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Abstract
Is changemissing in Hamiltonian Einstein–Maxwell theory? Given themost common
definition of observables (having weakly vanishing Poisson bracket with each first-
class constraint), observables are constants of the motion and nonlocal. Unfortunately
this definition also implies that the observables for massive electromagnetism with
gauge freedom (‘Stueckelberg’) are inequivalent to those ofmassive electromagnetism
without gauge freedom (‘Proca’). The alternative Pons–Salisbury–Sundermeyer def-
inition of observables, aiming for Hamiltonian–Lagrangian equivalence, uses the
gauge generator G, a tuned sum of first-class constraints, rather than each first-class
constraint separately, and implies equivalent observables for equivalent massive elec-
tromagnetisms. For General Relativity, G generates 4-dimensional Lie derivatives for
solutions. The Lie derivative compares different space-time points with the same coor-
dinate value in different coordinate systems, like 1 a.m. summer time versus 1 a.m.
standard time, so a vanishing Lie derivative implies constancy rather than covariance.
Requiring equivalent observables for equivalent formulations of massive gravity con-
firms that G must generate the 4-dimensional Lie derivative (not 0) for observables.
These separate results indicate that observables are invariant under internal gauge
symmetries but covariant under external gauge symmetries, but can this bifurcated
definition work for mixed theories such as Einstein–Maxwell theory? Pons, Salisbury
and Shepley have studied G for Einstein–Yang–Mills. For Einstein–Maxwell, both
Fμν and gμν are invariant under electromagnetic gauge transformations and covariant
(changing by a Lie derivative) under 4-dimensional coordinate transformations. Using
the bifurcated definition, these quantities count as observables, as one would expect
on non-Hamiltonian grounds.
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1 Introduction

When a Hamiltonian formulation of General Relativity was first undertaken [55,58],
the result was expected to be mathematically equivalent to the Lagrangian formula-
tion. Similar expectations held when Bergmann and his school reinvented constrained
Hamiltonian dynamics [3]. Thus these authors employed a quantity, now called the
gauge generatorG, which combined the primary constraints (which express the impos-
sibility of the Legendre transformation) and the secondary and later generations of the
constraints (which are implied by the dynamical preservation of the primary con-
straints) in an essential way. For example, in electromagnetism the gauge generator G
is

∫
d3x[π0ξ̇ (x, t) − π i ,i ξ(x, t)],

from which one quickly infers that {Aμ(t, y),G} = ξ,μ , a familiar result. (For the
mathematical background, see [63].)

But soon novel Hamiltonian postulates were introduced that violated Hamiltonian-
Lagrangian equivalence to facilitate merging GRwith quantummechanics. Bergmann
and Schiller postulated that the constraints act separately, not merely as a team, in pro-
ducing gauge transformations [18, Sect. 4]. It was not long before the problem of
time appeared: observables were said to be constants of motion [14]. In reaching this
conclusion, Bergmann and collaborators evidently assumed a similarity between elec-
tromagnetism (with its internal gauge symmetry) and GR (with its external gauge,
that is coordinate, symmetry) [6,11] regarding a 0 Poisson bracket of observables
under gauge transformations. (It is sufficient for the vanishing Poisson brackets to
be achieved using the constraints themselves, a condition known as “weakly van-
ishing.”) Analogously, Dirac was so impressed by his important trivialization of the
primary constraints that he proposed shrinking the phase space from 20∞3 to 12∞3

dimensions [21], dropping the momenta vanishing in the primary constraints and,
more worrisomely, their canonical coordinates, winding up with the spatial rather
than spatio-temporal metric. That shrinkage obscured foliation-changing coordinate
transformations and prevented consideration of the gauge generator G, which makes
essential use of the primary constraints.

A key issue is whether first-class constraints only as a team generate changes
of coordinates or other conventional redescription (gauge transformations) [3,19,53,
55], or, as became the more popular view, does each first-class constraint by itself
generate a gauge transformation? Both Bergmann and Schiller’s novel Hamiltonian
postulates and Dirac’s shrinking the phase space pushed toward the separate first-class
constraint view. The separate first-class constraint view is supposed to be equivalent to
the Lagrangian for “observables” [29]. But such equivalence depends upon a suitable
definition of observables. If this definition is itself postulated rather than derived,
then the physical equivalence is itself merely a postulate rather than a result. Such a
postulate is not guaranteed to be consistent with more basic formulas.

Starting around 1980, the idea of recovering Hamiltonian–Lagrangian mathemat-
ical equivalence was revived, leading to the 3 + 1 gauge generator G that generates
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4-dimensionalLie derivatives of themetric and its concomitants for solutions ofHamil-
ton’s equations [19,25,39,45,50,52,59,61,62,64]. Barbour and Foster also critique the
claim that each first-class constraint generates a gauge transformation, albeit without
embracing the gauge generator [4].

Temporally overlapping with these reforms are some standard reviews (including
some by Kuchař) describing the supposed absence of change in canonical quantum
gravity [30,35,36]. Kuchař’s critique of the usual definitions helped to inspire the
author’s deviation from the weakly vanishing Poisson bracket for observables in GR
[46,47]. Gryb and Thébault revise the definition of observables in a fashion more
closely in line with Kuchař’s approach, but still quite distinct from it [28]. Anderson’s
extensive work also questions conventional definitions and massively extends work in
the tradition of Kuchař and Barbour in many novel directions (e.g., [2]). An important
question to consider is whetherwhatever problemof time actually exists, exists already
at the classical level, or whether it appears at the quantum level after being resolved
classically due to Hamiltonian–Lagrangian equivalence.

An advantage of the approach adopted here is that as far as possible, it avoids pos-
tulates and definitions about observables in favor of derivation from the Archimedean
point of requiring equivalent observables for equivalent theories. A limitation of the
work thus far is its primarily classical character.

This paper will further explore a recent redefinition of observables, a redefinition
built upon the gauge generator G and the requirement that equivalent theories have
equivalent observables—i.e., fixing or un-fixing the gauge (using the Stueckelberg
trick or the like) does not alter the observables [46,47]. This apparently novel principle
(in the context of constrained Hamiltonian dynamics) vindicates the gauge generator
G over separate first-class constraints, but also requires a largely novel distinction
between internal and external gauge symmetries (or something in that vicinity—see
below), with invariance in the former case (including electromagnetism) and covari-
ance (a tensor transformation law or the like) in the latter case (including gravity). Thus
observables change by a 4-dimensional Lie derivative, not 0, under coordinate transfor-
mations, which are generated by G for solutions of Hamilton’s equations. Requiring
merely covariance, not invariance, under external (coordinate) transformation laws
matches a conclusion drawn previously by consideration of the classical origins and
meaning of the Lie derivative, especially the transport term [44]. But this bifurcation
raises the question whether mixed theories such as Einstein–Maxwell receive a con-
sistent definition of observables. Will the 0 and non-zero Poisson brackets conflict?
The purpose of this paper is to show that the mixed definition (invariance for internal
symmetries, covariance for external symmetries) indeed works for Einstein-Maxwell
theory.

2 Definitions of Observables

Traditional conclusions involving the lack of change and being spatially global [66]
have drawn criticism even from general relativists without ties to the reforming
Hamiltonian-Lagrangian equivalence literature. Kuchař explicitly denies that observ-
ables should have 0 Poisson bracket with what he takes to generate temporal gauge
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transformations, the Hamiltonian constraint H0 [35,36], though somehow he retains
that condition for space with the momentum constraint Hi . (E. Anderson explores
systematization of Kuchař’s ideas not in terms of space vs. time but rather linearity
vs. nonlinearity [1]; unfortunately, as Anderson notes, this does not work for super-
gravity.) Smolin’s requirement that entities called observables be in fact observable in
the ordinary sense by observers within the universe [60] appears to conflict with the 0
Poisson bracket condition at least implicitly. The failure of observables to play their
expected role has also led to circumvention with new concepts [22,56,57,65]. There
are interesting similarities between these replacement concepts and the reformed defi-
nition of observables. Rovelli’s partial observables are measurable but not predictable,
whereas his complete observables are predictable. For many purposes predictability-
up-to-gauge might suffice; the notion of observables that yields equivalence under
gauge fixing involves predictability up to coordinate choice [46], implementing invari-
ance under internal transformations (to which one cannot point) and covariance under
external transformations (to which one can point). It is striking that Rovelli finds that
with test bodies, observables include components of the metric tensor in a physically
meaningful coordinate system, akin to Komar’s conclusions [34] and not so different
from the author’s conclusion that the metric components (not referred to any special
coordinate system: covariant rather than invariant) are observable.

2.1 BergmannVersus Bergmann on Observables

It is not widely known that Bergmann was of several minds on observables. Indeed
Bergmann seems not to have noticed the fact himself, but his ideas do not all fit
together. Onewidely recalled definition of his is that observables should have (weakly)
0 Poisson bracket with each separate first-class constraint [6,11]. Given what follows
from this definition, Kiefer rightly notes that such “observables” are a technical term,
nonlocal, weakly tied to observation, and aimed at quantum mechanics [32]. On the
other hand, Bergmann (sometimes) intended otherwise, as one sees in little-attended
works including his Handbuch der Physik article:

General relativity was conceived as a local theory, with locally well defined
physical characteristics. We shall call such quantities observables. …We shall
call observables physical quantities that are free from the ephemeral aspects of
choice of coordinate system and contain information relating exclusively to the
physical situation itself. Any observation that we can make bymeans of physical
instruments results in the determination of observables;…[12, p. 250].

Such observables are not constants of the motion and do not require integra-
tion over the entire universe. On occasion Bergmann wanted observables to be
independent of Hamiltonian formalism [11,12][15, p. 314], which would lead to
Hamiltonian–Lagrangian equivalence. Reading the bulk of his work on observables
[6–18,40], one suspects Bergmann was looking for a general relativistic analog of
the transverse-traceless true degrees of freedom that one finds in electromagnetism
[48]. Unfortunately nothing have most of those properties exists, though partial
analogs, such as the use of transverse-traceless decompositions, are of course pos-
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sible. Given that Bergmann sometimes advocated views logically inconsistent with
those often put forth on his authority, the tradition calls for discernment. The defini-
tion of observables considered below satisfies Bergmann’s occasional preferences for
Hamiltonian-Lagrangian equivalence and for spatio-temporally varying observables.

2.2 Observables Reformedwith the Gauge Generator G

If gauge transformations are generated not by each first-class constraint by itself,
but by a team G of constraints working together by having interrelated coefficients
(such as eight first-class constraints at each point but only four arbitrary functions
in vacuum GR [19], or in the electromagnetic case recalled above, two constraints
but only one arbitrary function), then presumably the definition of observables should
be reformed correspondingly, as Pons et al. have urged [51,54]. Pons et al. give an
amended definition of observables by replacing each first-class constraint with gauge
generator the G: observables are gauge-invariant, having (weakly) 0 Poisson bracket
not with each first-class constraint, but with the gauge generator G[ξα] [54].

Recently the author showed that formassive electromagnetism, the requirement that
equivalent theories have equivalent observables (in other words, that gauge-fixing/un-
fixing doesn’t change the observable content) is inconsistent with the separate first-
class constraint view but fits perfectly with the gauge generator G [46,47]. Massive
electromagnetism approaches massless (Maxwell) as m → 0, whether classically
or in quantum field theory [5,24,43]. It is a commonplace in quantum field theory
that the de Broglie-Proca formulation without gauge freedom is useful for showing
unitarity,whereas theStueckelberg–Utiyama formulationwith gauge freedom is useful
for showing renormalizability [42, pp. 738, 739][67, Chap. 21][31, Chap. 10]. (One
can view the de Broglie-Proca formulation as gauge-fixing the Stueckelberg field to
0.) Clearly the observables, at least on any definition that is worthwhile, are the same
either way. Whatever the relationship between the empirical content of massive QED
and the observables of classical Hamiltonian massive electromagnetism might be, it
is equally clear that the non-gauge and gauge formulations must be equivalent.

3 Observables and Internal Versus External Gauge Symmetries, More
or Less

While the principle that equivalent theories should have equivalent observables
vindicates the gauge generator G over separate first-class constraints, there could
be another distinction required between different types of gauge symmetries. It is
evident epistemologically that observables must be invariant under internal gauge
transformations—they are inostensible, i.e., it is impossible to point at an electromag-
netic gauge choice or change thereof—so observable content cannot depend on such
a choice. Matters differ, however, with space-time coordinates and their transforma-
tions, which are familiar in daily life in Daylight Savings Time and in the work of
geographers. We can and do point to coordinate values and coordinate transforma-
tions routinely—a ball drops in New York at the start of the New Year, clocks are
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set forward an hour in the spring and back an hour in the autumn, and there is a golf
course named for and located on the Prime Meridian near Cambridge, England. With
these conventions being accessible by pointing (ostensible), it suffices for observables
to be translatable from one set of conventions to another, much as natural languages
are. The transformation rules of tensor calculus, which yield the Lie derivative for-
mulas, provide the translation manual. Hence covariance (translatability using tensor
calculus) seems adequate.

Invariance, on the other hand, is toodemanding.BecauseG generates 4-dimensional
Lie derivatives, requiring invariance would imply that, for all vector fields ξμ,

{O,G[ξ ]} = 0, that is, that the Lie (directional) derivative of observable O vanish
along every vector field ξμ. The problem of spatio-temporal constancy is not resolved
by using G. The problem is not difficult to diagnose in terms of the meaning and
derivation of the Lie derivative. Unlike electromagnetic or Yang-Mills gauge transfor-
mations, coordinate transformations contain a transport term that compares the value
of the field itself at two different space-time points. For the space-time metric one has

£ξ gμν =
(

ξα ∂gμν

∂xα
+ gμα

∂ξα

∂xν
+ gαν

∂ξα

∂xμ

)
;

while the second and third terms are analogous to Maxwell or Yang-Mills gauge
transformations, the first term, the transport term, is totally different. It arises as the
infinitesimal analog of comparing fields at 1 a.m. Greenwich Mean Time and 1 a.m.
British Summer Time (an hour apart). One compares different space-time points with
the same coordinate values in different coordinate systems [33,41,69] [37, p. 271]
[9]. Goldberg explains why this physically curious comparison is mathematically
convenient [23, footnote 9]:

The δ̄ transformation compares the field variables at world points with the
same coordinate value rather than at the same world point. That is, δ̄yA =
ȳA(x) − yA(x) = δyA − yA,μ ξμ. The advantage of the δ̄ transformation is that
it commutes with ordinary differentiation.

But clearly reality, observability, and gauge invariance do not require sameness at
different events, even if one gives them the same coordinate value in different coor-
dinate systems (which one can always do). The changelessness of observables has
arisen as a conclusion because it has been fed in as a premise through the (weakly) 0
Poisson bracket condition in cases where G generates a Lie derivative [44]. Thus the
changelessness of observables is resolved by imposing a more suitable requirement
on {O,G[ξμ]}, namely,

{O,G} = £ξ O �= 0.

One might see Kuchař’s and Smolin’s critiques of the usual definition of observables
and Bergmann’s occasional insistence on spatio-temporally varying observables as
also pointing away from the 0 Poisson bracket condition.

This definition {O,G} = £ξ O can be rederived using the requirement that equiv-
alent theories have equivalent observables. One uses massive gravity, in one version
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without gauge freedom, in another version with gauge freedom [46,47], one shows
that the two empirically equivalent formulations have the same observables using the
definition.

It turns out that ostensible versus inostensible, not internal versus external, is the
fundamental distinction. One sometimes sees a formulation of General Relativity with
a background metric tensor and a non-coordinate gauge freedom, as well as a non-
gauge coordinate freedom [27,49]. One can combine a gauge transformation and a
coordinate transformation to produce a transformation that changes only the back-
ground metric tensor, not the matter fields or the effective metric. This transformation
involves the Lie derivative of the background metric £ξ ημν, so one might think that
it counts as an external transformation. But because the background metric does not
appear essentially in the field equations, it is unobservable. Thus changes of only the
background metric leave all observables alone—that is, observables must be invariant
under such transformations. Having a transport term in £ξ ημν is thus not the decisive
factor.1 Fortunately paradigm internal transformations (Maxwell and Yang-Mills) and
paradigm external transformations (coordinate transformations in General Relativity)
do fit with invariance and covariance, respectively.

4 Mixed Internal–External Symmetry: Einstein–Maxwell?

One can now appreciate the importance of the question of how theories with both
internal and external gauge symmetries, such as Einstein–Maxwell, can receive a
consistent definition of observables. If one requires invariance of observables under
both internal and external gauge transformations [51,54], then, I find, for Einstein–
Maxwell the electromagnetic field Fμν is not an observable, because it is invariant
under the electromagnetic gauge transformation but only covariant (changing by a Lie
derivative δFμν = £ξ Fμν) under a coordinate transformation. This result follows by
inspection from results on the Einstein–Yang–Mills theory [53]. (Whether one makes
an extra electromagnetic gauge transformation to exclude unwanted velocities and
thus render the formalism projectable to phase space is a matter of indifference in this
respect, because such a transformation affects Aμ but not Fμν.) Given that Fμν is an
observable given the definition for pure electromagnetism, one might be disappointed
that Fμν is not an Einstein–Maxwell observable on the definition requiring invariance
under all gauge transformations.

But given the bifurcated definition that requires internal (or rather, inostensible)
invariance but external (or rather, ostensible) covariance [46,47], changing Fμν by its
Lie derivative, not by 0 (covariance rather than invariance), is exactly what is required
to make Fμν an observable in Einstein–Maxwell theory. By similar reasoning the
space-time metric gμν, which is observable on the bifurcated definition in vacuum
General Relativity, remains observable in Einstein–Maxwell theory. In more detail,
on the bifurcated definition one wants δFμν = 0 and δgμν = 0 for electromagnetic
gauge invariance, and δgμν = £ξ gμν and δFμν = £ξ Fμν from general relativistic

1 I thank Oliver Pooley for suggesting the possibility of seemingly ‘external’ transformations (involving
derivatives of the fields) for which invariance is nonetheless appropriate.
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coordinate covariance. Fortunately the gauge generators for Einstein–Yang–Mills and
their actions are already known [53] and these results do in fact obtain, as one sees
by inspection. One simplifies Yang–Mills to Maxwell by dropping the internal Yang–
Mills index to reach Einstein–Maxwell (Ai

μ → Aμ), making the Yang–Mills structure
constants disappear, and one takes the kinetic metric Ci j = δi j to be the number 1.
Thus the mixed definition performs exactly as one would hope. The electromagnetic
field strength is an observable in Einstein-Maxwell just as it is inMaxwell’s theory. The
space-time metric tensor is an observable in Einstein–Maxwell just as it is in GR. The
bifurcated definition behaves just as one would wish, unlike some other definitions.

5 FutureWork: Local Supersymmetry?

With the bifurcated definition behaving properly under internal, external, and com-
bined internal-external definitions at least in key examples, it seems plausible that the
definition works in most or all physically interesting cases, at least for theories lacking
local supersymmetry. But supergravity [68] poses a challenge in that the transforma-
tion rules for bosons and fermions evidently combine internal and external aspects
in a non-diagonal way: δB ∼ ε̄F , δF ∼ (∂B)ε. While Hamiltonian treatments have
long been available (e.g., [20]), the gauge generators G might not be known. They are
known, however, in 2+1-dimensional supergravity [38]. Graviton-massive supergrav-
ity (a less desolate subject now than when there were reportedly 5 extant papers only
15 years ago [26]) might possibly permit resolution of the definition of observables
by calculation as massive electromagnetism and massive gravity have.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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