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Abstract
We show that in a dilute gas the wave function’s spreading is limited by scattering 
off other particles. This shows that quantum mechanics can be consistent with the 
kinetic theory of gases.
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1 Introduction

In the kinetic theory of gases one has a picture of little balls bouncing around, a 
concept of mean free path and related ideas. In more sophisticated theories the balls 
may become gaussian wave packets and the mean free path not simply given by 
mean free path ≡ � = 1∕n� , with n the number density of particles and � the scat‑
tering cross section [1]. By contrast in quantum mechanics you have a wave func‑
tion involving (say) 1023 coordinates [2], preferably plane waves (assuming the parti‑
cles do not interact strongly). And even if you are ready to talk about single particle 
wave functions, and even if these are gaussians, they inevitably spread. Admittedly 
the kinetic theory picture is at best semiclassical, but there should also be a way to 
describe it by quantum mechanics, including the spreading. There is a concept of 
mean free path in quantum theory [3], but it is a kind of dissipation, leading to vis‑
cosity [4] and other effects.

In this article we do not fully solve the problem, but report ideas that lead to a 
resolution of sorts. In an appendix to a previous paper [5] we assumed the wave 
function was gaussian and that measurement caused a resumption of localization. In 
that heuristic treatment the size of a wave packet was on the order of 

√
��th where 

the thermal wavelength is �th = ℏ∕
√

mk
B
T  , k

B
 is Boltzmann’s constant and T is the 
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temperature. The main assumption was that scattering off another particle would 
localize a wave function, that is, reset the clock that allowed it to spread. This 
seemed reasonable in the context of that article in that the body of the article was 
devoted to a rigorous proof that scattering acted to squeeze the off‑diagonal matrix 
elements and make them quite short, on the order of �th . In the present treatment 
there is also a dependence on the range of the potential that does the scattering, 
although in some sense that range was already present in �.

There is a common idea that we here lay to rest. Particles in a gas do not spread 
indefinitely. Our previous result suggested that a scattering would localize a particle, 
that spreading of the wave packet ceases. We here confirm that assumption.

As suggested earlier we consider only gases that interact weakly.

2  The Wave Packet is Localized

A single gaussian in 3 dimensions at time‑0 can have the form

It is localized at r0 and travels with momentum p . At a later time, t, if it is freely 
propagating (with H =

p2

2m
 ) it becomes

Now consider two such particles and condition on their colliding. Both have spread 
parameters Δ and mass m. They are approximately on a line (so p1 + p2 ≈ 0 ) and 
meet approximately at position zero. One begins centered at −r0 and the other at +r0 . 
Thus the initial wave function is

At time‑t the wave function becomes
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It is convenient to go to center of mass coordinates

Similarly

In these coordinates the argument of the exponential is (the normalization is 
unchanged)

To find the wave function after the scattering we use the Born approximation, in par‑
ticular, since we are conditioning on a scattering having occurred, the wave function 
is ∫ dt

i

ℏ
V(r)Ψ(R, r, t) . Because of the conditioning we must divide by the appro‑

priate probability in evaluating expectation values. (One can also look at this as a 
normalization of Ψ to get correct expectation values.) Since the actual interaction is 
brief this can be approximated by �t i

ℏ
V(r)Ψ(R, r, t) for some small �t.

For convenience in calculating we take the potential to be a gaussian, of the form 
V(r) = V0 exp

(
−

r2

4a2

)
 with r the relative coordinate. This is an assumption, to be dis‑

cussed in Sect.  3. The quantity that we shall evaluate is the expectation of (Δr1)2 . 
Because the absolute value (squared) of the wave function will be used, there is no need 
to carry the phase terms. Moreover since we have conditioned on the particles’ actually 
scattering we must divide by the quantity integrated, without the (Δr1)2 . Thus after the 
scattering, Ψ (so Ψ now has the potential as a factor) can be taken to be (omitting fac‑
tors that cancel when divided by the conditioning)

The quantity to be calculated is (Δr1)2 = ⟨Δ(R + r∕2)2⟩ but because the inte‑
grand is even, cross terms vanish, and we can do separate evaluations, to obtain 
(ΔR)2 +

1

4
(Δr)2 . Finally, we must calculate
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m
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(9)⟨A⟩ = ∫ dR drA�Ψ�2
∫ dR dr�Ψ�2 ,
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From Eq. (10)    we evaluate (using Eq. (9))

so that

and

and

By symmetry

Our final step is to impose a consistency condition. This will give us a value of Δ 
(the spread) that returns to itself after collision. Since the spread has turned out to be 
finite, and dependent on the initial Δ this is possible. Thus we require
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Defining x ≡ Δ2 and using Eq. (17) implies that x satisfies

with (recall) � ≡ ℏt

m
 (note that to a good approximation it is also true that � = �th� ). 

The solution can be approximated by �
2
+

a2

4
.

For dry air at STP, the mean free path is about 68 nm and the number per cubic 
meter is about 0.025 ×  1027, so that Δ , the width of a wave packet, is about 3.78 
Å, while the separation (one over the cube root of the number density) is about 10 
times that.

3  Conclusion

Although there are many assumptions in our demonstration, the overall conclusions 
should be independent of those assumptions. The surprise (to us) was that a scatter‑
ing caused localization. Such an assumption was plausible but until now not proved.

The assumption of a gaussian wave packet is a reasonable approximation to the 
“little balls” of kinetic theory. The assumption of a gaussian potential seems to us 
just a way to give the potential a finite range. It also made things easy to calculate.1
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