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Abstract
In this paper we describe a novel approach to defining an ontologically fundamental
notion of co-presentness that does not go against the tenets of relativity theory.We sur-
vey the possible reactions to the problem of the present in relativity theory, introducing
a terminological distinction between a static role of the present, which is served by
the relation of simultaneity, and a dynamic role of the present, with the corresponding
relation of co-presentness.We argue that both of these relations need to be equivalence
relations, but they need not coincide. Simultaneity, the sharing of a temporal coordi-
nate, need not have fundamental ontological import, so that a relativizing strategy with
respect to simultaneity seems promising. The notion of co-presentness, on the other
hand, does have ontological import, and can therefore not be relativized to an observer
or to an arbitrarily chosen frame. We argue that a formal representation of indeter-
minism can provide the structure needed to anchor the relation of co-presentness, and
that this addition is in fact congenial to the notion of dynamic time as requiring real
(indeterministic) change. The resulting picture is one of an extended dynamic present,
implying a formal distinction between static (coordinate) simultaneity and dynamic
co-presentness. After working out the basics of our approach in the simpler frame-
work of branching time, we provide our full analysis in the framework of branching
space-times, which allows for a formal definition of modal correlations. The spatial
extension of the dynamic present can reach as far as the modal correlations do. In the
limit, the dynamic present could extend across a maximal space-like hypersurface.

Keywords Presentism · Extended now · Indeterminism · Branching space-times

What are the consequences that relativity theory has for the notion of the present,
or more generally for our everyday notion of time? Famously, Minkowski said that
given the experimental corroboration of relativity theory, “space by itself, and time by
itself, are doomed to fade away into mere shadows, and only a kind of union of the
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two will preserve an independent reality.”1 A strong formal result appears to vindicate
Minkowski’s view that before the background of the space-time physics of special
relativity theory, time can only be a derivative, dependent notion: there is no sensible
way to define a notion of simultaneity based solely on the resources of the spatio-
temporal ordering of events in Minkowski space-time. What are the metaphysical
consequences of this result?

Our commonsense metaphysics of time is, arguably, best expressed by presentism,
which holds that “the present simply is the real considered in relation to two particular
species of unreality, namely the past and the future” [32, p. 245]. Is presentism com-
patible with relativity theory, or does relativity theory refute presentism? The issue
is complicated. Does relativity theory have an impact on metaphysics or on everyday
notions at all? And if it does, what precisely is the notion of the present whose inde-
pendent reality is threatened by relativity theory, and how can that threat be spelled
out in a formally precise way?

In this paper, we will distinguish two different notions of the present, one based
on simultaneity and one based on co-presentness. Simultaneity invokes a static role
of the present in singling out something like a temporal location of an event (a time
coordinate). Co-presentness, on the other hand, invokes a dynamic role of the present
in separating a fixed past from an open future and in thereby anchoring a notion of
coexistence. We hold that it is the latter role that is important for presentism as a
doctrine in the metaphysics of time, and we will show that a relativity-proof notion of
the present in its dynamical role can be defended by exploiting the idea that dynamic
change must be based on the indeterministic realization of possibilities for the future.

Given the current state of the debate, the success or failure of such a defense must
be assessed via formal results. We thus need to spell out which formal resources
relativity theory offers, and how these can be used to ground a notion of the present. In
this paperwewillworkwithin a formal framework that allows formaking precise sense
of spatio-temporal indeterminism and of the fixedness of the past vs. the openness of
the future: branching space-times (BST; [4]). Our guiding idea will be that two events
are dynamically co-present if they share exactly the same fixed past. In working out
the formal details of this idea, we will make use of the fact that BST offers a rich
notion of modal correlations, based on which we will be able to extend the notion of
a fixed past.

Our paper is structured as follows. We introduce the basics of the debate about
defining the present in special relativity in Sect. 1.We provide somemotivation for our
approach, which involves an extended present, in Sect. 2. In that section we stay within
theNewtonian theory of branching time,which is a predecessor toBST. Themain ideas
of branching space-times and the necessary formal definitions are then introduced in
Sect. 3. In Sect. 4 we prove our main formal result, Theorem 1, which states that a
non-trivial relation of co-presentness can be defined in terms of the resources of BST.
We discuss two possible definitions of co-presentness and prove their equivalence,
and we indicate how space-like modal correlations can extend the dynamic present.
We conclude in Sect. 5.

1 H. Minkowski, Address to the 80th Assembly of German Natural Scientists and Physicians, September
21, 1908, quoted from the translation [21].
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1 The Problem of Defining the Present in Special Relativity

In the Minkowski space-time of special relativity, each so-called event (element of
the space-time) can be uniquely identified via its space-time coordinates, a set of four
real numbers. There is, however, no unique way to divide up these coordinates into
a three-dimensional spatial and a one-dimensional temporal part. Such a division is
always relative to an inertial reference frame, and none of those frames is preferred—
the principle of relativity states that all frames have to be treated on a par. One might
therefore believe that only frame-invariant properties and relations have independent,
objective reality,whereas other properties and relations cannot be takenmetaphysically
seriously.

Some important relations among events are frame-invariant. For example, whether
one event can causally influence another one is independent of the choice of a reference
frame: the causal order onMinkowski space-time is frame-invariant. Events that cannot
causally influence one another are called “space-like related”; that relation, too, is
frame-invariant. But whether two space-like related events have the same temporal
coordinate—whether these events occur at the same time—depends on which frame
one considers. The simultaneity of distant events is frame-relative.

These basic truths about the structure of Minkowski space-time can be trans-
lated into a formal claim about the definability of a notion of simultaneity. There is
widespread agreement that such a notion of simultaneity has to be transitive, reflexive,
and symmetric, i.e., it has to be an equivalence relation.2 It follows that the simul-
taneity relation cannot be the relation of space-like relatedness, as that relation is not
transitive. And there are no other sensible options either, as shown by Van Benthem’s
theorem3: If a relation R is definable on the basis of Minkowski space-time alone, it
has to be invariant under that structure’s automorphisms, which include the Poincaré
group and contractions. But once there are x, y for which x �= y and x Ry, one can
employ suitable automorphisms to show that x Rz for any event z. Thus, there are only
two equivalence relations that can be defined on Minkowski space-time, identity and
the universal relation. None of these provides a sensible notion of simultaneity: on the
first option, as each event is identical only to itself, each event would be simultaneous
only with itself, and on the second option, simultaneity would not discriminate among
events at all. Therefore, no frame-invariant notion of simultaneity can be defined on
the basis of the Minkowski space-time of special relativity.

It seems, therefore, that simultaneity cannot be an objective relation. This, in turn,
might mean that the present is just a subjective notion, or even an illusion, which
would completely undermine presentism. This challenge concerns the tenability of
an objective notion of simultaneity as a necessary, not as a sufficient condition of the
tenability of the doctrine of presentism as a whole. The challenge, therefore, arises
prior to and independently of the additional question of how, assuming that such an
objective notion is available, one shouldmodel the phenomenon of the passage of time.
In this paper,wedonot discuss the latter question. There is fairlywidespread agreement

2 See, e.g., [12,35,40,41].
3 See Van Benthem [41, 25f.].
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in the literature that an indexical treatment of the passage of time is appropriate (see,
e.g. [10]).

The metaphysical consequences of the mentioned formal result—no frame-
invariant notion of objective simultaneity is definable in special relativity theory—are
debatable. There appear to be four main ways of reacting:

1. Rejection of any metaphysical status of special relativity. It is not implausible to
just shrug off any suggested metaphysical import of special relativity, pointing
out that that theory is only valid within its range of applicability, which is far
from universal.
Manywell established empirical facts, fromdetails of the orbit of planetMercury
to gravitational effects on satellites or, recently, to gravitational waves cannot
be modeled on the basis of special relativity theory alone. In this sense, special
relativity is empirically refuted, and therefore it is implausible to expect to get
any metaphysical mileage out of it. If we are looking for a space-time theory
to provide metaphysical guidance, we need to look at the general theory of
relativity, or even at a successor to that theory describing some form of quantum
gravity. It may well be that such a theory will provide additional resources. For
example, some cosmological models of general relativity allow for the definition
of a class of fundamental observers that can anchor an absolute notion of cosmic
time. Given these resources, one can then define two events to be absolutely
simultaneous iff they happen at the same cosmic time.4

So the whole discussion involving special relativity might be a non-starter.
2. Acceptance and revision of temporal notions. If one accepts the apparent indefin-

ability of simultaneity as proof that the notion of the present makes no objective
sense, one can try to live without it.
While this attitude had already been recommended (for different reasons) by
Spinoza,5 it appears practically impossible: “now” is an essential indexical
which has both theoretical and practical import for us.6

3. Acceptance and relativization of temporal notions. Each concrete act of com-
munication employing temporal determinations comes from the perspective of
a corporeal being. Reflecting on this fact, one can relativize temporal determi-
nations to the rest frame of that corporeal being,7 and one can additionally point
out that relativistic effects can be neglected for most practical purposes.8 An

4 See [38] for some pertinent qualifications.
5 See his Ethics, Book IV, Proposition 62: “Insofar as the mind conceives of things by the dictate of reason,
it is equally affected whether the idea is of something in the future or in the past or in the present” [39].
6 See, e.g., [27].
7 See [1] for a discussion of some subtle qualifications that pertain to the definition of a relativistic object’s
center of mass. The resulting imprecision is negligible for our purposes. Additionally, it is enough that a
speaker may provide a frame of reference in some way. The easiest way would certainly be via her body,
but there are other possibilities. Compare the similarly imprecise “here” or “now”.
8 See [11] for a succinct, quantitative assessment of the practical lack of impact of relativity theory for
everyday communication. It should be added that the situation has changed somewhat since the publication
of that paper at least if relativistic effects grounding everyday technology are considered as well. Most of
us nowadays carry around GPS receivers whose underlying satellite infrastructure relies heavily on (special
and general) relativistic effects. This technology, however, has no direct impact on our use of temporal
determinations in communication.
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absolute notion of simultaneity is not needed to account for our communica-
tion practices—even in hypothetical cases in which relativistic effects become
important. If I say that events e and f are simultaneous, and you, speeding by
in your space-ship, deny this, then we can understand that we are not in fact
disagreeing, but saying different things: I say that e and f are simultaneous for
me, and you say that they are not simultaneous for you.
Such relativizations are in fact common: if I say, “It is raining”, and you say, at a
different place, “It is not raining”, thenwe are not in fact disagreeing, andwe can
make the compatibility of our assertions explicit by mentioning our respective
locations.We can also livewith relativizationwhen it comes to relativistic frames
of reference. In fact, employing the Lorentz transformation between our frames,
we will be able to make precise sense of the apparent disagreement and come
to agree on the underlying objective facts about space-time.

4. Addition of structure. It is possible to add some structure to plain Minkowski
space-time that will allow the objective anchoring of a non-trivial equivalence
relation to be read, e.g., as absolute simultaneity.
In fact, nothing about the results mentioned above rules out such additions,
and Rakić [34] has shown precisely in which way an equivalence relation of
simultaneity can be added as a conservative extension to the structure of a single
Minkowski space-time.

Which of these options should a defender of presentism choose? While option (2)
seems unavailable given the importance of the notion of simultaneity, option (1) can
easily be invoked. Dialectically, however, that option is not fully satisfactory: the
defense of the present either becomes hostage to specific empirical facts about the
actual general-relativistic space-time we inhabit, or, going beyond general relativity,
the issue is deferred to a future theory of quantum gravity about which there is no
consensus yet. It would be better to provide a different response, and that is what
we will try in this paper. In fact, we will provide two different responses, one based
on option (3) and one based on option (4), which are geared towards two different
questions about the present that are mostly run together, but which need to be kept
apart.

As already stated in the introduction, the notion of the present plays a double role,
one static and one dynamic. Terminologically, we will distinguish the two relations
that characterize these two different roles as simultaneity vs. co-presentness. We hold
that these relations both have to be equivalence relations,9 but they need not be the
same.

Simultaneity characterizes the present as the time of now, indicating a temporal
location. Present events in this static sense are those that are simultaneous with now,
having the same temporal coordinate. This static role of the present has no immediate
metaphysical or ontological import, and it should therefore not be the target of our

9 We therefore do not discuss the strategy of denying that the relevant notions of simultaneity or co-
presentness have to be equivalence relations. This strategy is followed by many proponents of an extended
present, such as [18] or [2], who allow for overlapping but distinct nows, which implies a failure of
transitivity.
Dialectically, denying the requirement of an equivalence relation comes with an additional burden of justi-
fication, and so it will be good if we can avoid it.
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modeling efforts in defense of presentism. In our view, the present in the sense of the
time coordinate of now can be fully accounted for by the relativizing strategy (3), mak-
ing it a matter of perspective. The dependence on a concrete being’s rest frame is not
problematic, as full agreement in communication can be ensured. As relativity theory
poses no obstacle to defining an observer-relative notion of simultaneity anchoring
the static present, we will not comment further on the notion of simultaneity here.10

Co-presentness, on the other hand, characterizes the present as that which is cur-
rently (now) real, indicating an objective, dynamic boundary between the fixed past
and the open future of possibilities. These modal notions have ontological import and
must not be relativized to an observer or an agent.11 Considering the above list of
options, it is clear, therefore, that we need to invoke option (4): Additional formal
structure over and above that provided by a single Minkowski space-time is needed to
define a dynamic relation of co-presentness among events.

Rakić’s strategy of adding an equivalence relation to the basic structure of a single
space-time is one route that might be used to anchor a dynamic relation of co-
presentness. Following that recipe, one arrives at a relation that can in fact fulfill
both the static and the dynamic requirements on a notion of the present: Rakić’s [34]
result allows for a foliation of Minkowski space-time into space-like hypersurfaces to
be added conservatively, and events on the same hypersurface can then be taken to be
both simultaneous and co-present. While this may be an advantage, one might also be
critical of the combination, as there is a price to be paid: first, there can be no empirical
test of the chosen equivalence relation, and second, one undercuts the independently
motivated strategy (3) of accounting for the static (coordinate) notion of simultaneity
via relativization to a speaker’s rest frame.12

In what follows we will work towards a different objective notion of dynamic co-
presentness that is fully anchored in themodal notions of fixedpast vs. open future. This
relation will generally not work as a static relation of simultaneity, as the region of co-
presentness will normally be extended both spatially and (coordinate-)temporally. The
formal resources will be provided by the framework of branching space-times, which
represents local indeterminism via sets of so-called transitions. Before we introduce
that framework in Sect. 3, we first have to argue that the notion of an extended dynamic
present makes good sense.

2 Making Room for an Extended Dynamic Present

The dynamic role of time is to account for the possibility of dynamic change, both with
respect towhich things exist andwhat their properties are.Change in that sense needs to
be contrastedwith so-called Cambridge change, which is just a thing’s having different
properties at (or with respect to) different temporal locations. Dynamic changemust be

10 See Müller [23, §2] for formal details of how to work out the mentioned relativization.
11 See, e.g., Gödel [15, 258n], who says that “existence by its nature is something absolute”, or Prior [33,
p. 50], who insists that “you can’t have a thing existing from one point of view but not from another”.
12 In fact, such an attempt would then involve an error theory: speakers who posit the present of their rest
frame as the objective present would generally fail to identify the true objective notion of simultaneity, but
would have no empirical means to find out about this.
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more than that if it really requires a dynamic notion of time, because the static notion
of temporal location is sufficient to account for Cambridge change. It is, however,
notoriously difficult to spell out what dynamic change amounts to.

As announced, in this paper we will explore a radical view of dynamic change:
change as the indeterministic realization of one option fromamong a set of alternatives.
Such indeterministic happenings clearly amount to change: if a radium atom decays,
or if you choose to have tea rather than coffee for breakfast, or if a cat jumps to catch a
bird, these are indeterministic events that did not have to happen, and their occurrence
makes a difference to what the world is like, realizing one possibility for the future in
contrast to all the others.

Given this indeterministic notion of dynamic change, we need a corresponding
dynamic notion of time to anchor the indeterministic realization of possibilities. In a
second radical move, we will explore the view that just as dynamic time is necessary
for real change, so real change is necessary for real, dynamic time: No change without
time, but also no time without change. In this way, we strongly dissociate the static
notion of coordinate time (temporal location) from the dynamic notion of real time.
This makes room for yet another move that may be perceived to be radical: we will
allow a moment of real time to be extended not just spatially, but also coordinate-
temporally.

Our view needs to be distinguished sharply from other theories of an “extended
present” that are neither based on indeterminism, nor on a distinction between static
(coordinate) and dynamic (indeterministic) time. Taking into account indeterministic
change, we have at our disposal a richer background on which to define dynamic time.
This allows us to hold on to (dynamic) co-presentness as an equivalence relation, in
contradistinction to theories that posit overlapping present moments [2,18]. Before
we show how, we first comment on the consequences of the assumption that there is
no dynamic time without indeterministic change.

2.1 Determinism: No Real Change, No Dynamic Time

If real time and real change presuppose indeterminism, it follows that there is no
real change, and no real time, in a deterministic world. This may seem outrageous.
Take a simple deterministic world, modeled via a single Newtonian space-time, in
which a number of point particles move about on continuous trajectories. If initial
conditions are properly chosen, so that there are no three-particle collisions or other
problematic configurations, the motion of the particles in such a world may indeed
be without physically possible alternatives, thus witnessing determinism. According
to our approach, we have to say that in such a world, there is no real, indeterministic
change. Never is there a non-trivial range of options from among which only one is
realized; there is always and everywhere just one single option to begin with. But the
particles in that world move around, changing their absolute as well as their relative
locations. Surely that amounts to change in that world?

Given the distinctions we are making, we can agree that such a world harbours
Cambridge change: the particles have different locations at different times. But from
a dynamic perspective, nothing is really happening. The temporal coordinate is just
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like another spatial coordinate, along which there can of course be some variation
of the configuration of the particles. But it is all just one four-dimensional block
without any real dynamics. Everything is accounted for by four-dimensional geometry.
From the point of view of dynamic time, every event in the whole deterministic four-
dimensional space-time is co-presentwith every other event (andwith itself, of course).
The dynamic present of the deterministic world is maximally extended to the whole
space-time block.13

Matters are different once one introduces indeterminism. Are we warranted to do
so? The matter is certainly controversial, and we cannot hope to provide a refutation
of determinism in a few lines here. As so often in philosophy, the issue is one of which
package deal one is willing to accept. Our dialectics runs as follows: If one is willing
to accept a distinction of a static vs. a dynamic aspect of the present, and if one is
willing to entertain the idea that dynamic time passes iff there is dynamic change iff
there are indeterministic happenings, then the assumption of determinism amounts to
a sceptical position: while we undoubtedly experience the world as dynamical in time,
there is nothing in reality to back that experience. We believe that such scepticism
is unwarranted, especially given the fundamental role of quantum indeterminism in
current technological realizations of randomness. Our package deal is coherent, and it
appears to us to be fruitful. Onemay start differently, of course. Following theBohmian
program of providing a deterministic version of quantum mechanics, one starts from
a strong a priori assumption of determinism and tries to rework the existing physical
theory of quantum mechanics in its light, tackling significant formal and conceptual
obstacles along the way (see, e.g., [20]). In our view, that program still has to prove its
fuitfulness, but the matter is certainly controversial (see, e.g., [14]). That said, we will
stick with the assumption that indeterminism is available as a resource, and proceed
to show what can be done with it.14

Before we describe the indeterministic theory of branching space-times that pro-
vides all the resources we need for our definition of the dynamic, spatio-temporally
extended present, we briefly discuss what an extended present looks like in a simpler
theory of indeterministic branching histories that lacks a spatial dimension.

2.2 Branching HistoriesWithout a Spatial Dimension

The theory of so-called branching time (BT) was formally developed by Prior [31],
following an exchange about his earlier book, Time and modality [30], with Kripke

13 William James offers a strong image of determinism depriving the world of dynamics: “The whole is
in each and every part, and welds it with the rest into an absolute unity, an iron block, in which there can
be no equivocation or shadow of turning” [19]. A similar position is advocated by Whitrow [42, 295f]: “If,
for the strict determinist, the future is merely ‘the hidden present’, whence comes the illusion of temporal
succession? The fact of transition and ‘becoming’ compels us to recognize the existence of an element of
indeterminism and irreducible contingency in the universe.”
14 We do not claim that this approach is wholly new. Our claim is, rather, that we can work out the
approach in a formally precise way. Reichenbach [36, p. 276] already argues that “[t]he distinction between
the indeterminism of the future and the determinism of the past has found, in the end, an expression in the
laws of physics”, namely, in quantum mechanics, and claims that “[t]he consequences for the time of our
experience […] are evident” (ibid.). He also advocates an indexical (or, as he says, “token-reflexive”, 277)
treatment of the passage of time.
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(see [29]). Formally, the theory accounts for indeterminism as the tree-like branching
of linear temporal histories (chronicles).Within a BT structure, branching occurs at so-
called choice points, which are maximal in the intersection of histories. The elements
of the structure are called moments. In BT, space is not formally represented. Each
moment thus comprises all of space, as a momentary super-event. We provide the
necessary definitions:

Definition 1 (BT structure) A BT structure 〈M,<〉 is a partial order, i.e., a non-empty
set M of moments with a relation < on M that is antisymmetric (∀x, y ∈ M [x <

y → y �< x]) and transitive (∀x, y, z ∈ M [(x < y ∧ y < z) → x < z]), that is also
left-linear (∀x, y, z ∈ M [(x < z ∧ y < z) → (x � y ∨ y < x)]) and jointed (any
two elements have a greatest common lower bound).

Definition 2 (Histories) Given a BT structure 〈M,<〉, the set Hist of histories is the
set of maximal linear subsets of M . Givenm ∈ M , we write Hm for the set of histories
containing m.

Figure 1 illustrates a BT structure with six histories. The partial ordering relation
connects moments in the tree in the upward direction. Left-linearity of the ordering
means that branching can happen only in the upward direction, like in a real tree.
Histories are maximal linear paths through the branching tree, running from the root
at the bottom to the tip of one of the branches on top.15 Given left-linearity, histories are
closed downward: if m ∈ h for some h ∈ Hist and m′ � m, then m′ ∈ h as well. The
branching or splitting of histories allows for the representation of local indeterminism
in a BT structure. Here is the formal definition:

Definition 3 (Undividedness, splitting, choice point) Two histories h1, h2 ∈ Hm are
undivided at m iff their intersection h1∩h2 contains a momentm′ > m (strictly above
m); we write h1 ≡m h2. Otherwise we say that h1, h2 ∈ Hm split at m; we write
h1 ⊥m h2. Such a moment is a choice point, and is maximal in h1 ∩ h2.

It is not difficult to prove that undividedness-at-m is an equivalence relation on the
set Hm of histories containing m. Accordingly, there is a partition of Hm induced by
≡m , the elementary possibilities open at m, for which we write�m . The choice points
in M are exactly those moments at which that partition is non-trivial, i.e., for which
�m �= {Hm}. Belnap [5] has provided a useful dynamic reading of the realization
of one of the possibilities open at a choice point, invoking the notion of a transition.
Generally, a transition consists of an initial I followed by an outcome O , for which we
write I � O . In the case of a choice point c as initial, the basic outcomes correspond
exactly to the elements of the partition �c: any moment in the partial ordering that
comes after c belongs to one or more of the histories in the set Hc, and that set is
partitioned by �c. Thus, the basic indeterministic event c gives rise to one of the
possible outcomes represented by �c. Accordingly, we can write a basic transition
as

τ = c � H , H ∈ �c.

15 The definitions are chosen in such a way that a BT structure may be discrete, as often assumed in
computer science applications, or continuous, as in physics applications. In a continuous structure, there
does not have to be a first moment, and histories need not have last moments either.
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Fig. 1 A branching time
structure and some of its
transitions. The ordering is
upwards partial ordering

of moments

indeterministic
choice points

some
transitions

One can define a natural ordering among the transitions, as follows:

Definition 4 (Transition ordering) Given two transitions τ1 = m1 � H1, τ2 = m2 �
H2, we say that τ1 precedes τ2, written τ1 ≺ τ2, iff (i) m1 < m2 and (ii) H2 ⊆ H1.

Transitions have recently been used by Rumberg [37] to provide a novel semantics
for formal languages based on branching time; that paper contains a good overview
of the theory of transitions in branching time.

In a branching time structure, each moment m has a unique past (by left-linearity
of the ordering, there is no backward branching). The indeterministic structure of
that past consists exactly of the transitions from choice points c < m to those basic
outcomes that keep the possibility of m’s occurrence open. Given c < m, there is,
provably, always exactly one such transition, for which we write c � �c〈m〉. We
thus define the set of m-enabling transitions, TR(m), as follows:

TR(m) =d f {c � �c〈m〉 | c < m, c a choice point}.

It is easy to prove that these transitions form a chain (a linearly ordered set) with
respect to the natural transition ordering ≺. Along that chain, the bundle of histories
becomes smaller at each indeterministic step: the occurrence of an indeterministic
transition implies the exclusion of alternative histories.16 See Fig. 1 for illustration.

2.3 The Extended Present in Branching Time

Given the formal background of branching time, we have at our hands a precise
candidate definition of real time: time passes at exactly those moments that are choice
points. At other moments, there is no indeterminism, no dropping off of histories, no
realization of one possibility in contrast to others, no real change, and therefore no
passing of dynamic time. Of course, as stressed above, static (coordinate) time also

16 As we said in Sect. 1, in this paper we do not attempt to model any additional dynamics of the passage
of time, assuming that an indexical treatment of the “dropping off of histories” is appropriate for our
communication purposes.
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passes at other moments.17 As dynamic time passes only at choice points, it follows
that any stretch of moments between two choice points counts as co-present. Formally,
we define co-presentness via the indeterministic past:

Definition 5 (Co-presentness in BT) Moments m1,m2 ∈ M are co-present, written
m1 ∼ m2, iff TR(m1) = TR(m2).

As this definition is based on an identity, the relation ∼ among the moments of M is
clearly an equivalence relation.

We can show that co-present moments must be members of exactly the same his-
tories.

Fact 1 Let m1 ∼ m2, and let h ∈ Hm1 . Then h ∈ Hm2 as well.

Proof Assume for reductio that m1 ∼ m2 and h ∈ Hm1 , but m2 /∈ h. We distinguish
three cases.

(1) m2 � m1. This is impossible, as histories are closed downward.
(2) m1 < m2. In this case, m2 ∈ h′ for some h′ �= h, and as the ordering is jointed,

there has to be a choice point c ∈ h∩h′ at which h ⊥c h′.We havem1 � c < m2
and h /∈ �c〈m2〉. It follows that (c � �c〈m2〉) ∈ TR(m2) \ TR(m1), i.e.,
m1 � m2.

(3) m1 and m2 are incomparable. In this case, as the ordering 〈M,<〉 is jointed,
there is a greatest common lower bound c of m1 and m2, and it cannot be
that c = m1 or c = m2 (this would lead to case (1) or (2)). It follows that
(c � �c〈mi 〉) ∈ TR(mi ) (i = 1, 2), but �c〈m1〉 �= �c〈m2〉, so that again,
m1 � m2. ��

The other direction holds as well, so that we have at our hands an alternative
definition of co-presentness in BT:

Fact 2 We have m1 ∼ m2 iff Hm1 = Hm2 .

Proof The “⇒” direction has just been proved. For “⇐”, let m1 � m2. Note that for
any m ∈ M , we have Hm = ∩(c�H)∈TR(m)H . (We leave the proof of this step as an
exercise.) This implies Hm1 �= Hm2 : we have TR(m1) �= TR(m2) by assumption, and
by the linear ordering of the TR, this implies that either TR(m1) and TR(m2) contain
incompatible transitions from a choice point, so that Hm1 ∩ Hm2 = ∅, or one of the
sets of transitions extends the other, which implies that Hm1 � Hm2 (or the other way
round). ��

Summing up, in BT, we can define an indeterminism-based notion of dynamic time
via the indeterministic past of moments, or alternatively via the set of histories that

17 It is often even possible to define clock times (so-called instants) across different branches, so that there
can be a formally well-defined meaning for assertions like “I could be in Venice now”, which refer to
a contemporaneous (same clock-time) moment on a different, non-actual history. While the definition of
clock times is easy in discrete orderings (in which one only has to count the moments after a choice point),
the matter is quite subtle for continuous orderings. See Belnap et al. [10, Ch. 8] for some pertinent remarks
on sufficient conditions.
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Fig. 2 A branching time
structure, indicating some
intervals of co-present moments
according to Definition 5

some 
intervals of
co-present
moments

the moments belong to. The non-overlapping regions of co-presentness are exactly
those intervals on the tree of branching histories that lie between two consecutive
choice points. Unless every moment is a choice point, some regions of dynamic co-
presentness containmore than onemoment. So, the dynamic present in BT is generally
extended in static coordinate time, and thereby, the two notions of static and dynamic
time come apart. See Fig. 2 for illustration.

3 Branching Space-Times andModal Correlations

Branching space-times (BST) makes the idea of branching histories compatible with
relativistic space-time. BST combines two differently motivated partial orders: on
the one hand, there is the causal partial ordering of space-time, e.g., the Minkowski
ordering of special relativity. On the other hand, there is an indeterministic partial
ordering, as in BT,which anchors local possibilities for the future. These two orderings
are combined via Belnap’s ingenious definition of a BST history as amaximal directed
set18: in BST, two elements of the ordering, possible point events, belong to one history
if and only if that history contains a common upper bound for them, which provides a
perspective fromwhich both of them have occurred. In this way, histories are generally
not linear chains of moments as in BT, but can be full space-times. The BST partial
ordering glues together several such possible histories at choice points.19

An important feature of the spatio-temporal nature of the BST ordering is that two
histories can split at different events. Such events then have to be space-like related:

18 The initial paper proposing BST is [4]. The combination of the partial orders is nicely explained in [9].
See also the pertinent chapters of [25].
19 In what follows, we will ignore the topological peculiarities of this global construction. See [24] and [28]
for discussion. Themain point to stress is that the individual histories, which represent physical space-times,
do not exhibit any unorthodox topological features.
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Fig. 3 BST structure with two uncorrelated choice points, a and b, and four histories, h++, h+−, h−+,
and h−−. The vertical straight lines are just visual guides to separate the histories, which represent 2-
dimensional space-times for simplicity of illustration. The V-shaped regions indicate the light cones above
a and b

Fig. 4 BST structure with two
choice points, a and b, whose
outcomes are modally
(anti-)correlated. There are only
two histories, h+− and h−+

a b

-+

a b

+-

h+- h-+

e f

once two histories have split, they remain split; this is the BST equivalent of the BT
notion of “no backward branching”. For illustration, consider Fig. 3, which depicts
Alice (a) and Bob (b) each performing an indeterministic experiment in space-like
separation. The individual histories each represent a two-dimensional space-time with
V-shaped light cones above a and b, which are the sets of events in the respective his-
tory that are above a (or b, respectively) in the BST ordering. Each of the experiments
(idealized coin tosses, or photons passing a beam splitter) conducted at a and at b has
two immediate possible outcomes, + and −. Assuming that the two experiments are
uncorrelated (an assumption that will be lifted below), there are four combined possi-
bilities, which we can write mnemonically as a+b+, a+b−, a−b+, and a−b−.20

These four combined possibilities correspond to four BST histories, h++, h+−, h−+,
and h−−, which are glued together at the point events a and b. These two point events
occur in all the four histories, and they are the choice points at which the histories
split. Histories h++ and h+− split at the choice point b: it is the outcome b+ vs. b−
that separates the two histories. Histories h++ and h−−, on the other hand, split at the
two choice points a and b, as both these choice points have different outcomes.

A consequence of multiple space-like choice points is that the respective choices
might be coordinated: in BST, there is room for space-like modal correlations. That is,
with respect to the set-up of Alice and Bob described above, there might be less than
four resulting histories. For example, the outcomes at a and at b might be perfectly
anticorrelated, leaving only two combined outcomes, a+b− and a−b+ (see Fig. 4).

20 These possibilities are thus given via maximal consistent sets of transitions, to be defined below.
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There is ample empirical evidence that coordinated indeterministic events exist.21

Such coordination could be strict, as in Fig. 4, in which expected possibilities (com-
binatorially possible histories) are completely absent, or it could be probabilistic,
preserving the underlying full space of possibilities but showing probabilistic corre-
lations between space-like separated events. The gist of Einstein et al.’s complaint
against the supposed completeness of orthodox quantum mechanics was to point out
that quantum mechanics predicts the space-like coordination of experimental out-
comes due to entanglement in multi-partite systems [13]. Their initial example had
a modal flavor (concerning predictions that can be made with certainty), but many
subsequent examples involve just probabilistic correlations. In this paper we stick to
the modal case for simplicity’s sake.

The worry that quantum mechanics might be incomplete prompted the search for
so-called hidden variables as completions of the quantum-mechanical description of
reality, sometimes also with a view to providing a deterministic reading of the the-
ory. Many classes of hidden variables would be detectable experimentally, as shown
by research starting with Bell [3]. Experiments have vindicated the predictions of
orthodox quantum mechanics to astonishing accuracy (see, e.g., [17]).

The formal apparatus of BST allows one to define a formally precise notion of
space-like modal correlations.22 We give a brief overview of the basic definitions of
BST theory, referring to [4,9] for more details and motivation.23

A chain in a partial ordering is a linearly ordered subset (i.e., a subset in which any
two elements are comparable). The notion of a history, which is invoked in the clauses
of Definition 6, is provided by Definition 7.

Definition 6 (BST structure) A branching space-times structure is a non-empty partial
ordering 〈W ,<〉 of possible point events that fulfills the following conditions:

• The ordering is dense and without maxima or minima.
• The ordering is continuous in the following sense: each lower bounded chain inW
has an infimum in W , and each upper bounded chain in W has a supremum-in-h
for each history h to which the chain belongs.

• The prior choice principle: if a lower bounded chain O belongs fully to history h1
but not at all to history h2 (O ⊆ h1 \ h2), then there is a choice point c < O that
is maximal in the intersection of h1 and h2.

Definition 7 (BST histories) A directed set is a subset D ⊆ W such that for any
e1, e2 ∈ D there is some e3 ∈ D for which e1 � e3 and e2 � e3.

The set Hist of histories is the set of maximal directed subsets ofW . Given e ∈ W ,
we write He for the set of all histories containing e.

21 See Sect. 2.1 for our dialectical defense of assuming indeterminism in the first place.
22 BST also allows one to tackle space-like probabilistic correlations. See, e.g., [22] and [16]. To repeat,
we stick with modal correlations for simplicity’s sake.
23 We simplify a little here: In Definition 6, the exclusion of minima and maxima is for convenience’s
sake only. There is also a further condition that needs to be added to allow for the introduction of spatio-
temporal locations across histories, Weiner’s postulate. We omit it here to keep matters simple. See [22] for
discussion.
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Two histories h1, h2 ∈ He are undivided at e iff their intersection h1 ∩ h2 contains
an event e′ > e; we write h1 ≡e h2. Otherwise, e is maximal in h1 ∩ h2, and the two
histories h1, h2 ∈ He split at e; we write h1 ⊥e h2, and e is a choice point for h1, h2.

As in the case of BT, undividedness-at-e is an equivalence relation on He; the
respective partition of the set of histories He is written �e. The definition of a basic
transition also carries over from BT; such a transition is of the form

τ = e � H , H ∈ �e.

Basic indeterministic transitions, for which �e �= {He}, are the irreducible elements
of indeterminism in a BST structure.

In our discussion of BT, we defined a notion of the indeterministic past of a moment
m, via the set of transitions in that moment’s past, TR(m). In BST, there are two
corresponding notions. First, generally, given an event e, there is the set of cause-like
loci for the occurrence of e. These are initials of transitions that make a difference
as to the occurrence of e, i.e., at these events, all histories containing e split off from
some history not containing e.

Definition 8 (Cause-like locus) Event c is a cause-like locus for e, c ∈ cll(e), iff there
is some h /∈ He for which h ⊥c He (i.e., for which for all h′ ∈ He, we have h ⊥c h′) .

In BT, the cause-like loci of a moment necessarily have to lie in its past, allowing
for an easy introduction of the set of enabling transitions of a moment, TR(m), in
Sect. 2.2. In BST however, due to the possibility of modal correlations, it may be that
a cause-like locus for an event e is space-like related to e. Consider event e in h+− of
Fig. 4: by the above definition, using h = h−+ and noting that He = {h+−}, we have
cll(e) = {a, b}, but while a < e, the other cause-like locus, b, is space-like related to
e.

One can therefore consider a narrower class of events making a difference to the
occurrence of e, namely, those cause-like loci that lie in the past of e.

Definition 9 (Past cause-like locus) Event c is a past cause-like locus for e, c ∈ pcl(e),
iff c ∈ cll(e) and c < e.

Barring certain infinite set-ups, which will not play a role in this paper, modal
correlations are present in a BST structure iff for some event e, there is a cause-like
locus that does not lie in e’s past, i.e., iff we have cll(e) �= pcl(e) for some e.24

For a cause-like locus c ∈ pcl(e) that lies in the past of an event e, its contribution
to enabling the occurrence of e is easy to describe: one can prove that if c < e, there
is exactly one basic outcome H ∈ �c that is compatible with e, and indeed, we then
have He ⊆ H . In the presence of modal correlations, however, more than one basic
outcome of a cause-like locus c ∈ cll(e) may be compatible with the event e, and so
there will be no unique basic transition from c to one of c’s immediate basic outcomes
that can be singled out via e. Still, there is a usefull general definition that covers both
cases:

24 See Belnap [6,7] for a number of equivalent characterizations of modal correlations, which he calls
“modal funny business”. For the mentioned infinite cases, see [26].
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Definition 10 (Enabling outcome; enabling transition) Given some event e and some
c ∈ cll(e), we define the e-enabling outcome of c, written �c〈e〉, to be

�c〈e〉 =d f

⋃
{H ∈ �c | H ∩ He �= ∅}.

The e-enabling transition from c is c � �c〈e〉.
In case c < e, as we have just remarked, �c〈e〉 ∈ �c, so that the enabling transition
c � �c〈e〉 is a basic indeterministic transition. If c �< e, on the other hand, that
transition may be non-basic. Still, it is generally the case that He ⊆ �c〈e〉 for any
c ∈ cll(e). Therefore, even a non-basic transition c � �c〈e〉 properly fulfills the role
of enabling the occurrence of the event e.

Fact 3 Let c ∈ cll(e). Then He ⊆ �c〈e〉.
Proof Let c ∈ cll(e), and let h ∈ He. By the definition of cll, there is some h′ for
which h′ ⊥c He, so in particular, h′ ⊥c h. It follows that h ∈ Hc, so there is some
basic outcome H ∈ �c (which partitions Hc) for which h ∈ H . So h ∈ H ∩ He, i.e.,
h is a witness for H ∩ He �= ∅. By Def. 10, therefore, h ∈ �c〈e〉. ��

Generally, the cause-like loci of an event e allow us to define the set of those
indeterministic (basic and perhaps also non-basic) transitions that together enable the
occurrence of e, the event’s causae causantes (see [8]):

Definition 11 (Causae causantes) The causae causantes (originating indeterministic
causes) of an event e are those transitions from cause-like loci of e that enable the
occurrence of e in the sense of Definition 10:

CC(e) =d f {c � �c〈e〉 | c ∈ cll(e)}.

The causae causantes are the BST generalization of the enabling transitions of a
moment, TR(m), that were defined in Sect. 2.2 in the context of BT.

4 Defining an Extended Dynamic Present in BST

In our discussion of BTwe found that we could define a sensible notion of the extended
dynamic present among the set ofmoments in two equivalentways, either via sameness
of the indeterministic past of the moments, or via sameness of the set of histories in
which the moments occur.

Given the resources ofBST,we can show that the same twoapproaches are available,
and that they also characterize the same equivalence relation on the set of events, even
in the presence of modal correlations. Based on modal correlations, we can provide
BST structures in which the dynamic present extends arbitrarily far.

Our official definition of co-presentness is in terms of the indeterministic enabling
conditions expressed via an event’s causae causantes.
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Definition 12 (Co-presentness in BST) Events e1, e2 ∈ W are co-present, written
e1 ∼ e2, iff CC(e1) = CC(e2).

Being based on an equality, the relation∼ is clearly an equivalence relation onW . It is
well-defined no matter whether there are modal correlations or not, by the generality
of Definition 11.

In BT we could show that there is an alternative way of characterizing ∼ in terms
of sameness of histories. An analogue of Fact 2 holds in BST as well:

Fact 4 We have e1 ∼ e2 iff He1 = He2 .

Proof “⇐”: For this direction is suffices to check that the definition of cll(e), of�c〈e〉,
and of CC(e) only make use of He, not of e in isolation. Thus, sameness of set of
histories implies sameness of causae causantes, and thereby, co-presentness according
to Definition 12.

“⇒”: For this direction, we show that the set of histories He in which an event e
occurs can be expressed via its causae causantes CC(e), which, to recall, are transi-
tions of the form c � �c〈e〉 for c ∈ cll(e). We show that for any e ∈ W ,

He =
⋂

c∈cll(e)
�c〈e〉. (∗)

Given (*), from e1 ∼ e2, i.e., CC(e1) = CC(e2), we immediately have He1 = He2 .
To establish (*), note first that the “⊆” direction follows directly from Fact 3. For

“⊇”, take some h /∈ He and some h′ ∈ He. As e ∈ h′ \ h, by the prior choice
principle there is some c∗ < e for which h ⊥c∗ h′, and as c∗ < e, in fact h ⊥c∗ He,
so that c∗ ∈ cll(e), and �c∗〈e〉 ∈ �c∗ is a basic outcome of c∗. As e ∈ h′, we
have �c∗〈e〉 = �c∗〈h′〉, and as h ⊥c∗ h′, we have h /∈ �c∗〈e〉. Thus, a fortiori,
h /∈ ⋂

c∈cll(e) �c〈e〉. ��
This is a welcome result: even though BST allows for modal correlations, there are

still two differently motivated definitions of co-presentness that characterize the same
relation.25

A typical shape of a region of co-presentness in the absence of modal correlations
is shown in Fig. 5.

Modal correlations allow for more extended regions of co-presentness. A pertinent
example is shown in Fig. 6. The generalization to larger sets of correlated choice points
is suggestive: if many space-like related, modally correlated choice points exist, a
region of co-present events can extend arbitrarily far.

25 One might perhaps criticize our definition because in the presence of modal correlations, it allows for
events to be co-present while their obvious alternatives fail to be co-present. For a pertinent example,
consider two ternary (outcomes 1, 2, 3) choice-points whose 1-outcomes are strictly correlated, while the
2- and 3-outcomes are uncorrelated, leading to the five (instead of nine) histories h11, h22, h23, h32, h33.
Here events in the 1–1-outcomes count as co-present (they all occur exactly in history h11), but alternative
events in the 2–2-outcomes do not count as co-present.We are not aware of a thorough discussion of whether
the dynamic present should be modally robust, and we do not view the mentioned situation as a failure of
our definition. In any case, there is a straightforward sharpening of our definition available under which the
1–1-events would count as co-present only if there are fully strict correlations (only three histories, e.g.,
h11, h22, h33): One has to demand not just that He1 = He2 , but also that �e1 = �e2 .
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Fig. 5 The region of events co-present with event e in one history of a BST structure. There are four binary
(+/−) choice points a, b, c, and d, and no modal correlations. Thus there are 16 possible histories, of which
h++++ is shown. Event e and all events in the shaded region have just a single causa causans, b � +.
They occur in exactly those eight histories in which choice point b has outcome +
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++

h ++++

c d

+ +

Fig. 6 The region of events co-present with event e in one history of a BST structure. There are four binary
(+/−) choice points a, b, c, and d, and outcomes of b and of c are modally correlated. Thus there are eight
possible histories, of which h++++ is shown. Event e and all events in the shaded region have a set of two
causae causantes, {b � +, c � +}. They occur in exactly those four histories in which choice point b
(and thus, by modal correlation, also choice point c) has outcome +

In BST, any history h ∈ Hist is a space-time. The restriction of ∼ to h is also
an equivalence relation. That equivalence relation is (barring the deterministic one-
history case) neither the identity nor the universal relation.26 We can sum up this
result as a Theorem that shows that we have indeed reached our goal: we have defined a
non-frame-dependent, non-trivial equivalence relation of co-presentness on relativistic
space-times, based on spatio-temporal indeterminism.

For full precision, let us call a BST structure featureless if either (i) it contains just
a single history (i.e., no indeterminism), or (ii) it has at least one history consisting
wholly of choice points and in which there are no modal correlations. Our Theorem
then reads as follows:

Theorem 1 Let 〈W ,<〉 be a BST structure that is not featureless. Then for any history
h ∈ Hist(W ), the relation of co-presentness ∼ restricted to h, ∼|h, is a non-trivial

26 To be precise, indeterminism only rules out the universal relation. The identity relation would result if
every event were a choice point and there were no modal correlations. We will not speculate whether that
could be a live option and simply leave identity by the wayside.
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equivalence relation on h, i.e., neither the identity nor the universal relation on h,
defined wholly in terms of the relativistically sound basic notions of BST.

5 Conclusion

In this paper we have tried a novel approach to defining an ontologically fundamental
notion of co-presentness that does not go against the tenets of relativity theory. Such
a notion could be used by presentists to strengthen their case that the doctrine of the
present as the real (and the past and the possible future as unreal) does not go against
modern physics. We have not worked out a full theory of presentism here. Rather,
our investigation has focused on providing relativistically tenable formal foundations
for presentism, culminating in Theorem 1, which states that given the resources of
branching space-times, it is possible to define a non-trivial equivalence relation of
co-presentness on relativistic space-time structures.

After a survey of possible reactions to the problem of the present in relativity the-
ory, we made a terminological distinction between a static role of the present, which
is served by the relation of simultaneity, and a dynamic role of the present, with the
corresponding relation of co-presentness. Both of these relations need to be equiva-
lence relations, but they need not coincide. We argued that simultaneity, the sharing
of a temporal coordinate, does not by itself have any fundamental ontological import,
so that a relativizing strategy with respect to simultaneity seems promising. Such a
strategy is well served by remarking that each observer provides their own reference
frame, which is enough to guarantee successful communication in a relativistic world,
even if the observers talk about the simultaneity of distant events. The notion of co-
presentness, on the other hand, does have ontological import, and can therefore not
be relativized to an observer or to any other arbitrarily chosen frame. Formal results
about the definability of equivalence relations on Minkowski space-time imply that
additional structure is needed to anchor a non-trivial relation of co-presentness.

We argued that a formal representation of indeterminism can provide the needed
additional structure, and that this addition is in fact congenial to the notion of dynamic
time as requiring real (indeterministic) change. The resulting picture is one of an
extended dynamic present, implying a formal distinction between static (coordinate)
simultaneity and dynamic co-presentness.Afterworking out the basics of our approach
in the simpler framework of branching time, we provided our full analysis in the
framework of branching space-times (BST).

Given that BST allows for modal correlations, the spatial extension of the dynamic
present can reach as far as the modal correlations do. In the limit, the dynamic present
could extend across a maximal space-like hypersurface.

Our analysis makes no predictions about the actual spatio-temporal extension of
the dynamic present, but it characterizes an interface at which empirical results about
space-like correlations could be used to provide a verdict about the size of the Now. In
our view, such a division of labor is a welcome result of the clarification of the formal
basis of an extended dynamic present.
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