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Abstract Change and local spatial variation are missing in Hamiltonian general rel-
ativity according to the most common definition of observables as having 0 Poisson
bracket with all first-class constraints. But other definitions of observables have been
proposed. In pursuit of Hamiltonian–Lagrangian equivalence, Pons, Salisbury and
Sundermeyer use the Anderson–Bergmann–Castellani gauge generator G, a tuned
sum of first-class constraints. Kuchař waived the 0 Poisson bracket condition for the
Hamiltonian constraint to achieve changing observables. A systematic combination
of the two reforms might use the gauge generator but permit non-zero Lie derivative
Poisson brackets for the external gauge symmetry of General Relativity. Fortunately
one can test definitions of observables by calculation using two formulations of a
theory, one without gauge freedom and one with gauge freedom. The formulations,
being empirically equivalent, must have equivalent observables. For de Broglie-Proca
non-gauge massive electromagnetism, all constraints are second-class, so everything
is observable. Demanding equivalent observables from gauge Stueckelberg–Utiyama
electromagnetism, one finds that the usual definition fails while the Pons–Salisbury–
Sundermeyer definition withG succeeds. This definition does not readily yield change
in GR, however. Should GR’s external gauge freedom of general relativity share with
internal gauge symmetries the 0 Poisson bracket (invariance), or is covariance (a
transformation rule) sufficient? A graviton mass breaks the gauge symmetry (general
covariance), but it can be restored by parametrization with clock fields. By requiring
equivalent observables, one can test whether observables should have 0 or the Lie
derivative as the Poisson bracket with the gauge generator G. The latter definition is
vindicated by calculation. While this conclusion has been reported previously, here
the calculation is given in some detail.
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1 Problem of Missing Change and Spatial Variation in Observables

Already in the mid-1950s there arose the problem of missing change in observables
in the constrained Hamiltonian formulation of General Relativity: “There are indica-
tions that the Hamiltonian of the general theory of relativity may vanish and that all the
observables are constants of the motion.” Bergmann and Goldberg, [7] (see also [1]).
This result appeared not too long after the introduction of novel distinctively Hamilto-
nian notions of gauge transformation and observables [9, Section 4], in contrast to the
previously manifestly Lagrangian equivalent work [2]. Besides the “problem of time”
due to missing change [21,26], which owes much to how the Hamiltonian constraint
H0 is treated, there is also a problem of space: local spatial variation is excluded by the
condition for observables {O,Hi } = 0, pointing to global spatial integrals instead [51].

However, Bergmann was prepared to define observables in a variety of inequivalent
ways; while his definition in terms of first-class secondary constraints is intrinsically
Hamiltonian, at times he wanted a definition that was independent of the Hamilto-
nian formalism [5,6,8]. Relatedly, Pons, Salisbury and Sundermeyer have proposed a
reformed definition of observables using the Anderson–Bergmann–Castellani gauge
generatorG, a tuned sumof all first-class constraints including the primaries [2,11,39].

At times Bergmann and others have expected observables to be local or at least
quasi-local [6, p. 250] [46, p. 115]. Kuchař, in the interests of finding real change,
has been prepared to abolish altogether (not simply weaken) the requirement that
observables have 0 Poisson bracket with what generates time gauge transformations
(which he took to be the Hamiltonian constraint H0) [26,27]. According to Kiefer,

Functions A(q, p) for which {A, φA} ≈ 0 holds are often called observables
because they do not change under a redundancy transformation. It must be
emphasized that there is no a priori relation of these observables to observ-
ables in an operational sense. This notion was introduced by Bergmann in the
hope that these quantities might play the role of the standard observables in
quantum theory (Bergmann 1961). [23, p. 105; see also p. 143]

By implementing the inevitable requirement that empirically equivalent theories
have equivalent observables using the novel examples of massive photons and (for-
mally) massive gravitons, this paper and its predecessor [35] reconsider the definition
of observables and show that the conventional definition requires both the Pons-
Salisbury-Sundermeyer reform to useG rather than separate first-class constraints and
a novel non-zeroLie derivativePoissonbracket for external symmetries, partly inspired
by Kuchař. As a result, observables are local 4-dimensional scalars, vectors, tensors,
densities, etc., just as in Lagrangian/geometric formulations, including the metric and
the curvature tensors. Thus change and local spatial variation are present after all.

The failure of observables to play their expected role has also led to circumvention
by introducing new notions to do roughly the job that observables disappointingly
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didn’t do [16,42,49]. It would be interesting to explore relations between these ideas
and the reformed notion of observables.

2 First-Class Constraints and Gauge?

It is generally accepted that first-class constraints are related to gauge freedom, but
there are two main views about what that precise relationship is. The original view,
which retains manifest equivalence to the Lagrangian and which disappeared as the
1950s wore on and started reappearing around 1980, is that gauge transformations
are generated by a tuned sum of first-class constraints (primary, secondary, etc.), the
“gauge generator” G [2,11,29,40,45,48]. For Maxwell’s electromagnetism the gauge
generator is

G(t) =
∫

d3x(−ε̇(t, x)π0 + ε(t, x)π i ,i (t, x)).

Expressions are also known forGeneral Relativity, bothwithout andwith the 3+1 split
[2,11] This G-based view competes with what became the majority view (especially
in books), that each first-class constraint FC alone generates a gauge transformation
[5,15,18,20,41].

While gauge transformations are not this paper’s primary concern, gauge transfor-
mations and observables are naturally interrelated: observables ought to be invariant
(or perhaps covariant) under gauge transformations, and transformations under which
observables are invariant (or perhaps covariant) ought to be gauge transformations.
Thus a revision of the notion of gauge transformation calls for a revision of the defi-
nition of observables [39], and to some degree vice versa.

Fortunately one can test definitions of observables by calculation using two for-
mulations of a theory, one without gauge freedom and one with gauge freedom. The
formulations, being empirically equivalent, must have equivalent observables. The
equivalence of non-gauge and gauge formulations of massive quantum electrodynam-
ics is presupposed in quantum field theory to show that the theory is renormalizable
(shown using the Stueckelberg-Utiyama gauge formulation with a gauge compensa-
tion field) and unitary (shown using in effect the deBroglie-Proca formulation) [31, pp.
738, 739], [55, Chapter 21], [22, Chapter 10]. For de Broglie-Proca non-gauge mas-
sive electromagnetism, all constraints are second-class, so everything is observable.
Demanding equivalent observables from gauge Stueckelberg-Utiyama electromag-
netism, one can ascertain whether observables should have 0 Poisson bracket with
each first-class constraint separately, or rather have 0 Poisson bracket only with the
gauge generator G. It turns out that the usual definition fails while the Pons-Salisbury-
Sundermeyer definition with G succeeds [35]. This result parallels arguments based
on the requirement of Hamiltonian–Lagrangian equivalence [34].

3 Internal Versus External Gauge Symmetries and Invariance Versus
Covariance

Definitions of observables often have been designed around electromagnetism, an
internal symmetry, and imported into GR without much consideration for whether
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external symmetries might differ relevantly from internal ones [4,5,15]. In GR, G,
acting on the 4-dimensional metric, gives the 4-d Lie derivative [11],

£ξ gμν = ξαgμν,α +gμαξα,ν +gανξ
α,μ .

The second and third terms are (for weak fields) analogous to the electromagnetic
case, but the transport term ξαgμν,α differentiates gμν , thusmaking the transformation
“external.”

The use of G does not suffice to yield changing and locally varying observables
[35], at least not ones that one would expect on Lagrangian/geometric grounds such
as the 4-metric. Because G gives the 4-d Lie derivative, the definition of observables
{O,G[ξα]} = 0 (∀ξα) implies £ξ O = 0 (∀ξα). Observables are not allowed to change
in any direction, so O is constant over time and space evenwithG. The problemof time
is still present for observables even using G. At this point one might recall criticisms
by Smolin and by Kuchař of the usual definition of observables, discussed above, as
well as Bergmann’s occasional view that observables should be local. Can one devise
a systematic definition of observables that can also encounter a crucial test with the
right examples?

One might wish to amend Kuchař’s proposal in two ways (apart from using G
[39]). First, Kuchař’s common-sense argument against {O,H0} = 0 is just as com-
pelling against {O,Hi } = 0 (which he retains), because spatial variation is as evident
as change. Thus one should treat space and time alike and consider relaxing both
{O,H0} = 0 and {O,Hi } = 0. Second, abolishing any restrictions at all on time
gauge behavior is unnecessarily strong, making any arbitrary behavior regarding time
gauge transformations admissible. There is an overlooked intermediate position, not
invariance but covariance, imposing some well-defined time coordinate transforma-
tion rule (scalar, vector, etc.). Infinitesimally, one would thus expect (especially after
embracingG) to have a 4-dimensional Lie derivative, not 0, be the result of the Poisson
bracket in the definition of observables. One also notices that whereas electromagnetic
gauge transformations are ineffable mental acts with no operational correlate (no knob
or reading on a voltmeter), so electromagnetic observables must be invariant, general
relativistic gauge (coordinate) transformations are already familiar from geography
and daylight savings time. Being gauge-invariant does not require being the same at
1 a.m. Eastern Daylight Time and 1 a.m. Eastern Standard Time an hour later. Hence
covariance rather than invariance is a reasonable criterion [33].

4 Testing Definitions using Massive Gravity

As massive electromagnetism comes in non-gauge and gauge versions, so does mas-
sive gravity. Non-gauge versions appeared in nonlinear form in the 1960s [17,30].
Gauge versions can be achieved by parametrization, promoting (or perhaps demoting
[25]) preferred coordinates into fields varied in the action principle [3,36,43]. Massive
gravity was rejected in the early 1970s due to either instability (spin 2–spin 0) or a
discontinuous massless limit [10,52,53,56]. Progress was made on both fronts during
the 2000s [12,13,19], along with new challenges [14]. Fortunately, for present pur-
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poses it doesn’t matter at all what problems massive gravity has. What matters is the
relationship between the non-gauge and gauge versions. One might as well choose the
version that makes the calculations the easiest, the Freund–Maheshwari–Schonberg
(FMS) theory [17], which, when parametrized, gives nicest form, namely, minimal
coupling of the scalar clock fields [43].

As with de Broglie-Proca massive electromagnetism, the observables in non-gauge
massive gravity are obvious because all constraints are second-class [32]. Thus trivially
everything has 0 Poisson bracket with all first-class constraints, making everything
observable, including the 4-metric gμν and the non-zero momenta πmn . The theory is
merely Poincaré-invariant. The FMS mass term is

Lm = m2√−g + m2√−η − 1

2
m2√−ggμνημν,

where ημν = diag(−1, 1, 1, 1) in Cartesian coordinates.
√−η gives just a constant

in the action.
One obtains the gauge version by parametrization, turning preferred Cartesian coor-

dinates into clock fields X A(x), functions of arbitrary coordinates xμ. Only the mass
term is affected. Now the reason for choosing the FMS massive theory becomes evi-
dent, namely, that its mass term, in contrast to the many other options out there (e.g.,
[19,30]), gives minimally coupled scalar clock fields in the expression

√−ggμνηAB
∂X A

∂xμ

∂XB

∂xν
,

instead of using inverses, determinants, and/or fractional powers of ηAB
∂X A

∂xμ
∂XB

∂xν , or
sums thereof. It turns out that one can do calculations in the general case anyway [24],
but that is a pleasant surprise. The parametrized mass term is

Lmg = m2√−g + m2√−η − 1

2
m2√−ggμνηAB

∂X A

∂xμ

∂XB

∂xν
,

ηAB = diag(−1, 1, 1, 1). (It isn’t necessary to parametrize
√−η because the result

is a total divergence.) This is just a cosmological constant
√−g, a harmless constant√−η, and four minimally coupled scalar fields (one with the wrong sign). Gauge

(parametrized)massive gravity becomes non-gaugemassive gravity upon gauge-fixing
X A − xα = 0.

Knowing that the 4-metric (and hence the inverse metric gμν) is observable in
the non-gauge theory, one can demand that observables in gauge massive gravity
be equivalent to the non-gauge massive gravity observables. The equivalent quantity
is gμνX A,μ XB,ν : the gradients of the clock fields act as the tensor transformation
law to the preferred Cartesian coordinates in which the non-gauge formulation is
already expressed.By seeinghow thequantity gμνX A,μ XB,ν behaves in parametrized
massive gravity, we can learn how observables behave under external gauge transfor-
mations. Should observables satisfy {O,G[ξ ]} = 0, or {O,G[ξ ]} ∼ £ξ O (possibly
just on-shell)?
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4.1 Hamiltonian for Gauge Massive Gravity

For General Relativity with minimally coupled scalar fields and a cosmological con-
stant, the Poisson bracket ‘algebra’ of constraints is just as in GR [47]. For the
parametrized version of the Freund–Maheshwarei–Schonberg theory, the same result
therefore holds. It is straightforward to take the parametrized Lagrangian density and
perform the constrained Legendre transformation with 4 minimally coupled scalars
and 
 GR [28,47,54]. In the ADM 3 + 1 split, the 4-metric is broken into the lapse
N , the shift vector β i , and spatial metric hi j . There are new canonical momenta for
the clock fields:

πA = ∂Lmg

∂X A,0
= −m2gμ0ηAB X

B,μ .

Inverting, one gets

Ẋ A = NπBηABm−2/
√
h + β i X A,i .

The Hamiltonian density is

Hmg = N

(
H0 − m2

√
h + πAπBηAB

2m2
√
h

+ m2

2

√
hhi j X A,i X

B, j ηAB

)

+β i (Hi + X A,i πA) − m2√−η,

withH0 andHi as in GR. This expression has the same form as in GR (apart from an
irrelevant constant

√−η) if one defines a total (gravitational plus matter) Hamiltonian
constraint

H0T = H0 − m2
√
h + πAπBηAB

2m2
√
h

+ m2

2

√
hhi j X A,i X

B, j ηAB

and a total momentum constraint

HiT = Hi + X A,i πA.

The Hamiltonian for parametrized massive gravity is (apart from terms involving
primary constraints)

Hmg = NH0T + β iHiT − m2√−η.

4.2 Applying the Gauge Generator in Massive Gravity

Avoiding velocities requires 3 + 1 split of coordinate transformation descriptor ξμ

[11,38]: ε = Nξ0 is primitive and so has 0 Poisson brackets; the same holds for
εi = ξ i + β iξ0. The primary constraints are as in General Relativity: p conjugate to
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N and pi conjugate to β i both vanish. The generator of changes of time coordinate in
vacuum General Relativity is

G[ε, ε̇] =
∫

d3x[εH0 + εp j h
i j N ,i +ε(Npih

i j ), j +ε(pN j ), j +ε̇ p].

This entity generates on phase space × time a transformation that, for solutions of the
Hamiltonian field equations, changes the time coordinate in accordwith 4-dimensional
tensors. Given how the gauge generator can be built algorithmically starting with the
primary constraints [37], onewould expect the same expression for the gauge generator
for parametrized massive FMS gravity, only with matter included in the secondary
constraints. The Hamiltonian takes the form of GR + 
 + minimally coupled scalars
with altered matter-containing constraints H0T and HiT .

One can verify that the resulting modified expression for GT indeed generates
gauge transformations; indeed displaying that calculation inmore detail than appeared
previously [35] is the aim of this paper. For the space-timemetric there is no difference
because matter does not couple to gravitational momenta. For the new matter fields
one has

{G[ε, ε̇], X A(y)} = −ε(y)πBηBA/(m2
√
h) = −ξ0NπBηBA/(m2

√
h).

Using the relation Ẋ A = NπCηACm−2/
√
h + β i X A,i recovered from Ẋ A = δH

δπA
,

one gets

{G[ε, ε̇], X A(y)} = −ξ0X A,0 +ξ0β i X A,i

on-shell. This relates nicely to the Lie derivative of the scalar clock fields. The second
term is involved in a cancellation.

The spatial gauge generator for vacuum GR is [11]

G[εi , ε̇i ] =
∫

d3x
[
εiHi + εi N j ,i p j − ε j ,i N

i p j + εi N ,i p + εi ,0 pi
]
.

It generates 3-d spatial Lie derivatives of the 4-metric gμν even off-shell. Making the
obvious alteration of the secondary constraint to include matter throughHiT gives the
correct gauge generator, giving a Lie derivative of the scalar clock fields:

{GT [εi , ε̇i ], X A(y)} =
{∫

d3xεi (x)XC ,i πC , X A(y)

}
.

Going on-shell one gets the result

−(ξ i + β iξ0)X A,i .

The off-shell result will be worked out below.
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The full gauge generator GT is the sum of these two parts [11]:

GT [ε, ε̇] + GT [εi , ε̇i ]

The vacuum gauge generator combination generates 4-dimensional coordinate trans-
formations on the space-time metric, at least for solutions:

{
G[ε, ε̇] + G[εi , ε̇i ], gμν

}
= −£ξ g

μν

Castellani [11], Pons et al. [38] (on-shell) in General Relativity. The new material
parts of the total momentum constraint and total Hamiltonian constraint have no grav-
itational momenta and hence do not affect the space-time metric.

Acting on the clock fields X A, the total generator gives (going on-shell eventually)

{
GT [ε, ε̇] + GT [εi , ε̇i ], X A(y)

}
= −ξ0X A,0 +ξ0β i X A,i −(ξ i + β iξ0)X A,i

= −ξ0X A,0 −ξ i X A,i = −ξμX A,μ ,

the proper 4-dimensional expression for (minus) the Lie derivative of a scalar field
with respect to the space-time vector field ξμ describing the infinitesimal coordinate
transformation. One can thus see in outline how the whole of gμνX A,μ XB,ν behaves
nicely, at least on-shell.

4.3 Off-Shell Calculation in Detail

It now being clear in general outline what to expect, one can profitably do the cal-
culation with more detail and while remaining off-shell. The matter-inclusive spatial
gauge generator is

GT [εi , ε̇i ] =
∫

d3x
[
εiHiT + εi N j ,i p j − ε j ,i N

i p j + εi N ,i p + εi ,0 pi
]
.

One therefore has

{
GT [εi , ε̇i ], gμνX A,μ XB,ν

}
=

{
GT [εi , ε̇i ], gμν

}
X A,μ XB,ν

+ gμν
{
GT [εi , ε̇i ], X A,μ

}
XB,ν +B ↔ A

using the Leibniz product rule,

=
{
GT [εi , ε̇i ], gμν

}
X A,μ XB,ν +

(
gmν

{
GT [εi , ε̇i ], X A,m

}

+ g0ν
{
GT [εi , ε̇i ], X A,0

} )
XB,ν +B ↔ A
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splitting up space-time into space and time,

=
{
GT [εi , ε̇i ], gμν

}
X A,μ XB,ν +

(
gmν ∂

∂xm

{
GT [εi , ε̇i ], X A

}

+ g0ν
∂

∂x0

{
GT [εi , ε̇i ], X A

} )
XB,ν +B ↔ A

pulling out the spatial derivative [50, p. 58] andusing theAnderson–Bergmannvelocity
Poisson bracket for the 0th component [2],

=
{
GT [εi , ε̇i ], gμν

}
X A,μ XB,ν +

[
gmν ∂

∂xm

(
−εi X A,i

)

+ g0ν
∂

∂x0

(
−εi X A,i

) ]
XB,ν +B ↔ A

using the explicit form of the matter-enriched spatial gauge generator,

=
{
GT [εi , ε̇i ], gμν

}
X A,μ XB,ν +

[
− gmν£εX

A,m

+ g0ν
∂

∂x0
(−£εX

A)
]
XB,ν +B ↔ A

using the commutation of Lie and partial derivatives [44, p. 105] as applied to space
rather than space-time.

The generator of time coordinate transformations is

GT [ε, ε̇] =
∫

d3x
[
εH0T + εp j h

i j N ,i +ε(Npih
i j ), j +ε(pN j ), j +ε̇ p

]
.

The temporal gauge generator thus acts on gμνX A,μ XB,ν as

{
GT [ε, ε̇], gμνX A,μ XB,ν

}
= {

GT [ε, ε̇], gμν
}
X A,μ XB,ν

+
{
GT [ε, ε̇], X A,μ

}
XB,ν g

μν + B ↔ A

by the Leibniz product rule,

= {
GT [ε, ε̇], gμν

}
X A,μ XB,ν +

{
GT [ε, ε̇], X A

}
,μ XB,ν g

μν + B ↔ A

by pulling out the spatial derivative and using the Anderson–Bergmann veloc-
ity Poisson bracket. Using the result for the clock fields {GT [ε, ε̇], X A(y)} =
−ε(y)πBηBA/(m2

√
h), one infers

{
GT [ε, ε̇], gμνX A,μ XB,ν

}
= {

GT [ε, ε̇], gμν
}
X A,μ XB,ν

+
(
−επ A/(m2

√
h)

)
,μ XB,ν g

μν + B ↔ A.
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The combined spatio-temporal gauge generator thus yields

=
{
GT [εi , ε̇i ] + GT [ε, ε̇], gμν X A,μ XB ,ν

}
= −(£ξ g

μν)X A,μ XB ,ν

−gμν XB ,ν
∂

∂xμ
£εX

A − B ↔ A − (επ Am−2√h),μ XB ,ν g
μν − B ↔ A

= −(£ξ g
μν)X A,μ XB ,ν −gμν XB ,ν

∂

∂xμ
(ξ i X A,i +βi ξ0X A,i

+Nξ0π Am−2√h) − B ↔ A

= −(£ξ g
μν)X A,μ XB ,ν −gμν XB ,ν

∂

∂xμ

(
ξ i X A,i +ξ0

δH

δπA

)
− B ↔ A

= −(£ξ g
μν)X A,μ XB ,ν −gμν XB ,ν

∂

∂xμ

(
ξν X A,ν −ξ0X A,0 +ξ0

δH

δπA

)
− B ↔ A

= −(£ξ g
μν X A,μ XB ,ν ) − gμν XB ,ν

∂

∂xμ

(
−ξ0X A,0 +ξ0

δH

δπA

)
− B ↔ A

The term that is not a 4-dimensional Lie derivative vanishes on-shell.
By the equivalence of the non-gauge and gauge observables, gμνX A,μ XB,ν must

be observable in the gauge theory because gμν is observable in the non-gauge
theory. Knowing that gμνX A,μ XB,ν must be an observable and calculating how
gμνX A,μ XB,ν is acted upon by G, we learn that observables give a Lie derivative
rather than 0 when one takes their Poisson bracket with G. Thus for observables one
has

{G, O} = −£ξ O �= 0

on-shell, when G generates coordinate transformations, an external symmetry.
Covariance, not invariance, suffices for the external gauge symmetry in this case.

Thus the usual vanishing 0 Poisson bracket condition is wrong at least in this case.
This case looks just like GR plus
 plus minimally coupled scalars, so the same result
should hold there. Adding 
 and minimally coupled scalars to GR is insignificant, so
the same result should hold forGR itself. Thus quantities that change by aLie derivative
under Poisson bracket with the gauge generator are observable: scalar fields, vector
fields, tensors, densities, etc.
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