

Theorem 4.6  If a Milne-like spacetime admits a C2-extension, then L↑ is isomorphic 
to the group of isometries on M ∪ �−M.

Remark  To the best of the author’s knowledge, Theorem  4.6 is a new result. Its 
proof relies on the existence of �−M.

Proofs of Theorems 4.5 and 4.6  Let Λ be an element of L↑ . It produces a unique 
map, x ↦ Λx via x� ↦ Λ

�
�x

� where (x0, x1, x2, x3) = (t, x, y, z) are the conformal 
Minkowski coordinates introduced in the proof of Theorem  3.4. Since (M,  g) is 
only defined for t > 0 , we must restrict to Lorentz transformations Λ ∈ L↑ . Con-
sider a point p ∈ M and a tangent vector X = X��� at p. Then Λ acts on X by 
dΛ(X) = Λ

�
�X

��� and sending it to the point Λp ∈ M . Since Ω(�◦p) = Ω(�◦Λp) , 
we have

Thus Λ is an isometry. Now consider p ∈ �−M . Then Λp ∈ �−M and we have 
Ω|p = Ω|

Λp = Ω(0) . Therefore the calculation above carries through in this case as 
well. This proves Theorem 4.5.

Now we prove Theorem 4.6. By Theorem 4.5 we have L↑ is a subgroup, so it suf-
fices to show it’s the whole group. Suppose f is an isometry on M ∪ �−M . The dif-
ferential map dfO is a linear isometry on the tangent space at O . Therefore dfO corre-
sponds to an element of the Lorentz group, say Λ�

� . It operates on vectors X at O via 
df (X) = Λ

�
�X

��� . Now we define the isometry f̃  by f̃ (x) = Λ

𝜇
𝜈x

𝜈 . Consider the set

g��(dΛX)
�
(dΛY)� = Ω

2
(�◦Λp) ���(dΛX)

�
(dΛY)�

= Ω
2
(�◦p) ���(Λ

�
�
X�

)(Λ
�
�
Y�

)

= Ω
2
(�◦p) ���X

�Y�

= g��X
�Y� .

A = {p ∈ M ∪ 𝜕−M ∣ dfp = df̃p}.



414	 Foundations of Physics (2020) 50:385–428

1 3

Note that if dfp = df̃p , then f (p) = f̃ (p) . Hence it suffices to show A = M ∪ �−M . A 
is nonempty since O ∈ A , and A is closed because df − df̃  is continuous. So since 
M ∪ �−M is connected, it suffices to show A is open in the subspace topology. Let 
p ∈ A . Since Ω is C2 , there is a normal neighborhood U about p. If q ∈ U , there is 
a vector X at p such that expp(X) = q . Since isometries map geodesics to geodesics, 
they satisfy the property f◦ expp = expf (p) ◦ dfp for all points in U (see p. 91 of [28]). 
Therefore

Thus f (q) = f̃ (q) for all q ∈ U ; hence dfq = df̃q for all q ∈ U . Therefore A is open. 	
� ◻

4.4 � A Possible Dark Matter Particle?

The symmetries in quantum theory can be characterized by local symmetries and 
global spacetime symmetries.

Local symmetries correspond to the gauge symmetry group SU(3) × SU(2) × U(1) 
of the standard model. In gauge theory the Lagrangian is invariant under position-
dependent gauge transformations; hence the world ‘local.’ Local gauge invariance 
necessitates the existence of gauge fields in the Lagrangian which are then checked 
experimentally. The SU(3) part describes the strong interaction of quantum chromo-
dynamics. The SU(2) × U(1) part describes the electroweak interaction.

Global spacetime symmetries are the symmetries of the underlying spacetime 
manifold. Since the standard model is modeled on Minkowski space, the global spa-
cetime symmetry group is the Poincaré group which are the isometries in Minkowski 
space. Wigner’s classification [43] of the irreducible unitary representations of the 
Poincaré group described the spin properties of elementary particles which is con-
sidered a huge success in mathematical quantum field theory.

If one wants to build a quantum theory on a cosmological background, then 
Milne-like spacetimes are a preferred model since they are Lorentz invariant. Wign-
er’s success in the classification of the Poincaré group motivates us to seek the irre-
ducible unitary representations of the Lorentz group. Similar to Wigner’s analysis, 
we desire all projective unitary representations to lift to unitary representations. 
Therefore we really seek the irreducible unitary representations of SL(2,ℂ) which is 
the simply connected double cover of L↑

+

.

Classification of the Irreducible Unitary Representations of SL(2,ℂ)
This classification comes from Theorem 10.9 in [38]. There are two classes of 

irreducible unitary representations of SL(2,ℂ) . The first class is the principal series. 
These particles are characterized by the parameter � = −iw where w is real and spin 
j = 0, 1∕2, 1,… The second class is the complementary series. These particles are 
characterized by the parameter −1 ≤ � ≤ 1 and spin j = 0 . The terminology ‘princi-
pal’ and ‘complementary’ comes from the classification of irreducible unitary repre-
sentations of semi-simple Lie groups [37].

f (q) = f
(
expp(X)

)
= expf (p)(dfpX) = expf̃ (p)(df̃pX) = f̃

(
expp(X)

)
= f̃ (q).
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Given that the comoving observers in a Milne-like spacetime all emanate from 
the origin O (see Fig.  16), a possible physical interpretation of this classification 
would be that these are the particles created at the big bang. Then the principal 
series would correspond to the particles which make up the standard model (in anal-
ogy to Wigner’s classification of the Poincaré group), but this leaves the comple-
mentary series up to interpretation. Perhaps

But is there any evidence that dark matter is comprised of spin 0 particles? Yes. 
Scalar field dark matter (SFDM) [17, 18, 26, 36] also known as Bose-Einstein 
condensate (BEC) dark matter [22, 27, 32–34, 39] also known as wave dark mat-
ter (WDM) [7, 8, 15, 29] also known as fuzzy dark matter (FDM) [20, 21] all use 
the Klein–Gordon equation (i.e. the wave equation for spin 0 particles) to model 
dark matter. The difference in name comes from a difference in motivation. One 
reason for introducing models of dark matter based on the Klein–Gordon equation 
is to alleviate the cusp problem associated with the weakly interacting massive par-
ticle (WIMP) models of dark matter [23]. Furthermore, the models based on the 
Klein–Gordon equation reproduce the observed spiral pattern density in disk galax-
ies (see Figs. 1–4 in [8]) which makes these models promising.

The parameters � and j in the classification of SL(2,ℂ) are determined by Casimir 
operators built out of rotations and Lorentz boosts (see Eq. 10.3-1 in [38]). The spin 

complementary series = dark matter particles?

Fig. 16   The comoving observers 
in a Milne-like spacetime. They 
all emanate from the origin O

Fig. 17   A Lorentz transforma-
tion Λ based at O shifts points 
p to other points q = Λp on 
the same � = constant slice. 
For Milne-like spacetimes, 
Ω is a function of � . There-
fore Ω(�) = Ω(�◦Λ) , e.g. in 
this figure we would have 
Ω

(
�(p)

)
= Ω

(
�(q)

)
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parameter j comes from the usual rotation generators [Ji, Jj] = i�ijkJk . The parameter 
� is determined by requiring unitary of the boost generators [Ki,Kj] = −i�ijkJk . See 
Sect. 10.3.3 and Appendix VII of [38] for the full details.

What’s interesting is that the parameter � takes on very different forms for the 
principal series and the complementary series. It would be interesting if there is any 
new physics here. If the identification “principal series = normal matter” and “com-
plementary series = dark matter” is true, then the distinguishing feature could be 
related to this parameter � . Perhaps this could offer an explanation for dark matter’s 
lack of interaction with electromagnetism.

4.5 � What Lies Beyond � = 0?

Since Milne-like spacetimes extend through � = 0 , it is an interesting question to 
ask what exists in the extension. Of course this is only speculation, but hints can be 
found when one considers the maximal analytic extension whenever Ω is analytic 
on M ∪ �−M . For a(�) = � (i.e. the Milne universe), the maximal analytic extension 
is Minkowksi space. For a(�) = sinh(�) , the maximal analytic extension is de Sitter 
space.

For Minkowski space and de Sitter space, we have the full Lorentz group 
L = O(1, 3) acting as isometries at the origin O . When elements in L↓

= L↓

+

∪ L↓

−

 
act at the origin, it produces a PT symmetric spacetime (i.e. one where the map 
(t, x, y, z) ↦ (−t,−x,−y,−z) is an isometry).

Lorentz Invariance at O Implies an Antimatter Universe
Let (M, g) be a Milne-like spacetime. Requiring O to be Lorentz invariant (i.e. 

the full Lorentz group L = O(1, 3) acts at the origin O ) produces a PT symmetric 
universe. Given the CPT theorem [35], perhaps the universe’s missing antimatter is 
contained in the PT symmetric universe.

We remark this idea is closely related to the same idea in [6]. There the authors 
consider a k = 0 FLRW spacetime with metric g = −d�2 + a2(�)

[
dx2 + dy2 + dz2

]
 

in a radiation dominated era a(�) ∝
√
� . By moving to conformal time 𝜏 given by 

d𝜏 = d𝜏∕a(𝜏) , one arrives at the metric g = a2(𝜏)
[
− d𝜏2 + dx2 + dy2 + dz2

]
 where 

a(𝜏) ∝ 𝜏 . They then analytically extend the function a(𝜏) from (0,+∞) to ℝ and call 
the (−∞, 0) part the ‘CPT-symmetric’ universe. However, at 𝜏 = 0 , the metric is 
g = 0 . Hence it’s degenerate. Therefore this is not a spacetime extension.

Remark  The antimatter universe in Fig. 18 was speculated by assuming L↓ acts by 
isometries. Similarly one can speculate what lies in the white region between the 
universe and antimatter universe. If the Lorentz group acts by isometries, then the 
white region will be foliated by three-dimensional de-Sitter spacetimes.

How Can we Interpret the PT Symmetric Universe as an Antimatter Universe?
Consider an experimentalist. If the universe is modeled by a Milne-like space-

time, then the experimentalist will use coordinates that coincide with the comoving 
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observers (except for a small correction due to the Milky Way’s velocity relative to 
the CMB). Therefore the experimentalist will build rods and clocks which measure 
distances and times with respect to the metric

With these coordinates, the experimentalist will measure an energy p0 and momen-
tum pi of a particle with mass m such that −g��p�p� = −Ω

2
(�)���p

�p� = m2. Assum-
ing the de Broglie relations p� → i�� for a spin 0 field � yields a Lorentz invariant 
Klein–Gordon equation for Milne-like spacetimes 

[
Ω

2
(�)�������

]
� = m2� . Like-

wise, for a Dirac spinor � , we have a Lorentz invariant Dirac equation for Milne-like 
spacetimes

(Recall we are using the (−,+,+,+) signature convention, so our Dirac equation 
does not include a factor of i, but our �� matrices do.) Lorentz invariance follows 
because both Ω and the original Dirac equation are Lorentz invariant.

In the Weyl representation, the matrices �� are

where �j are the usual Pauli spin matrices.

(4.19)g = Ω
2
(�)

[
− dt2 + dx2 + dy2 + dz2

]
.

(4.20)
[
Ω(�)����

]
� = m� .

(4.21)�0 = i

(
0 I

I 0

)
, � j = i

(
0 �j

−�j 0

)
.

(4.22)

I = �0
=

(
1 0

0 1

)
�1

=

(
0 1

1 0

)
�2

=

(
0 − i

i 0

)
�3

=

(
1 0

0 − 1

)

Fig. 18   The figure on the left represents the universe/antimatter universe pair in [6]. The metric is degen-
erate at 𝜏 = 0 , so the pair together do not form a spacetime. The figure on the right represents the uni-
verse/antimatter universe pair for a Milne-like spacetime. In this case the pair coexist in a single non-
degenerate spacetime. The arrows in the middle represent the arrow of time determined by increasing 
entropy. The idea of a universe with an arrow of time opposite of ours is not new. For example see Fig. 9 
in [9]
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Choose a single comoving observer in the PT extension. Pick coordinates (t, x, y, z) 
so that they are aligned with this comoving observer (this can always be done by a 
Lorentz transformation at O ). Then x = y = z = 0 along the observer’s path. From 
Eq. (3.11), the relationship between � and t is b(�) = t . Therefore �t = b�(�)�� . 
Hence �� = Ω(�)�t , and so Eq. (4.20) becomes

Remark  There is a certain elegance in the simplicity of Eq. (4.23). In this form 
we see the Dirac equation is manifestly Lorentz invariant, and it highlights a cor-
respondence between mass and the proper time of comoving observers. This sug-
gests that the global spacetime symmetry group for Milne-like spacetimes should 
be ℝ × O(1, 3) where the ℝ factor corresponds to translations in cosmic time � 
and yields the physical quantity mass. Compare this with the Poincaré group 
ℝ

4
⋊ O(1, 3) which is the global spacetime symmetry group for Minkowski space. 

The mass for the Poincaré group comes from the ℝ4 factor in the semi-direct prod-
uct. See [25] for a mathematical discussion of this comparison.

Experimentalists in our universe I+(O) would use coordinates (t, x, y, z) to make 
observations and measurements. Anti-experimentalists in the anti-universe I−(O) 
would use coordinates (−t,−x,−y,−z) . Therefore the Dirac equation that the anti-
experimentalists would use is 

[
Ω(�)��(−��)

]
� = m� . Note that this is equivalent to 

Ω(�)����� = −m� (i.e. it’s the Dirac equation with negative mass). This explains 
the ± ambiguity one arrives at when deriving the Dirac equation.

Whether � solves the Dirac equation for I+(O) or I−(O) , the anticommutation 
Clifford relations imply

We can introduce electromagnetism in the Dirac equation via an electromag-
netic potential A� with the usual prescription i�� → i�� − eA� , or equivalently, 
�� → �� + ieA� . Then the corresponding Dirac equations for the experimentalist in 
I+(O) and the anti-experimentalist in I−(O) are, respectively,

Define the matrices

(4.23)i��� = m� .

(4.24)Ω
2
(����)(�

���)� = Ω
2
(
��(−��)

)(
��(−��)

)
� = m2� .

(4.25)Ω��(�� + ieA�)� = m�

(4.26)Ω��(−�� + ieA�)� = m�

(4.27)�(x) =

3∑

�=0

x��� = i

(
0 x

Px 0

)
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where x = −x������ and Px = (x0,−x1,−x2,−x3) . Let PT ∈ GL(4,ℂ) be an element 
which reverses both space and time. There are two choices which differ by a nega-
tive sign. We choose

Then �(−x) = PT �(x)(PT)−1 . Hence PT reverses space and time by acting on �(x) 
via conjugation. Note that PT �� = −�� PT and (��)∗ = −�� . Therefore matrix mul-
tiplication and complex conjugation yield the following table. 

Spinor field Equation An interpretation

� Ω��(�� + ieA�)� = m� � in I+O)
�∗

Ω��(−�� + ieA�)�
∗

= m�∗ � in I−(O)
PT� Ω��(−�� − ieA�)PT� = mPT� Anti � in I−(O)
PT�∗

Ω��(�� − ieA�)PT�∗

= mPT�∗ Anti � in I+(O)

Given the interpretation, perhaps the big bang at O produced equal amounts 
of matter and antimatter. The matter, represented by � , traveled into our universe 
I+(O) while the antimatter, represented by PT� , traveled into the antimatter uni-
verse I−(O) . The antimatter that we observe in our universe comes in the form PT�∗ 
while the anti-antimatter the anti-experimentalists observe comes in the form �∗.

Remark  The Lorentz invariance of the Dirac equation described in this section can 
be carried over to Lagrangians in QFT by appropriately including factors of Ω.
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Appendix 1: A Brief Account of Cosmological Singularity Theorems

In this appendix we give a brief account of some of the singularity theorems used in 
cosmology. The purpose of this appendix is to demonstrate that the singularity theo-
rems don’t always apply to inflationary spacetimes. Indeed Milne-like spacetimes 
can almost always be used as counterexamples.

The first step in developing a cosmological theory is to assume the Copernican 
principle. This assumption is supported by the highly uniform CMB radiation. The 
Copernican principle implies that the spacetimes (M,  g) which model cosmology 
are given by M = I × Σ and g = −d�2 + a2(�)h where I ⊂ ℝ is an interval and (Σ, h) 
are spaces of constant sectional curvature (i.e. maximally symmetric spaces). These 
are called FLRW spacetimes. Let �0 = inf I . If one assumes the universe is in a radi-
ation-dominated era for all 𝜏0 < 𝜏 < 𝜏1 given some �1 , then one finds a(�) → 0 as 
� → �0 and 𝜏0 > −∞ . In this case we say �0 is the big bang. By shifting the � coor-
dinate, we can assume �0 = 0 . Moreover the scalar curvature diverges as � → 0 , so 
� = 0 admits a curvature singularity. These arguments generalize if one replaces the 
assumption that the universe is in a radiation-dominated era with the assumption 
that the universe is nonvacuum and obeys the strong energy condition.

The singularity theorems of Hawking and Penrose [19] demonstrated that sin-
gularities (in the sense of timelike or null geodesic incompleteness) are a generic 
feature of physically relevant spacetimes. These theorems don’t assume any 
symmetry conditions on the spacetime manifold, but they do assume the strong 
energy condition. Hawking’s cosmological singularity theorems (see Theorems 
55A and 55B in [28]) both assume the strong energy condition.

There is a problem with the strong energy condition assumption in the sin-
gularity theorems. Assuming this condition in our universe, one finds that the 
particle horizon is finite. This implies that there are parts of the CMB that never 
achieved causal contact in the past. But if this is true, then how could the CMB 
have such a perfectly uniform temperature? This became known as the horizon 
problem in cosmology [42].

A resolution to the horizon problem is to assume that the universe underwent a 
brief period of accelerated expansion, a��(𝜏) > 0 , immediately after the big bang 
and right before the radiation-dominated era. This would allow for causal contact 
between the different points on the CMB. This theory became known as inflation-
ary theory and was first put forth by Alan Guth [16]. It also solved the flatness 
problem of cosmology and the magnetic monopole problem of certain grand uni-
fied theories [42].

Assuming an inflationary era, a��(𝜏) > 0 , then Friedmann’s equation implies 
𝜌 + 3p < 0 . Hence inflationary models do not satisfy the strong energy condi-
tion. Therefore the singularity theorems above no longer apply. New singular-
ity theorems were sought that did not require the strong energy condition. This 
was done by Borde and Vilenkin [2, 3] and others [14, 24]. Borde and Vilenkin 
found that some models of inflationary theory also violate the weak energy con-
dition [4]. Then Guth, Borde, and Vilenkin produced a singularity theorem [5], 
which showed that, even if the weak energy condition is violated, then one has 
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past incompleteness. However their theorem only applies to inflating regions of 
a spacetime. For example, their theorem applies to the Milne universe (because 
their theorem only requires an averaged Hubble expansion condition), but the 
Milne universe isometrically embeds into Minkowski space which is geodesically 
complete. See Fig. 19.

Note that the geodesic displayed in Fig.  19 is not a geodesic of a comoving 
observer. All the comoving observers emanate from the origin O  (see Fig.  5). 
Section 4.1 gives a derivation of this result.

Appendix 2: Miscellaneous Proofs

Proof of Proposition 2.2

Definition B.1  The Minkowski metric in ℝn+1 is � = ���dx
�dx� = −(dx0)2 + �ijdx

idxj . 
For 0 < 𝜀 < 1 , we define the narrow and wide Minkowski metrics

Lemma B.2  Fix k ≥ 0 . Let (M, g) be a Ck spacetime. Fix p ∈ M . For any 0 < 𝜀 < 1 
there is a coordinate system � ∶ U� → ℝ

n+1 with the following properties

(1)	 �(p) = 0

(2)	 g��(p) = ���

�� = −

1 − �

1 + �
(dx0)2 + �ijdx

idxj = � +
2�

1 + �
(dx0)2

�−� = −

1 + �

1 − �
(dx0)2 + �ijdx

idxj = � −
2�

1 − �
(dx0)2

Fig. 19   The singularity theorem in [5] applies to the Milne universe. However any incomplete geodesic 
extends to a complete geodesic within Minkowski space
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(3)	 I+
𝜂𝜀
(p,U𝜀) ⊂ I+(p,U𝜀) ⊂ I+

𝜂−𝜀
(p,U𝜀).

Moreover if � ∶ [a, b] → M is a unit timelike curve with �(b) = p , then we can 
choose the coordinate system so that �◦�(t) = (t − b, 0,… , 0).
Proof  Pick a coordinate system � ∶ U → ℝ

n+1 with �(p) = 0 and apply Gram-
Schmidt to obtain (2). By continuity of the metric, given any 𝜀′ > 0 , we can shrink 
our neighborhood so that |g𝜇𝜈(x) − 𝜂𝜇𝜈| < 𝜀� . Let X = X��� be a unit tangent vector 
(i.e. |X0| = 1 ). Then

If X is ��-timelike, then |Xi|2∕|X0|2 < (1 − 𝜀)∕(1 + 𝜀) . Since |X0| = 1 , we have

By taking 𝜀′ > 0 small enough, we can ensure 2�∕(1 + �) is larger than the bracket 
term. This proves the first inclusion in (3). The proof of the second is analogous.

Now let � ∶ [a, b] → M be a unit timelike curve with �(b) = p . Let (y0, y1,… , yn) 
be the coordinates on U (i.e. y� = ��

◦� where ��
∶ ℝ

n → ℝ are the canoni-
cal projections). Since g��(p) = ��� , we can shrink U so that y0 is a time function 
(i.e. ∇y0 is past-directed timelike). Since the definition of a timelike curve requires 
limt↗b �

�

(t) to be future-directed timelike, the function (y0◦�)�(t) approaches a 
nonzero number as t ↗ b . Therefore the inverse function theorem guarantees an 
interval (b − �, b + �) around b and a diffeomorphism f ∶ (b − �, b + �) → (−��, ��) 
such that f = y0◦� on (b − �, b] . Let U′ ⊂ U be the preimage of (−��, �) under y0 . 
We define new coordinates (x0, x1,… , xn) on U′ by

With these coordinates we have (Fig. 20)

	�  ◻

Proof of Proposition 2.2  Fix q ∈ I+(p,U) and let � ∶ [a, b] → U be a timelike curve 
with �(a) = p and �(b) = q . By rescaling we can assume � is a unit timelike curve. 
Let � ∶ U� → ℝ

n+1 be a coordinate system from Lemma B.2 centered around 

g(X,X) < 𝜂(X,X) + 𝜀�
n∑

𝜇, 𝜈=0

|X𝜇X𝜈|

= 𝜂𝜀(X,X) −
2𝜀

1 + 𝜀
+ 𝜀�

n∑

𝜇, 𝜈=0

|X𝜇X𝜈|

= 𝜂𝜀(X,X) −
2𝜀

1 + 𝜀
+ 𝜀�

[
1 + 2

n∑

i=1

|Xi| +
n∑

i, j=1

|XiXj|
]

g(X,X) < 𝜂𝜀(X,X) −
2𝜀

1 + 𝜀
+ 𝜀�

[
1 + 2n

√
1 − 𝜀

1 + 𝜀
+ n2

1 − 𝜀

1 + 𝜀

]
.

x0(q) = y0(q) and xi(q) = yi(q) − yi
(
�◦f −1◦y0(q)

)
.

x0◦�(t) = t − b and xi◦�(t) = 0.
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q. Choose � = 3∕5 so that �� has lightcones with slope 2. Choose t < b such that 
�(t) ∈ U� . Then I+

��

(
�(t),U� ∩ U

)
 is an open set since it’s just the interior of a cone 

intersected with an open set. Moreover, it’s contained in I+
(
�(t),U� ∩ U

)
 which is 

contained in I+(p,U) . 	�  ◻

Proof of Lemma 3.5

Fix k ≥ 2 . Let (M,  g) be a Ck Milne-like spacetime with a scale factor whose 
second derivative satisfies a��(�) = �� + C�3 + o(�3) where �,C ∈ ℝ . Recall the 
coordinate system � = (t, r, �,�) from the proof of Theorem 3.4. Here t and r are 
given by

where b ∶ I → (0,∞) is given by b(�) = exp
(∫ �

�0

1

a(s)
ds
)
 for some 𝜏0 > 0 . With 

respect to the coordinate system � = (t, r, �,�) , the metric takes the form

where Ω = 1∕b� = a∕b . We have to show for any t0 ≥ 0 the limits

(B.59)t(�,R) = b(�) cosh(R) and r(�,R) = b(�) sinh(R)

(B.60)g = Ω
2
(
�(t, r)

)[
− dt2 + dr2 + r2(d�2 + sin2 �d�2

)

]

lim
(t,r)→(t0,t0)

�Ω

�t
(t, r) lim

(t,r)→(t0,t0)

�Ω

�r
(t, r) lim

(t,r)→(t0,t0)

�2Ω

�t2
(t, r)

lim
(t,r)→(t0,t0)

�2Ω

�r2
(t, r)

Fig. 20   The coordinate system appearing in Lemma B.2. The point p is located at the origin where the 
metric is exactly Minkowski (i.e. g��(p) = ��� ). The timelike curve � makes up the negative x0-axis. Any 
timelike curve 𝜆 ⊂ U𝜀 will always be �−�-timelike but it may be ��-spacelike
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exist and are finite. Note that t and r appearing in the limits above are defined on 
the open set U =

{
(t, r, 𝜃,𝜙) ∣ t2 − r2 < b2(𝜏max) and t > 0 and r ≥ 0

}
 and where 

�max ∈ (0,+∞] is given from the interval I = (0, �max) of the scale factor.
Note that b is a strictly increasing C1 function which is never zero. Therefore 

it is invertible and the derivative of its inverse is (b−1)�
(
b(�)

)
= 1∕b�(�) . Recall 

� = b−1
�√

t2 − r2
�
 . Therefore ��∕�t = t∕(b�b) . Since Ω = a∕b = 1∕b� , the chain 

rule gives

Let’s simplify notation by letting a(�) = � + f (�) . Then we have

Taking another derivative, we get

Plugging b�� = (b∕a)� = (b�a − a�b)∕a2 = −bf �∕a2 into the above expression gives

From the proof of Theorem  3.4, for � = 1 there exists a 𝛿 > 0 such that for all 
0 < 𝜏 < 𝛿 , we have

where �0 is given by a(�) = � + o(�1+�0) . Since f ��(�) = �� + C�3 + o(�3) , we have 
f �(�) =

1

2
��2 +

1

4
C�4 + o(�4) . Using (B.67) along with b� = b∕a , we see that for 

small � , we have b = �∕�0 + o(�) and b�(�) = 1∕�0 + o(�) . Therefore the squeeze 
theorem gives

(B.61)
�Ω

�t
= Ω

�
��

�t
=

(
a� − 1

b

)(
t

b�b

)

(B.62)
�Ω

�t
=

(
f �

b2b�

)
t

(B.63)�2Ω

�t2
= t

�

�t

(
f �

b2b�

)
+

(
f �

b2b�

)
= t

(
f �

b2b�

)
�

��

�t
+

(
f �

b2b�

)

(B.64)= t

[
f ��(b2b�) − f �

(
2b(b�)2 + b2b��

)

b4(b�)2

](
t

b�b

)
+

(
f �

b2b�

)

(B.65)= t2
[

f ��

b3(b�)2
−

2f �

b4b�
−

f �b��

b3(b�)3

]
+

(
f �

b2b�

)

(B.66)
�2Ω

�t2
= t2

[
f ��

b3(b�)2
−

2f �

b4b�
+

(f �)2

a2b2(b�)3

]
+

(
f �

b2b�

)

(B.67)
(

𝜏

𝜏0

)(
1 − 𝜏𝜀0

1 + 𝜏
𝜀0
0

)
−1∕𝜀0

< b(𝜏) <

(
𝜏

𝜏0

)(
1 + 𝜏𝜀0

1 + 𝜏
𝜀0
0

)
−1∕𝜀0

(B.68)lim
�→0

(
f ��

b3(b�)2
−

2f �

b4b�

)
=

1

2
C�5

0
.
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Note that we needed the asymptotic condition a��(�) = �� + C�3 + o(�3) to get the 
above equality. Similarly, we have both of the limits

exist and are both finite. Plugging in (B.68) and (B.69) into (B.66) and (B.62), we 
see that for any t0 ≥ 0 , we have that the limits

exist and are finite. Similarly, we obtain the same conclusion for �Ω
�r

 and �
2
Ω

�r2
 . This 

completes the proof of Lemma 3.5.

Proof of Proposition 3.9

Fix k ≥ 2 . Let (M,  g) be a Ck spacetime. Recall the Einstein tensor is 
G�� = R�� −

1

2
Rg�� . We say (M,  g) satisfies the weak energy condition if 

G��X
�X� ≥ 0 for all timelike X, and the strong energy condition if R��X

�X� ≥ 0 for 
all timelike X.

Let (M, g) be an FLRW spacetime. Following [28] and [40], we define the energy 
density � and pressure function p in terms of the Einstein tensor. If u = �∕�� and e is 
any unit spacelike vector orthogonal to u, then

Also, as a consequence of isotropy, we have R��u
�e� = 0 (see Corollary 12.10 of 

[28]). Therefore

The following proof shows 

(a)	 The weak energy condition is equivalent to � ≥ 0 and � + p ≥ 0.
(b)	 The strong energy condition is equivalent to � + p ≥ 0 and � + 3p ≥ 0.

Proof of Proposition 3.9 

(a)	 Suppose (M, g) satisfies the weak energy condition. Then � =
1

8�
G��u

�u� ≥ 0 . 
Now let e be a unit spacelike vector orthogonal to u. Fix 𝜀 > 0 and let X be the 
timelike vector given by X�

= (1 + �)u� + e� . Then by Eqs. (B.71) and (B.72), 
we have 

(B.69)lim
�→0

(f �)2

a2b2(b�)3
and lim

�→0

f �

b2b�

(B.70)lim
(t,r)→(t0,t0)

�Ω

�t
lim

(t,r)→(t0,t0)

�2Ω

�t2

(B.71)� =

1

8�
G��u

�u� and p =

1

8�
G��e

�e� .

(B.72)G��u
�e� = 0
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 Since this is true for all 𝜀 > 0 , we have � + P ≥ 0 . Conversely, suppose � ≥ 0 
and � + p ≥ 0 . Let X be any timelike vector. Decompose X�

= au� + be� where 
e is a unit spacelike vector orthogonal to u. Then by Eqs. (B.71) and (B.72), we 
have 1

8�
G��X

�X�
= a2� + b2p . We have two cases: (1) p ≥ 0 and (2) p < 0 . In 

the first case we have G��X
�X�

= a2� + b2p ≥ 0 . The inequality follows from 
� ≥ 0 . Thus the weak energy condition holds. Now consider the case p < 0 . 
Then, since � + p ≥ 0 , we have 

 The last inequality follows because p < 0 and X is timelike.
(b)	 Let G = g��G�� = 8�(−� + 3p) . Then contracting the Einstein equation with g�� 

shows G = −R . Rearranging the Einstein tensor gives 

 Assume the strong energy condition holds. Then using the above equation, 
we have 0 ≤ R��u

�u� = 8�� − 4�(� − 3p) = 4�(� + 3p) which establishes 
� + 3p ≥ 0 . To establish � + p ≥ 0 , fix 𝜀 > 0 and consider the timelike vector 
X = (1 + �)u + e . Then using Eqs. (B.71) and (B.72), we have 

 Since 𝜀 > 0 was arbitrary, we have � + p ≥ 0 . Conversely, suppose � + p ≥ 0 
and � + 3p ≥ 0 . Let X be any timelike vector. Decompose X�

= au� + be� . 
Then we have 1

8�
G��X

�X�
= a2� + b2p . Using this in our expression for R�� , 

we have 

 There are two cases to consider: (1) 𝜌 − p > 0 and (2) � − p ≤ 0 . In case (1), 
we immediately have R��X

�X� ≥ 0 . Now consider case (2). Since X is time-
like, we have −a2 + b2 < 0 . Therefore it suffices to show (𝜌 − p)∕(𝜌 + 3p) < 1 . 
Hence it suffices to show p > 0 . Indeed � + p ≥ 0 and � − p ≤ 0 together imply 
p ≥ 0.

	�  ◻

0 ≤ 1

8�
G��X

�X�
= (1 + �)2� + p.

1

8�
G��X

�X�
= a2� + b2p ≥ (−a2 + b2)p = pg��X

�X� ≥ 0.

R�� = G�� +
1

2
Rg�� = G�� + 4�(� − 3p)g��

0 ≤R��X
�X�

=

[
G�� + 4�(� − 3p)g��

]
X�X�

= 4�
[
(1 + �)2� + � − p + 3p(1 + �)2

]
.

R��X
�X�

=G��X
�X�

+ 4�(� − 3p)g��X
�X�

= 4�
[
a2(� + 3p) + b2(� − p)

]
.
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