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Abstract
We investigate the connection between interference and computational power within
the operationally defined framework of generalised probabilistic theories. To compare
the computational abilities of different theories within this framework we show that
any theory satisfying four natural physical principles possess a well-defined oracle
model. Indeed, we prove a subroutine theorem for oracles in such theories which is a
necessary condition for the oracle model to be well-defined. The four principles are:
causality (roughly, no signalling from the future), purification (each mixed state arises
as the marginal of a pure state of a larger system), strong symmetry (existence of a
rich set of nontrivial reversible transformations), and informationally consistent com-
position (roughly: the information capacity of a composite system is the sum of the
capacities of its constituent subsystems). Sorkin has defined a hierarchy of conceivable
interference behaviours, where the order in the hierarchy corresponds to the number of
paths that have an irreducible interaction in a multi-slit experiment. Given our oracle
model,we show that if a classical computer requires at leastn queries to solve a learning
problem, because fewer queries provide no information about the solution, then the cor-
responding “no-information” lower bound in theories lying at the kth level of Sorkin’s
hierarchy is �n/k�. This lower bound leaves open the possibility that quantum oracles
are less powerful than general probabilistic oracles, although it is not known whether
the lower bound is achievable in general. Hence searches for higher-order interference
are not only foundationally motivated, but constitute a search for a computational
resource that might have power beyond that offered by quantum computation.

Keywords Generalised probabilistic theories · Query complexity · Oracles · Higher
order interference

Landauer’s Principle [1] states that any logically irreversible processing or manipula-
tion of information, such as the erasure of a bit, must always be accompanied by an
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entropy increase in the environment of the system processing the information. As this
illustrates, information is intimately tied to the physical system that embodies it and
is hence bound by physical law—alternatively, information is physical. If information
processing—or computation—is bound by physical law, then the ultimate limits of
computation should be derivable from natural physical principles. Indeed, the advent
of quantum computation demonstrated that different physical principles lead to dif-
ferent limits on computational power. This naturally leads to the question of what
general relationships hold between computational power and physical principles. This
question has recently been studied in the framework of generalised probabilistic theo-
ries [2–7], which contains operationally-defined physical theories that generalise the
probabilistic formalism of quantum theory. By studying how computational power
varies as the underlying physical theory is changed, one can determine the connec-
tion between physical principles and computational power in a manner not tied to the
specific mathematical manifestation of a particular principle within a theory.

Most previous research into computationwithin the generalised probabilistic theory
framework has focused on deriving general limitations on computational ability from
natural physical principles.1 No work to date has tied a computational advantage
directly to a physical principle. For instance, it is known that quantum interference
between computational paths is a resource for post-classical computation [8], but it is
not clear whether the presence of interference in a general theory entails post-classical
computation [9], nor whether post-quantum interference behaviour is in general a
resource for post-quantum computation [5]. The former point concerns whether it is
just the particular mathematical description of interference in Hilbert space which can
be exploited to provide an advantage over classical computation or whether such a
statement can be seen to directly follow from the observation of interference in nature,
and the latter concerns whether “more” interference implies, or at least can sometimes
allow, “more” computational power.

Indeed, as first noted by Sorkin [10,11], there is a limit to quantum interference—at
most pairs of computational paths can ever interact in a fundamental way. Sorkin has
defined a hierarchy of operationally conceivable interference behaviours—currently
under experimental investigation [12–15]—where classical theory is at the first level
of the hierarchy and quantum theory belongs to the second. Informally, the order in the
hierarchy corresponds to the number of paths that have an irreducible interaction in a
multi-slit experiment. Given this definition, one can investigate the role interference
plays in computation in a theory-independent manner by asking whether theories at
level k possess a computational advantage over theories at level k − 1, k − 2, . . ..

One usually demonstrates the existence of a quantum advantage over classical com-
putation using oracles. Indeed, the Deutsch-Jozsa problem [16] is such a example:
given a function f : {0, 1}n → {0, 1}, one is asked to determine whether it is constant
(same output for all inputs) or balanced (0 on exactly half of the inputs)—promised
that it is one of these cases. Performance is quantified by the number of queries to
an oracle, which implements f on any desired input, needed to solve the problem.
A deterministic classical computer requires 2n−1 + 1 queries, but Deutsch and Jozsa

1 With the exception of [6], which constructs a theory capable of post-quantum computation. However,
whether this computational advantage is directly tied to a simple physical principle remains unclear.
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showed that a quantum computer can solve the problem in a single query to an appro-
priately defined quantum oracle. Hence, to compare the computational abilities of
different theories within the framework a well-defined oracle model is needed. We
show that such a model can be defined in any theory satisfying the following physical
principles: causality (roughly, no signalling from the future), purification (each mixed
state arises as the marginal of a pure state of a larger system), and strong symmetry
(existence of a rich group of non-trivial reversible transformations); additionally, we
demand informationally consistent composition (the act of bringing systems together
cannot create or destroy information). Moreover, we prove a subroutine theorem for
theories satisfying these principles. That is, we show that having access to an oracle for
a particular decision problemwhich can be efficiently solved in a given theory does not
provide any more computational power than just using the efficient algorithm itself.
Such a result was proved for quantum theory by Bennett et al. [17], and is a necessary
condition for a well-defined oracle model.

Given this oracle model, we investigate whether lower bounds on the number of
queries needed by a quantum computer to solve certain computational problems can
be reduced in theories which possess higher-order interference and satisfy the princi-
ples discussed above. Indeed, we generalise results due to Meyer and Pommersheim
[18] and show that if a particular type of lower bound to a given query problem
(from a fairly large class of such problems) is n using a classical computer, then
the corresponding lower bound for the same problem in theories with kth order
interference is �n/k�. As quantum theory only exhibits second order interference,
theories with post-quantum interference allow for post-quantum computation. For
example, in the problem where we are asked to determine the parity of a function
f : {1, . . . , k} → {0, 1} (which generalizes the special case of the Deutsch-Jozsa
problem for functions f : {0, 1} → {0, 1}), �k/2� quantum queries are needed, but
we show that in any theory satisfying our principles which has kth order interference,
our generalisation of the Meyer-Pommersheim useless-queries bound leaves open the
possibility that the parity can be determined with a single query. This bound leaves
open the possibility that the power of computation might be improved by modify-
ing interference behaviour in an operationally conceivable manner. Hence searches
for higher-order interference are not only foundationally motivated, but constitute a
search for a computational resource potentially beyond that offered by quantum com-
putation. An important direction for future work is to determine whether in theories
satisfying these principles it is possible to find an algorithm that reaches this lower
bound. We discuss potential ways to do this in the conclusion.

Other authors have considered computation beyond the usual quantum formalism
from a different perspective to the one employed here. For example, Aaronson has
considered alternate modifications of quantum theory, such as a hidden variable model
in which the history of hidden states can be read out by the observer, and—together
with collaborators in [19]—amodel in which one is given the ability to perform certain
unphysical non-collapsing measurements. Both of these models have been shown to
entail computational speed-ups over the usual quantum formalism. Additionally, Bao
et al. [20] have investigated computation inmodifications of quantum theory suggested
by the black hole information loss paradox and have shown the ability to signal faster
than light in such theories is intimately linked to a speed-up over standard quantum
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theory in searching an unstructured database. In contrast, the generalised probabilistic
theory framework employed here allowed for an investigation of query lower bounds
and computational advantages in alternate theories that are physically reasonable and
which, for instance, do not allow for superluminal signalling [21], cloning [22], or
other phenomena that are arguably undesirable features of a theory.

The paper is organised as follows. In Sect. 1, the generalised probabilistic theory
framework will be introduced along with our physical principles and the definition of
higher-order interference. In Sect. 2 the oracle model will be introduced and defined
and the subroutine theorem will be stated, with the proof presented in Appendix C.
Finally, in Sect. 3 we derive lower bounds on query problems that directly follow from
our principles.

1 The Framework

Oneof the fundamental requirements of a physical theory is that it shouldprovide a con-
sistent account of experimental observations. This viewpoint underlies the framework
of generalised probabilistic theories [21,23–25]. A generalised probabilistic theory
specifies a set of laboratory devices that can be connected together in different ways to
form experiments and specifies probability distributions over experimental outcomes.
A device comes equipped with input ports, output ports, and a classical pointer. When
a device is used in an experiment, the classical pointer comes to rest in one of a number
of positions (“values”), indicating an outcome has occurred. Intuitively, one envisages
physical systems passing between the ports of these devices. Such physical systems
come in different types, denoted A, B, . . .. One constructs experiments by composing
devices both sequentially and in parallel, and when composed sequentially, types must
match.

In this framework, closed circuits—those with no unconnected ports and no
cycles—are associated with probabilities—a probability for each assigment of val-
ues to all classical pointers appearing in the circuit. These add to unity when summed
over all assignments of values to pointers in the circuit. We use the term “element” for
a pair of device and pointer value; circuits may also be constructed of such elements,
and closed circuits of this type are associated with individual probabilities. The set
of equivalence classes of elements with no input ports are called states, no output
ports effects and both input and output ports transformations. The set of all states of
system A is denoted St(A), the set of all effects on B is denoted Eff(B) and the set of
transformations between systems A and B is denoted Transf(A,B). Using standard
operational assumptions and arguments [3,21,23], one can show that the set of states,
effects and transformations each give rise to a real vector space with transformations
and effects acting linearly on the real vector space of states. We assume in this work
that all vector spaces are finite dimensional.2

A state is said to be pure if it does not arise as a coarse-graining of other states3;
a pure state is one for which we have maximal information. A state is mixed if it is

2 Operationally this can be seen as saying that one does not need to perform an infinite number of distinct
experiments to characterise states
3 The process {U j } j∈Y , where j index the positions of the classical pointer, is a coarse-graining of the
process {Ei }i∈X if there is a disjoint partition {X j } j∈Y of X such that U j = ∑

i∈X j
Ei .
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not pure. A state ω is completely mixed if for every pure state χ , ω can be expressed
as a coarsegraining of a set of states that includes χ . Similarly, one says a transfor-
mation, respectively an effect, is pure if it does not arise as a coarse-graining of other
transformations, respectively effects. It can be shown that reversible transformations
preserve pure states [26]. We’ll say a measurement is pure if all of its outcomes are
pure effects. A state is maximally mixed if, when expressed as a convex combination
ω = ∑

i∈S piωi of perfectly distinguishable pure states, as is always possible given
our assumptions, the probabilities pi are uniform (pi = 1/|S|).

The following ‘Dirac-like’ notation A|si )will be used to represent a state4 of system
A, and (er |B to represent an effect on B. Here i and r represent the position of
the classical pointer associated to the device the prepares the state and performs the
measurement, respectively. The full measurement is defined by the collection {(er |}r .
States, effects, and transformations can be represented diagrammatically:

si T er := (er |BTA|s)A B

The above diagram represents the joint probability of preparing state |si ), acting with
transformation T and registering outcome r for the measurement {(er |}r . In the above,
the wires represent physical systems, with their type denoted by the letter above them.
This diagrammatic representation was inspired by categorical quantum mechanics
[27,28]. Note that in the “bra-ket” like notation, the time-ordering (first states, then
transformations, then effects) “flows” from right to left, while the reverse is true in the
diagrammatic notation.

In the rest of the paper, it will be assumed that all theories satisfy the following
physical principles.

Definition 1.1 (Deterministic effect, Causality [23]) An effect is called deterministic
if it has probability 1 in all states. A theory is said to be causal if there exists a unique
deterministic effect for every system. We denote this effect by ( |. In a causal theory,∑

r (er | = ( | for all measurements {(er |}r on a given system.

Mathematically, the principle of causality is equivalent to the statement: “Proba-
bilities of outcomes of present experiments are independent of future measurement
choices”. In causal theories, all states are normalised [23]. That is, ( |s) = 1 for
all |s). Moreover, the unique deterministic effect allows one to define a notion of
marginalisation for multi-partite states.

Definition 1.2 (Purification [23])Given a state A|s) there exists a systemB and a pure
stateAB |ψ) on AB such that A|s) is the marginalisation of AB |ψ):

ψ = s

B

A A

4 or, more accurately, the real vector corresponding to the state.
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Moreover, the purification AB |ψ) is unique up to reversible transformations on the
purifying system, B. That is if two states AB |ψ) and AB |ψ ′) purify A|s), then there
exists a reversible transformation TB on system B such that AB |ψ) = (IA⊗TB) AB |ψ).

As pure states are those in which we have maximal information about a system5

purification principle formalises the statement that each state of incomplete informa-
tion about a system can arise in an essentially unique way due to a lack of full access to
a larger system that it is part of. In [29] it was argued that purification can be thought
of as a statement of “information conservation”. In a theory with purification, any
missing information about the state of a given system can always be traced back to
lack of access to some environment system.

We introduce one final principle which ensures that the information stored in a
system is compatiblewith composition, that is,we demand that themere act of bringing
systems together should not create or destroy information.6 If this were not the case
then one could potentially use this new global degree of freedom, representing the
increase of information capacity, to hide solutions to a hard computational problem
allowing one to solve a hard problem that could not be solved by using the systems
independently [3]. We formalise this as follows:

Definition 1.3 (Informationally consistent composition) This consists of two con-
straints on parallel composition: (i) the product of pure states is pure, (ii) the product
of maximally mixed states is maximally mixed.

The first of these formalises the intuitive idea that if one has maximal information
about each of two systems, then one has maximal information about the composite of
the two systems. The existence of a maximally mixed state, that is, a state about which
we have minimal information, is guaranteed for each system by purification [23].

The purification principle, in conjunction with causality and the constraints on
parallel composition discussed above, implies many quantum information processing
[23] and computational primitives [5]. Examples include teleportation, no information
without disturbance, and no-bit commitment [23]. Moreover, purification also leads
to a well-defined notion of thermodynamics [26,30,31]. Quantum theory—both on
complex and real Hilbert spaces—satisfies purification as do Spekkens’ toymodel [32,
33] purification distinct from quantum theory include fermionic quantum theory [34,
35], a superselected version of quantum theory known as double quantum theory [31],
and a recent extension of classical theory to the theory of coherent d-level systems, or
codits [26].

Pure states {|si )}ni=1 are called perfectly distinguishable if there exists a measure-
ment, corresponding to effects {(e j |}nj=1, with the property that (e j |si ) = δi j for all
i, j .

5 In the following sense: a state that is not pure can be written as a convex combination of other states,
which can be thought of as a lack of information about which of these alternative states describes the system;
of course in general in a nonclassical theory there are many, incompatible, such convex decompositions of
the state. But a pure state admits no such decomposition.
6 Some may prefer another way of glossing this principle: that the capacity of a pair of systems to store
classical information should be the same whether they are accessed separately or jointly.
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Definition 1.4 (Strong symmetry [36,37]) A theory satisfies strong symmetry if, for
any two n-tuples of pure and perfectly distinguishable states {|ρi )}, {|σi )}, there exists
a reversible transformation T such that T |ρi ) = |σi ) for i = 1, . . . , n.

Although complex and real quantum theory satisfy all of the above principles,
double quantum theory and codit theory do not satisfy strong symmetry. Whether any
other theories satisfy all of the principles is an important open question.

The following consequences of the above principles, proved in [9], will be required
to define oracles in Sect. 2.

Definition 1.5 Given a set of pure and perfectly distinguishable states {|i)}, and a set
of transformations {Ti }, define a controlled transformation C{Ti } as one that satisfies:

i

σ

C =
i

σ Ti{Ti } ∀i, |σ) (1.1)

The top system and lower systems are referred to as the control and target respectively.

Note that classically-controlled transformations—those inwhich the control ismea-
sured and, conditioned on the outcome, a transformation is applied to the target—exist
in any causal theory with sufficiently many distinguishable states [23]. However, such
transformations are in general not reversible [9].

Theorem 1.6 ([9] Theorem 2) In any theory satisfying (i) causality, (ii) purification,
(iii) strong symmetry, (iv) product of pure states is pure, and in which there exists a set
of n pure and perfectly distinguishable states |i) indexed by i ∈ {1, . . . , n}, for any
collection of n reversible transformations {Ti }ni=1 there exists a reversible controlled
transformation C{Ti } in which the Ti are controlled by the states |i).

Every controlled unitary transformation in quantum theory has a phase kick-back
mechanism [16,38]. Such mechanisms form a vital component of most quantum algo-
rithms [38]. It was shown in [9] that a generalised phase kick-back mechanism exists
in any theory satisfying the above physical principles.

Definition 1.7 A phase transformation, relative to a given measurement of effects (i |,
is a transformation Q such that:

Q ∀i=i i

Theorem 1.8 ([9] Lemma 2) In a theory satisfying Causality, Strong Symmetry, and
Purification, for any set Ti of reversible transformations and state |s) such that for all
i Ti |s) = |s), there exists a reversible transformation Q such that

s

C σ Q

∀|σ){Ti }
=

s

σ

(1.2)
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where Q is a phase transformation. Moreover, every phase transformation can arise
via such a generalised phase kick-back mechanism.

1.1 Post-quantum Interference

In the sections that follow,wewill connect post-quantum, or higher-order, probabilistic
interference to post-quantum computation; investigating whether “more” interference
implies “more” computational power. The definition of higher-order interference that
we present here takes its motivation from the set-up of multi-slit interference experi-
ments. In such experiments a particle (a photon or electron, say) passes through slits
in a physical barrier and is detected at a screen placed behind the barrier. By blocking
some (or none) of the slits and repeating the experiment many times, one can build up
an interference pattern on the screen. The “intensity” of the pattern in a small area of
the screen is proportional to the probability that the particle arrives there. Informally,
a theory has “nth order interference” if one can generate interference patterns in an
n-slit experiment which cannot be created in any experiment with only m slits, for all
m < n.

More precisely, this means that the interference pattern created on the screen cannot
be written as a particular linear combination of the interference patterns generated
when different subsets of slits are open and closed. In the standard two slit experiment,
quantum interference corresponds to the statement that the interference pattern can’t
be written as the sum of single slit patterns:

	= +

Itwas first shownbySorkin [10,11] that—at least for ideal experiments [39]—quantum
theory is limited to the n = 2 case. That is, the interference pattern created in a three—
or more—slit experiment can be written in terms of the two and one slit interference
patterns obtained by blocking some of the slits. Schematically:

= + + − − −

The terms with minus signs in the above correct for over-counting of the open slits. If
a theory does not have nth order interference then one can show it will not have mth
order interference, for any m > n [10]. Therefore, one can classify theories according
to their maximal order of interference, k. For example quantum theory lies at k = 2
and classical theory at k = 1.
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Consider the state of the particle just before it passes through the slits. For every slit,
there should exist states such that the particle would definitely be found at that slit, if
one were to measure it. Mathematically, this means that there exists a face7 [36] of the
state space, such that all states in this face give unit probability for the “yes” outcome
of the two outcome “is the particle at this slit?” measurement. These faces will be
labelled Fi , one for each of the n slits i ∈ {1, . . . , n}. As the slits should be perfectly
distinguishable, the faces associated to the slit should be mutually orthogonal. This
can be achieved by letting the slits be in one-to-one correspondence with a set of pure
and perfectly distinguishable states.

One can additionally ask coarse grained questions of the form “Is the particle found
among a certain subset of slits, rather than somewhere else?”. The set of states that
give outcome “yes” with probability one must contain all the faces associated with
each slit in the subset. Hence the face associated to the subset of slits I ⊆ {1, . . . , n}
is the smallest face containing each face in this subset, FI := ∨

i∈I Fi . That is, FI

is the face generated by the pure and perfectly distinguishable states identified by the
subset I . The face FI contains all those states which can be found among the I slits.
The experiment is “complete” if all states in the state space (of a given type A) can be
found among some subset of slits. That is, if F12···n = St(A).

Higher-order interference was initially formalised by Rafael Sorkin in the frame-
work of Quantum Measure Theory [10] but has more recently been adapted to
the setting of generalised probabilistic theories in [9,36,40–42]. A straightforward
translation to this setting describes the order of interference in terms of probability
distributions corresponding to interference patterns generated in the different experi-
mental setups (which slits are open, etc.) [9,42].However, given the principles imposed
in the previous section, it is possible to define physical transformations that correspond
to the action of opening and closing certain subsets of slits. In this case, there is a more
convenient (and equivalent [36], given our principles) definition in terms of such trans-
formations (such a definition was also used in [40,41]).

Given N slits, labelled 1, . . . , N , these transformations will be denoted PI , where
I ⊆ {1, . . . , N } corresponds to the subset of slits which are not closed. In general
one expects that PI PJ = PI∩J , as only those slits belonging to both I and J will
not be closed by either PI or PJ . This intuition suggests that these transformations
should correspond to projectors (i.e., idempotent transformations PI PI = PI ). Given
the principles imposed in this paper, this is indeed the case.

Theorem 1.9 In any theory satisfying the principles introduced in the previous section,
the projector onto a face generated by a subset of pure and perfectly distinguishable
states is an allowed transformation in the theory. If F and G are faces generated by
subsets of the same pure and perfectly distinguishable set of states, one has PF PG =
PF∩G.

The proof of theorem 1.9 is presented in Appendix A. Given this structure, one can
define the maximal order of interference as follows [5,36].

7 A face is a convex set with the property that if px + (1− p)y, for some p ∈ (0, 1), is an element then x
and y are also both elements.
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Definition 1.10 A theory satisfying the principles imposed in this section has maximal
order of interference k if, for any N ≥ k, one has:

1N =
∑

I ⊆ N
|I | ≤ k

C (k, |I |, N ) PI

where 1N is the identity on a system with N pure and perfectly distinguishable states
and

C (k, |I |, N ) := (−1)k−|I |
(
N − |I | − 1
k − |I |

)

The factor C (k, |I |, N ) in the above definition corrects for the overlaps that occur
when different combinations of slits are open and closed. For k = N , the above reduces
to the expected expression 1h = P{1,...,k}, that is, the identity is given by the projector
with all slits open. The case N = k + 1 corresponds to C (k, |I |, k + 1) = (−1)k−|I |,
corresponding to the situation depicted in the above diagrams, as well as the one most
commonly discussed in the literature [10,40].

Instead of working directly with these physical projectors, it is mathematically
convenient to work with the (generally) unphysical transformations corresponding
to projecting onto the “coherences” of a state. Consider the example of a qutrit in
quantum theory, the projector P{0,1} projects onto a two dimensional subspace:

P{0,1} ::
⎛

⎝
ρ00 ρ01 ρ02
ρ10 ρ11 ρ12
ρ20 ρ21 ρ22

⎞

⎠ �→
⎛

⎝
ρ00 ρ01 0
ρ10 ρ11 0
0 0 0

⎞

⎠

whilst the coherence-projector ω{0,1} projects only onto the coherences in that two
dimensional subspace:

ω{0,1} ::
⎛

⎝
ρ00 ρ01 ρ02
ρ10 ρ11 ρ12
ρ20 ρ21 ρ22

⎞

⎠ �→
⎛

⎝
0 ρ01 0

ρ10 0 0
0 0 0

⎞

⎠ .

That is,ω{0,1} corresponds to the linear combination of projectors: P{0,1} − P{0} − P{1}.
There is a coherence-projector ωI for each subset of slits I ⊆ {1, . . . , N }, defined

in terms of the physical projectors:

ωI :=
∑

Ĩ⊆I

(−1)|I |+| Ĩ |PĨ .

These have the following useful properties, which were proved in [5,36].
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Lemma 1.11 An equivalent definition of the maximal order of interference, k, is:

1N =
k∑

I ,|I |=1

ωI , for all N ≥ k.

The above lemma implies that any state (indeed, any vector in the vector space
generated by the states) in a theory with maximal order of interference k can be
decomposed in a form reminiscent of a rank k tensor:

|s) =
k∑

I ,|I |=1

ωI |s) =
k∑

I ,|I |=1

|sI ). (1.3)

This decomposition can be thought of as a generalised superposition, as it manifestly
describes the coherences between different subsets of perfectly distinguishable states
(the analogue of a basis in quantum theory) present in a given state. This will be
important in discussing the power of oracle queries in the following section, since
it allows oracles to be queried not just on states corresponding to definite inputs or
probabilistic mixtures of them, but on superpositions of them.

2 Oracles

In classical computation, an oracle is usually defined as a total function f : S → T
from a finite or (more usually) countably infinite set S to a finite set T .Most commonly,
we have f : N → {0, 1}, or f : {0, 1}∗ → {0, 1}. These last are essentially equivalent
since the set {0, 1}∗ of finite binary strings can be identified withN via the usual binary
encoding. The string x is said to be in an oracle O if f (x) = 1, hence oracles can
decidemembership in a language (defined as a subset of the set of finite binary strings).
In a classical oracle model of computation, some baseline computational model, e.g.
a circuit or Turing machine model, is augmented by the ability to “query” the oracle,
i.e. obtain the value of f on one of its inputs. A query is assigned some cost in units
commensurate with those of the baseline model, and multiple queries may be made
in the course of a computation, on inputs provided in terms of the baseline model
(normally, bit strings on a tape or in some set of registers). Oracle outputs are also
provided in terms of the baseline model, and may be further processed by means of the
baseline model’s resources and/or as input to additional queries. Sometimes a model
is considered in which the resources of the baseline model are taken to be free, and the
only cost is the number of queries to the oracle; this is usually termed a query model.

In quantum computation oracle queries to a function f : {0, 1}∗ → {0, 1} are
usually represented by a family {Gn} of quantum gates, one for each length n of the
“input” string x .8 Each Gn is a unitary transformation acting on n + 1 qubits, whose
effect on the computational basis is in general given by

8 Other models of quantum oracle queries have been investigated, but this one is by far the most common.
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Gn|x, a〉 = |x, a ⊕ fn(x)〉 (2.1)

for all x ∈ {0, 1}n and a ∈ {0, 1}, where fn are a family of Boolean functions that
represent the specific oracle under consideration. Since the family fn determines (and
is determined by) a function f : {0, 1}∗ → {0, 1}, where fn is f ’s restriction to
inputs of length n, a quantum oracle may be thought of as a “coherent” version of the
corresponding classical oracle f ; we call it a “quantum oracle for f ”. Slightly more
generally, one could define a quantum oracle (“for f ”) as a family (indexed by |x |)
of controlled unitary transformations which, when queried by state |x〉 in the control
register, applies a unitary—chosen from a set of two unitaries according to the value
fn(x)—to the target register. A specific example of a quantum oracle of this sort is
the following controlled unitary:

U f = |0〉〈0| ⊗ Z f (0) + |1〉〈1| ⊗ Z f (1), (2.2)

with Z the Pauli Z matrix, f : {0, 1} → {0, 1} a function encoding some decision
problem and Z0 := I. (If we had used the Pauli X matrix, in place of Z , this oracle
would be of the type described by Eq. 2.1.

As was briefly mentioned in [9], the results of theorem 1.6 provide a way to define
computational oracles in any theory satisfying our assumptions.

Definition 2.1 In an theory satisfying our assumptions, an oracle for a decision prob-
lem f : S → T , with S and T finite sets, is a reversible controlled transformation9

C{Ti } where the set of transformations {Ti } being controlled depend on i ∈ S only
through the value f (i). If S = {A}∗, the countably infinite set of strings from a finite
alphabet A, then an oracle for f is defined to be a family Gn , indexed by the length n
of strings, of such controlled transformations, one for each fn , where fn is defined to
be f restricted to strings of length n. If T = {0, 1}, this is a decision problem.

In quantum theory there is an equivalent view of oracles in terms of phase transfor-
mations. This can be seen as a result of the phase kick-back algorithm [16,38]. In the
quantum example above, the phase kick-back forU f amounts to first rewritingU f as:

U f = I ⊗ |0〉〈0| + Z f (0)⊕ f (1) ⊗ |1〉〈1|. (2.3)

Inputting |1〉 into the second qubit results in a ‘kicked-back’ phase of Z f (0)⊕ f (1) on
the first qubit. The value of f (0) ⊕ f (1) can then be measured by preparing the first
qubit in the state |+〉 and then measuring it in the {|+〉, |−〉} basis. This provides the
value f (0) ⊕ f (1) in a single query of the oracle—a feat impossible on a classical
computer [18].

In our more general setting, an analogue of the above holds via Theorem 1.8. That
is, in theories satisfying our assumptions, as the transformations Ti depend on the
value f (i), so too can the controlled transformation and the kicked-back phase. That
is, in theories with non-trivial phases, i.e. non-classical theories, the phase kick-back

9 There could be many distinct transformations that have the same behaviour on a set of control states. As
long as one fixes which transformation corresponds to the oracle, this is not a problem.
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of an oracle can encode information about the value f (i) for all i . Indeed, it is also the
case that if one has available as one circuit element the generalised phase kick-back
transformation constructed out of the controlled transformationCTi one can construct
a circuit for CTi [9]. Hence—as in the quantum example above—from the point of
view of querying the oracle, one can reduce all considerations involving the controlled
transformation to those involving the phase kick-back transformation, which shall be
denotedO f . (This justifies our use of phase transformations as oracles inDefinition 2.2
below.)

As was shown in Sect. 1, all states in theories satisfying our principles can be
decomposed as |s) = ∑

I |sI ), with I ⊆ {1, . . . , n}, where {1, . . . , n} labels the set of
pure and perfectly distinguishable states defining the action of a give oracle. Hence,
oracles can not only be queried using a set of pure and perfectly distinguishable states,
but also using generalised superposition states—those with non-trivial coherences
between different subsets of slits. In fact, the quantum speed-up in the above example
came precisely from the fact that one can query in superposition, hence extracting the
value f (0)⊕ f (1) in a single query. To ensure that answers to hard to solve problems
are not smuggled into the definition of oracles in generalised theories, we must put
conditions on which phase transformations correspond to ‘reasonable’ oracles.

We remark that in some definitions of oracle, the possibility of a null query is
included. This is an input to the oracle transformation conditional on which nothing
happens to the target register. Although we did not explicitly include the possibility
above, we could define an oracle for f : S → T with the possibility of a null query,
as above but with an additional distinguishable state of the control register, indexed
by some symbol (say •) not in S, and with T• = id, the identity transformation. Our
results still hold for this notion of oracle (which can be viewed as a special case of an
oracle of the type defined above, for the slight extension of the function f to have one
more input, on which it takes a fixed value).

Definition 2.2 (Oracle system) A system of oracles for a family C of functions S → T
is defined as a family of phase transformations (which we call “oracles” because they
are a particular case of the oracles of Definition 2.1) {O f } f ∈C such that whenever
f (i) = g(i) for all i ∈ I , the oracles corresponding to f and g satisfy

O f |sI ) = Og|sI )

for all |sI ) of the form ωI |s) (for arbitrary |s).
An equivalent, and perhaps more intuitively motivated, definition substitutes the

condition “ for all states |sI ) such that |sI ) = PI |sI ), for the condition “for all |sI ) of
the form |sI ) = ωI |s)...” This ensures one cannot learn about the value f ( j) when
querying using a state with no probability of being found in | j). That is, O f and Og

act identically on states in the face determined by a subset of inputs on which f and g
have the same value, so that we cannot, for example, just write arbitrary information
about which function is being queried into phase degrees of freedom.

One can schematically represent the problems that can be solved by a specific
computationalmodelwith access to an oracle using the language of complexity classes.
Let C and B be complexity classes, then CB denotes the class C with an oracle for B
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(see [43] for formal definitions). We can think ofCB as the class of languages decided
by a computation which is subject to the restrictions and acceptance criteria of C,
but allowing an extra kind of computational step: an oracle for any desired language
L ∈ B that may be queried during the computation, where each query counts as a
single computational step. Here L is fixed in any given computation, though different
computations may use different L.

A natural question is whether or not having access to an oracle for a particular
decision problem which can be efficiently solved in a given theory provides any more
computational power than just using the efficient algorithm. Ifwe schematically denote
the class of problems efficiently solvable by a particular theoryG by10 BGP, this ques-
tion can be phrased as: “isBGP closed under subroutines”? Here BGP is the analogue
of thewell-known class of problems efficiently solvable by a quantum computer,BQP.
Another way to pose this question is to ask whetherBGPBGP = BGP forG satisfying
our principles.

There exist complexity classes for which this is probably not the case, for example,
NP11. But, intuitively, one would expect it to hold in a sensible physical theory where
computation is performedwith circuits. In such a situation, onemight consider it a kind
of conceptual consistency check on one’s definition of oracle: it is not reasonable for
an oracle for a problem to give more power than would be afforded by a circuit for that
problem in the model. A potential issue arises when one compares the performance
of the oracle implementation to that of the efficient algorithm when both are used
as subroutines in another computational algorithm.12 As we noted in Sects. 1 and
2, an oracle can be queried on a superposition of inputs, but one does not normally
query an algorithm for a particular decision problem in superposition for the purpose
of solving that decision problem; one merely prepares the state corresponding to
a particular bit string and uses the algorithm to determine whether or not that bit
string is in the language in question.13 For simplicity, we say the efficient algorithm
accepts an input if a measurement of the first outcome system yields outcome (0|
with probability14 greater than 2/3. This is the same acceptance condition imposed in
quantum computation.

We therefore need to know whether every BGP algorithm for a decision problem
admits a subroutine having the characteristics of an oracle for that decision problem.
Such a result was proved in the quantum case by Bennett et al. in [17]. The following
theorem shows that it is also true for theories satisfying our principles. (See [3] for the
definition of circuit and circuit family in the GPT context.)

Theorem 2.3 Consider a theory G which satisfies the principles outlined in Sect. 1.
Given an algorithm (poly-size family of circuits in G), {A|x |}, for a decision problem
in BGP, one can always construct a family {G|x |} of polynomial-size circuits imple-
10 See references [3,4,6] for a rigorous definition of this class.
11 If one assumes that the polynomial hierarchy doesn’t collapse.
12 Here, an algorithm consists of a poly-size uniform circuit. See [3] for the formal definitions.
13 However, a quantum algorithm for one problem can sometimes be used as a subroutine in a quantum
algorithm for another problem; in this case, the subroutine sometimes is run on a superposition of inputs.
14 This can be amplified to 1− 2−q , where q a polynomial in the size of the circuit, by running the circuit
in parallel a polynomial number of times. Again, see [3].
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menting reversible transformations fromG, which, with high probability (greater than
1 − 2−q(|x |), for some polynomial q), functions as an oracle for that particular deci-
sion problem (in the sense of Definition 2.1). (Here, poly-size means polynomial in the
length |x | of the input x, and the family G|x | comprises a fixed circuit for each input
size.) Schematically, we have BGPBGP = BGP.

Proof See Appendix C ��
Given our definition of an oracle we can consider how their computational power

depends on the order of interference of the theory.

3 Lower Bounds fromUseless Queries

In this section we generalise results of Reference [18], in which Meyer and Pom-
mersheim derived a relation between quantum and classical query complexity lower
bounds, by introducing the concept of a “useless” quantum query to the setting of
GPTs satisfying our principles. They considered learning problems in which one is
given an element from a class of functions with the same domain and range, chosen
with some arbitrary—but known—prior distribution, where the task is to determine
to which specific subclass the chosen function belongs.

More formally we can define a learning problem as follows:

Definition 3.1 (Learning problems) Given a set of functions C ⊆ {0, 1}X where X is
some finite set,15 a partitioning of C into disjoint subsets C = ⊔

j∈J C j labeled by
j ∈ J , and a probability measure μ over C. The aim of the learning problem is to
determine, which partition C j a particular function f ∈ C belongs to; this is to be done
with low ex ante probability of error, with respect to the probability measure μ with
which the function is chosen from among the C j ’s. A particular learning problem is
therefore defined by the triple, (C, {C j }, μ).

One can only access information about the function by querying an oracle, which,
when presented with an element from the domain, outputs the corresponding element
of the range assigned by the chosen function. Typically one specifies some upper
bound to the error probability, and is interested in the minimal number of queries
needed to ensure that the ex ante probability of error is below the bound, with respect
to the measure μ that gives the “prior probability” of functions f ∈ C.

Meyer and Pommersheim showed that if n queries to a classical oracle reveal
no information about which function was chosen16 then neither do n/2 queries to a
quantum oracle. Hence �n/2� + 1 quantum queries constitute a lower bound.

Many important query problems are examples of learning problems. For instance,
PARITY, a generalisation of the special case of Deutsch’s problem where the input to
f is a bit, [16] which asks for the parity of a function17 f : {1, . . . , N } → {0, 1} can
15 One could alternatively consider replacing {0, 1} with a different finite set Y . Thus the result proved in
this section, and the result proved in [18], also holds in the more general case.
16 That is, if the probability that the chosen function belongs to a given subclass after n classical queries
is the same as the known prior probability with which it was originally chosen.
17 i.e., the value f (1) ⊕ · · · ⊕ f (N ) mod 2
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be written as a learning problem. Indeed, partition the class of all such functions into
two subclasses, one in which all functions have parity 0 and the other 1, and choose
the function with a prior probability of 1/2. In this case, N − 1 classical queries do
not provide any information about the parity, hence at least �(N − 1)/2�+1 quantum
queries are needed to solve the problem. In fact �(N − 1)/2�+1 quantum queries are
also sufficient.18

In this section we generalise Meyer and Pommersheim’s result to the case of oracle
queries in the generalised probabilistic theory framework presented in the previous
section. We prove that if n queries to a classical oracle reveal no information about
which function was chosen then neither do n/k queries in a generalised theory satis-
fying the principles introduced in Sect. 1 and which has maximal order of interference
k. Hence a lower bound to determining the function is �n/k� + 1 queries in theories
with kth order interference. So in the specific generalisation of Deutsch’s problem
where we are asked to determine the parity of a function f : {1, . . . , n} → {0, 1},
�n/2� quantum queries are needed, but in a theory with nth order interference, the “
no-information” or “useless-queries” bound does not rule out the possibility that the
parity can be determined with a single query.

We can now formally define what it means for n classical queries to be useless [18].

Definition 3.2 (Useless classical queries [18]) Let
(C, {C j : j ∈ J }, μ)

be a learning
problem. n classical queries are said to be useless, or to convey no information, if for
any x1, . . . xn ∈ X and y1, . . . yn ∈ {0, 1} the following holds

μ
(
f ∈ C j | f (xi ) = yi , i = 1, . . . , n

) = μ
(
f ∈ C j

)
, for all j ∈ J .

Here expressions like μ
(
f ∈ C j | f (xi ) = yi , i = 1, . . . , n

)
are to be understood

simply as conditional probabilities of events like f ∈ C j , conditional on events like
f (x1) = y1 & f (x2) = y2 & · · · & f (xn) = yn .
A general n-query algorithm in a generalised theory satisfying our principles corre-

sponds to the following: an arbitrary initial state |σ) is prepared and input to the oracle
O f , the output state is acted upon by an arbitrary transformation G1 independent of
f , and the process is repeated. After the nth oracle query, the state is

|ρ f ) = GnO f Gn−1 · · ·G1O f |σ).

Thefinal step consists ofmeasuring this statewith an arbitrarymeasurement denoted as
{(s|}s∈S . The final19 output of the algorithm is given by a map, which is independent
of f from the set S indexing the measurement outcome to the set J indexing the
subclasses to which the function could belong.

The probability of outcome (s| being observed in the measurement, when the
unknown function is f , is therefore defined to be (s|ρ f ). So there is a joint prob-
ability distribution, which we will denote also by the letter μ, over the outcome s and
the function f :

18 �(N − 1)/2� + 1 applications of the solution to Deutsch’s problem.
19 As was noted in [18], the final transformation Gn is unnecessary, as it could be incorporated into the
measurement.
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μ(s, f ) = (s|ρ f )μ( f ).

Bayes’ rule gives the posterior probability that the function was f , given the observed
measurement outcome s:

μ( f |s) = (s|ρ f )μ( f )/
∑

g∈C
(s|ρg)μ(g).

The posterior probability that f ∈ C j given this outcome is

μ( f ∈ C j |s) =
∑

f inC j

μ( f |s).

Similarly we define μ( f ∈ C j ) = ∑
f ∈C j

μ( f ), the prior probability that f ∈ C j .
We can now generalise the definition of a useless quantum query from [18] to the

case of generalised theories satisfying our principles.

Definition 3.3 (Useless generalised queries) Let
(C, {C j } j∈J , μ

)
be a learning prob-

lem. n generalised queries are said to be useless, or to convey no information, if for
any n query generalised algorithm with initial state |σ), transformations Gn, . . . ,G1,
and measurement {(s|}s∈S the following holds

μ
(
f ∈ C j | s) = μ

(
f ∈ C j

)
, for all possible s ∈ S, j ∈ J .

We now present our main result, which generalises Theorem 1 from [18].

Theorem 3.4 Let
(C, {C j : j ∈ J }, μ)

be a learning problem. Suppose kn classical
queries are useless. Then in any theory which satisfies our principles and has maximal
order of interference k, n generalised queries are useless.

Wepresent the formal proof below, but first provide a rough sketch proof. In a theory
with kth order interference, each state can be decomposed as in Eq. (1.3). Hence each
state is explicitly indexed by subsets—of size at most |I | = k—of the set of pure
and perfectly distinguished states defining the oracle. Thus, after a single generalised
query, the state is indexed by the valuation of the chosen function on at most k inputs.
After n generalised queries, it is indexed by kn valuations. Therefore, a measurement
can reveal at most kn valuations of the chosen function. But, as kn classical queries
are useless, it must be that n generalised queries are also useless. The intuition behind
this result is that, as a given state can have coherence between at most k basis states,
one can use generalised superposition states to extract at most k valuations of a given
function in a single query.

Proof Our proof is essentially a slight generalisation of the original quantum one
presented in [18]. We need to show that the probability of f being in C j does not
change if outcome s is observed after n queries. That is, we must show

∑

f ∈C j

μ( f | s) = μ
(C j

)
, for any s ∈ S and j ∈ J .
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Recalling from the application of Bayes’ rule to obtain Eq. 3 we have:

μ( f |s) = (s|ρ f )μ( f )
∑

g∈C(s|ρg)μ(g)

and summing over f in C j , we have

∑

f ∈C j

μ( f | s) =
(
s
∣
∣
∣
∑

f ∈C j
μ( f )

∣
∣
∣ ρ f

)

(
s
∣
∣
∣
∑

g∈C μ(g)
∣
∣
∣ ρg

) . (3.1)

Let’s focus on |ρ f ). Given the decomposition in Eq. (1.3), every state can be written
as

|σ) =
k∑

I ,|I |=1

ωI |σ) =:
k∑

I ,|I |=1

σI .

Now, each O f (σI ) can depend on all f (i) with i ∈ I . By padding out those I with
|I | < k with dummy indices, after a single query one can write

O f |σ) =
∑

I

O f (σI ) =
∑

T1

QT1

(
f (x11), f (x21 ), . . . , f (xk1 )

)
,

where the second equality is just a relabeling of the termswhere T1 = {x11 , x21 , . . . , xk1 }
is the padded version of I , and hence each QT1 is a vector in the real vector space of
states that depends on f (x11), f (x21 ), . . . , f (xk1 ). Therefore, after n queries one can
write the state as

|ρ f ) =
∑

Tn

QTn

(
f (x11), . . . , f (x1n), f (x21 ), . . . , f (x2n ), . . . , f (xk1 ), . . . , f (xkn )

)

Using a change of variables provides

∑

f ∈C j

μ( f )|ρ f )

=
∑

Tn

∑

{y1i },...,{yki }
μ

(
f ∈ C j and f (xmi ) = ymi , for i = 1, . . . , n and m = 1, . . . , k

)

× QTn

(
y11 , . . . y

k
n

)
.

As kn classical queries are useless

μ
(
f ∈ C j and f (xmi ) = ymi , for i = 1, . . . , n and m = 1, . . . , k

)

= μ(C j )μ
(
f (x j

i ) = y j
i , for i = 1, . . . , n and j = 1, . . . , k

)
.
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Inputting this into the above we obtain,

∑

f ∈C j

μ( f )|ρ f )

= μ(C j )
∑

Tn

∑

{y1i },...,{yki }
μ

(
f (x j

i ) = y j
i , for i = 1, . . . , n and j = 1, . . . , k

)

× QTn

(
y11 , . . . y

k
n

)
.

(3.2)
Then. summing over j ∈ J , results in

∑

f ∈C
μ( f )|ρ f )

=
∑

Tn

∑

{y1i },...,{yki }
μ

(
f (x j

i ) = y j
i , for i = 1, . . . , n and j = 1, . . . , k

)

× QTn

(
y11 , . . . y

k
n

)
.

Substituting this back into Eq. (3.2) immediately gives

∑

f ∈C j

μ( f )|ρ f ) = μ(C j )
∑

f ∈C
μ( f )|ρ f ).

finally, substituting this into Eq. (3.1) completes the proof. ��

4 Conclusion

In this work we have introduced a well-defined oracle model for generalised proba-
bilistic theories, and shown it to be well-behaved in the sense given by our subroutine
theorem: that an oracle of our type for a given problem is not more powerful than an
algorithm for that problem, since an algorithm permits high-probability simulation of
an oracle. This allowed us to compare the computational power imposed by different
physical principles through the lens of query complexity. Ourmain result in this regard
was to show that the “zero-information” lower bound on the number of queries to a
quantum oracle needed to solve certain problems is not optimal in the space of gen-
eralised theories satisfying the principles introduced in Sect. 1. Our result highlights
the role of interference in computational advantages in a theory independent man-
ner, allowing the possibility that “more interference could permit more computational
power”.

Previous work by the authors in [5] derived Grover’s lower bound to the search
problem from simple physical principles. The search problem asks one to find a certain
“marked item” from among a collection of items in an unordered database. The only
access to the database is through an oracle; when asked if item i is the marked one,
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the oracle outputs “yes” or “no”. The figure of merit in this problem is how the
minimum number of queries required to find the marked item scales with the size
of the database. It was shown—subject to strong assumptions close to those used in
the present paper—that, asymptotically, higher-order interference does not provide an
advantage over quantum theory in this case. As opposed to the asymptotic behaviour
of the number of queries needed to solve the search problem, the current work was
concerned with whether a fixed number of queries yielded any information about the
solution of a particular query problem, where the problem could be any of a large class
of “learning problems”. In this case we were able to show that the “useless-queries” or
“zero-information” lower bound on the number of queries is lower, the higher the order
of interference in the theory, leaving open the possibility that higher-order interference
could lead to a computational speedup (although we did not show that such a speedup
is achievable). Note that a specific oracle model for the search problemwas introduced
in [5]. However, this is just a special case of the general model introduced in Sect. 2
of the current work. Moreover, the subroutine theorem proved here shows that our
general oracle model is well-defined.

Our derivation of query lower bounds raises the question of whether the physical
principles we have discussed are sufficient for the existence of algorithms which
achieve these lower bounds. In the specific case of the search problem, a quantum
search algorithm based on Hamiltonian simulation, due to Farhi and Gutmann [44]
and also presented in chapter 6 of thewell known textbook byNielsen andChuang [16],
may be more directly generalisable to theories satisfying our principles than Grover’s
original construction [45]. This approach may also be applicable to many other query
algorithms. In the algorithm as presented in [16] they consider a Hamiltonian H
consisting of projectors onto the marked item |x〉 and the initial input state |ψ〉 =
α|x〉 + β|y〉, with |y〉 orthogonal to |x〉 and α2 + β2 = 1, respectively. That is, they
consider the Hamiltonian H = |x〉〈x |+ |ψ〉〈ψ |. Evolving the initial input state under
this Hamiltonian for time t results in

exp(−i t H)|ψ〉 = cos(αt)|ψ〉 − i sin(αt)|x〉.

Hence, measuring the system in the {|x〉, |y〉} basis at time t = π/2α yields outcome
|x〉 with probability one. If the initial state was a uniform superposition over the
orthonormal basis containing |x〉, then the required evolution time is t = π

√
N/2,

where N is the size of the system (or equivalently, the number of elements in the
database being searched).

One might wonder why there is no mention of an oracle in the above discussion.
The oracle comes into play when constructing a quantum circuit to simulate the above
Hamiltonian evolution. As the above Hamiltonian depends on the marked item, the
quantum circuit simulating it must query the search oracle a number of times pro-
portional to the evolution time [16]. In this specific case, an efficient Hamiltonian
simulation requires O(

√
N ) queries to the oracle, yielding an optimal quantum algo-

rithm (up to constant factors) for the search problem. Recently, the authors of [36] have
introduced a physical principle, termed “energy observability”, which implies the exis-
tence of a continuous reversible time evolution and ensures that the generator of any
such evolution—a generalised “Hamiltonian”—is associated to an appropriate observ-
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able, which is a conserved quantity under the evolution—the generalised “energy”
of the evolving system. Recall from Sect. 1 that the principles we have discussed
were sufficient to ensure that projectors onto arbitrary states correspond to allowed
transformations. Hence, our previous principles, together with energy observability
as introduced in [36], might be sufficient to run the above quantum search algorithm,
hence providing a theory independent description of an optimal (up to constant fac-
tors) search algorithm. Similar constructions based on Hamiltonian simulation might
also show that theories satisfying the above physical principles can reach the query
lower bounds derived in this paper.
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Appendices

A Proof of Theorem 1.9

This is an adaptation of the proof of theorem 8 from [36]. Consider a self-dual cone
C with self-dualising inner product 〈·, ·〉. Now consider a set of pure and perfectly
distinguishable states φi which are distinguished by the effects ei such that (ei |φ j ) =
δi j . We can define a face F ofC as the minimal face generated by the set of states {φi },
we can moreover define the dual face F∗ := {x ∈ C | 〈x, s〉 ≥ 0 ∀s ∈ F}. Appendix
A in [36] shows that if F = F∗ then there exists a positive projector onto the face F .

Consider some t ∈ F . Self-duality of C implies that 〈t, s〉 ≥ 0 ∀s ∈ F hence,
t ∈ F∗ and so F ⊆ F∗. We therefore just need to prove the converse inclusion and
we are done.

To prove this, consider a normalised extremal x ∈ F∗, there must be some s ∈ F
such that 〈s, x〉 = 0, where moreover, if 〈s, y〉 = 0 then y ∝ x . Next we prove two
simple results:

(i) s is not internal to F—assume, for the sake of contradiction, that s is internal.
Then 〈x, t〉 = 0 ∀t ∈ F so x = 0 and hence is not normalised.

(ii) There exists t ∈ F such that s and t are perfectly distinguishable—assume, again
to reach a contradiction, that there is no such t . This means that given any pure and
perfectly distinguishing measurement {εi } that (εi |s) > 0 for all i . Due to strong
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symmetry, any pure effect appears in such a measurement, therefore (e|s) > 0
for all pure effects (e|, this suffices for tomography hence |s) is an internal state,
in contradiction with (i).

Theorem 1 from [37] implies that if s and t are perfectly distinguishable states then
〈s, t〉 = 0, therefore we know that t ∝ x and so x ∈ F . This is true for all extremal
normalised x ∈ F∗ it therefore follows from convexity that this is true for all x ∈ F∗
and so we have F∗ ⊆ F which concludes the proof.

Hence, projectors PF onto F are positive transformations. It was shown in [23]
that in any theory satisfying causality, purification and informationally consistent
composition, mathematically well-defined transformations are physical, i.e. they are
allowed in the theory. Hence projectors PF are physically allowed transformations.
Moreover, given two faces, F and G, generated by different subsets of the same pure
and perfectly distinguishable set of states, one has PF PG = PF∩G .

B Useful Consequences of Our Principles

B.1 Uniqueness of DistinguishingMeasurement

Strong symmetry (together with the no restriction hypothesis, which says that all
mathematically well-defined measurements are physical) implies that, given any set
of pure and perfectly distinguishable states {|i)}, there exists a unique measurement
{( j |} such that,

(i | j) = δi j .

See [36,37] for details. Moreover, for every set {(e j |} such that (e j |i) = α jδi j , it holds
that

(e j | = α j ( j |.

B.2 Purifications of Completely Mixed States are Dynamically Faithful

As mentioned in Sect. 1, purification implies that there exist completely mixed states.
Purification implies that there exists a state |ψ) that purifies such a completely mixed
state:

ψ =

123
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This is unique up to reversible transformation. We denote a particular choice of this
purification as,

ψ:=

Purifications of completely mixed states are called dynamically faithful states [23]
and, due to the constraints on parallel composition imposed in section 1, must satisfy
the following important condition [23]:

=T T ′

�⇒

T ′=T

As a special case, of course the purification of themaximallymixed state is dynamically
faithful. In our applications, however, any dynamically faithful state, purifying some
completely mixed state, will do.

C Proof of Theorem 2.3

Proof It was shown in [23] that the purification principle implies the ability to dilate
any transformation to a reversible one.We use this fact in the construction of the circuit
{G|x |}. Our construction is equivalent to the one employed in the quantum case by
[17].

In the construction, each G|x | is given by:

...

U|x |

C

U−1
|x |...

...
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where U|x | is the reversible transformation which dilates20 the BGP algorithm A|x |

...
...A|x | = ...

U|x |

...

0

and C is “controlled bit-flip”, or “generalised CNOT”: a reversible controlled trans-
formation with the lower system as the control

C =
i i

Ti

with |i) ∈ {|0), |1)}, T0 = I, and where T1 acts as T1|i) = |i ⊕ 1).
To show that the family G|x | functions as an oracle with high probability, thereby

proving theorem 2.3, we will show that the probability corresponding to the following
closed circuit

0

x

0

0

...

U|x |

C

U−1
|x |...

...

0

x

0

0

is greater than or equal to 1−2−q(|x |), for some polynomial q(|x |), when the algorithm
A|x | accepts21 the input x .

We choose the dynamically faithful state to satisfy

i

= pi
i

where pi ∈ (0, 1] and ∑
i pi = 1, which can always be achieved without loss of

generality (see theorem 6 and corollary 9 from [23]).

20 Recall that that the circuit family {U|x |}, with U|x | a reversible transformation which dilates A|x | for
each |x |, consists of poly-size uniform circuits.
21 That is, when x is in the language decided by the algorithm.
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We first show that C satisfies

0

C
0

= 0 0

(C.1)

To see this note that uniqueness of measurement (both of the following states give
probability p0 for (0|(0|, and probability zero for each of (0|(1|, (1|(0|, and (1|(1|)
implies

0

C
0

= p0

0

0

From our choice of dynamically faithful state, it then follows that

0

C
0

=
00

Dynamical faithfulness then gives Eq. (C.1).
Secondly, we write

x

0

0

...

U|x |
...

0

=
σα

...

where |σ) is a normalised state and α ∈ (0, 1]. Our choice of acceptance condition,
together with the fact that U is a dilation of the algorithm A, results in

x

0

0

...

U|x |
...

0

= α = Px (acc)

(C.2)
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Combining (C.1) and (C.2) gives

0

x

0

0

...

U|x |

C

U−1
|x |...

...

0

x

0

0

=
...

...

x

0

U−1
|x | 0

0

σ

Px (acc)

...σ

Px (acc)2=
σ

where the last line follows from self-duality. By amplifying the acceptance probability
of the original algorithm A (see [3] for an in depth discussion of bounded error efficient
computation and amplifying acceptance probabilities), we can ensure that when x is in
the languagewe have Px (acc) ≥ 1−2−p(|x |) for an arbitrary polynomial p(|x |). Hence
it follows that Px (acc)2 ≥ 1−2−p(|x |)+1. If (σ |σ) = 1, choosing p(|x |) = q(|x |)+1
completes the proof.

The case (σ |σ) < 1 can be easily dealt with. As |σ) and (σ | can be efficiently
prepared by a poly-size circuit, the factor (σ |σ) can be approximated by a ratio-
nal number to high accuracy (this is a consequence of the computational uniformity
condition required to define computation in arbitrary physical theories, including
quantum theory. See [3] and [4] for an expanded discussion of this point). Hence
one can write (σ |σ) = 1 − c2−w(|x |), for w a polynomial in the size of the cir-
cuit and c a constant natural number. One can always find a polynomial q such that(
1 − c2−w(|x |)) (

1 − 2−p(|x |)+1
) ≥ 1 − 2−q(|x |). This completes the proof. ��
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