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Abstract
Two interesting “no hole” spacetime properties (being epistemically hole free (g), 
not being future nakedly singular) are unstable in the fine topology.
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1  Introduction

Recently [1] has shown that a certain “no hole” spacetime property, effective com-
pleteness, is unstable in the fine topology (so a “hole free” spacetime can be arbi-
trarily close to spacetimes which have “holes”). In this note I point out that the very 
same example can be used to show that (a) another “no hole” property, being epis-
temically hole free in the geodesic sense, is F -unstable, and that (b) the spacetime 
property of not being future nakedly singular is F -unstable as well.

Why do these observations matter? First, “no hole” conditions are an inherently 
interesting issue in the study of global structure of spacetime. Second, one may hold 
a view that stability is a necessary condition for being a physically significant space-
time property (see e.g. [2] for an expression of this position). “No hole” properties 
are posited in many contexts of foundational relevance—examples include a distinc-
tion between spurious and physically relevant instances of indeterminism (a “dirty 
open secret” of Sect. 3.8 of [3]), definitions of time machines [4], or connections 
between metaphysical principles such as principle of sufficient reason and principles 
of model selection in physics (see Sect. 2.3 of [3]). However, since many of the “no 
hole” properties one could try to employ in these context turn out to be unstable, a 
dilemma arises: abandon these “no hole” properties and turn to other, more promis-
ing spacetime properties which could do the similar work, or deny that stability is a 
necessary condition for physical significance.
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2 � Background Information

Recall1 [6] that spacetime (M, gab) has an epistemic hole (g) iff (def) there are two 
future inextendible timelike geodesics � and � ′ with the same past endpoint such that 
I−[�] is a proper subset of I−[� �].2 Spacetime (M, gab) is said to be future nakedly 
singular iff (def) there is a point p ∈ M and an incomplete future directed timelike 
or null geodesic �∶ I → M such that � is fully contained in I−(p) ; otherwise, space-
time is not future nakedly singular.

Certain qualitative features of Misner spacetime will be of relevance for what 
follows (see [7, pp. 170–174] and [8] for more detailed “Discussion” section). The 
maximally extended Misner spacetime consists of two regions: the maximal globally 
hyperbolic Taub region and a chronology violating NUT region, separated from the 
Taub region by a Cauchy horizon at t = 0 . In what follows I assume that the tempo-
ral orientation has been chosen in such a way that the NUT region lies to the future 
of the Taub region. The Taub region is timelike and null geodesically incomplete. 
There are two classes of incomplete causal geodesics: winding to the right along the 
compact spacelike section, and winding to the left. Assuming that the maximally 
extended spacetime is Hausdorff, exactly one of these classes can be completed by 
extending them through the surface t = 0.3 Thus: every inextendible extension of the 
Taub region is timelike and null geodesically incomplete. (All spacetime extensions 
are taken to be smooth; these two extensions are actually analytic, and there is a 
orientation-reversing isometry between them; see [10].

Recently, [1] constructed an example of a spacetime (M, gab) (isometric to a two-
dimensional Minkowski spacetime compactified along one null direction) which 
is geodesically complete (therefore also effectively complete), and a sequence of 
spacetimes (M, gab(n)) such that in every neighborhood of (M, gab) in the F  topol-
ogy there is a spacetime (M, gab(n)) which is isometric to a portion of maximally 
extended Misner spacetime (which, in turn, is not effectively complete). The full 
details of that construction (essential in what follows) are to be found in [1]. Since 
the null compactified Minkowski spacetime (M, gab) of [1] is geodesically complete, 
it is not future nakedly singular. It is also easy to see that since Minkowski space-
time is epistemically hole free (g), so is Minkowski spacetime compactified along 
one null direction.

A spacetime property P is  called �-stable if for any spacetime (M, gab) with P 
there is a �-neighborhood O of (M, gab) , such that every spacetime in O also 
has P (in some topology � ). Otherwise P is unstable. Recall also that an open 

1  Definitions of standard notions and notational conventions will follow [1, 5].
2  A stronger condition is being epistemically hole free (f), where � and � ′ have finite total acceleration.
3  Actually, as [7] show, there is a third class of geodesics which remains incomplete in any maximal 
extension which remains a non-Hausdorff topological manifold. Thus, observations concerning epistemic 
holes and naked singularities will continue to hold even if one allows for violations of the Hausdorff 
condition at the Cauchy horizon—although it seems that the observation of [1] concerning effective com-
pleteness relies on the fact that the extensions are Hausdorff (in a non-Hausdorff extension of the Taub 
region both left- and rightward geodesics are completed, so the “unwinding” map � will map complete 
geodesics into complete ones; compare Fig. 1 of [1]. See also  [9] for a discussion of related issues.
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neighborhood of some spacetime (M, gab) in the F  topology over the set of Lorentz-
ian metrics on a given manifold M is defined by the set of all spacetimes (M, g�

ab
) 

such that MaxM[h
amhbn(gab − g�

ab
)(gmn − g�

mn
)] < 𝜖 , where hab is a positive definite 

metric on M and � is a positive real number. The fine topology is called so because it 
has plenty of open sets; for example, a one parameter family of spacetimes (M, �gab) 
where � ∈ (0,∞) is not a continuous curve in the F -topology. However, for this 
very reason it is convenient to use the F -topology for proving instability results. 
Moreover, if a spacetime property fails to be stable in the F -topology, it also fails to 
be stable relative to any coarser topology. See [11, 12] for an in-depth discussion of 
these issues.

3 � Two Observations

I am now in position to state two observations concerning spacetimes (M, gab(n)) of 
[1].

Fact 1  Every spacetime (M, gab(n)) has epistemic hole.

First, note that every (M, gab(n)) is isometric to a portion of Misner spacetime 
(again, see [1] for the justification of this claim). So it is sufficient to argue that 
(this portion of) Misner spacetime has epistemic hole.4 Take any timelike geodesic 
� ′ entering the NUT region. � ′ intersects the surface t = 0 at some point q. Consider 
now some future inextendible, incomplete timelike geodesic � which does not cross 
t = 0 (but circles around, never reaching t = 0 ). Since both � ′ and � wind around the 
spacelike section in the Taub region, one can easily find some point p for the com-
mon endpoint. I−(� �) will consist of a portion of the Taub region and a portion of the 
NUT region. Since � winds around, it is fully contained in I−(q) . So every point r in 
I−(�) is also in I−(� �) . But � is incomplete; in particular, it does not enter the NUT 
region. So I−(�) is a proper subset of I−(� �).

Fact 2  Every spacetime (M, gab(n)) is future nakedly singular.

Consider any point p in the NUT region; such p lies to the future of the Taub 
region (to see that it is indeed the case, consider any timelike curve leaving the Taub 
region and passing through some r at t = 0 to p). Take an inextendible, incomplete 
geodesic � confined to the Taub region. Naturally, � is contained to the past of t = 0 
surface. Hence any extension of the Taub region is future nakedly singular.

4  It can be shown that any proper extension of the maximal globally hyperbolic region of Misner space-
time has epistemic hole [13]; this property carries over to Misner-like spacetimes.
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4 � Discussion

These two observations (in conjunction with the crucial observation of [1] con-
cerning neighborhoods of null compactified Minkowski spacetime in the F -topol-
ogy) imply that a geodesically complete, effectively complete, epistemically hole 
free (g) and not future nakedly singular spacetime can be arbitrarily close in the 
fine topology to a spacetime which is not effectively complete, fails to be epis-
temically hole free (g), and which is future nakedly singular.

This is bad news. As [6] (see also [14, 15] for related remarks) had recently 
pointed out, most of the “no hole” conditions which have been proposed in the 
literature (see e.g. [16–19]) rely on mappings between a given spacetime and 
other spacetimes. In certain contexts (for instance, when trying to make a distinc-
tion between physically significant and physically insignificant spacetimes) this is 
a rather undesirable property, because in order to see whether a condition holds 
one needs to look at a large set of spacetimes, which in turn seems to presuppose 
a distinction one wishes to make precise with the use of a “no hole” property. In 
contrast, being epistemically hole free (g) and not being future nakedly singular 
are internal to the spacetime; indeed, these are the only two known “no hole” 
properties of this nature, so their instability is particularly unwelcome.

One could debate the significance of the construction of [1] and the above two 
facts by noticing that the result seems to depend on the permissiveness of the 
F -topology and causally pathological properties of the Misner spacetime. One 
could then demand that, for the purpose of discussions concerning stability of 
“no hole” conditions, either:

1.	 another, more reasonable, choice of topology is made (for instance, recently con-
structed global topologies of [12] may be promising in that regard), or that

2.	 attention is restricted to a particular subset of spacetimes (and continue with 
either the fine topology or some other topology on the restricted set; see [20, pp. 
250–257] for a discussion of related issues in the context of proving F -stability 
of geodesic incompleteness when restricted to certain FLRW spacetimes). This 
could be a set of spacetimes which satisfy some causality condition (after all, Mis-
ner spacetime is well-known for its bad causal behavior; note though that many 
other spacetimes of relevance, including maximally extended Kerr spacetime, 
also have bad causal behaviour) or some other spacetime property.

Denaro and Dotti [21] were recently able to show a form of the Strong Cosmic 
Censorship hypothesis holds in Misner spacetime, namely that the Cauchy hori-
zon in Misner spacetime is unstable against certain type of  perturbations: in a 
one-parameter family of solutions through the Misner spacetime (in a theory with 
either (a) minimally coupled massless scalar field, (b) Maxwell field, or (c) in 
pure (Ricci-flat) gravity), all spacetimes apart from Misner develop a curvature 
singularity at t = 0 . This could be taken as an indication that these “no hole” 
instability results are a result of considering too large set of spacetimes, per 2. 
above.
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In a subtle sense the “no hole” properties considered here would be, then, simul-
taneously stable and unstable (relatively to different choices of the universe for a 
topology one is considering). There is a family FMisner of spacetimes (M, gab(n)) 
going through the null compactified Minkowski spacetime (M, gab) . (M, gab) satis-
fies all three “no hole” properties considered by [1] and in this note, but all other 
elements of this family violate all three of these properties. However, through any of 
spacetimes (M, gab(n)) goes another family of spacetimes FSCC , those considered by 
[21], such that only (M, gab(n)) violates these “no hole” properties, but other mem-
bers of FSCC satisfy them.

Finally, let me point out that all these “no hole” properties have been shown to 
be unstable using one and the same family of spacetimes (in this sense Misner spa-
cetime not only looks like, pace [22], a counterexample to almost everything, but 
also as an example for almost anything). In order to better understand under which 
conditions “no hole” properties hold or fail, and when do they do so in a stable or 
unstable manner, it would be useful to have examples of spacetimes separating these 
“no hole” properties, so that nearby spacetimes would be, for example, epistemically 
hole free and not nakedly singular, but would fail to be effectively complete (and so 
on for other properties of interest). Hopefully this could also provide examples of 
instabilities of “no hole” properties in spacetimes which are less causally pathologi-
cal than Misner spacetime.
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