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The theme of this special issue of Foundations of Physics is the interplay between,
and mutual enrichment of, quantum information theory and quantum foundations.
Information-theoretic concepts have always had a place (sometimes beneath the sur-
face) in discussions of the foundations of quantummechanics. This is hardly surprising,
since quantum mechanics, as usually presented, is a probabilistic theory. And, indeed,
pioneering work by Holevo [9] and others in the 1970s had already begun the devel-
opment of a full-fledged quantum information theory.

However,with the emergence of quantum information theory as a distinct discipline,
in the 1990s, the richness of this point of view became clearer. In part, this owes to
the realization that, in connection with concrete information-processing tasks, one
usually need only consider finitely many degrees of freedom—equivalently, a finite-
dimensional subspace of the full Hilbert space of the quantum systems involved.

Another, more important, development was the realization that properties of entan-
gled states of composite quantum systems could be regarded, not as anomalies, but
as resources that could be systematically exploited. Since issues involving entangled
states had always been central to discussions of quantum foundations, it was natural
for researchers in QIT to take an interest in the older foundational literature, and to
become interested in the problems it dealt with. Two excellent examples of this are
the efforts to understand the information-theoretic meaning of the Tsirel’son bound on
the strength of nonlocal correlations in quantum theory [10], and efforts to reconstruct
finite-dimensional QM from largely information-theoretic postulates, beginning with
the celebrated paper of Lucien Hardy [8].
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Now, two decades on, information-theoretically inflected quantum foundations, or
foundationally-inflected quantum information theory, is emerging as its own area of
research, distinct from both mainstream quantum information theory, from which it
draws some techniques and a certain orientation, and traditional quantum foundations,
with which it shares core problems, but from which it differs in its focus on finite-
dimensional systems, entangled states, and the idea of physical systems as information-
carriers. The seven papers in this volume constitute a sampler of some (though by no
means all) of the areas of current research that define this new area.

Two of these papers focus on the broad question of how to measure the degree
to which bipartite or multi-partite quantum states are entangled—for instance, by
imposing a suitable metric on the space of quantum states, and then identifying the
given state’s distance from the set S of separable states, or from the set K of classical
states. A related question is, roughly speaking, how much of the quantum state space
is taken up by classical or separable states. That is, are genuinely entangled states
rare, or commonplace, among bipartite—and multipartite—quantum states? In their
contribution, Li and Winter address the first question, discussing a particular measure
of entanglement known as squashed entanglement (defined in terms of quantum con-
ditional mutual information), in terms of which, among other things, they obtain a
bound on the trace distance from a state from the set of separable states. The second
question is the focus of the survey paper by Palazuelos. A natural approach here is to
ask for the probability that a “random” bipartite state will belong to the classical (or
the separable) set; however, defining a suitable notion of randomness in this setting
is challenging, and work in this area involves relatively sophisticated mathematical
tools (e.g., the Grothendieck inequality, and various extensions thereof the multilinear
forms). Palazuelos undertakes the comensurately challenging task of making this area
accessible to a non-specialist audience.

Quantum information theory accepts at face value the reading of quantummechan-
ics as simply are density operators, understood as assigning probabilities to effects via
the Born rule. This basic picture, of states assigning probabilities to the outcomes of
possible—and possibly incompatible—measurements, is easily abstracted to frame a
QM can be located as just one example, albeit the one Nature seems to favor. In this
approach, one usually assumes only that the state-space of a physical system is a con-
vex set, usually compact, and thatmeasurement-outcomes are represented by so-called
effects, i.e., affine functionals from the state space to the unit interval. (In quantum
theory, the state space is the convex set of density operators on a Hilbert space, and the
effects are easily shown to correspond, via trace duality, to positive operators on the
same Hilbert space, dominated by the identity operator—that is, effects in the usual
sense.) Many “distinctively quantum” phenomena, including the existence and basic
properties of entangled states, versions of the no-cloning and no-broadcasting theo-
rems, teleportation protocols, and more, arise quite profusely in probabilistic theories
of this kind.1 See [2] for a recent survey.

Four of the papers in this Issue deal with such “generalized probabilistic theories”
(GPTs), reflecting their growing importance in both quantum information theory and

1 Indeed, there is no known counterexample to the conjecture that as long as neither component state-space
is “classical”, i.e., a simplex, there always exist well-behaved—in particular, “tomographically local”—
bipartite composites that contain entangled states.
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quantum foundations. A natural question to ask about a particular (generalized) prob-
abilistic model is the extent to which it can be simulated by a quantum-mechanical
one. Another question is how one can combine such models to form models of com-
posite systems, in a way respecting the no-signaling requirement of general relativity.
In their paper in this volume Sainz and Wolfe connect these questions, showing that
a well studied class of quantum-mechanically simulatable states, the so-called Q1
states, on a composite can depend significantly on which of several plausible compo-
sition rules one uses. They also show, however, that this dependence disappears when
one requires the composite to respect, not only the no-signaling constraint, but also
the so-called “local orthogonality” principle. The papers by Garner and by Barnum,
Lee and Selby deal with computation in GPTs, in both cases linking the computa-
tional power of such a theory to the degree to which the theory in question supports
interference (suitably defined). In particular, Barnum, Lee and Selby link the number
of queries to an oracle needed to solve certain learning problems, to the degree of
interference (in the sense of [12]) the theory exhibits. Garner, meanwhile, establishes
that computations involving interference between the arms of an interferometer can be
replicated in certain theories other than standard QM, including quaternionic QM and
Spekkens’ well-known “toy theory” [13]. The paper of Branford, Dahlsten and Garner
concerns dynamics in GPTs. In particular, they address the question of how one ought
to define a “Hamiltonian” in such a setting, aiming for a definition that applies to as
broadly as possible. Among other things, they show that Hamiltonians, satisfying their
desiderata, are always available for systems having 3-dimensional state spaces.

In a certain sense, questions about the interpretation of quantum theory are dual to
those about the foundations of QM. Historically, intepretational issues take the formal
framework of quantum mechanics as given, and ask how we can sensibly read this as
telling us a story about physical reality. The development of the information-theoretic
view of quantum foundations has had an impact on this discussion. A distinction is
often made between those interpretations of QM that treat the quantum state as an
objective, observer-independent feature of reality, and those that regard it as a encod-
ing the expectations of (possible) agents about their own probable future experiences
(say, in the laboratory). In his paper for this Issue, Richard Healey defends and fur-
ther explicates his pragmatist interpretation, which, he argues, does not fit well with
this distinction. In Healey’s view, quantum states provide objectively most reliable
information—that is, advice—about what agents (even purely theoretical ones) ought
to expect from their future encounters with quantum systems. Healey illustrates this
with a careful analysis of quantum teleportation protocols.

While the papers in this Issue touch on a wide range of issues of current inter-
est, we wish to stress that these do not begin to exhaust the connections between
quantum information theory and quantum foundations. Among topics that are not
represented here, we might mention the program of reconstructing at least finite-
dimensional QM from probabilistic or information-theoretic assumptions (beginning
with Hardy’s paper, mentioned above), the broad subject of hidden variables, which
has been revived as a useful analytical tool [11], efforts to understand thermodynamics
from a GPT perspective (e.g., [3,6]), the category-theoretic approach to quantum and
more general theories [1], and the topic of resource theories [7]. In any case, we hope
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the papers in this Issue will leave many readers interested enough in this general area
to undertake some further exploration.
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