
Foundations of Physics (2019) 49:444–456
https://doi.org/10.1007/s10701-019-00257-z

Axioms for the Boltzmann Distribution

Adam Brandenburger1 · Kai Steverson2

Received: 13 September 2018 / Accepted: 11 April 2019 / Published online: 4 May 2019
© The Author(s) 2019

Abstract
A fundamental postulate of statistical mechanics is that all microstates in an isolated
system are equally probable. This postulate, which goes back to Boltzmann, has often
been criticized for not having a clear physical foundation. In this note, we provide a
derivation of the canonical (Boltzmann) distribution that avoids this postulate. In its
place, we impose two axioms with physical interpretations. The first axiom (thermal
equilibrium) ensures that, as our system of interest comes into contact with different
heat baths, the ranking of states of the system by probability is unchanged. Physically,
this axiom is a statement that in thermal equilibrium, population inversions do not
arise. The second axiom (energy exchange) requires that, for any heat bath and any
probability distribution on states, there is a universe consisting of a system and heat
bath that can achieve this distribution. Physically, this axiom is a statement that energy
flows between system and heat bath are unrestricted. We show that our two axioms
identify the Boltzmann distribution.

Keywords Boltzmann distribution · Equal-probability postulate · Thermodynamics ·
Axioms

1 Introduction

The postulates of statistical mechanics have been examined and debated ever since the
beginnings of the field in the nineteenth century. A central postulate in equilibrium
thermodynamics, put in place by Boltzmann, is that there is equal a priori probability
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that an isolated systemwill be found in any one of its microstates which are compatible
with the overall constraints placed on the system. In the words of Planck [1], “all
microscopic states are equally probable in dynamics”.

The equal-probability assumption has been rationalized in several ways. One can
simply appeal to the Laplacian stance of insufficient reason. The observer’s knowledge
of the system does not yield a distinction among the microstates, so no distinction can
legitimately be introduced via their probabilities of occurrence [2]. Jaynes [3] replaced
this assumption with a maximum-entropy principle (a principle of “maximum non-
commitment with respect to missing information”) in order to derive the canonical
(Boltzmann) distribution in the microcanonical ensemble. Goldstein et al. [4] proved
that, for quantum systems, the canonical distribution arises for almost all wave func-
tions of the universe (system plus heat bath). Popescu et al. [5] showed that, even
without energy constraints, a “general canonical principle” can be established for
quantum systems, under which a system will almost always behave as if the universe
is in the equal-probability state.

In this note, we take a different route (for classical systems). We replace the
equal-probability postulate with two physically interpretable axioms, which we show
characterize the canonical (Boltzmann) distribution.

2 Axioms

In the usual (textbook) derivation, one fixes a heat bath B at a temperature T and a
system Swith possible states si , for i = 1, 2, . . . , n. The system S specifies an energy
level Ei for each state si . (See Fig. 1.) The probability assigned to state si depends on
the system S and the heat bath B and can therefore be written as pS(si ,B). One then
appeals to the equal-probability postulate to write the ratios of probabilities of states
as

pS(si ;B)

pS(s j ;B)
= ΩB(Etotal − Ei )

ΩB(Etotal − E j )
, (1)

where Etotal is the total energy of the composite S + B, so that ΩB(Etotal − Ei ) is
then the number of microstates of B. A Taylor expansion of the entropy SB(Etotal −
Ei ) = k lnΩB of B (where k is the Boltzmann constant), and use of the formula
∂SB/∂Etotal = 1/T , yields the Boltmann distribution

pS(si ;B) = 1

Z
e− Ei

kT , (2)

where Z = Σ j e−E j /kT is the partition function (e.g., Mandl [2], pp. 52–56).
Our derivation will also begin with ratios of probabilities, as in Eq. (1), but will

not assume the equal-probability postulate. Our axioms are stated over a family
{S,S′,S′′, . . .} of systems and a family {B,B′,B′′, . . .} of heat baths. All systems
are defined on the same fixed underlying finite set of states {s1, s2, . . . , sn}.
Axiom 1 (Thermal Equilibrium) Associated with each heat bath B there is a strictly
increasing function GB : (0,∞) → (0,∞) such that for any system S and pair of
states si and s j , the ratio equation
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Fig. 1 System plus heat bath

GB

(
pS(si ;B)

pS(s j ;B)

)
= GB′

(
pS(si ;B′)
pS(s j ;B′)

)
(3)

is satisfied.

Our first axiom ensures that the probabilistic ranking of states of the system does not
differ with changes in the heat bath. This is physically correct, sincewe are considering
systems in equilibrium and, therefore, population inversions are not possible. If state
si is more likely than another state s j , this is because si is lower energy than s j . In
thermal equilibrium, the same probabilistic ranking of states will holdwhether the heat
bath is B or B′. Lemma 1 below states this formally. The axiom does allow the actual
probability of a state of the system to depend on the particular heat bath B to which
the system is attached. This is the role of the GB-functions. Again, this is physically
correct.

Lemma 1 If pS(si ;B) ≥ pS(s j ;B), then pS(si ;B′) ≥ pS(s j ;B′).

Proof We can write

pS(si ;B)

pS(s j ;B)
≥ pS(s j ;B)

pS(si ;B)
,

so that, since GB is increasing,

GB

(
pS(si ;B)

pS(s j ;B)

)
≥ GB

(
pS(s j ;B)

pS(si ;B)

)
.

But, using Eq. (3),

GB

(
pS(si ;B)

pS(s j ;B)

)
= GB′

(
pS(si ;B′)
pS(s j ;B′)

)
and GB

(
pS(s j ;B)

pS(si ;B)

)
= GB′

(
pS(s j ;B′)
pS(si ;B′)

)
,
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and, therefore,

GB′
(
pS(si ;B′)
pS(s j ;B′)

)
≥ GB′

(
pS(s j ;B′)
pS(si ;B′)

)
,

from which, since GB′ is increasing,

pS(si ;B′)
pS(s j ;B′)

≥ pS(s j ;B′)
pS(si ;B′)

,

or pS(si ;B′) ≥ pS(s j ;B′), as required. ��
Our second axiom is designed to capture the fact that a heat bath B is very large

compared with a system S, so that any energy flows are possible between the two at
the given temperature of the bath. We say this formally by fixing a heat bath B and a
probability distribution on the states {s1, s2, . . . , sn}. We then say that we can attach
a system S to B so that the desired probabilities are obtained. Physically, we know we
can do this. Indeed, Eq. (2) for the Boltzmann distribution tells us there are energy
levels Ei , for i = 1, 2, . . . , n, that yield the probabilities in question. (If λi is the
probability of state i , then we set Ei = −kT ln λi .) So, we attach a system S with
these energy levels to the heat bath B. Since B is very large compared with S, we
can always do this at the prevailing temperature T . Here is the formal statement. (We
assume that λ has full support, i.e, that λi > 0 for all i . This guarantees that all ratios
of probabilities are well-defined.)

Axiom 2 (Energy Exchange) For any heat bath B and any full-support probability
distribution λ = (λ1, λ2, . . . , λn) on {s1, s2, . . . , sn}, there is a system S such that
pS(·;B) = λ.

3 Result

We can now state our result, which is an axiomatic derivation of the Boltzmann dis-
tribution.

Theorem 1 Suppose Axioms 1 and 2 are satisfied. Then there are functions T :
{B,B′,B′′, . . .} → (0,∞) and E : {s1, s2, . . . , sn} × {S,S′,S′′, . . .} → (0,∞) such
that for each heat bath B and system S, and for each i = 1, 2, . . . , n,

pS(si ;B) = 1

Z(B,S)
e− E(si ,S)

T (B) , (4)

where Z(B,S) = Σ j e−E(s j ,S)/T (B).

Equation (4) is the Boltzmann distribution, with temperature T (·) (as a function of
the heat bath) and energy levels E(s1, ·), E(s2, ·), . . . , E(sn, ·) (as a function of the
system). (Weget k = 1 since temperature and energy are notmeasured in physical units
here). Notice that only positive temperatures are possible under our treatment. This
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makes sense, since we have assumed thermal equilibrium, and negative temperatures
can arise only in systems which are (temporarily) out of equilibrium (e.g., Braun
et al. [6]). Also, as expected in an abstract treatment, the fundamental quantity that
emerges is E(·, ·)/T (·), namely, entropy. We can be more precise about this last point
by establishing the uniqueness properties of the functions T and E that represent a
given heat bath and system.

Theorem 2 Assume that, for each heat bath B, it is not the case that all states have
equal probability. Suppose a system S satisfies Eq. (4) with functions E and T . Then
S satisfies Eq. (4) with functions Ẽ and T̃ if and only if there are real numbers α > 0
and β such that

E(si ,S) = α Ẽ(si ,S) + β for all states si ,

T (B) = αT̃ (B) for all heat baths B.

(Physically speaking, the equal-probability case ruled out is that of infinite temper-
ature.) Notice that the scaling factor for T is the same as the multiplicative factor in
the affine transformation of E . It follows that, while the ratios E (·, ·) /T (·) are not
unique, the differences between these ratios, i.e., the entropy differences

E(si ,S) − E(s j ,S)

T (B)

between states, are unique. Again, we expect this on physical grounds.

4 Summary

We have shown that two physically interpretable axioms can replace the traditional
equal-probability postulate of equilibrium thermodynamics. The first axiom is an
abstraction of the notion that the probabilistic ranking of states is the same across
systems in equilibrium. The second axiom is an abstraction of the notion that all
energy flows are possible between the system in question and a heat bath to which it
is attached, at the given temperature of the bath. Together, these two axioms charac-
terize the Boltzmann distribution. That is, we establish that the axioms identify the
Boltzmann distribution—and the converse that the Boltzmann distribution satisfies the
axioms.

Two extensions of this work would be interesting. The first extension would be
to quantum systems, to see if our characterization goes through and to compare the
resulting analysis with those of Goldstein et al. [4] and Popescu et al. [5]. A second
extension would be to continuous probability distributions, where new mathematical
issues may arise.
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Appendix

A Proof of Theorem 1

We choose heat bath B as a reference point. Since GB is strictly increasing, it is
invertible. Therefore, for any (other) heat bath B

′, we can define a function HB′ :
(0,∞) → (0,∞) by

HB′ (t) = G−1
B

(GB′(t)).

By Axiom 1, we have that for any system S and pair of states r , s,

GB′
(
pS(r;B′)
pS(s;B′)

)
= GB

(
pS(r;B)

pS(s;B)

)
,

so that

HB′
(
pS(r;B′)
pS(s;B′)

)
= pS(r;B)

pS(s;B)
. (5)

It follows that for any triplet of states si , s j , sk ,

HB′
(
pS(si ;B′)
pS(s j ;B′)

)
× HB′

(
pS(s j ;B′)
pS(sk;B′)

)
= pS(si ;B)

pS(s j ;B)
× pS(s j ;B)

pS(sk;B)
= pS(si ;B)

pS(sk;B)
.

We can also write

HB′
(
pS(si ;B′)
pS(sk;B′)

)
= pS(si ;B)

pS(sk;B)
.

Putting these two equations together yields

HB′
(
pS(si ;B′)
pS(s j ;B′)

)
× HB′

(
pS(s j ;B′)
pS(sk;B′)

)
= HB′

(
pS(si ;B′)
pS(sk;B′)

)
. (6)

We want to turn Eq. (6) into the Cauchy functional equation. To do so, we need an
intermediate result. (This result assumes that there are at least three states. The case
of two states is treated later.)

Lemma 2 For any t, u ∈ (0,∞), we can choose states si , s j , sk and a full-support
probability distribution λ on {s1, s2, . . . , sn} so that

λ(si )

λ(s j )
= t and

λ(s j )

λ(sk)
= u. (7)
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Proof Choose three distinct states si , s j , sk , and set

λ(si ) = tuv

1 + u + tu
,

λ(s j ) = uv

1 + u + tu
,

λ(sk) = v

1 + u + tu
,

where v = 1 if n = 3 (there are three states in total) and v = 1
2 if n > 3. Also, if

n > 3, set

λ (s) = 1

2(n − 3)
,

for all s 	= si , s j , sk . It is easy to check that λ has full support and that Equation (7) is
satisfied. Also, if n = 3, then

∑
s

λ(s) = tuv + uv + v

1 + u + tu
= v = 1,

and if n > 3,

∑
s

λ(s) =
∑

s 	=si ,s j ,sk

1

2(n − 3)
+ tuv + uv + v

1 + u + tu
= 1

2
+ v = 1,

so that λ is a well-defined probability distribution on the states. ��
By Axioms 1 and 2, there is a system S so that Eq. (3) is satisfied and pS(·;B′) = λ.
But then pS(·;B′) also satisfies Eq. (6), and, therefore, using Eq. (7), we obtain

HB′(t) × HB′(u) = HB′(tu), (8)

for any t, u ∈ (0,∞).Moreover, the functionsGB andGB′ are increasing and therefore
have at most a countable number of discontinuities, fromwhich it follows that HB′ can
have at most a countable number of discontinuities. This allows us to apply a version
of the Cauchy functional theorem (see Appendix C) to Eq. (8), to conclude that there
exists a function T : {B,B′,B′′, . . .} → (0,∞) such that

HB′(t) = t T (B′). (9)

Note that T (B) = 1 (this is why we called B a reference point). Also, from Eq. (9)
we get

GB′(t) = GB(t T (B′)).
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Since GB′ and GB are both strictly increasing, it follows that T (B′) > 0 for all heat
baths B′. Next, using Eqs. (9) in (5), we find

pS(r;B′)
pS(s;B′)

=
(
pS(r;B)

pS(s;B)

) 1
T (B′)

.

Summing over all states r yields

1

pS(s;B′)
=

∑
r

(
pS(r;B)

pS(s;B)

) 1
T (B′)

,

which we can invert to get

pS(s;B′) = pS(s;B)
1

T (B′)
∑

r pS(r;B)
1

T (B′)
. (10)

Finally, tomakeEq. (10) into theBoltzmanndistribution, define E : {s1, s2, . . . , sn}×
{S,S′,S′′, . . .} → (0,∞) by E(r ,S) = − ln pS(r;B) for each state r .

This completes the proof of Theorem 1, except for the case of two states. (The case
of one state is trivial.) Here, we define the function T directly, by requiring it to give
the solution to each equation

(
pS(s1;B′)
pS(s2;B′)

)T (B′)
= pS(s1;B)

pS(s2;B)
,

aswe vary the heat bathB′.We can argue similarly to Lemma 1 to see that pS(s1;B′) ≥
pS(s2;B′) if and only if pS(s1;B) ≥ pS(s2;B). It follows that we will get T (B′) > 0
for all B′, as required.

We should also establish that our axioms identify the Boltzmann distribution and
not some subfamily of this distribution. To show this, start by supposing that Eq. (4)
holds. Define GB′ : (0,∞) → (0,∞) by GB′ (t) = t T (B′). Then for any system S

and pair of states r , s, we can write

GB′
(
pS(r;B′)
pS(s;B′)

)
= GB′

(
e

E(s,S)−E(r ,S)

T (B′)
)

= eE(s,S)−E(r ,S).

Since the right-hand side is independent of B′, we see that Eq. (3) is satisfied, which
establishes Axiom 1. For Axiom 2, fix a heat bath B

′ and a full-support probability
distribution λ on the states. Let T (B′) be arbitrary and set E(si ,S) = −kT (B′) ln λi
for each i . Then pS(·;B′) = λ, as required.
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B Proof of Theorem 2

Suppose a system S satisfies Eq. (4) for two pairs of functions E, T and Ẽ, T̃ . Equation
(4) implies that for any states s1, s2, s,

E(s2,S) − E(s1,S)

E(s2,S) − E(s,S)
=

(
ln

pS(s1;B)

pS(s2;B)

)(
ln

pS(s;B)

pS(s2;B)

)−1

= Ẽ(s2,S) − Ẽ(s1,S)

Ẽ(s2,S) − Ẽ(s,S)
.

Rearranging gives

(E(s2,S) − E(s1,S)) × (Ẽ(s2,S) − Ẽ(s,S))

= (E(s2,S) − E(s,S)) × (Ẽ(s2,S) − Ẽ(s1,S)),

from which,

E(s,S) = E(s2,S) − E(s2,S) − E(s1,S)

Ẽ(s2,S) − Ẽ(s1,S)
× (Ẽ(s2,S) − Ẽ(s,S)),

and, therefore,

E(s,S) = E(s2,S) − E(s1,S)

Ẽ(s2,S) − Ẽ(s1,S)
× Ẽ(s,S) + E(s2,S)

− E(s2,S) − E(s1,S)

Ẽ(s2,S) − Ẽ(s1,S)
× Ẽ(s2,S).

Now set

α = E(s2,S) − E(s1,S)

Ẽ(s2,S) − Ẽ(s1,S)
and β = E(s2,S) − E(s2,S) − E(s1,S)

Ẽ(s2,S) − Ẽ(s1,S)
× Ẽ(s2,S).

By assumption, there are states s1, s2 such that pS(s1;B) > pS(s2;B). (There is no
loss of generality in labeling these two states this way.) It follows that α > 0.

Next observe that, for any heat bath B
′,

ln

(
pS(s2;B′)
pS(s1;B′)

)
= E(s1,S) − E(s2,S)

T (B′)
= Ẽ(s1,S) − Ẽ(s2,S)

T̃ (B′)
,

from which, using the relationship between E and Ẽ , we get

α Ẽ(s1,S) − α Ẽ(s2,S)

T (B′)
= Ẽ(s1,S) − Ẽ(s2,S)

T̃ (B′)
.

By assumption, pS(s1;B) 	= pS(s2;B). (Again, there is no loss of generality in using
the state labels s1 and s2.) It follows that Ẽ(s1,S) 	= Ẽ(s2,S) and, therefore, T (B′) =
αT̃ (B′), as claimed. This completes the proof of the forward direction of Theorem 2.

123



Foundations of Physics (2019) 49:444–456 453

For the reverse direction, suppose that a system S satisfies Eq. (4) for the functions
E and T , and let α > 0 and β be real numbers. Equation (4) then yields, for any heat
bath B

′,

pS(s;B′) = e
− E(s,S)

T (B′)

∑
j e

− E(s,S)

T (B′)
= e

− αE(s,S)

αT (B′)

∑
j e

− αE(s,S)

αT (B′)

= e
− β

αT (B′) e
− αE(s,S)

αT (B′)

e
− β

αT (B′) ∑
j e

− αE(s,S)

αT (B′)
= e

− αE(s,S)+β

αT (B′)

∑
j e

− αE(s,S)+β

αT (B′)
,

from which we see that the system S satisfies Eq. (4) for the functions αE + β and
αT , as we needed to show.

To prove that entropy differences are unique, as asserted after the statement of
Theorem 2, first suppose that a system S satisfies Eq. (4) for the functions E, T
and Ẽ, T̃ . Theorem 2 tells us that there are real numbers α > 0 and β such that
E(·,S) = α Ẽ(·,S) + β and T (·) = αT̃ (·). It follows that for any pair of states si , s j ,
and any heat bath B

′,

E(si ,S)

T (B′)
− E(s j ,S)

T (B′)
= α Ẽ(si ,S) + β

αT̃ (B′)
− α Ẽ(s j ,S) + β

αT̃ (B′)
= Ẽ(si ,S)

T̃ (B′)
− Ẽ(s j ,S)

T̃ (B′)
,

as claimed. Conversely, suppose a system S satisfies Eq. (4) for the functions E, T ,
and there exist functions Ẽ, T̃ such that

Ẽ(si ,S)

T̃ (B′)
− Ẽ(s j ,S)

T̃ (B′)
= E(si ,S)

T (B′)
− E(s j ,S)

T (B′)
.

This says that for each heat bath B′, there is a number γB′ such that

Ẽ(si ,S)

T̃ (B′)
= E(si ,S)

T (B′)
+ γB′ .

It follows that

e
− Ẽ(si ,S)

T̃ (B′)

∑
j e

− Ẽ(s j ,S)

T̃ (B′)
= e

− E(si ,S)

T (B′) −γB′

∑
j e

− E(s j ,S)

T (B′) −γB′

= e−γB′ e
− E(si ,S)

T (B′)

e−γB′ ∑
j e

− E(s j ,S)

T (B′)

= e
− E(si ,S)

T (B′)

∑
j e

− E(s j ,S)

T (B′)
= pS(si ;B′),

123



454 Foundations of Physics (2019) 49:444–456

from which we see that the system S satisfies Equation (4) for the functions Ẽ, T̃ .

C Cauchy Functional Theorem

We provide a self-contained statement and proof of the version of the Cauchy func-
tional theorem employed in Appendix A. The proof can also be found in standard
textbooks; see, e.g., Theorem 3 in Aczel [7].

Theorem 3 Let H : (0,∞) → (0,∞) be a function with the property that H (xy) =
H (x) × H (y) for all x, y ∈ (0,∞). Moreover, suppose H is continuous at least at
a single point. Then there exists α ∈ (0,∞) such that for all x ∈ (0,∞),

H (x) = xα.

Lemma 3 For all x ∈ (0,∞) and any rational number q, H (xq) = H (x)q .

Proof Note that H (1) = H (1) × H (1) which implies H (1) = 1. Moreover for any
k ∈ Z with k > 0 we have

H
(
xk

)
= H (x)k .

To extend this to k ∈ Z with k < 0 note that

H (1) = H

(
x × 1

x

)
= H (x) × H

(
1

x

)
⇒ H (x) =

(
H

(
1

x

))−1

.

Now let x ∈ (0,∞) and k,m ∈ Z. Set y = x1/m . Then

H
(
ym

)1/m = H (y) ⇒ H (x)1/m = H
(
x1/m

)
.

Hence we have

H
(
xk/m

)
= H

(
x1/m

)k = H (x)k/m ,

as desired. ��
Let S ⊆ (0,∞) be the set of all the rational powers of 2, that is x ∈ S if and only

if there exists q ∈ Q such that x = 2q .

Lemma 4 S is dense in (0,∞).

Proof Let r , s ∈ (0,∞) with r < s. We want to prove there is a rational number q
such that r < 2q < s, which is equivalent to proving there is a rational q such that
r2q < 1 < s2q .
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Set α = log2(1/r), so that

r2α = 1 < s2α.

Using the density of the rationals we can construct a rational sequence qn → α

such that qn < α for all n. Since the exponential function is continuous and strictly
increasing, it follows that for large enough N we get

r2qN < 1 < s2qN ,

as desired. ��
Now let x ∈ S, so that x = 2q for some rational number q. By Lemma 3 we have

H (x) = H (2)q .

By definition of x , we know that for some k,m ∈ Z, q = k/m. Therefore, k
m =

log2 x = logH(2) x
logH(2) 2

. It follows that

H (x) = H (2)logH(2)(x)/ logH(2)(2) = x1/ logH(2)(2).

Setting α = 1/ logH(2) (2), we have proved H (x) = xα for all x ∈ S.
Now suppose for contradiction there exists z ∈ (0,∞) with H (z) 	= zα . Fix any

x, y ∈ S. We will show for any ε > 0 there exists a point
(
x ′, y′) ∈ (0,∞) × (0,∞)

with H
(
x ′) = y′, and

(
x ′, y′) has Euclidean distance less than ε from (x, y). Hence

for any x, y ∈ S, we can construct a sequence on the graph of H that approaches
(x, y). Since S is dense in (0,∞), we conclude that H is nowhere continuous on
(0,∞), which gives our contradiction.

To continue, define δ = H (z) /zα , from which δ > 0, δ 	= 1. Define β ∈ R to
solve xα = y/δβ . Such a β exists because y and xα are both non-negative. Now, for
any z′ ∈ S and b ∈ R, define x ′ = x

(
z/z′

)b. Using Lemma 3 we get

H
(
x ′) = H

(
xzbz′−b

)
= H (x) × H

(
zb

)
× H

(
z′−b

)
= H (x) ×

(
H (z)

H (z′)

)b

.

Given the definition of δ, and using x, z′ ∈ S, we have

H
(
x ′) = xαδb

(
z

z′

)αb

.

Applying the definition of β yields

H
(
x ′) = yδb

δβ

(
z

z′

)αb

= y

(
z

z′

)αb

δb−β.
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This equation holds for any choice of z′, b ∈ S. Now set y′ = H
(
x ′). By choosing b

very close to β and z′ very close to z, we can make H
(
x ′) arbitrarily close to y and

x ′ arbitrarily close to x , as desired.
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