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Abstract
The asymptotic safety program strives for a consistent description of gravity as a non-
perturbatively renormalizable quantumfield theory. In this framework the gravitational
interactions are encoded in a renormalization group flow connecting the quantum
gravity regime at trans-Planckian scales to observable low-energy physics. Our pro-
ceedings reviews the key elements underlying the predictive power of the construction
and summarizes the state-of-the-art in determining its free parameters. The explicit
construction of a realistic renormalization group trajectory describing ourworld shows
that the flow possesses two characteristic scales. The Planck scale where Newton’s
coupling G becomes constant is generated dynamically. The freeze-out of the cos-
mological constant Λ occurs at a terrestrial scale fixed by the observed value of the
dimensionless product GΛ. We also review the perspectives of determining the free
parameters of the theory through cosmologicalobservations.

Keywords Quantum gravity · Renormalization group · Planck Scale · Cosmological
predictions

1 Introduction

One of the key challenges in any quantum gravity program is to explain, or at least
accommodate, the tiny value of the cosmological constant found in cosmological
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observations [1]. From the quantum perspective, the cosmological constant problem
(see, e.g., [2–5] and references therein) is often considered as the biggest mismatch
between theoretical expectations and experimental observations throughout physics.
Summing up the vacuum contributions in a field theory with a ultraviolet (UV) cutoff
ΛUV one expects that the value of the cosmological constant is given by

Λ ∝ Λ2
UV (1)

with the constant of proportionality being of order one. If ΛUV is identified with the
Planck scale

MPl =
√

�c

8πG
= 2.4 × 1027 eV, (2)

this implies that the “natural” value of the cosmological constant Λ ∝ M2
Pl should be

linked to the strength of the gravitational interactions given by Newton’s constant G.
Cosmological observations [1] indicate that Λ is much smaller though

Λobs = 4 × 10−66 eV2 � 10−120 M2
Pl. (3)

Thus the observed value dwarfs the theoretical expectation by 120 orders of magni-
tude.1 On the theoretical side this may be accommodated by introducing a bare value
Λbare at the Planck scale which then cancels the contributions from the field modes. In
order to match with (3) these two contributions must cancel to an accuracy of 120 dig-
its. It is then very hard to envision a mechanism where the various contributions to the
vacuum energy are finetuned in such a way that they lead to the observed value. From
this point Λobs is considered completely unnatural. One may hope that a quantum
theory of the gravitational interactions may shed some light on this puzzle.

In this proceedings we review the status of the cosmological constant within one
particular approach to quantumgravity, the asymptotic safety program [6–10] (also see
[11,12] for recent textbooks and [13] for an overview on asymptotically safe gravity
matter systems). A key difference to the effective field theory framework, where the
theory is considered to be valid below a certain UV cutoffΛUV only, is that asymptotic
safety ensures that the construction remains consistent up to arbitrarily short length
or, equivalently, arbitrarily high energy scales. This entails in particular that there is
no UV cutoff which could naturally appear in the relation (1).

Technically, the high-energy regime of the gravitational interactions is controlled
by a fixed point of the underlying renormalization group flow. Besides leading to a
quantum field theory valid at the highest energy scales, this also provides predictive
power in the sense that not all candidate theories for quantumgravitywill approach this
renormalization group fixed point in theUV. The condition that they do fixes an infinite
number of gravitational couplings in terms of a small number of free parameters.
Conceptually, Λobs should then be considered as part of the experimental input which

1 The cosmological constant problem also persists if one just considers the vacuum energy contributed by
the electroweak symmetry breaking [3], Λew = −1055Λobs, even though at a slightly less severe level.
Since we will consider the case of pure gravity only, we will not discuss contributions originating from the
matter sector in the sequel.
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must be taken from observation to identify the quantum gravity theory realized by
Nature.

The large hierarchy between the Planck scale and the cosmological constant then
reflects itself in the energy dependence of the couplings (see Fig. 4). Newton’s coupling
G freezes out at the Planck scale thereby generating the scale kG dynamically. The
small value of Λobs generates a second scale kΛ � kG . For energies k < kΛ the
cosmological constant is indeed constant while in the intermediate regime kΛ < k <

kG one finds Λ ∝ k4. The transition scale kΛ is set by Λobs and for Λobs = 0 would
be given by kΛ = 0.

Besides the observed values of Newton’s coupling and the cosmological constant, it
is conceivable that asymptotic safety possesses additional free parameters. Typically,
these are associated with higher-derivative (HD) interactions, as e.g.,

SHD = B

16πG

∫
d4x

√
g R2 . (4)

Interactions of this type are notoriously difficult to observe, e.g., at solar system scales
[14]. Nevertheless, the underlying modified gravitational dynamics may have left
imprints during the very early stages of the cosmic evolution which may still be
visible in the sky today. Thus, trying to explain some observable features based on
modified dynamics of gravity may allow to find values for such couplings as well.

The rest of this review is organized as follows. Section 2 summarizes the key
concepts underlying asymptotic safety together with the renormalization group tech-
niques used to explore this scenario in the context of gravity. In Sect. 3 we discuss
an approximation of the renormalization group trajectory realized in Nature based
on the Einstein–Hilbert action before improving it by including higher-order scalar
curvature terms. The prospects of fixing the free parameters of the theory based on
cosmological observations are discussed in Sect. 4 and some concluding remarks are
given in Sect. 5.

2 Renormalization Group and Asymptotic Safety

The investigation of Asymptotic Safety is closely linked to the key idea of the Wilso-
nian renormalization group (RG) where quantum fluctuations are “integrated out”
consecutively, shell-by-shell in momentum space. The scale-dependent dynamics at
the scale k is then captured by the effective average action (EAA) functional Γk[φ]
[15–18] whose effective interactions contain all quantum corrections fromfluctuations
with momenta p2 � k2. The flow of Γk with respect to the RG parameter k connects
physics at different energy scales. When k → ∞, no quantum fluctuations have been
integrated out, and Γk essentially reduces to the “bare action” S[φ]. Since this occurs
at high energies, this regimewill be referred to as the UV. On the other hand, as k → 0,
all quantum fluctuations have been taken into account. In that case, Γk reduces to the
full quantum effective action Γ . For obvious reasons, this will be referred to as the
infrared (IR) regime. See also Fig. 1.
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Fig. 1 Schematic overview of the renormalization group. The effective average action Γk interpolates
between the quantum effective action Γ ≡ Γ0 in the IR and the bare action S in the UV

In order to study the flow of the EAA, the action functional Γk is expanded in a
suitable operator basis {Oi [φ]} containing all interaction monomials compatible with
the symmetries of the theory

Γk[φ] =
∑
i

ui (k)Oi [φ] . (5)

The coefficients ui (k) are the coordinates of Γk with respect to this basis.
Introducing the logarithmic RG scale t = log(k/k0), with an arbitrary reference

scale k0, the scaling of the theory is then captured by the β-functions of the coupling
constants

∂t ui (k) = βui ({u j }) . (6)

The β-functions can be calculated, for instance in perturbation theory [19] or by func-
tional methods [15,20]. Solutions of the set of equations (6) are called RG trajectories.

In order to obtain a theory that is healthy, the couplings ui should remain finite at
all scales. Furthermore, in order to be able to make the theory predictive, only finitely
many couplings should be measured to characterise the entire RG flow. A theory
satisfying both conditions is referred to as renormalizable.

The latter condition may prove to be problematic in the light of the infinite sum
in Eq. (5). However, the other condition actually gives a way out to this problem.
Since the couplings are to remain finite at all scales, the RG trajectory has to have an
endpoint where the couplings do not change anymore. At this point, all β-functions
vanish simultaneously

βui

∣∣
u j=u∗

j
= 0 , ∀ i . (7)

The point {u∗
j } is therefore a fixed point of the RG flow. If the fixed point occurs at the

point where all interactions are turned off, we speak of a Gaussian fixed point (GFP).
Theories attracted to a GFP at high energies are termed asymptotically free. If the
fixed point contains interactions, one refers to a non-Gaussian fixed point (NGFP) and
theories approaching the NGFP at high energies are called asymptotically safe.

The requirement that the RG flow has a fixed point in the UV also solves the
problem of predictivity. To this end, consider the RG trajectories that end up in a UV
fixed point. This set spans the UV-critical hypersurface SUV embedded in the space
of actions spanned by theOi ; see also Fig. 2. If this hypersurface is finite-dimensional,
one requires only finitely many couplings in order to specify a particular RG trajectory
withinSUV. The condition that gravity should be described by a trajectorywithinSUV
restores predictivity of the construction. In a slight abuse of string theory nomenclature
[21], one may refer to the RG trajectories within SUV as the “landscape” of theories
consistent with quantum gravity while the ones being driven away from the fixed point
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Fig. 2 Illustration of the UV-critical hypersurface SUV associated to a renormalization group fixed point.
The fixed point is denoted in red. Trajectories that end in the UV at the fixed point are represented by blue
lines; arrows point fromUV to IR. Together, the trajectories connected to the fixed point span the UV-critical
hypersurface. By definition, trajectories that are not contained inSUV are eventually driven away from the
fixed point. The eigendirections of the linearized flow are denoted by the dashed lines (Color figure online)

as k → ∞ lie in the “swampland” of effective field theories lacking a quantum gravity
completion.

The UV-critical hypersurface in the vicinity of the fixed point is conveniently char-
acterized by linearizing the flow. Expanding the β-functions around the fixed point,
we obtain up to first order

βui ({u j }) �
∑
j

Mi j (u j − u∗
j ). (8)

The matrix Mi j = ∂βui /∂u j denotes the stability matrix. Diagonalizing the stability
matrix then allows us to write down the solution to the linearized flow in terms of the
right-eigenvectors VI and eigenvalues of M, satisfyingM VI = −θI VI :

ui (t) = u∗
i + CI VI i exp(−θI t). (9)

The θI are referred to as the critical exponents. The numbers CI determine the initial
conditions of the flow, and are a priori free parameters of the theory. However, if
θI < 0, the only way to end at the fixed point as t → ∞ is if the corresponding
CI vanishes. In this case, the eigendirection VI is called UV-irrelevant. Conversely,
directions connected to positive critical exponents automatically run into the fixed
point. Thus the parameterCI is undetermined by asymptotic safety and has to be fixed
by experiment. The corresponding eigendirection is UV-relevant. The dimension of
the UV-critical hypersurface is therefore given by the number of relevant directions
of the fixed point.

The Wilsonian viewpoint on renormalization is perfectly suited to explain the
problems encountered in the perturbative quantization of the Einstein–Hilbert action.
Studying the flow of the Einstein–Hilbert action (see also Sect. 3), we can calculate
the RG flow of Newton’s coupling G using perturbation theory. We find that the point
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G = 0 is indeed a fixed point. The critical exponent associated with G is given by
the mass-dimension of the coupling, θ = −2, implying that the RG flow is repelled
from the GFP in the UV. The observation that G is actually non-zero then entails that
the Einstein–Hilbert action is not part of the UV-critical hypersurface of the Gaussian
fixed point and thus not asymptotically free. In perturbation theory the resulting diver-
gencesmay be cured by adding higher-order counterterms [22,23]; however for gravity
it turns out that the number of required counterterms is infinite. This spoils the predic-
tivity requirement, stating that the Einstein–Hilbert action results in a perturbatively
non-renormalizable quantum field theory.

Weinberg [24] conjectured that renormalizability of gravity may be restored by the
existence of a non-perturbative fixed point. The study of this scenario gained momen-
tum with the development of non-perturbative techniques, foremost the Functional
Renormalization Group Equation (FRGE) applicable to gravity [18]

∂tΓk[φ] = 1

2
STr

[(
Γ

(2)
k [φ] + Rk

)−1
∂t Rk

]
. (10)

In this equation, Γ (2)[φ] denotes the Hessian of Γk , and STr the trace over all fluctua-
tions, including a minus sign for ghost and fermionic modes. The RG is implemented
by a k-dependent regulator Rk , which suppresses modes of momentum p � k.

Using these non-perturbative techniques, substantial evidence has been found for
the existence of a NGFP for gravity. Starting from the seminal work [18] elaborate
investigations have accumulated substantial evidence supporting this conjecture [6–
12].

3 Renormalization Group Flow of f (R)-Gravity

Awell-studied approximation of the gravitational effective average action is the f (R)-
truncation [7,25,26]

Γk[g] � 1

16πGk

∫
d4x

√
g f̄k(R) + Γgf + Γgh, (11)

where R denotes the Ricci scalar. The EAA also contains suitable gauge fixing Γgf and
ghost terms Γgh. The running couplings in this truncation are Newton’s coupling Gk

and those contained in the function f̄k(R). The (Euclidean) Einstein–Hilbert action is
obtained by setting

f̄k(R) = −R + 2Λk . (12)

In principle, the function f̄k contains infinitely many couplings that need to be fixed,
providing an excellent testing ground for the predictivity of Asymptotic Safety.

In order to define the functional variation of the EAA, we employ the background
field method. The easiest way to implement this is by a linear split of the metric,

gμν = ḡμν + hμν , (13)
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where ḡμν is a fixed but arbitrary background metric and hμν parameterizes the fluc-
tuations with respect to this background. The scale-dependence of Gk and f̄k(R) is
obtained by substituting the ansatz (11) into the FRGE (10) and projecting the result
on actions of the f (R)-type. This results in a partial differential equation governing
the scale-dependence of f̄k(R). Introducing the dimensionless quantities

r = k−2R, Gk = k−2gk , f̄k(R) = k2 fk(r), (14)

the equation becomes autonomous and may serve as a generating equation for the
β-functions (6). By now, several incarnations of such generating equations have been
constructed, differing in the choices for the gauge fixing and parameterization of the
fluctuation field [25–32]. We illustrate some of the central properties arising from the
projection of (11) to finite order polynomials in f̄k(R) in the sequel.

3.1 Projecting Onto the Einstein–Hilbert Action

As a first example, we discuss the simplest approximation to the full function f (R),
namely the Einstein–Hilbert truncation (12). Following the steps and choices made in
[18], we arrive at the β-functions for the dimensionless Newton’s coupling gk and the
dimensionless cosmological constant λk = k−2Λk

∂t gk = (2 + ηN )gk , (15a)

∂tλk = L1gk + gkηN L2 − (2 − ηN )λk , (15b)

where ηN = −∂tGk/Gk is the anomalous dimension of Newton’s coupling. The
anomalous dimension has the form

ηN = B1

1 − gk B2
gk . (16)

The coefficients Li and Bj are given by

B1 = 1

12π

(
− 16Φ1

1 (0) − 24Φ2
2 (0) + 20Φ1

1 (−2λk) − 72Φ2
2 (−2λk)

)
(17a)

B2 = − 1

24π

(
20Φ̃1

1 (−2λk) − 72Φ̃2
2 (−2λk)

)
(17b)

L1 = 1

4π

(
20Φ1

2 (−2λk) − 16Φ1
2 (0)

)
(17c)

L2 = − 1

8π
20Φ̃1

2 (−2λk) . (17d)

When evaluated with a Litim-type regulator [33], the threshold functions Φ
p
n (w) and

Φ̃
p
n (w) are particularly simple and read

Φ
p
n (w) = 1

Γ (n + 1)

1

(1 + w)p
Φ̃

p
n (w) = 1

Γ (n + 2)

1

(1 + w)p
. (18)
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Fig. 3 Overview of the Einstein–Hilbert phase diagram. The fixed points are indicated by red dots; flow
lines by blue arrows. The red dashed line denotes the singularity in ηN . First obtained in [34] (Color figure
online)

The β-functions (15) define a flow through the parameter space spanned by g and λ.
Figure 3 gives an overview of the phase diagram. For a large part, the flow is controlled
by the interplay of two RG fixed points. The Gaussian fixed point (GFP) is located at

λ∗ = g∗ = 0 . (19)

We also find a non-Gaussian fixed point (NGFP) situated at

λ∗ = 0.193, g∗ = 0.707. (20)

Linearizing the flow around the fixed points, we find the canonical critical exponents
for the GFP:

GFP: θ1 = +2 θ2 = −2. (21)

The critical exponents of the NGFP are complex

NGFP: θ1,2 = 1.48 ± 3.04ı , (22)

The positive real part of θ1,2 indicates that the NGFP is UV-attractive. The non-zero
imaginary part signals a spiraling behavior of the flow around the NGFP. The stability
properties make the NGFP suitable for the Asymptotic Safety scenario.
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Furthermore, fromEq. (15) it is clear that the locus g = 0 is a zero forβg . Therefore,
the RG flow is unable to cross this line, as is also visible in Fig. 3. Since the measured
value forNewton’s constant is positive, this discards the lower half of the phase diagram
as unphysical. Moreover, the anomalous dimension ηN has a singularity at gB2 = 1.
This is visible in the phase diagram as the dashed red line where the flow changes
direction.

We are interested in studying whether one of the RG trajectories generated by the
β-functions are compatible with observations. Here we use that Gk is measured to be
of the order of 10−57 eV2 at energy scales of 10−5 eV. This indicates that gk = k2Gk is
tiny on the measured energy scales. Thus, an RG trajectory reaches a classical regime
close to g = 0.

This motivates an expansion of the β-functions around g = 0. From a practical
viewpoint, it turns out to be convenient to rewrite the β-functions in terms of the new
couplings

gk , αk = λkgk , (23)

as this allows us to solve the expanded flow equations analytically. We start with the
β-function for g. Up to second order, this gives

βg(g, α) � 2g − 7

3π
g2. (24)

The analytic solution of k∂kgk = βg(g) then reads

gk = 6πgk0k
2

7gk0
(
k2 − k20

) + 6πk20
, (25)

where gk0 is a integration constant specifying a particular RG trajectory. For the dimen-
sionful Newton’s coupling Eq. (25) entails

Gk = 1

1 + 7
6π Gk0

(
k2 − k20

)Gk0 , (26)

in accordance with Ref. [35]. We see that for k2 − k20 � Gk0 , Newton’s coupling is
approximately constant. Quantum corrections only occur as

k2 ∼ k20 + 6π

7
G−1

k0
≡ k2G , (27)

which is of the order of the Planck scale (2). At energies above the Planck scale,
Newton’s coupling is driven to zero quadratically.

In order to determine the behavior of the cosmological constant, we expand the
β-function for αk up to second order in g

βα(g, α) � − 14

3π
αg − 11

3π
g2. (28)
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Plugging in the approximate solution for g allows us to obtain an analytic expression
for the k-dependence of αk as well

αk =
αk0 + 11

12π g
2
k0

(
1 − k4

k40

)
(
1 + 7

6π gk0
(
k2/k20 − 1

))2 . (29)

This gives the following IR behavior for Λk [35]

Λk = αk/Gk = Λk0 − 11
12π Gk0

(
k4 − k40

)
1 + 7

6π Gk0

(
k2 − k20

) . (30)

For sufficiently small values of Λk0 this equation entails three scaling regimes for the
cosmological constant. We see that the denominator changes the running of Λk in the
sameway asGk , starting at k ∼ G−1/2

k0
. Beyond this scale, the scale-dependence ofΛk

is governed by theNGFP and the cosmological constant grows quadratically. However,
the numerator also introduces a new scale where Λk changes behavior, namely at

k4 ∼ k40 + 12π

11

Λk0

Gk0
≡ k4Λ. (31)

Below this scale, the cosmological constant freezes out. In the regime between kΛ

and kG , we see that the running of Λ is proportional to k4. In Sect. 4 we discuss the
possibility to fix the trajectory by asking that the infrared value of Λ matches the
observed value Λobs.

3.2 Flows Including an R2-Term

The Einstein–Hilbert truncation can be extended to include an R2-term in the f (R)-
action.2 From a theoretical perspective this extension is important since it gives rise to
an additional free parameter. At the same time, it is of great phenomenological interest
since it allows to generate an initial phase of accelerated expansion of the universe as
in the Starobinsky inflationary model [37,38].

Explicitly, we parameterize the action by

fk(r) = 2λk − r + bkr
2, (32)

which supplements the Eintein–Hilbert action with the higher-derivative action (4).
We base our RG analysis on the generating equation derived in [26]. The resulting
RG equations for λk, gk and bk possess a GFP situated at λ = g = b = 0. In addition
there is a NGFP located at

λ∗ = 0.133, g∗ = 1.59, b∗ = 0.119. (33)

2 For pioneering work in this direction see [36].
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Its critical exponents read

θ1,2 = 1.26 ± 2.45ı , θ3 = 27.0. (34)

The similarity of these values with the Einstein–Hilbert truncation, Eqs. (20) and (22)
suggest that this is actually the same NGFP seen in different projections of the RG
flow. The three positive eigenvalues indicate that this fixed point has (at least) three
relevant directions.

3.3 Higher-Order Truncations

In order to further explore the predictivity of the NGFP higher order terms in the
scalar curvature have to be included. At the level of polynomial f̄ (R)-approximations
this has been done systematically up to order R6 [25,26], R8 [7], R35 [39,40], and
recently R70 [41]. As key results, the corresponding analysis established that adding
higher-derivative terms beyond R2 does not give rise to additional relevant directions.
Moreover, power-counting has been identified as a good ordering principle for judging
the relevance of the higher-derivative term.3

As an illustration, we start from the generating equation derived in [26] and expand
f (r) up to third order:

fk(r) = 2λk − r + bkr
2 + ckr

3. (35)

Again one finds the projection of the NGFP on this 4-parameter space which is located
at

λ∗ = 0.132 g∗ = 1.02 b∗ = 0.0356 c∗ = −0.534, (36)

and possesses critical exponents

θ1,2 = 2.67 ± 2.26ı θ3 = 2.06 θ4 = −4.42. (37)

In addition to the three relevant directions encountered in the previous section, there
is also one irrelevant direction. Asymptotic safety then implies one relation between
the four couplings contained in the ansatz. By linearizing the flow around the fixed
point, we can find an equation for the coupling c in terms of the couplings λ, g and b:

c = −0.575 + 0.434λ − 0.0583g + 1.21b. (38)

This relation, holding at very high energies, ensures that the corresponding RG trajec-
tories sit in the UV-critical hypersurface of the NGFP. At lower energies, the flowmust
be integrated down to the desired energy scale k. This amounts to integrating a highly

3 The system constructed by Ohta et. al. [31,32,42–44] uses a manifestly different gauge fixing and an
exponential split of the metric fluctuations. The resulting NGFP comes with 2 relevant directions. A detailed
analysis of the flow shows that thisNGFPdoes not support a crossover to a semi-classical regime as displayed
in Fig. 3 but sits on the other side of a singular locus. Thus it does not lend itself to the type of analysis
discussed in the present work.
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nonlinear flow, which must be executed numerically. Doing so gives a prediction for
the operator Ck

16πGk

∫
R3, which can be tested against observational bounds.

3.4 The Non-Gaussian Fixed Point Beyond f(R)-Truncations

We close our discussion with the following remarks. Going beyond approximations
built from functions of the scalar curvature R, the inclusion of a Weyl-squared term to
the higher-derivative action (32) has been considered in [45–47]. In this case quantum
corrections turn the associated dimensionless coupling in a irrelevant one, so that
the enhancement of the approximation does not introduce additional free parameters.
Moreover, supplementing the Einstein–Hilbert action by the perturbative two-loop
counterterm found by Goroff and Sagnotti [23] showed that the NGFP also persists
in this setting [48]: in contrast to the perturbative quantization procedure, the new
direction is irrelevant at the NGFP and does not introduce a free parameter.

Along a different path the function f̄k(R) may be replaced by a function of the
squared Ricci curvature f̄k(RμνRμν) or the Riemann tensor f̄k(Rμνρσ Rμνρσ ). A first
analysis [49] showed that polynomial expansions in these quantities also see three free
parameters, in agreement with the f (R)-analysis.

4 Matching Cosmological Observations

Following the analysis in [50], we now fix the three free parameters appearing in the
f (R) approximation of Asymptotic Safety. The key idea is that, for a given f (R)

action, the specific RG trajectory realized in nature can be identified by providing the
measured values of the couplings at given energy scales as initial conditions. We first
illustrate how this is done for the Einstein–Hilbert truncated action,where the observed
values of theNewton’s coupling and of the cosmological constant are sufficient to fully
determine a viableRG trajectory (also see [51] for earlierwork).We then show that also
the trajectory associated to the R2-truncated action can be fixed if one assumes that the
higher-curvature term is responsible for the accelerated expansion of the universe in
the inflationary epoch. Interestingly, the predicted runnings of the Newton’s coupling
and of the cosmological constant in this last case do not differ much from the ones
predicted by the Einstein–Hilbert truncation.

4.1 Newton’s Coupling and Cosmological Constant

Observational constraints on Newton’s coupling and the cosmological constant refer
to different scales as summarized in Table 1. Since at the scales where the observations
take place the dimensionless Newton’s coupling is well within the perturbative regime,
g � 1, we can use the approximated flow Eqs. (26) and (30) to extrapolate the RG
flow to an initial point (αk0 , gk0) that lies on a trajectory that satisfies the observed
data. Starting from this point, the β-functions (15) can be integrated numerically to
obtain the full trajectory.
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Table 1 Observational
constraints on the parameters of
the Einstein–Hilbert action
parameters with corresponding
energy scales (top two lines)

Energy scale (eV) RG constraint (eV−2)

k � klab = 10−5 Gk � G = 6.7 × 10−57

k � kHub = 10−33 Λk � Λ = 4 × 10−66

k � kinfl = 1022 B = −6.7 × 10−39

Imposing that the effective average action in the R2-approximation
gives rise to Starobinsky-inflation yields the additional constraint
shown in the bottom line. From [50]

The resulting integrated trajectory is shown in Fig. 4. We observe that below the
Planck scale kG , Newton’s coupling remains constant. Above this scale, the flow is
controlled by the NGFP andGk = k−2 g∗ decreases quadratically in k. The cosmolog-
ical constant exhibits the three scaling regimes discussed in connection with Eq. (30):
for k � kΛ the cosmological constant is constant and agrees with the observed value.
In the intermediate region kΛ � k � kG , Λk ∝ k4 while for k � kG the flow is gov-
erned by the NGFP entailing that Λk = k2λ∗ increases quadratically with k. Notably,
the increasing value of Λ above kΛ is compatible with current planetary and atomic
observational constraints [3]. It could however affect primordial perturbations and be
detectable in the cosmic microwave power spectrum.

4.2 Constraints on R2-Truncated Action from Early Universe Observations

When considering higher order curvature terms in the f (R) truncated action, obser-
vational constraints on the Newton’s coupling and the cosmological constant are
insufficient to determine the physical trajectory completely. This is because there
is one additional free parameter, given by the R2 coupling. The additional initial con-
dition can be fixed by assuming that this coupling is responsible for the initial era
of inflationary expansion of the universe. Constraints on inflation are set by observa-
tions on the cosmic microwave background (CMB), as recently done by the PLANCK
collaboration [52]. The reported value for Bk is [53,54]

M2
P Bk � −1 × 109, (39)

where Bk = k−2bk and k should be taken to be at the scale of inflation, which is
placed at kinfl = 1022 eV. Together with the observational constraints from Table 1,
this provides three constraints for anRG trajectory associated to the R2 truncated f (R)

action. In [50], we have constructed the RG flow corresponding to these constraints.
The flow of Bk is shown in Fig. 5. Remarkably, he behavior ofΛk andGk is identical to
the one found in the Einstein–Hilbert case, Fig. 4, up to minor numerical corrections.

4.3 Constraints on Higher-Order Truncations

The cosmological analysis can be extended to include higher powers of R. Viable
RG trajectories should now flow towards the NGFP in the UV, and yield an effective
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Fig. 4 RG trajectory satisfying cosmological observations. Observational constraints are imposed at the
laboratory scale klab and Hubble scale kHub, denoted by the solid gray lines. The RG flow dynamically
generates the scales kG and kΛ, denoted by the dashed gray lines

action compatible with observations at the scale of inflation. Since the Starobinsky
model fits observational data with extremely high precision, there is an upper bound on
the value of the dimensionful higher-order couplings. Whether the RG flow of f (R)-
gravity can accommodate these conditions requires a numerical integration of the beta
functions.

An interesting step in this direction has been taken in [56]. Motivated by the struc-
ture of the effective average action obtained from solving the generating equation
at the NGFP [27–30], the higher order terms appearing in the polynomial f (R)

123



986 Foundations of Physics (2019) 49:972–990

Fig. 5 Running of the R2-coupling Bk realizing Starobinsky inflation. The solid line denotes positive values
of B, whereas the dashed line indicates negative B. The change of sign to a negative value of Bk at the scale
of inflation is essential for producing the correct inflationary dynamics [55]

expansion have been resumed into a logarithm. The resulting refined Starobinsky
model corresponds to4

f̄kinfl(R) = R + B R2 (1 + A ln(R/μ2)) , (40)

where B and A are constants and μ an energy scale. For A = 0 this model reduces to
the Starobinsky-model discussed in Sect. 4.2. Increasing A increases both the scalar
spectral index ns and the tensor-to-scalar ratio r . Requiring consistency of ns with the
Planck data permits tensor-to-scalar ratios up to r ≈ 0.01 which allows to test this
type of models with the next generation of CMB experiments.

An important prerequisite for a successful generalization of the R2-scenario towards
the inclusion of higher-order curvature terms is the continued existence of the GFP,
responsible for a classical scaling regime. Depending on the precise implementation
of the gauge-fixing and regularization procedure this feature is not guaranteed auto-
matically (also see [41] for a related discussion). It is realized by the flow equation
obtained in the framework of geometric flows [60] which thus constitutes a feasible
starting point for such a investigation in the future.

5 Summary and Concluding Remarks

The asymptotic safety scenario [6–10] gives a fascinating perspective for obtaining a
quantum theory of the gravitational force valid up to arbitrarily short distance scales.
In this construction the gravitational dynamics at trans-Planckian scales is controlled

4 A cosmological analysis of similar models obtained from a renormalization group improvement of the
Einstein–Hilbert action has been [57,58], also see [59] for a review and further references.
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by a fixed point of the gravitational renormalization group flow (NGFP) corresponding
to an interacting theory. As a consequence, all dimensionless quantities stay finite and
physical processes are free from unphysical divergences at high energies. In addition
the NGFP equips the construction with significant predictive power: the condition
that an asymptotically safe theory flows into the NGFP at increasing energy fixes the
infinite number of gravitational couplings in terms of a few relevant parameters. The
latter must be taken from experimental input. At the present stage, it is conceivable
that the free parameters of the theory can be linked to the value of the cosmological
constant, Newton’s coupling, and one four-derivative coupling as, e.g., the coupling
encoding the strength of the R2-interaction. While the identification of the complete
set of free parameters is still ongoing, the observation that classical power counting
still provides a good guiding principle for the relevance of an interaction [39–41,49,61]
lends strong support to the general arguments [62] that this set will be finite. Loosely
speaking the interactive nature of the renormalization group fixed point gives rise
to quantum corrections to the relevance of a coupling (in particular switching the
marginal ones to either being relevant or irrelevant). At the same time, they are not
strong enough to topple the hierarchy inferred from the classical analysis.

As illustrated by Fig. 4 certain theories emanating from the NGFP undergo a
crossover to a “classical regime” characterized by the dimensionful couplings becom-
ing constant. The crossover scale between the fixed point and classical regime is set
by the Planck scale MPl. This scale is generated dynamically when the RG flow leaves
the scale-invariant regime associated with the NGFP. Similarly to ΛQCD it must be
fixed by experimental observations. Solutions of the flow equations indicate that the
observed value of the cosmological constant can be accommodated in the asymptotic
safety construction: Λobs may be taken as an experimental input fixing one of the free
parameters in the construction. While this viewpoint does not “explain” the tiny value
of Λobs in a “natural” way, it ensures that the classical part of the solution extends up
to cosmic scales.

An interesting facet of asymptotic safety is the observation that the gravitational
dynamics in the classical regime may actually consist of the Einstein–Hilbert action
supplemented by additional interactions either built from higher-order curvature terms
or non-local contributions. Owed to the smallness of the spacetime curvature, e.g., at
solar system scales, there are no stringent bounds on the corresponding couplings [14].
At the same time quantum gravity induced interactions may play an important role in
the very early universe or in explaining the accelerated expansion at late times without
resorting to a cosmological constant. Combining asymptotic safetywith the hypothesis
that the phase of inflation occurring in the very early universe is actually driven by a
modified gravitational dynamics leads to interesting cosmological predictions which
may be tested experimentally. For instance the R2 coupling may be fixed from cosmic
parameters extracted from the properties of fluctuations in the cosmic microwave
background.

Remarkably, albeit somewhat speculative, the gravitational renormalization group
flow may also exhibit a mechanism for generating small values of the cosmological
constant in a dynamical way. The cosmological constant naturally enters into the
graviton propagator. For positive values of Λ, this gives rise to an instability of the
propagator at low energy. It is conceivable that this instability may be cured by driving
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the cosmological constant to zero dynamically [63]. Alternatively, the long-range
nature of the gravitational interactions may lead to non-local terms in the effective
action which mimick the dynamics resulting from a cosmological constant [64,65].
First evidence that such a scenariomay indeed be realized has recently been provided in
[66] based on data [67,68] fromMonte Carlo simulations within the Causal Dynamical
Triangulation program [69]. This interplay between quantumgravity and cosmological
observations is predestined for new, exciting developments in the near future.
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