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Abstract

A well known logical loophole for Bell’s theorem is that it relies on setting indepen-
dence: the assumption that the state of a system is independent of the settings of a
measurement apparatus probing the system. In this paper the implications of rejecting
this assumption are studied from an operationalist perspective. To this end a gener-
alization of the ontic models framework is proposed that allows setting dependence.
It is shown that within this framework Bell’s theorem reduces to the conclusion that
no-signaling requires randomness at the epistemic level even if the underlying ontol-
ogy is taken to be deterministic. The ideas underlying the framework are further used
to defend setting dependence against the charges of being incompatible with free will
and scientific methodology. The paper ends however with the sketch of a new problem
for setting dependence: a necessary gap between the ontic and the epistemic level that
may prevent the formulation of a successful setting dependent theory.

Keywords Setting independence - Bell’s theorem - Superdeterminism -
Retro-causality - Free will

1 Introduction

You know, one of the ways of understanding this business is to say that the world
is super-deterministic. That not only is inanimate nature deterministic, but we,
the experimenters who imagine we can choose to do one experiment rather than
another, are also determined. If so, the difficulty which this experimental result
creates disappears.—Bell in [8].

Bell, here, is talking about Aspect’s experimental violation of the CHSH inequality.
Somewhat naively one may think that he is making a tempting case for superdetermin-
ism. If experimenters are ultimately made of the same stuff as inanimate objects, then
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the same laws should apply to them. If these laws are deterministic, then superdeter-
minism must be true. So surely determinism should be the way to explain the violation
of the CHSH inequality rather than non-locality or something more complicated.

The case is not so simple of course, and the option of superdeterminism is widely
rejected. More generally, what one usually wishes to maintain is setting independence:
the idea that the state of a system prior to a measurement is independent of the settings
of the measurement apparatus. Superdeterminism is the rejection of this assumption
combined with the assumption that the laws of a future theory replacing quantum
mechanics should be local and deterministic. A related position is the retro-causal
approach. This is the rejection of setting independence combined with the assumption
that the causal explanation of CHSH inequality violations should be local at the expense
that measurement settings retro-causally influence system states.

Although the two views are often presented as rival candidates,! they are mutually
exclusive only under the assumption that (super)determinism prohibits retro-causal
explanations.? In this paper the focus is on their common ground: setting dependence
(with the exception of Sect. 4.1, which pertains to superdeterminism). Necessarily
then, the type of dependence considered is not causal dependence, but more akin to
probabilistic dependence (full technical details in Sect. 3.2). Consequently, I will have
little to say about possible explanations for setting dependence. But the upside is that
the presented analysis pertains to both superdeterministic and retro-causal approaches.
The focus is on how setting dependence, once considered as a viable option, may
change the way experimental predictions are to be extracted from a theory: how is the
end user of the theory to cope with setting dependence? An operationalist perspective
so to speak.

The possibility of setting dependence has been criticized for several reasons, among
which are the incompatibility with free will, incompatibility with scientific method
(necessitating a vicious skeptic stance towards science), being conspiratorial, or simply
being insane. As argued for example by Lewis [25], these criticisms do not necessarily
hold up. But the situation is far from clear cut. One of the reasons for this, is that it is
quite difficult to get a handle on what exactly is entailed by setting dependence. Both
on its own as well as in combination with quantum mechanical constraints.

The purpose of this paper is to make some headway towards understanding setting
dependence and the type of explanations of quantum mechanics it does and doesn’t
allow. To this end I mimic the approach of the ontic models framework [15,36], which
has been successful for studying topics in the foundations of quantum mechanics such
as contextuality, macroscopic realism and the reality of the quantum state. Within
this approach quantum mechanics is viewed as an operational theory and one studies
constraints on ontic models that are able to reproduce a fragment of the experimental
predictions of quantum mechanics. However, the framework presupposes setting inde-
pendence. Therefore a generalized framework is proposed, which will then be used to
study the impact of setting dependence as well as to evaluate some of the objections
against setting dependence.

1 Also by proponents of both sides [29,41].

2 A candidate in the retro-causal superdeterministic overlap is the two-time interpretation of the two-state
vector formalism, if it holds up [1,2,31]. See also [4] for a comparison of deterministic and indeterministic
retro-causal models.
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The paper is outlined as follows. In Sect. 2 the original ontic model framework
is rehearsed as well as a derivation of the CHSH inequality within this framework.
In Sect. 3 setting dependent ontic models are introduced and the derivation of the
CHSH inequality is reconsidered. It is shown that within the framework the inequal-
ity can still be derived from the assumptions of no-signaling and something I call
epistemic determinism. Thus showing that, even if one allows setting dependence,
one of these two assumptions has to fail. In Sect. 4 I use the insight from the new
framework to defend setting dependence against two common objections: incompati-
bility with free will and incompatibility with scientific methodology. It is concluded in
Sect. 5 that setting dependence is an option worthy of further formal and philosophical
investigations. To add direction to this suggestion, I sketch a new possible problem
for setting dependence: the problem of incorporating knowledge of the ontic state of a
system and how it evolves into constraints on the epistemic description of the system.

2 Ontic Models and the CHSH Inequality
2.1 Formalism

To describe experiments in an operational, theory-independent way, I make use of
Prepare-Measure (PM) models.> A PM model is a pair (P, M) of two sets. Elements
of P represent possible preparations of the system and provide an operational state
description. The elements of M represent possible measurements. Specifically, with
every measurement M € M is associated a measurable space (§2y7, X'37). Here 2
is the set of possible outcomes for the measurement M and X, is a o-algebra of
subsets of £2); corresponding to measurement events. There further is assumed to be
a rule which assigns to every P € P and M € M a probability measure P(. |M, P)
over (£2p7, Xpr). Thus P (E|M, P) denotes the probability of the measurement event
E € X upon a measurement M after the system has been prepared according to P.

To study a particular type of explanation for some feature of a PM model, one can
look at ontic models for the PM model. An ontic model consists of a measurable space
(A, X) (where A is the set of ontic states) and a pair (/1, &) which serves as the
counterpart for the pair (P, M) in the following way:

— IT is a set of probability measures on (A, X') such that for every P € P thereis a
non-empty subset [1p C IT of probability measures corresponding to P: whenever
the system is prepared according to P, an ontic state is selected according to some
probability measure up € I1p.

— Z is a set of Markov kernels* such that for every measurement M € M there is a
non-empty subset &y C &. Every &y € &) is a Markov kernel from (A, X) to

3 See also [22, §8]. For the sake of simplicity, we do not consider transformations in this paper. I will return
to this simplification in Sect. 5.

4 A Markov kernel y from one measurable space (£21, X1) to another (§27, X») is the measure-theoretic
generalization of a transition probability. Forevery w; € £21 and Ay € X5 y (A |wy) denotes the probability
of “ending up” in the set Ay when “starting of” in the state w1 . For fixed w1 y (.|w) is a probability measure
over (£27, X») and for fixed Ay y(Aj3] .) is a measurable function from 2] to the unit interval.
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(82pm, Xy). Forevery A € A and E € X the probability that a measurement of
M yields a result in E when the state is A is expressed as &y (E|)) .

Elements of = are called response functions as they encode how the system responds
to measurement operations. Elements of IT are called epistemic states as they may be
taken to encode ones information concerning the ontic state of the system. It is further
allowed that I7p contains multiple distinct epistemic states i p, /L},, ... and that 5y
contains multiple distinct response functions £y, £, . . . (these allowances go by the
names of preparation contextuality and measurement contextuality, see also [36]). On
average the probabilities at the operational level should be reproduced. That is, for
every P € Pand up € I1p and forevery M € M and &y € &y

/gM(EM)dMP()\) =P(EIM,P) VE € Xy. ey

2.2 Bipartite Systems

To consider locality constraints for ontic models, one has to consider systems that
consist of at least two spatially separated subsystems. Famous in this framework is the
condition of preparation independence as used in the PBR theorem [30]. This concerns
two spatially separated systems that are each being prepared and then brought together.
Here we are considering the more traditional EPRB scenario in which two systems are
jointly prepared and then being spatially separated, one being send to Alice (system A),
and one to Bob (system B). This separation should of course already be recognizable
on the operational level. Accordingly, the set of measurements is divided into three
subsets:

M =MAUMBUMj0im. 2)

Here M 4 denotes the set of measurements Alice can perform, Mg those Bob can
perform, and Mjginc are joint (non-local) measurements. This final set can be used
to capture non-local effects of acts of measurements. In particular, I assume that for
every My € My and Mp € Mp there exists an Map € Mijoin; that captures the
scenario in which Alice performs M4 and Bob performs Mpg. This emphasizes the
idea that even though for Bob M is the same regardless if Alice performs M4 or M 4/,
there can be non-local effects due to which the distinction between Mg and M4/ p
can have distinct effects for Bob’s system. In addition, it is required that

‘QMAB ZQMA X.QMB, XMap = XMy @ Xy 3)

For an ontic model for a bipartite system the same separation applies:

g = EA U EB ) Ejoint- (4)

Furthermore, for every My € M4 and Mp € Mp and every §4 € Sy, and & €
Em, there is a unique 45 € &y, to denote the operational procedure where Alice
performs the procedure £4 and Bob performs the procedure £g. The definitions of
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parameter independence and outcome independence can now be formulated in this
framework.

Parameter Independence For all measurements My € My, Mp € Mp and
response functions £4 € Sy, Ep € Epy

Ea (Ea X 2uy|A) = E4(EsIN) YE4 € Zyy VA€ A,

(5)

Eap (2m, x Eg|A) =&p (EglA) VEp € Ty, VA € A.
Outcome Independence For all measurements My € My, Mg € Mp and
response functions §4 € Ey,, & € Epy

Ea (Ea x Epl}) =&aB (Ea X 2uy|1) Ean (2m, % Eg|A) (6)

for all events E4 € Xy, , Ep € Xy, and every ontic state A € A.

When taken together, these conditions imply Bell locality, i.e., for all measurements
Mj € My, Mp € Mp and response functions 4 € Ep,, Ep € Epy

Eap (Ea X EglA) = &4 (EAlM) Ep (EBIA) @)

forall events E4 € Xy, , Ep € Xy, and ontic states A € A.

2.3 Deriving the CHSH Inequality

It is instructive to give a derivation of a familiar result within the ontic models frame-
work: the CHSH inequality. It will be helpful for understanding the setting dependent
ontic models of Sect. 3. Especially since the proof of Theorem 1 in Sect. 3 is basically
a derivation of the CHSH inequality within the new framework.

Consider the standard setup with two possible +-1-valued measurements for Alice
(M4, and M 4,) and two possible £1-valued measurements for Bob (Mp, and Mp,).
Throughout the analysis the procedures for Alice and Bob for each possible measure-
ment are kept fixed, i.e., the response functions £4,, 4,, £p, . &B, are fixed.

For each of the four possible combinations of settings, § 4, g; (.|4) is just a probability
distribution over the set of four possible outcome combinations. The action for any A
for each of the considered response functions can be neatly summarized with a table
as in Fig. la. In this table the values satisfy 0 < p;; < 1and ), p;; = 1 for each j.
Ejf denotes the event where Alice obtains the outcome *1 and similarly for £ ;F. The
pij denote the corresponding probabilities. For example:

P32 =&, B, (=1, 1)|A) and pa3 = &4,5,((1, 1)[A). ()

Outcome independence is a constraint that applies to each of the four columns sep-
arately. Given any pair of measurements, the distribution over the possible outcomes
should be a product measure. Concretely, it means that the table from Fig. 1a can be
rewritten to the one in Fig. 1b where piA + in = piB + qu = 1foreveryi.
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EAq EAqy £, €4,
[ — | — r 1 J !
p11 P12 P13 P14 | —— p‘fqlB pé“qQB pé‘lqe? pf(If I
+ +
P21 D22 P23 P24 pfplB p‘QAPQB p?P? prf
+ +
P31 | P32 | P33 | P3a ai'p? | as'p% | ag'p¥ | af'p?
E, { Ey {
pa | a2 | pas | paa |—— atq? | ¢g'af | ag'ef |aiaf | ——
| IS | IS
‘ §B, ‘532 ‘ §B, ‘632
(a) (b)

Fig. 1 Probability assignments of response functions for a fixed ontic state. In general it takes the form as
in (a). If outcome independence is satisfied it takes the form as in (b)

Parameter independence further demands that
pit=pi. p3=pi. p7 =p3. Pl =05 ©)

Under these circumstances, the four probability distributions in Fig. 1b can be written
as marginals coming from a single probability distribution over definite value attri-
butions to all four possible measurements. By Fine’s theorem, any such probability
distribution satisfies the CHSH inequality>

P[A; = Bi] = P[A| = B2]+ P[A2 = Bi] + P[A2 = Ba]. (10)

Since quantum mechanics is able to violate this inequality, no ontic model that
satisfies parameter independence and outcome independence can reproduce the pre-
dictions of quantum mechanics. One of the two assumptions has to be rejected, or the
ontic models framework has to be rejected, which can be done by rejecting setting
independence. In the next section we will see what remains of this theorem if this final
option is chosen.

3 Setting Dependent Ontic Models
3.1 Incorporating Setting Dependence

Before delving into the details, I start with some considerations that motivate the
particular choices made in the definition of setting dependent ontic models. To this

5 More generally, Fine’s theorem states that probability distributions of from Fig. 1a have an underlying joint
distribution if and only if they satisfy all eight CHSH inequalities [10,11]. The first other three inequalities
are obtained by switching the probability on the left-hand side with any of the probabilities on the right-hand
side. The other four are obtained by replacing all the equality signs with unequality signs.
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AEAB

Ao| =1 | =1 | =1

Al =1 =1 1
Ao| =1 1 | =1

Ay =1 1 | 1

Ayl 1| =1 ] =1 A Ay
As| 1 | -1 1 o Aens| 1,1 =1,1
Ag| 1| 1| =1 Ao Aene| L-1|-11

Azl 1|1 |1 Aeen| 1,1 =1,1

(a) (b) (c)

Fig. 2 Possible state spaces for Specker’s parable. textbfa is the simple state space encoding all possible
definite values for the three observables A, B, C. b is a state space that encodes setting dependence in the
set of possible states. The A; refer to the definite value assignments in (a). All combinations of definite
value assignments and measurement setting that violate the +-law are excluded. ¢ is the minimal value
definite state space needed to reproduce the operational model: only measured observables have definite
values. Note that in (b) the subsets Ag, ;. Agp, Ag., need not be pairwise disjoint while in () they are

end, I consider the model that lies at the heart of Specker’s parable of the overprotective
seer [35].% Let A, B and C denote three observables for a system, each of which can
only assume the values -1 and 1. So there are eight possible ways to assign definite
values to all observables. Assuming value definiteness, the state space A can then be
partitioned into eight corresponding subsets A, ..., A7 as in Fig. 2a.

It is now further assumed that only pairwise joint measurements of the observables
are possible. So apart from response functions &4, £, &c one also has &4, Epc and
&ca, but not £4 pc. Moreover, for any pair, the outcome will always be either (—1, 1)
or (1, —1). Let us call this the +=-law. From Fig. 2a one finds that there is no A that
satisfies this law for all pairs AB, BC, CA.

The law can be salvaged by introducing setting dependence: for any state only the
measurements that obey the #-law are allowed.” This can be arranged by letting the
probability distribution x depend on the measurement setting. So one would have

e (A2 U A3U A4U As5) =1,
Mege (A1 U A2 U AsU Ag) =1, (11
Meea (AU A3 U AU Ag) = 1.

The dependence of  on & is the main force behind setting dependence. But it
is natural to allow a bit more structure in the framework. Considering the +-law, it
makes sense to dispose of the states Ag and A7 immediately. Furthermore, for a joint
measurement of A and B Eq. (11) implies that the state of the system will not lie in

6 English translations are available by Stairs [38] and Seevinck [33].
7 Instead, one could also introduce a form of contextuality. See [26] for a thorough analysis of this parable.
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A1 or Ag. One may then question whether it makes sense that £45(. |1) should be
defined at all for A € A} U Ag. What sense does it make to have response functions
for situations in which the system cannot respond? To give substance to this idea, |
allow for the possibility that response functions are defined only for a subset of the set
of ontic states. In this case, one could have for example

Ag,p = A2 U A3U Ay U As (12)

as the set of ontic states for which &4 p is defined. This idea is made explicit in Fig.
2b. In this setting one still has that, for example, a state A € A has responses both for
Epc and &c 4 but not for E4p.

It is of course possible to be more eliminative and let maximal measurements
partition the state space.® This is illustrated in Fig. 2c. Here the state selects a maximal
measurement and determines only the values for that measurement. Of course, for non-
maximal measurements one can still have thate.g. Ag, = Ag,, U Agpe.

On the operational level the choice between these state spaces is somewhat arbitrary
as there is no operational distinction between an empty set of states or a non-empty
set of states that has probability zero for all possible preparations. But the choice does
matter for the type of explanations that can be given for the PM model. When using
the state space of Fig. 2a, the +-law is merely a contingent fact about observed values
that stems from the special set of preparations that is allowed. But it is certainly not a
law that is true for all values (observed and unobserved). For the state spaces in Fig.
2b, c, on the other hand, the +-law is true in the sense that it represents a property of
the system that holds for all possible states.

There is a peculiarity though about the state space of Fig. 2b. Even though a system
inastate A € Ajhasnoresponse for ¢ 4, the state does determine values for both A and
C and these values violate the +=-law. This is a peculiarity of the example rather than
of the explanatory strategy. Within quantum mechanics such indirect contradictory
value assignments can be avoided as evidenced by, for example, existing methods for
partial Kochen—Specker colorings.’

3.2 Formal Definition

We are now in position to define setting dependent ontic models. Let a prepare-measure
model (P, M) be given. A setting dependent ontic model for (P, M) consists of a
measurable space (A, X') and a pair (I1, &) where

— Z isthe set of response functions and for every & € & there is a (measurable) set of
ontic states Ag C A for which £ has a response. Specifically, every & is a Markov
kernel from (Ag, X¢) to some space (£2, X') where X = {A N Ag|A € X},
Moreover, for every measurement M € M there is a non-empty subset &y C &
and every § € E)y is a Markov kernel from (Ag, X¢) to (2p, ).

8 Ttis not always immediately obvious what should count as a maximal measurement since to some extend
this depends on the choice of the ontic model. But insofar as the notion is used in this paper it should be
intuitively clear what is meant by it.

9 See for example [20, pp. 231-234] and references therein.
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— IT is the set of epistemic states. Every u € [Tisamap u : & x ¥ — [0, 1] such
that for every £ € & the map g : X — [0, 1] is a probability measure specifying
the probability Of (sets of) ontic states conditional on the response function &. It
thus satisfies pg(Ag) = 1. For every P € P there is a non-empty set [Tp C I1
such that the model reproduces the predictions of the operational model. That is,
for every P and M, forevery u € I1p and & € &y

/s(Ep\)dug(x) —P(E|M,P) VE € Sy. (13)

With this definition the idea that measurement settings and states need not be inde-
pendent has been successfully incorporated. The old framework is re-obtained by
assuming setting independence:

—~

Setting Independence For all preparations &, &’ € & and every epistemic state
nell
A = Agr = Aand g = pgr. (14)

The way the definition is presented one may get the impression that it favors a
retro-causal reading. The measurement setting represented by the response function
& has an influence on which ontic states are more likely to show up via pe. In the
extreme cases the setting may even confine the possible ontic states to a strict subset
Ag C A. However, one should keep in mind that u represents an epistemic state. That
an agent evaluates the possible ontic states differently given one measurement setting
rather than another can be motivated both by the idea that the setting influences the
state or that the state influences the setting. The stricter dependency A also suggests
a false asymmetry because one can similarly start from sets of settings & that are
allowed by a particular ontic state (suggesting a more superdeterministic approach).
One can thus choose whether one should be defined in terms of the other or the other
way around:

@)

r={6€ B e} vsAr={rLeAlE e E). (15)

There is one important asymmetry between settings and ontic states however. Settings
may influence the probability distributions over the set of states, but there is no con-
verse. Probability distributions over settings are not even defined in the model and in
this sense the type of dependence is not really probabilistic dependence.'” This has
everything to do with the operational approach as explained below.

One price one immediately pays within this new framework is that ontic states no
longer unambiguously give rise to epistemic states. In the original framework, every
A € A defines a u* through

1 LeA

A )
u (A =1, = 16
(4) a® 0 otherwise. (16)

10 This is an important deviation from the approach of Spekkens [42] who treat settings and states on a par
as random variables in a Bayesian network.
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In the new framework, every A determines a set of possible measurements =) con-
taining precisely the & with A € A¢. For £ € &) one can define ,ug(A) tobe 14()).
But for & € E\ &) no such definition is available. Holding on to the idea that IT
encodes the set of all possible epistemic states, setting dependence can lead to the
situation where ontic states are typically not knowable. The rationale behind this is the
following. The epistemic states are associated with preparations which, at least on the
operational level, give predictions for all measurements M € M. Thereby the idea
has been brought in that for any epistemic state all measurements in M are possible.!!

I think this is the appropriate attitude to adopt when considering what it means to be
an agent in a world with setting dependence. Of course, one can insist that epistemic
states that preclude certain measurements should also be possible. Call them oracle
states. An oracle state would be akin to that of the epistemic state of a time traveler
traveling back in time in a grandfather paradox scenario. The traveler walks around
knowing that certain acts with particular outcomes are just not realizable. Although
oracle states may be physically possible in such scenario’s, they are not the kind of
states that are fitting when adopting an operationalist approach. This is also reflected
in the fact that already at the level of the PM model the preparation of oracle states is
ruled out since a preparation determines probabilities for all possible measurements.

3.3 Bipartite Systems Revisited

In a setting dependent ontic model, states and measurements can be correlated. This
requires a re-evaluation of how bipartite systems should be treated in this frame-
work. Specifically, the definitions for parameter and outcome independence need to
be reconsidered.

At the operational level everything remains the same of course. At the level of the
ontic models the partition & = E4 U &g U Zjoint also remains intact. And for every
My € My and Mp € Mp and every §4 € Ey, and £p € E)y, there is a unique
&AB € Eum,, to denote the case where Alice performs &4 and Bob performs £p.

Outcome independence is a criterion that translates easily to the generalized frame-
work since it is formulated for a fixed combination of measurement settings. Therefore
Eq. (6) is adopted in the generalized framework with the minor alteration that A now
ranges over the set of compatible states instead of all states:

Outcome Independence For all measurements My € My, Mp € Mp and
response functions §4 € Ey,, & € Emy

EaB (EA X Eg|A) = 4B (Ea X 2umy|1) éan (2um, % EB|1) (17)

for all events E4 € Xy, , Ep € Xy, and ontic states A € Ag,,.

The case of parameter independence is more complicated. The straightforward
reformulation would be that V My € My, Mp € Mp,Vés € Ey,, Ep € Emy

1 This highlights an important distinction with the models adopted in [23] where it is assumed that in
principle every ontic state is compatible with every possible measurement setting.
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Ea (Ea X R2upylA) = EA(EAlN) YE4 € 2y, V4 € Agyy,

Eap (2m, x Eg|A) =& (Eg|A) VEp € Zpp, VA € Agyy. (18)
However, there are several problems with this reformulation. First, it only makes
sense if one further requires that Ag,, C Ag, N Ag,. This in itself is quite a natural
constraint. More problematic is that Eq. (18) is too weak to capture the spirit of
parameter independence. The appeal of parameter independence is that it leads to
further constraints like, for example,

Eap (Ea X 230) = Eapyr (EA x .QM%M) VEi€ Sy, Yied  (19)

for all possible measurements Mp and M, for Bob. In the new setting, this constraint
would have to be reformulated with A ranging over Ag,, N Ag, ,, instead of over A.
This would make the constraint vacuous in cases where the intersection Ag,, N Ag,
1S empty.

For setting dependent ontic models the notion of parameter independence looses
its meaning because it relies on a type of counterfactual reasoning that is no longer
applicable. That is, it expresses the idea that for any ontic state, if Bob had performed
a different measurement than he in fact did, the predictions for Alice’s system would
have been unaffected. But the point of setting dependence is that by shifting to a
possible world in which Bob’s alternate measurement is the actual measurement, one
may be required to change the state of the system.

To keep some of the initial appeal of parameter independence, we need to move up to
the operational level and replace it with a no-signaling condition. This is the constraint
that any non-local correlations that may be lurking around cannot be employed for
signaling. So selecting a setting on Bob’s side does not, on average, change the statistics
for Alice’s measurement and vice versa. This is a condition that can be adopted in the
generalized framework in a meaningful way:

No-Signaling An epistemic state u is non-signaling if for all measurements M4 €
Ma, Mp € Mp and response functions £4 € Ey,, Ep € Epy

/&AB (Ea x 2umpI0) dpg,, 1) = /éA (EalM)dug, (M) YE4 € Xy,

/EAB (2u, x Epl})d g,y (M) = /53 (EplM)dpey () YEB € Xpy.
(20)

3.4 Signaling and Randomness in Setting Dependent Ontic Models

When thinking about setting dependence, many may have the intuitive reaction that
it allows for too much. Peculiar correlations between states and measurement settings
could be used to make just about any theory fit the data. But once one moves from
considering setting dependence as a mere logical loophole to an idea that deserves to
be taken seriously, one has to introduce conditions for models to make the idea more
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mature. Setting dependent ontic models are aimed at doing just that. In this Sect. I
demonstrate by example that non-trivial theorems about setting dependent models can
be proven.

The crux of the analysis is that epistemic states in a setting dependent ontic model
(mathematically) behave as ontic states in an ordinary ontic model. Specifically, for
any epistemic state  in the new formalism one can define a new ontic state A  that
has responses for all possible measurements via ’s expectation values for response
functions. It thus behaves as a “traditional” ontic state. Every &y € ZE) can be
extended to A U {): w} by setting

Evi(El) = / Ev(EI) d gy, (1) @1)

for all E € £2),. Thus in a sense, on average, a setting dependent ontic model behaves
as a standard ontic model.!?

The idea can be further illustrated using Fig. 1a. In the original framework, this
table represents a single ontic state A. In the generalized framework the same picture
can be used to represent a single epistemic state . Every column then displays the
expectation values for the response function &4, p; as determined by iz, 5 Conse-
quently, constraints for ontic states for ordinary ontic models can be reformulated into
constraints for epistemic states for setting dependent ontic models. The reformulation
of parameter independence to no-signaling is a concrete example of this idea.

The upshot is that theorems for ontic models may be reformulated to theorems
for setting dependent ontic models. Whether this is possible and meaningful for any
particular theorem of course depends on the precise constraints. But for the deriva-
tion of the CHSH inequality we do have a meaningful result. The following theorem
demonstrates that, given the predictions of quantum mechanics and the impossibility
of signaling, even if one gives up on setting independence, the world appears to be
random. That is, not every epistemic state can be written as a convex combination of
non-signaling epistemically deterministic states, where an epistemically deterministic
state is an epistemic state o € [T that satisfies

/S(Elk)dug(l) €{0,1} (22)

for every response function £ and event E.

Theorem 1 Let (P, M) be a PM model for a bipartite system such that M 4 and M p
each contain at least two x1-valued measurements. Let (A, X', I1, Z) be an ontic
model for the PM model and let HEISD be the convex hull of the set of non-signaling

epistemically deterministic states. Then every |1 € HIESD satisfies the CHSH inequality

P[Ay = B1] < P[A| = B2] + P[Ay = B1] + P[A> = Ba]. (23)

12 1 gloss here over some formal details such as ensuring that £); once extended is still a Markov kernel.
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0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1
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320 1921

‘

9:1 B, ‘ 3:3

Fig.3 The four non-signaling epistemically deterministic states that satisty P[A| = B} = 1] =1

‘

§By &8sy &8,

Proof For and epistemically deterministic state all probabilities in the CHSH inequal-
ity are either equal to O or 1. If the left-hand side equals O the inequality holds trivially.

If the left-hand side equals 1 there are the options P[A; = By = 1] = 1 and
P[A; = B} = —1] = 1. Assume the first option holds. There are four non-signaling
epistemically deterministic states that satisfy this, which are depicted in Fig. 3. All of
these satisfy the inequality (23).

In a similar way one can find that the inequality also holds for option two. Because
every convex combination of epistemic states that satisfy the CHSH inequality also
satisfies the inequality, every u € HIE]SD satisfies it. O

The fact that all non-signaling epistemically deterministic distributions satisfy all
CHSH inequalities was already established by Masanes et al. [27]. But as far as [ can
tell it has not been fully appreciated that the result does not rely on an assumption
of setting independence. For example, Seevinck [32, p. 278], building further on the
work of Masanes et al., explicitly incorporates an assumption of setting independence
in his analysis.

Both the no-signaling assumption and the epistemic determinism assumption are
necessary. Maximal violations of the inequality are easily obtained with a signaling
distribution or a PR-box distribution as illustrated in Fig. 4. The PR-box configuration
(Fig. 4b) is an extreme point in the convex set of non-signaling epistemic states. But
it can of course be written as the convex combination of two signaling distributions,
one of them being the distribution in Fig. 4a. The proponent of setting dependence
thus faces a choice: either no-signaling is a law, in which case there is necessarily
randomness on the epistemic level, or signaling is allowed in principle.

The upshot of this analysis is not that Theorem 1 presents a problem for setting
dependence. A priori, there is no reason to believe that both horns of the dilemma
presented by the theorem lead to insurmountable complications. Rather, the message
is that despite the radical nature of setting dependence, allowing it does not imply that
“anything goes”. Quantum mechanics still poses non-trivial constraints. Theorem 1
establishes that even if local determinism is salvaged at the ontic level, it cannot be
had at the epistemic level (unless one allows oracle states). As such, it could provide a
handle for understanding the probabilistic nature of quantum mechanics from a setting
dependent perspective.
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Fig.4 Maximal violations of the CHSH inequality

4 Revisiting Some Problems with Setting Dependence

Arguments against setting dependence are commonly quite emotional. Clearly articu-
lating problems for setting dependence and specifying what would count as a solution
for such problems is therefore difficult. Here I will not attempt to give an exhaustive
list of problems and responses.'? Instead I will focus on problems for which the formal
considerations of the previous section lead to valuable insights.

An often heard serious worry about setting dependence, dating back as early as the
work of Shimony et al. [34] concerns the (in)compatibility with the scientific method.
Esfeld [9, p. 473], for example, writes

To obtain any experimental evidence whatsoever, one has to presuppose that the
questions that the experimenter asks (i.e. the choice of measurement settings)
are independent of the past state of the measured system.

It is not further explicated why setting dependence implies that experimental data can
no longer serve as evidence for scientific theories. A possible worry, is that the data
are then no longer guaranteed to reflect the facts of the world. A theory supported by
the data could be completely mistaken about its statements concerning unperformed
experiments. This is the worry as expressed by Zeilinger [44, p. 266]:

The second important property of the world that we always implicitly assume the
freedom of the experimentalist [...] This fundamental assumption is essential to
doing science. If this were not true, then, I suggest, it would make no sense at
all to ask nature questions in an experiment, since then nature could determine
what our questions are, and that could guide our questions such that we arrive
at a false picture of nature.

Another point in Zeilinger’s quote that deserves attention is an allusion to some
form of free will. Such allusions are quite common in these type of discussions, with
the free will theorem as the most evident example. Although the relevance of free will

13 See [19,25] for notable attempts.
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is controversial, it is worthwhile to delve into the issue to get a better grip on setting
dependence. This will be done in the next section, after which I will return to the more
pressing problem of compatibility with scientific methodology.

4.1 Compatibility with Free Will

The notion of free will is quite slippery. It is therefore difficult to see what kind of
role, if any, it could play in the foundations of quantum mechanics. On the other hand,
certain aspects associated with free will, like agency, do play a certain role when
one talks about choices for measurements. One may insist that measurement settings
need not be chosen by experimenters by every run of a Bell test; one may also use
the outcomes of the Swiss lottery machine [3]. But even then there is still a choice
involved for using that machine rather than any other.

That being said, it is not obvious how or if setting dependence threatens whatever
notion of free will is at stake. At any rate, the tension is usually framed as a problem for
superdeterminism specifically. Even proponents of retro-causality seem to agree with
this sentiment [28]. Therefore, I restrict attention to superdeterminism in this section
as well and will explicate how the tension between free will and superdeterminism
can be relieved.

My starting point is the recent paper by Landsman [21], which I think is one of the
most serious attempts of analyzing the role of free will in the free will theorem'* and,
by similarity, in Bell’s theorem.!> Theories of free will roughly fall into two camps:
libertarianism, which requires indeterminism, and compatibilism, which is compatible
with determinism. Our focus is necessarily on the latter since the free will objection
is targeted at superdeterminism in particular rather than just determinism. '

In a deterministic world, the actions of agents are obviously determined: their
actions cannot be other than their actual actions. On the other hand, there is also a
sense in which the actions could have been other than what they actually are. The
distinction is usefully illustrated by Landsman’s reformulation of Lewis’ separation
of two notions of “being able” [24]:

— Iam able to do something such that, if I did it, the state of the actual world at some
earlier time would have been different.
— I'am able to change the state of the actual world at some earlier time.

The second is clearly false while the first is the kind of statement that can be true in
a deterministic world in examples such as “I am able to raise my hand” even if I do
not, in fact, raise my hand. Roughly, the idea is that there is a possible world that has

14 The formal part of the theorem was first proven by Heywood and Redhead [17] and used as an argument
by Stairs [39]. Its (in)famous reformulation with an emphasis on “free will” is due to Conway and Kochen
[6,7].

15 See [5,14,43] for discussion on the distinction between the philosophical implications of Bell’s theorem
and the free will theorem and further discussion.

16 Bohmian mechanics, for example, is usually taken not to suffer from a free will problem. At least not in
the same way as superdeterminism.
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virtually the same history as the actual world up until the point where I do in fact raise
my hand.!”

The idea is then that this notion of agency, as a necessary condition for compatibilist
free will, is violated in any superdeterministic model for quantum mechanics. To show
this the idea has to be captured in a formal requirement that can play a role in the free
will theorem. To this end Landsman invokes the intuition “that free will involves a
separation between the agent, Alice, (who is to exercise it) and the rest of the world,
under whose influence she acts” [21, p. 101]. This allows one to unambiguously talk
about the state of the agent a, encoding which action the agent will perform, and
the state of the system (possibly the rest of the universe) A. The formal requirement,
dubbed freedom, is that these states are independent in the following sense: for any
possible agent state a and possible state of the system A, there is a possible world in
which both are actualized.

It is easy to argue that the freedom assumption is a sufficient condition to restore
compatibilist free will. Suppose in the actual world (A, @) is the case and a’ is consid-
ered a possible (counterfactual) action. Then, according to freedom, there is a possible
world in which (A, a’) is the case. It is reasonable to assume that there are possible
histories H and H' that are very similar up until the point where the first yields (A, a)
and the second (A, a’).

Setting dependent ontic models are specifically designed to violate the freedom
assumption. Each possible measurement £ is only possible when the system is in a
state Ag, which may be a proper subset of A. And for each possible state A, the only
possible actions are those corresponding to measurements in =) . The state spaces in
Fig. 2b, c illustrate this explicitly. But this only causes a problem for compatibilist
free will if freedom is a necessary condition.

Freedom, as a general constraint, however, is too strong to capture the kind of agency
required for compatibilist free will. Even outside the realm of quantum mechanics the
set of possible actions for an agent will depend on the state of the rest of the universe A.
For example, in our current world there is the possible action a="“travel to the moon”.
But that clearly is not a possible action in any state of the universe where our planet
does not have a moon. Actions at least need to refer to something in the universe to be
possible. And even in our actual universe a only became a possible action relatively
recently. This further illustrates that the set of possible actions is time dependent,
which only seems natural since A is as well.

Although the example violates freedom, there is no violation of compatibilist free
will. The two histories leading up to a universe in which our world has a moon and one
in which it does not have a moon are in no way similar. This argument only shows that
Landsman’s criterion is too crude for the idea it is supposed to capture. So something
more subtle is going on.

The possible actions to which freedom is to be applied are the familiar quantum
measurements. Surely they are possible: spin measurements along x or z axes have
been performed many times. But what the superdeterminist may call into question, is
if they are possible at any time for any state of the system. Specifically, what may be

17 For sake of the argument one can think here of a possible world as a world in which the same laws hold
as in the actual world, but which has a different initial state.
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called into question is counterfactual definiteness. The intersection of the sets A, and
A, may be empty. And even though this is a much more subtle violation of freedom
than the moon example, it still isn’t enough to violate compatibilist free will. There
may still be similar histories Hy, H; with one leading to a state A, € A, and the
other to a state A; € Ay, . After all, the only change needed in the state of the rest of
the universe for the agent to perform a z measurement instead of an x measurement
is that &, should correspond to a property of the system rather than & .

What remains peculiar though, is the special way in which A and &) evolve parallel
in perfect harmony with each other. The trivial explanation is that at any point in time,
only measurements can be performed that correspond to properties of systems. In a
superdeterministic world, the possible settings & are necessarily constrained by the
state A. But a hint of conspiracy remains and one would want a more solid explanation
for why the set of epistemically possible measurements = is typically much larger
than the set of ontologically possible measurements & . The problem of free will for
superdeterminism is dissolved and replaced with a problem for understanding why
evaluating possible actions explicitly requires one to consider counterfactual states
for the system. As I will argue in the next section, this is not just a problem for
superdeterminism but a general problem for setting dependence. This is because the
problem of compatibility with scientific methodology may also be seen to reduce to
1t.

4.2 Compatibility with Scientific Methodology

Setting independence is often taken to be a prerequisite for scientific methodology.
I think that the main intuition behind this relies on a similar condition in statistics:
the criteria for selecting a sample from a population should be independent of the
property of the population under investigation. If one is interested in the distribution
of age among a certain population, the selection method for the sample should not be
“just select the ten youngest subjects”. The art of sampling is to construct a sample
in such a way that it is as representative for the entire population as possible within
the constraints of your research facilities. Setting dependence now seems to suggest
that despite all our best efforts we are still forced to always select samples that are not
representative for the entire population. If this is the case, then the theories that we
can come up with to fit the data necessarily don’t fit the population and thus we arrive
at a false picture of nature.

Using these intuitions, here is a naive idea of how setting dependence could be used
to explain the experimental violations of the CHSH inequality. We have an ensemble
of pairs of particles that are send to Alice and Bob. For each combination of settings
A;, B; the pairs for which the measurement &4, B, is performed determines a sub-
ensemble. Setting dependence can then be used to argue that for at least one of the
four possible settings the outcome statistics for the sub-ensemble &4, p; leads to a
biased estimate for the response of the entire ensemble to the &4, B, measurement. The
violation of the CHSH inequality is merely an artifact of biased sampling and thus
does not reflect a property of the total ensemble. Experiments have led us to a false
picture of nature, and that picture is quantum mechanics.
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The naive explanation is problematic. But it is not trivial to point at the culprit and
assess if it is a necessary feature of any setting dependent explanation. The conclusion
that QM is false in itself is not per se problematic. It is common scientific progress
that older theories are in some sense false in the light of newer theories. Since it can be
part of the aim of setting dependence to surpass quantum mechanics, a rejection of the
universal validity of quantum mechanics is acceptable. But preferably, the new theory
is also able to explain why the old theory is false. And it is here where the suggested
naive explanation runs into complications.

The naive explanation necessitates a mismatch between observed phenomena (for
which quantum mechanics holds) and unobserved phenomena (for which quantum
mechanics fails). But it is unclear how the observed/unobserved distinction can be
incorporated into the setting dependent theory in a meaningful way. In essence, it is a
type of measurement problem akin to the one pointed out by Lewis [25, §6]. However,
there is one important distinction. Lewis explains the problem completely in terms
of hidden mechanisms (a la a superdeterministic theory) that cause the distinction
between observed and unobserved behavior. But, as also noted later by Lewis, it
also lurks for retro-causal models. Here the measurement retro-causally influences the
system in such a way so as to behave as an observed system. If the only way to account
for the occurrence of this effect is the stipulation that a measurement happens, then
the problem remains.

Can this problem be avoided? Consider again the toy example from Sect. 3.1. Any
way of assigning non-contextual definite values to all observables violates the +-law.
A conspiratorial recovery of the law is possible by demanding that measurements
necessarily select out a sub-ensemble in which the law does hold: sometimes A and
B have the same value, but never when they are measured simultaneously. This is
the proposal of Eq. (11). It suffers from the measurement problem because there is
nothing in the ontology that justifies or explains the distinction between the epistemic
judgments pig, ., heye and pec, -

The problem is slightly alleviated by switching to the state space of Fig. 2b. Here
the set of possible measurements is constrained by the ontic state. A system on the
ontic state A € A only has responses for £45 and £pc but not for £c 4. This is the
basis for a new understanding of setting dependence. It is not a mismatch between the
selected sample and the population. Rather it is that the sample upon which the &c 4
measurement is performed is not a sample for the entire population when considering
responses to £c 4 because certain systems in the population do not even have a response
for EC A

Thus what the defender of setting dependence ought to deny is what may be called
counterfactual responsiveness. It is the idea that systems should have responses for all
possible measurements at all times. Specifically, it is the insistence that in general, for
asystem in a state A, the set of measurements for which it has responses &), is a proper
subset of the set of measurements that are deemed possible at the epistemic level ='.
It is thus a generalization of counterfactual definiteness, allowing for the option that
responses are non-deterministic.

Returning to the case of the violation of the CHSH inequality, we now find the
following response to the naive explanation. If counterfactual responsiveness fails, we
can no longer conclude that the sub-ensemble of systems on which the § 4, g; measure-
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ment is performed is biased with respect to how systems in the total ensemble respond
to &4, ;. This is for the simple reason that, because counterfactual responsiveness
fails, not all systems in the total ensemble have a response for &4, B;- The violation
of the CHSH inequality then still points to a property of the total ensemble and is
not an artifact of some peculiar selection of the sub-ensembles for each of the four
measurement settings.

The total ensemble used in the experiment may still be assumed to be a fair sample
for the population of all pairs of particles in the singlet state. And experimental inves-
tigations of the sample can still be used for inductive inferences about the population
in the standard way. Thus in this sense there is no conflict with scientific methodology;
setting dependence does not imply that statistical sampling is necessarily biased.

There is of course still the issue of having to explain how measurement settings
always line up with well-defined responses of the system. This is akin to the remaining
problem of the previous subsection. It seems to me there is no general strategy for
setting dependence to resolve this issue and it will have to be resolved within specific
models. But it is a much more subtle problem than the outright incompatibility with
scientific methodology.

5 Discussion and Conclusion

In this paper I have presented an analysis of setting dependence that has mainly served
as a defense of the tenability of the idea. Conflicts with free will and scientific method-
ology are not as dire as many would want us believe (Sect. 4). Therefore setting
dependence is an option that deserves to be taken seriously. Moreover, that it can be
taken seriously as more than just a logical possibility and be the subject of formal
analysis was shown in Sect. 3. I wish to end this paper, however, with some critical
considerations.

An important ingredient of the defense for setting dependence in Sect. 4 was the
rejection of counterfactual responsiveness.!® On the other hand, considering coun-
terfactual measurements is common scientific practice. An appropriate operational
description yields predictions for all measurements that are deemed to be possible,
not just for those for which the response of the system is well-defined given its current
ontic state. This suggests that whatever information one may gather about the ontic
state of a system, details about compatibility of measurement settings should wash
out.

That the ontic state of a system is not epistemically accessible is of course acommon
trait of ordinary hidden variable theories. And it is a poor criticism, since the goal is
not per se to move beyond quantum mechanics, but to have an explanation of its
operational success. However, in contrast with ordinary hidden variable theories, in
the setting dependent approach the ontological details are not just inaccessible, but
also inadmissible. This suggests a principled underdetermination of the ontology for

18 This is a strategy that can also be found, for example, in the two-time interpretation or the cellular
automaton interpretation [1,18].
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setting dependent approaches, which may obstruct the possibility of a satisfactory
explanation of quantum mechanics.

The problem can be made more precise within the framework of setting dependent
ontic models. Its roots are already visible in ordinary ontic models. Although ontic
models are extremely useful, there are limitations to their ability to model the ontology
for a theory. Specifically, they suffer from a type of measurement problem. Response
functions encode how systems respond when being measured. But nowhere in the
model is it specified what constitutes a measurement.

In a way, it is a good thing that “measurement” is a primitive concept in the ontic
model framework. It allows one to study foundational questions in quantum mechanics
whilst setting aside the measurement problem. Moreover, the problem may also find
a solution within the framework. This can be done by also adding dynamics. A trans-
formation T for the system, taking one preparation P to another preparation 7' (P) is
encoded by a Markov kernel yr from (A, X') to itself. Thus for a system in state A
undergoing the transformation 7 y7 (A|A) denotes the probability that the ontic state
after the transformation lies in the set A. Performing a measurement M may then be
taken to also initiate a transformation of the system Tj;. The response function &y,
then merely is a short-hand for denoting the probabilities with which yr,, evolves the
state to one in which M has the appropriate definite value. Thus

Ev(E) =) yr, (0 € AlEm(m))) = 1}]3) . (24)

mekE

The measurement problem then reduces to the task of explaining that yr,, encodes a
natural physical process just like any other y7.'

Could a similar approach be adopted for setting dependent ontic models? I do not
have a definite answer at the moment, but there are troublesome complications. It is
reasonable to assume that also in this case a transformation 7 should be encoded by
a Markov kernel yr. How should an agent update their beliefs in the light of such a
transformation?2”

In the original framework this is straightforward. If the initial epistemic state was
up, the epistemic state after the transformation should be given by

nrpy(A) 1=/VT(A|/\)dMP()»)- (25)

Of course y7 should be such that wr(py € ITr(p) and thus satisfies Eq. (1).
Translating this directly to a setting dependent ontic model we get

we TPy (A) :/VT(A|)\)dl/«E,P()»)~ (26)

19 This is akin to attempting to explain collapse in terms of unitary evolution.

20 ¢ may be noted that this question is avoided in the work of [23] by considering transformations only on
the operational level as constraints on epistemic states.
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But this is nonsensical because we would have that in general j1g 7(Ag) < 0 because
not all states in Ag evolve again to states in Ag. Similarly, not all states that end up
in Ag after T started of in Ag. The problem is thus that even if the agent is initially
completely oblivious of which measurements are compatible with the current ontic
state of the system, having complete knowledge of the dynamical laws undermines
this obliviousness concerning the future ontic state of the system. Thus not only is the
ontic state epistemically inadmissible, but the dynamical laws as well. But without
dynamical laws we have no theory and principled underdetermination follows.

This is of course in no way a knock down argument because it relies on several
presuppositions that may be rejected.?! After all, setting dependent ontic models are
merely a tool to get a better grip on setting dependence and are not meant to be the
template for setting dependent theories. But they do reveal the difficulties involved
in finding a proper setting dependent theory. In an attempt to nevertheless end on a
positive note, I propose a tentative idea.

Even if the underdetermination problem turns out to be vicious, setting dependence
may still be a resourceful concept for defending neo-Copenhagen type interpretations
of quantum mechanics such as QBism [12,16]. The argument would roughly run as
follows. Bell’s theorem shows that, provided we assume that it is meaningful to ascribe
states to systems and measurements yield single definite outcomes, locality demands
that we give up setting independence. The underdetermination problem then implies
that nevertheless we are stuck with operational descriptions of systems; systems have
definite states but we cannot characterize them even in principle.

One would have all the benefits of an epistemic interpretation of quantum states
[22,37] whilst avoiding familiar charges such as those of instrumentalism. On this
approach, Bell’s famous question “information about what?” has a straight forward
answer: information about the actual state of the system. It is just that this informa-
tion is necessarily incomplete. Moreover, because of setting dependence, 1r-ontology
theorems like the PBR theorem do not apply.

Whether this proposal is tenable or not remains to be seen. It is unlikely to be
endorsed by any of the proponents of either setting dependence or neo-Copenhagen
approaches. Although personally I think it may provide a more appealing ontology for
QBsim than the fundamental lawlessness proposed by Timpson [40] or the creating
experiences of Fuchs [13]. But that is possible future work. For now, I leave it to the
reader to judge the merit of this proposal.

21 One could for example suggest that Eq. (26) should be modified to also integrate over all possible values
of & using an appropriate probability distribution such that j7(py is again an epistemic state as defined
in Sect. 3.2. Although one may question if this solution works. If this probability distribution is given an
epistemic interpretation, it implies that how the agent evaluates the outcomes for possible measurements
after y7 depends on how likely certain measurements were before y7. But this dependence is spurious
given that the transformation y7 itself is purely ontological. If the probability distribution is given an
ontic interpretation, it should be determined by the ontic states, as they determine which set of possible
measurements are compatible. But this type of information is unlikely to be epistemically accessible for
the same reason that we required p to be determined for all £ € & in the first place.

Allowing oracle states also doesn’t resolve the problem. In the end, quantum states ought to correspond
to non-oracle states. So recovering unitary evolution from dynamical laws at the ontic level still yields the
problem of understanding Eq. (26).
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