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Abstract A promising strategy for better understanding space and time at the Planck
scale, is outlined and further pursued. It is explained in detail, how black hole unitarity
demands the existence of transformations that can remove firewalls. This must then be
combined with a continuity condition on the horizon, with antipodal identification as an
inevitable consequence. The antipodal identification comes with a CPT inversion. We
claim to have arrived at ‘new physics’, but rather than string theory, our ‘new physics’
concerns new constraints on the topology and the boundary conditions of general
coordinate transformations. The resulting theory is conceptually quite non trivial, and
more analysis is needed. A strong entanglement between Hawking particles at opposite
sides of the black hole is suspected, but questions remain. A few misconceptions
concerning black holes, originating from older investigations, are discussed.

Keywords Black hole information - Antipodal identification - Black hole interior -
Time-like Moebius strip - Firewall transformation - Black hole microstates

1 Introduction

After at least four decades of intense studies all over the world, it has become evident
that the dynamical laws of space, time and matter will have to be reformulated at time
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and distance scales comparable to the Planck scale,!-?

Lplanck = 1.6162 x 1073 cm, Tplanck = 5.391 x 10~ s,

Mplanck = 21.765 pg, Eplanck = 1.2209 x 1028 eV . (D
However, in spite of admirable advances in superstring theories [2], and competing
approaches such as loop quantum gravity [3,4], we still do not have completely con-
sistent models that elucidate Nature’s book keeping system [5] at this scale: what are
the physical degrees of freedom, how are they arranged in space, how do they evolve
in time, and to what extent are constraints on locality, unitarity, positivity, stability and
finiteness obeyed? Which symmetries do we have, which of these are exactly valid,
and which symmetries are spontaneously or explicitly broken? How should we for-
mulate the boundary conditions? And so on. As we shall show, there are still surprises
to be expected.

The fact that our modern approaches fail was demonstrated embarrassingly clearly
when it was realised that there is a firewall problem [6] in black hole physics. Actually,
this firewall problem was just one way of phrasing the information paradoxes in black
holes [7], and it demonstrates, once again, that some fundamental physical principles
must hold that are not understood at all by many researchers today.

Black holes are indeed the most manifest structures where our present understanding
is seen to be hopelessly inadequate. As was emphasised by the present author at several
occasions before [8,9], the best way to make further progress is therefore to address
black holes up front, demand laws of physics that guarantee logically comprehensible
and consistent behaviour of these structures, and inspect to what extent our present
formulations will have to be adjusted or sharpened.

The earliest ideas about the states black holes can be in, as deduced from Hawking’s
observation that black holes emit particles with what looks like a thermal spectrum,
were that black holes cannot be in pure quantum states, but will always be in mixed
states, such as what we have in thermal equilibrium. Requiring maximal accuracy in
formulating their evolution laws, however, forces us to search for formalisms in terms
of pure quantum states. This does come at a price to be paid. In the present work, we
show what is required to arrive at a description of black holes in terms of pure quantum
states. The price is new physics, as was emphasised earlier [8—12].

There is a number of points that we should keep in mind. One is that wild guesses
concerning possible answers, such as ‘novel uncertainty relations’, will be almost
fruitless, as history shows. The best thing to do is to split our problems into small
pieces, and try to address each of these small fragments of questions in turn. Every
now and then, such fragmented questions will lead to surprises. It helps enormously
if we can convince ourselves of the correctness of our partial answers, and it is these
that we should be able to use as new starting points for our next steps.

I No assumptions are made concerning extra dimensions [1]. These would rearrange dynamical variables
in such a way that they each seem to occupy much more space in the physical dimensions. This would lead
to effective ultimate scales of physics different from, and less exotic than, (1.1). Our basic conclusions will
however not be affected.

2 In contrast, the Planck momentum has the remarkably mundane value of just over 6.5 kgm/s.
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In this paper, we shall primarily make use of a partial answer that we claim to
have arrived at recently [11, 12]: the necessity of revising the boundary conditions for
Nature’s degrees of freedom at the horizon of a black hole, summarised in Appendix A.
Since our analysis started out with our desire for consistent descriptions of stationary
(or approximately stationary) black holes, it was not immediately clear how the revised
boundary conditions should have been enforced during the formation of a black hole,
but, in a somewhat formal fashion, one may well argue that, during black hole forma-
tion, the horizon starts out stretching over an infinitesimally tiny region; it opens up at
a single point? in space and time. At that single point, it now appears to be necessary to
revise the structure of this infinitesimal horizon to obey the new boundary condition,
but since all this should happen at Planckian dimensions, the revision needed in our
laws of Nature here can easily be argued to have escaped our notice up to todays; it
may be seen as merely a mild, point-like singularity at Planckian dimensions.* We
elaborate this further in Sect. 8.5.

After the horizon opens up, a black hole can grow quite big; the black hole horizon
area grows rapidly towards macroscopic sizes during collapse, and as our modified
boundary condition keeps track, it turns space and time into a non-trivial topological
manifold. Our new boundary condition must be locally imperceptible, but its impli-
cations will be sizeable. As a starting point we may suspect that the entire process of
the formation, evolution, and the final explosion of a black hole may be seen as an
instanton event, an instanton that has a trivial Minkowskian boundary yet it is locally
non-trivial in a way that we shall explain (Sect. 8.3).

We emphasise that, nevertheless, our modified boundary condition will not affect
the visible properties of a black hole in the classical limit. Also, we shall ensure that
the modified boundary condition is of a kind that is not directly observable for a local
observer, that is, an observer who can only see his/her immediate environment. So what
we call ‘new physics’ is still completely in line with ordinary quantum mechanics and
general relativity.

The boundary condition that we shall arrive at is characterised as an antipodal
identification. In short, what it means is that the region of space-time inside the horizon
is removed completely, as if by surgery, after which the edges are glued together by
identifying the antipodes. This is continued throughout the lifetime of the black hole.’
Itis important, subsequently to insist that, locally, space and time remain smooth across
the seams, while particles, including the information they carry, can cross. The seams
must be locally invisible—only global observers notice this boundary condition. We
argue that the antipodal mapping is the only way to attach the edges together such that
strict geometrical conditions are obeyed.

3 1f the collapse was in a spherical shell of matter, this point lies well inside the shell, surrounded by a
local vacuum. This makes it easy to study. One then might conclude that the horizon first forms on a fractal
subspace of space-time, but since the scale at which this fractal extends may end up to be small even in
Planck units, we ignore this complication in this paper.

4 During a black hole’s final evaporation event, the topologically non-trivial space-like features should
disappear the same way as they came.

5 Do keep in mind that, strictly speaking, the horizon is entirely timeless.
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It boils down to a single “new physics” ingredient in black hole physics as soon
as quantum effects are being considered. To explain this, let us define the asymptotic
region of space-time as the region |r| — oo, which splits into five parts:

oo™, where in natural units ¢ > |r| > M,
space-like infinity o0 with [r| > ||,
the region oo™, where —t > |r| > M,

and finally the two light cone regions 7 & separating the previous three domains.
Then we impose:

When fields on a manifold are quantised, it is essential that the entire asymptotic
domain of the manifold maps one-to-one onto that of ordinary space-time, while
preserving the metric. It must be possible to find time-like paths that connect all
space-time points in oo™ to all points in co™

This condition is not obeyed by the standard, continuous extension of the classical
Schwarzschild metric: every space-time point in the physically observable part of the
universe it describes is mapped onto two points in the Kruskal-Szekeres coordinates.
These two points are always space-like separated from one another. If we would allow
this situation to describe a black hole, we would end up with two universes connected
by a worm hole, as is well-known. These two universes would communicate to one
another quantum mechanically (that is, they are entangled), which causes the well-
known violation of unitarity. We find that this difficulty is completely resolved by
identifying points in region / by their antipodes in region /I. It is a folding, which avoids
any singularity (cusp-like or otherwise). In contrast, such a folding, to be referred to
as antipodal identification, would not be possible in flat space-time without cusp
singularities, see Appendix A. Note that the r — 0 singularities in Schwarzschild
black holes, as well as the inner horizon in Kerr and Reissner Nordstrom black holes,
occur in a space-time region that is entirely avoided in our treatment.®

As will be demonstrated (Sect. 3.1), mapping the Schwarzschild metric onto the
space-time metric of a local observer forces us to glue together regions in such a way
that time-inversion takes place. Inverting the time direction is associated with an inter-
change of creation operators and annihilation operators,’ in the sense of Bogolyubov
transformations.®

We shall insist that we begin by limiting ourselves to soft particles, which are
defined as particles whose gravitational fields are either negligible or sufficiently weak
to allow for a description in terms of perturbative gravity. This will be further explained
in Sect. 3.1. We are dealing with an essential and highly non-trivial demand here, since
the time evolution may seem to turn soft particles into hard particles—particles which

6 We acknowledge the observation of a referee that the above was not formulated accurately in a previous
version of this paper, so that confusions could arise; presumably more accurate discussions are possible in
a mathematical language that was avoided here.

7 In an earlier version of this paper it was concluded that, therefore, at the horizon we must glue the vacuum
state onto a “completely full state”, but this does not seem to be necessary; we do perturbative quantum
field theory near the vacuum state in all regions of the Penrose diagram. See the discussion in Sect. 3.1 and
Fig. 3 there.

8 Provided care is taken to maintain unitarity, see Footnote 17 in Sect. 5.
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do have sizeable effects on the curvature of space and time. These particles will have
to be transformed into something else, as we shall see. The gravitational fields of these
particles, in particular the hard particles, will be taken care of in due time. Thus, the
fact that we allow ourselves to have soft particles only in our Penrose diagram will be
justified a posteriori.

Crossing the horizon from a given point to its antipode will be associated with such
a time inversion, and as such also interchanges creation and annihilation operators.
This allows the embedding of a time-like Mobius strip in our space-time, and it has
the remarkable effect that the Hartle—Hawking state links positive energy particles at
the horizon with antiparticles at the antipodes, which again have positive energies,
resulting in entanglement between positive energy particles only, see Sect. 7.

Since quantum field theories are CPT invariant rather than just 7-invariant, we
expect that the different domains adjacent to a horizon in the Penrose diagram will be
visible to the outside observer through CPT inversions. Because of the CPT inversion,
the global, causal arrow of time no longer coincides with the local arrow of time.
This implies a departure from earlier ideas expressed by this author, called black
hole complementarity, where it was assumed that causal ordering should be kept
untouched. Black hole complementarity addressed the interior regions of the black
hole as representing particles emerging later, while in our new description, the black
hole simply has no interior at all. When putting everything together, one finds that this
latter formalism is far more satisfactory: nothing ever escapes to the interior region
of the black hole, since there is no interior region.

At first sight, it may seem that our way of handling space and time near a black
hole, will make a decent quantum field theoretic description of the elementary particles
hopelessly inadequate. However, as it turns out, the opposite is true: our apparently
drastic rearrangement of the space-time continuum is exactly what is needed to arrive
at pure quantum states for the black hole, and to obtain a unitary scattering matrix,
so as to eradicate both the black hole information problem and the firewall problem,
while meticulously respecting the laws of general relativity.

As our work is still in progress, there are numerous issues still remaining; we
discuss some of these as representing new challenges. Together, they constitute a new
and systematic strategy for future investigations.

We emphasise that, barring possible minor mistakes,” our conclusions are solid
and inevitable, comparable to the much more grandiose introduction of the theory
of general relativity itself, which may be seen as an inevitable description of the
gravitational force if one relies on special relativity at small scales and the equivalence
of gravitational and inertial masses.

We also emphasise the importance of applying our modified rules in the case of
the quantum black hole. At first sight, the replacement of the analytic continuation of
Schwarzschild space-time by the one obtained by identifying antipodal points with
region II of the Penrose diagram, may seem to be a minor modification, but it has big
effects. Formerly, the Hartle-Hawking vacuum used to be applied in such a way that
observers do not have access to the hidden sector, so that the resulting state become

9 This paper had to be rewritten several times because of small mistakes in earlier versions. Perhaps this is
to be blamed to the fact that it has only one author.
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a thermodynamically mixed state. In our description, this state remains a pure state
for the outside observer; the part that used to be hidden actually describes the other
side of the same black hole. Now that we have only pure states, the resolution of the
“information problem” is straightforward.

Our rules remove the ‘insides’ of a black hole.

2 Black Hole Penrose Diagrams

The Penrose diagram [13] of a space-time metric is obtained by choosing light cone
coordinates ™ and u~, such that g,y = 0 and g__ = 0, implying that these coordi-
nates are tangent to the local light cones. For black holes, the remaining two coordinates
are the angles 6 and ¢. Picturing the light cone coordinates as tilted by 45°, one always
gets space-like coordinates running horizontally and time-like ones vertically, while
the local light cones!? are oriented everywhere as pictured in Fig. 1. In a Penrose dia-
gram, all time-like geodesics with constant angular coordinates 6 and ¢, go in a vertical
direction, more steeply than 45°. Since one can keep these properties unaltered when
the coordinates u™ are arranged to occupy compact domains, one can compress the
entire universe in compact Penrose diagrams. Thus, the location of time-like infinity
(0o™) and space-like infinity (0o) can be indicated in the diagram, see Fig. 1.

If all effects of matter that may have caused the black hole to form, in the near
or distant past, as well as matter originating from Hawking radiation, are ignored,
one gets the maximally extended Schwarzschild solution, Fig. 1a. By inspecting how
information spreads in such a universe, one then finds four distinct regions, labelled
as I, II, IIl and IV. Only regions I and II are connected to asymptotic space-like and
time-like infinity, but they are only connected to each other through a two-dimensional
surface, the origin of the Penrose diagram; they have different asymptotic regions,
indicated as 0o, oco* in region /, and oo’ and oot in region I1.

In the standard picture, nothing more is imposed such as antipodal identification;
regions I and /I could describe either entirely different universes, or perhaps different
parts of the same universe, separated in space- and/or time-like directions, by as many
light years as one can imagine. In contrast, regions /I and IV are absent in Fig. 1b, c.
There, we see that they are replaced by region /11, so that it is often concluded that
regions /I and /I actually describe the insides of the black hole, whatever it may be
that the insides of a black hole may look like. This is probably wrong, as we shall see.
We return to the relation between regions I and /7 later in this section.

First, we must dwell on an other urgent question. What exactly should it mean to
distinguish ‘eternal’ black holes from black holes that were once formed by gravita-
tional collapse of ordinary matter? In classical black holes, that is, black holes where
quantum mechanical effects are assumed to be insignificant (as would be normal prac-
tice in standard general relativity), such distinctions would be unnecessary, or even
meaningless. The differences between Fig. 1a, b, are only in their distant past, but not

10 1 the 6, ¢ directions, the light cones may be more complicated; in the unphysical regions of the Kerr
and Kerr-Newman black holes, closed time-like curves may emerge. As these are located far beyond the
horizons, there will be no need to consider them here.
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Fig. 1 Penrose diagrams for Schwarzschild black holes. a The “eternal” black hole, showing regions
1, 11, I1I, and IV. Dotted line: Cauchy surface (see text). b A black hole originating from imploding matter.
Matter M causes curvature along the diagonal shown, rendering /I and /V invisible. Dotted line: r = 0. ¢
Including the effect of Hawking radiation (H) making the metric regular at 1 — oo, according to Hawking.
d The CPT image of situation ¢. Imploding matter and Hawking matter interchange places. Local light
cones everywhere are under 45° (cones shown)

in the present or the future. All no-hair theorems point to the verdict that black holes
will all look and behave identically, apart from three parameters, being mass, charge
and angular momentum [14,15].

Yet, when quantum mechanics comes into play, things do seem to be different.
Since quantum mechanics strongly indicates that black holes emit particles, the future
evolution of the Penrose diagram cannot quite be as in Fig. 1a or b, but rather something
like Fig. 1c, as was advocated by Hawking [16—18]. There is a problem with that as
well, however. If we wish to describe all quantum states a black hole can be in, then
surely one should expect that the symmetries of the system before quantisation, should
also be reflected by the quantum system. This is not the case for Fig. 1c. Why is it
not symmetric under time reversal? General relativity and quantum mechanics both
are. One must conclude that we have not yet seen all possible Penrose diagrams; we
should also brace ourselves for diagram 1d.

How all these different possible Penrose diagrams can play their roles for black
holes is one of the subjects of this paper. In a sense, they may all be right, but then,
the theory claiming that they must represent the truth faithfully, cannot be correct.
Indeed, we shall propose an important modification of how one should look at black
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holes. In this work, we make use of new transformations showing that all diagrams
in Fig. 1 can be used (see Sect. 5.1). One then finds that the maximal extension of
the Schwarzschild metric, shown in Fig. 1a, is the most useful one. It exhibits perfect
symmetries under the exchange of regions / and /I and/or regions /Il and IV. These
symmetries are not only special for the Schwarzschild metric, they also hold for the
Reissner-Nordstrom, Kerr and the Kerr-Newman metrics. The most important reason
for us to insist on using the eternal diagram of Fig. 1a, is that only that diagram allows
us to use the analytic extension towards a domain describing all parts that we need of
the neighbourhood of the region where future and past event horizons cross. This is
exactly what is needed to apply the powerful laws of General Relativity right there.

In summary, the usual distinctions made between the Penrose diagrams a—d in Fig. 1
can no longer be maintained when we do quantum mechanics. This is because, if we
want to consider Schrodinger equations to be applied at time ¢ ~ 0, we need the general
wave functions of all particles in the present, so that (in the Heisenberg picture) the far
past, as well as the far future, will consist of superpositions of all possible states. The
space-time metric of the diagrams in Fig. 1b—d, requires the momentum distributions
at very early and very late times to be precisely known, while the wave functions
used at ¢+ ~ 0 will be too general superpositions of states. In particular, if we want
to consider a black hole in a pure quantum state such as the Hartle-Hawking state
at t ~ 0, its initial state, at r - —O(M 3) in Planck units, cannot be described as a
classically collapsing object. Similarly, since at t — +O(M?), when the black hole
explodes, its standard description would be in terms of a density matrix; in our work
we would treat the Hartle—Hawking state as a pure quantum state, but this would
have to be replaced by quantum superpositions of explosions at different times. Due
to such difficulties, which are comparable to the measurement problem in ordinary
quantum mechanics, we shall find that classical Penrose diagrams are unsuitable for
describing pure quantum states at times ¢ when |¢| > M log M in Planck units. We
shall establish new procedures to justify the use of the Penrose diagram for an eternal
black hole (Fig. 1a), with only soft particles added, being in a pure but generic quantum
state while |t| < M log M.

Now we can return to our promise to discuss the link between region / and region /1.
In this paper, we shall explain why antipodal points of the horizon have to be identified,
with the consequence that regions 7 and /I refer to opposite hemispheres of one and
the same black hole.!! In the entire spacetime domain covered by both 7 and /I, as
well as their close neighbourhoods, we have

r 2 2GM. 2.1)

This is why it will never happen that two spacetime points that are much closer together
than 2G M, are postulated to be identified.'? This implies that local space-time conti-

1 The possibility to have such an identification was first mentioned by Sanchez and Whiting [19,20] as
far as the author is aware.

12 1t does happen at the singularity (the wavy lines in Fig. 1), but the singularity is way beyond the infinite
future for the distant observer, so it will not be given any physical significance in this paper; the fact
that the singularity is far beyond the infinite future makes it totally harmless in practice. This so-called
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Fig. 2 Local light cone

coordinates u™ near the horizon. A +

The local time coordinate points —

region /1. Also shown is a local

Cauchy surface. As the distant

time variable proceeds, particles

nuity is not affected by the antipodal identification on the black hole horizon—there

would have been such a problem if we would have tried an antipodal identification in

locally flat Minkowski space-time; in ordinary polar coordinates, a conical singularity
The most delicate part of our new theory, however, is not the fact that we identify

antipodal points, and not even the fact that we transform away the bad or unwanted

regions of the Penrose diagram; it is the way in which particles are expected to transmit

upward everywhere, but the time Iocal time
coordinate for distant observers
distant —
time
on this Cauchy surface move
upwards in I and downwards in l‘
would arise near » & 0. This is why antipodal identification can only be considered
as a harmless (yet important) topological modification if applied to exotic situations
the information they carry, across the horizon. Since this information is transmitted
entirely because of the gravitational back reaction, it is wrong to ignore that back

goes up in region / and down in

I (arrows) §'"
such as these occur in the geometry of black holes.

reaction altogether, as is often done.

3 The Horizon

In the Penrose diagrams of Fig. 1, it is often assumed that the time coordinate
proceeds forward (in this paper usually indicated as upward) everywhere. Indeed, this
is what one would expect if region /I were assumed to describe ‘the inside’ of a black
hole. In our present picture, however, it will be seen to be mandatory to switch the
direction of time just in accordance with the global Schwarzschild time parameter ¢,
also when the quantum micro-states are discussed. This is because we wish to describe
how the black hole evolves as seen by a distant observer. Thus the evolution process
is postulated as indicated in Fig. 2.

Footnote 12 continued
cosmic censorship is often not understood by laymen mystified by black holes (providing references here
would be too embarrassing).
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In alocal observer’s description, a Cauchy surface stretching all across the Penrose
diagram, can be postulated to contain only pure quantum states of elementary particles
(the dots in Fig. 2). If we omit the mutual gravitational interaction between these
particles, general relativity tells us precisely how the evolution of these particles
proceeds; in particular, they stay inside their regions / and /1. We can use the Standard
Model to describe how their fields evolve. Note, at this point, that, as seen by a local
observer, the particles in region I will evolve backwards in time. We shall insist that
the evolution will be forwards in time as seen by distant observers.

Consider a particle with mass p, close to both horizons, where we ignore local cur-
vature of the metric. Let its momentum in light cone coordinates be p = (p™, p~, p),
where p is the transverse component. On mass shell, we have

2ptp 4+ PP+t =0. 3.1

The (non-gravitational part of) the evolution law is that time ¢ generates Lorentz
transformations. Defining the scaled time t = /4G Mpp, we have

p and m stay constant, p~(t) = p~(0)e’, pT(r) =pT (e . (3.2)

The gravitational interaction between particles of matter is much less trivial, how-
ever; it will have the effect of shifting particles around in directions along this Cauchy
surface, as we shall see, allowing them to cross the horizon without much ado. It will
be clear that this observation will be of crucial importance. In particular, we must
formulate our theory for the entire Cauchy surface, stretching over both regions / and
I (see dotted line in Fig. 1a).

3.1 Quantum States. Regions I and /1. In- and Out-Particles. Soft and Hard
Particles

However, there is the apparent complication mentioned at the end of Sect. 1: in region
11, time, as seen by a distant observer, runs backwards. Particles, running backwards
in time, will be associated to quantum wave functions evolving as e £’ instead of
e~'E! and hence carry negative energies as seen by a distant observer. Nevertheless,
the distant observer will need to describe his world in terms of positive energy particles.
What happens, as it will turn out, is that, in region I/, the energy as seen by the distant
observer is minus the energy experienced by an ‘observer’ who would look at region
II directly from region I. Curiously, we shall see that this topological twist in the
definition of the sign of the Hamiltonian, can be handled without any complications
in our new theory.

As stated above in this section, particles, or more precisely, the fields of the particles,
must be defined both in region / and in region /1. All these particles must be physical;
this is our first departure from older wisdom. This is important, because both regions
I and IT have their space- and time-like asymptotic domains at infinity.

Next, we distinguish particles going in, henceforth referred to as in-particles, from
particles going out, the out-particles. In-particles cross the future event horizon (u~ =
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0), at a position given by the light cone coordinate u™, out-particles cross the past
horizon (u* = 0) at a point given by u~. If u™ > 0, we are!? in region 7, if u* < 0,
we are in region /1. The distinction in- and out-makes sense as soon as particles move
nearly with the speed of light in the longitudinal direction; the transverse velocity, and
the mass, become negligible when they are sufficiently close to one of the horizons:
close to a horizon, one may neglect p and u, so that, according to Eq. (3.1), either
p+ =0 (an in-particle), or p~ = 0 (an out-particle).

Finally, we shall have to distinguish hard particles and soft particles. The distinction
will be frame dependent (we shall return to this point): a hard particle has its mass
and/or momentum | p| of the order of, or beyond, the Planck mass. Soft particles have
masses and momenta that are negligibly affecting the curvature of the surrounding
metric.

Soft particles will be given by their fields, including first time-derivatives where
needed, on the Cauchy surface (dotted line in Fig. la). Their interactions will be
described by whatever quantum field theory is applicable in energy domains close to
the Planck scale, loosely indicated as ‘standard model interactions’. Their gravitational
interactions need not be ignored, but, being weak, may be addressed in terms of
perturbative gravity.

Hard particles are given by their geodesics. Again, we only need to consider them
when they go almost with the speed of light in the longitudinal direction. The interac-
tion between hard particles and soft particles also follows from standard theories: if
the hard particles are charged, the effects of the charges on the soft particles are readily
computed, and in this work we consider those interactions to be weak. Most important,
however, is the gravitational interaction between hard particles and soft ones. The hard
particles are hardly affected by the soft ones, but conversely, the soft particles feel the
presence of the hard ones mainly through their gravitational forces. These are of the
Shapiro type: soft particles are dragged along by the hard ones [21,22]. This effect
has been calculated and discussed in several of our previous publications [9-12,23].
Most importantly, this effect diverges as the momenta of the hard particles increase.

‘We now make an important restriction on our description of black hole micro-states:
we consider the Penrose diagram of Fig. 1a, with only soft particles added. Note that
it is consistent then to ignore the diagrams of Fig. 1b—d, because these contain hard
particles (both the imploding matter and the Hawking particles there were assumed
to affect the space-time curvature). We herewith insist that limiting ourselves to soft
particles only, suffices to describe all black hole micro-states. What is meant by this
will become clear when we deal with the ‘firewall transformations’. For now, we note
that the soft particles in question are defined on the Cauchy surface shown; if they
turn into hard particles elsewhere, this does not affect the state, but the effect must be
considered when the evolution operators are studied.

Soft particles can become hard during the evolution, Eq. (3.2). The soft-hard inter-
actions may have effects that are so large that soft particles may be moved around
from region / to points deep inside region /I and vice versa. This is why we cannot
ignore region /1. See also the discussion in Sect. 8.2.

13 Note that sign conventions for light cone coordinates are often chosen differently.
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Fig.3 Regions/and I/ of the Penrose diagram, a glued together locally smoothly, as seen by a local observer
who regards region /7 as a continuation of region /; b For a distant observer, the Hamiltonian density in region
I and at the antipodes, represented by region /1, is positive. That observer would be tempted to time-reflect
region /1. a Above: the Cauchy surface undergoes a Lorentz transformation, generated by L = H; — Hyy,
when there is a time boost for the distant observer. Middle: according to local observers in region /, the
Cauchy surface in region /I moves backwards in time, and therefore the energies of the quantum states there,
are negative compared to the vacuum energy. The state shown here is close to the Hartle-Hawking state,
which is the vacuum according to local inertial observers. Under b, we see how this gives rise to positive
energy Hawking particles both in 7 and in /1. Below: In the A H vacuum there are vacuum fluctuations.
These have total energy = 0 according to a, while the Hawking particles in / and // all have positive energies
as seen by b

New in our theory will be the postulate that both regions I and I describe physically
accessible parts of the same black hole (by applying the antipodal identification), so
that pure quantum states of the local observer map onto pure quantum states of the
black hole as seen by a distant observer.

The dotted lines in Fig. 3 illustrate the fact that one might consider the energy levels
of region II as “nearly full” rather than nearly vacuum. Note that this picture applies
to soft particles only.

3.2 Hawking Radiation I
We end this section with rephrasing the standard physical features of Hawking radia-

tion. As we shall see, the usual arguments pertain in particular to soft particles. What
happens with hard particles will be exposed in Sect. 7.
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Locality in the Standard Model allows one to distinguish the fields that live in /
from the fields that live in /1. If one uses creation and annihilation operators to describe
the quantum states in these regions, in terms of the fields in regions I and II, one finds
that the operators a and a' normally used by a local observer, now mix the fields in
region / with those in region //. To unmix them, one hits upon the necessity to perform
Bogolyubov transformations [9,24-26]. This means that the creation of a particle
according to a local observer, may result in a superposition of a particle created and
an (anti-)particle annihilated as seen by a distant observer. Thus, the distant observer
sees particles where a local observer sees none.

One finds that the vacuum state |&) as seen by an inertial observer close to the
horizons, for distant observers takes the form

1
@) =CY e 2P k) k.n) i

K,n
1
- Cl_[ Z e 2PN Ny, o)1 INws no) 11, (3.3)

@ Ny, ngy

where f is the inverse Hawking temperature, « is the energy for the distant observer,
n is any other type of quantum number, and C is a normalisation constant. N, is the
number of particles with energy w. Since the generator of Lorentz transformations in
the u™ direction (as seen by the local observer) is L = Hy — Hjy, this vacuum state,
|}, is invariant under Lorentz transformations around the origin (L|2) = 0).
Eventually, however, region I and region II must be regarded in unison, so as to
assure that we are describing pure quantum states (duly entangled) only. One can
choose whether to apply this equation only to the in-particles, the out-particles, or
both.
The four special vacuum-like states a black hole can be in were aptly defined by
Matt Visser [27]: he distinguishes
e The Hartle—-Hawking [16—18] vacuum: the state described as a pure state according
to Eq. 3.3, that, according to a local, inertial observer, has both the in-particles
and the out-particles in the vacuum state: nothing in, nothing out, but the distant
observer has a bath of particles going in and out. These particles look thermal at
first sight, but in our formalism, this is not an ordinary thermal bath: the particles
in one hemisphere will be strongly entangled with those in the other hemisphere,
so that, on total, we have a single pure state.
e The Boulware [28] vacuum: there is a pure vacuum at infinity, hence no in-particles
and no out-particles for the distant observer,
e The Unruh vacuum: only the out-particles of a decaying black hole are seen, the
in-particles are absent, and
e The “Vacuum cleaner vacuum’: the in-particles are in a Hartle—Hawking state, the
out-particles are absent.
In general, we consider these states only for the soft particles.
As Hamiltonian for a local, distant observer (an observer only looking at one
hemisphere), one can use the generator of the Lorentz transformation that keeps the
horizons in place: L = H; — Hj;. We have
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H1=/ SPROHE,0), Hpg =/ ErC I HE, 0); X2 = \/Li(u++u_),
x3>0 x3<0
(3.4)

where H (X, 0) is the Hamiltonian density at time ¢ = 0.

We have, in the absence of gravitational interactions, [H;, H;j] = 0. The eigen
states of (Hy, Hjj) are the Boulware states (excitations from the Boulware vacuum
using finite products of creation operators), |k, n1)s |k2, n2) 7. Here, k1 refers to the
total energy eigenvalue of Hy, and k> is the energy eigenvalue of Hy;. However, the
Hartle Hawking state, representing the vacuum for the local observer, has both H; and
Hj highly divergent; there are infinitely many Boulware particles queuing up near
the horizon, but in such a way that H; — Hy; = 0 (due to Lorentz invariance, L = 0).

The apparent ambiguity of the sign of Hy; will later be seen to be due to the fact
that, if we follow a closed curve from [ to /I, the sign of the time coordinate flips, as
in a Mobius strip (see Sect. 9); while the distant observer experiences a Hamiltonian
that looks as H = H; + Hjj, the observer who looks at the Hamiltonian from near
the horizon only, sees H = L = H; — Hjj.

As long as we look at soft particles, this local Hamiltonian is conserved in time.
However, soft particles may evolve into hard particles, and these can cross the horizon,
as we shall see. When we include the hard particles, we have to use H; + Hjy, plus
an interaction part, as our Hamiltonian.

4 The Hidden Asymptotic Region at the Horizon

Very near to the horizon, both H; and H;; have an infinite degeneracy of eigen
states. This would generate an infinity in the number of micro-states, which has to be
addressed.

To describe the states |k, n) as seen by a distant observer of a black hole, where
k 1is the energy and n represents other quantum numbers, it is appropriate to use the
tortoise coordinates, o and t:

.
— 1 ( 1) LA B

0=zlog(555; taom T 2losley

t

T AGM

“.1)

= L log(x/y),

where x and y are the Kruskal-Szekeres coordinates, see Appendix A. The tortoise
coordinates (4.1) are useful because they reproduce the flat space-time coordinates
asymptotically. In these coordinates, a massless scalar wave packet ¢ (o, 7) obeys

82¢ = (ag +2QGM/r)2, + (AGM/r2 et + 1) (1 — ZGM/r)>¢ .42
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Note that, near the horizon, the angular momentum term (and possible mass terms)
become insignificant. When the field ¢ is properly normalised,' the linear derivative
term turns into a potential term of lesser significance, and we find that plane waves will
propagate inwards and outwards with velocities less than 1 in the (o, ) coordinates.
Since o goes all the way to — oo, we have infinite trains of plane waves going in and
out, infinitesimally close to the horizon. This is our ‘hidden asymptotic region’.

In a first approximation, the states |k, n) are obtained from the solutions of
(0, 7) = e “TP(p,0), where k = > » No @, when each mode w is occupied by N,
particles. These states form the basis of states as experienced by the distant observer;
they contain N = )~ N, particles.

As in Sect. 3.2, one would now be tempted to use the Hartle-Hawking state (3.3).

The fact that there are infinitely many modes at ¢ — +o00 is easy to understand;
this is due to the infinite amount of space outside the black hole, so we can imagine a
cut-off by imposing boundary conditions of a large box surrounding the hole.

The limit 0 — —o0 is a different one and it is important.'> This hidden asymptotic
region is easy to interpret, but often, incorrectly, ignored: there are infinitely many
modes w describing particles queuing up at the horizon. It takes them forever to pass
the horizon, but they do not naturally reflect backwards. Imposing a cut-off there,
requires the following discussion [8]:

If we would keep all quantum states generated by the fields on the domain —oco <
o < 0, we would get a strictly infinite spectrum of micro-states for the black hole,
which clashes with our physical expectation that the number of micro-states should
be finite and should agree with the thermodynamics of Hawking radiation. Both the
in-particles and the out-particles give infinite numbers of micro-states near the horizon.

Equivalently, we can blame the infinity to the simple fact that the vacuum state | &)
is invariant under the subgroup of longitudinal Lorentz transformations, whereas, for
the local observer, this subset of the Lorentz group is non compact; Lorentz transfor-
mations generate infinite sequences of states.

To adapt this situation to what we expect physically, we again have to modify the
theory. In-particles too close to the horizon should, somehow, be replaced by out-
particles, which must carry all information along. This could be achieved by erecting
a ‘brick wall’ [8], but that would be too drastic and too difficult to justify physically,
while a better solution is at hand.

What we expect physically, is that there should be a boundary condition at some
large, negative value of p, relating all in-particles to out-particles. This is the statement
that the process of formation and evaporation of a black hole is controlled by a unitary
scattering matrix S [9].

Note however, that not only standard theories are unable to determine the form of
S, but even the existence of such a matrix is often ignored [29].

14 When we write ¢(r,t) = K(0)$ (o, T), where, close to the horizon, K (0) — €2, the first derivative
term can be replaced by a potential term. This is the usual way to restore hermiticity of the Hamiltonian,
and with that, the restoration of the interpretation of |p|% as a probability distribution.

15 Later, these two infinite domains will be found to be related. See end of Sect. 5.1.
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A way to phrase the new situation is to observe that our hidden asymptotic region
must be sealed off. We now describe a natural mechanism that was found to do exactly
that.

Since t runs backwards in region /1, states Y as seen by a local observer are the
normal product of ordinary states in region / and the complex conjugates of ordinary
states in region /. This is why our first idea [30] in 1984 was to propose that the two
regions / and /I of the Penrose diagram, together represent states |) (|, or, elements
of the density matrix seen by the outside observer. This idea, however, also led to
difficulties: in Ref. [10], we found that there are direct transitions between states in
region [ and states in region /I, which would correspond to direct transitions between
bra- and ket-states, and as such clash with unitarity.

Our recent investigations [11,12] led to a hybrid theory—in a sense, we com-
bine the bra-ket idea of 1984 with the notion that the time evolution should be
unitary, ie., it should not mix bra states with ket states. Our solution is not just
a wild theory or model of what could be a vague idea, but rather the contrary: it
follows by explicitly inspecting the equations after an expansion in spherical har-
monics. In terms of the spherical harmonics, our Schrédinger equation decouples
all £, m components from one another, so that the equations are simple and unique
differential equations in one space- and one time variable, with explicit solutions,
so that there can be no doubt about their correctness. The antipodal mapping that
connects regions / and II is seen to be inevitable. Let us continue describing the
physics.

Our explicit analysis invited us to introduce the notion of hard and soft particles.
The hard particles are inevitable because, due to the evolution law (3.2), p* can grow
or shrink exponentially as 7 — 4 co. However, both the mass p and the transverse
momenta p do not grow or shrink. If we decide from now on to keep (in natural units)

|15| < Mpianck n <L Mpianck, L MBH/MPlanck, (43)

then the only hard particles to keep track of have either |p~| > Mpjanck (the hard
in-particles) or | p¥| > Mpjanck (the hard out-particles).

It just so happens that hard elementary particles have never been observed. In
describing our micro-states, we shall assume that they always can be omitted, but in
order to keep the hard in- and out-particles out of the way, “firewall transformations”
will be needed, as will be explained—the assumption will be verified.

The firewall transformations were in fact implicitly used to arrive at the unitary
matrix in Refs. [11,12] (see also Appendix B), as it connects only soft particles.
However, these particles are described in terms of their contributions to the energy
momentum distribution p* (6, ¢) or their contributions to the average position distri-
bution uT (A, ¢). What then remains to be done is to map these data onto the states
of Fock space in the Standard Model. This however will have to be left for future
investigations.
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5 The Correct Construction of the Micro-states

We shall only make use of conventional quantum field theories when addressing soft
particles. To formulate a theory for the black hole micro-states, hard particles, embed-
ded in a non-trivial, curved background space-time, are to be eliminated as follows.
First, we define the quantum states in terms of only soft particles roaming around in
the metric of an ‘eternal’ black hole. Then, we show how to modify the evolution
laws such that the evolution operator remains unitary within this Hilbert space,'® and
subsequently we can consider evolution over long time scales. To achieve the lat-
ter, text book physics needs modification concerning the boundary conditions at the
horizon—in various ways.

Eventually, our description is intended to include black holes formed by the implo-
sion of matter, as well as the final explosion of a black hole. But, to begin with, we
only include Hawking particles that are emitted during a time interval that is short
compared to M log M in Planck units, and soft particles entering the hole during the
same short period. This may seem to exclude black holes emitting Hawking particles
at much later times, and also all black holes with the history of an implosion at much
earlier times. These will be included however, through the firewall transformation, see
later (Sect. 5.1).

Hard particles with large values of p and/or their masses u, are strongly (that is,
exponentially) suppressed in the Hawking radiation, and usually not assumed to be
present in the in-states either. So as stated earlier, we ignore those.

At time scales much longer than M log M in Planck units, the Hawking particles
appear to generate firewalls: due to continued Lorentz contractions, the p* of these
particles would diverge so fast that their effects on the metric can no longer be ignored.
These are the hard particles that will be considered shortly.

Thus, as yet, neither are we concerned about the ancient history of the black hole,
nor about its distant future, and note that this is standard practice when describing
more conventional quantum processes: as soon as we have the complete set of states,
the evolution laws for short time intervals are all one needs to know, to uncover the
full time evolution features, by repeatedly applying the evolution laws found.

Having thus (temporarily) eliminated back reactions on the metric, we can now
safely employ the full Penrose diagram of a stationary black hole, the one shown in
Fig. 1a. We fill it with soft particles only, so neither the imploding matter of the distant
past, nor the Hawking particles emitted in the late future, are visible.

To repeat: this description of the quantum states can only last for short time intervals.
Iftime t (asdefined in Eq. (4.1)) is allowed to become too large, then the in-particles are
seen to be boosted so much that they violate the no-back-reaction condition; similarly,
if we look at the far past, we see that the later out-particles obtain too much energy
there, so that they too, fall out of the allowed domain.

16" A Hilbert space that naturally must include all in- and out-particles in the black hole’s vicinity, but far
from the horizon.
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This is a problem, which can now be cured. Consider an operator creating an in-
going particle!” with a very modest amount of momentum p~. The quantity G p* is
so small that its effect on the curvature may be ignored. Now, as time 7 proceeds, the
component p~ of the momentum increases as

p () =p (0T, (5.1)

while the distance u™ from the past event horizon (defined at the moment when the
particle crosses the future event horizon) decreases as

ut(t) =ut()e 7. (5.2)
Notice, that the uncertainty relation
sutsp” > h, (5.3)

is not affected by the time evolution.

We then arrive at the point where we can no longer ignore the back reaction.
Consider any other particle, a (Hawking) particle, going out. Its distance u~ from the
future event horizon is shifted by the in-going object, in a way that can be computed
precisely. Itis in fact the only component of the curvature caused by the p~ particle that
we have to take into account. The shift §u~ (6, ¢) depends on the location Q2 = (6, ¢)
on the horizon, and was derived to be [23]:

Su () =87GR2f(Q,Q)p, Q=0,9), Q= ¢);
(1—-AQ)f =8(Q,Q), AQYem(0,9) = —Ll+ )Y ,(8, 9),
(5.4)
8

where R = 2G Mgy and €' denotes the point on the horizon where p~ enters.!
As described in Refs. [9—12], we use the fact that these equations are linear in the

momentum p~ of the in-going particle. Repeat the argument for all particles that have

p~ growing to values that become too large. They form a momentum distribution

pm@ =) p 8@ ), (5.5)
i
and the total shift of all out-going particle positions is

Su"(Q) = 8nGR*2/d2sz/f(sz,Q/)p*(sz’). (5.6)

17 This is not exactly the creation operator af( p), but an operator increasing the ingoing fotal momentum
by an amount (p), while keeping the norm of the state unchanged; hence, it is a unitary operator.

18 The equations depend on the units chosen. Since we work with the tortoise coordinates (4.1), the variables
u~ and p~ are dimensionless. In units where i = ¢ = 1, G has dimension length-squared.
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Next, we realise that the contributions of infinitesimally small p~ values in a somewhat
more distant past can simply be chosen such that they generate the original positions
u~ of all out-going particles. This argument justifies the idea that we can simply
replace

Su—(2) — u (), 5.7

or, the average positions u= (2) of all particles leaving the black hole at any solid
angle Q, are directly given by the momentum distribution p~(2') on the in-going
ones.

And finally, it is tempting to perform a spherical wave expansion [10-12], to arrive
at the algebra:

WEQ) =) unYen(Q),  pT@ =) pp,Yn(Q); (5.80)

t,m l,m
W), pT @) =i8*(Q. Q). [, pj,]=i8wdum:  (5.8b)
_ _ 81G/R* _ N 8nG/R*
Uy = mpma Uy, = —mpout. (5.8¢)

Three more steps are needed to arrive at a description of micro-states in terms of
soft particles only. First, we need to establish what exactly the operators pfm and uétm
mean, in terms of Standard Model particles. They are the spherical wave expansions
of the operators pi(Q, @) and u®(o, ¢), which in turn describe the total-momentum
distribution and the average position operator of in- and out-going particles across the
event horizon (specified at each solid angle 2 = (6, ¢) separately). In this quality, they
neatly obey our algebraic commutator equation (5.8b). This does mean that p~ can
be interpreted as the 7~ component of the energy momentum operator, integrated
over ut, and mutatis mutandis p™. For any quantum state in the Standard Model, we
can compute these operators, just as we can compute19 the average position operators
(0. ).

However, the converse is more problematic. Our algebra dictates how the p~ dis-
tribution of the in-particles dictates the u~ distribution of the out-particles, and vice
versa. This only yields a unitary evolution law if the Standard Model states are uniquely
described by these components of the energy momentum tensor.

This is not obvious, but in our earlier work [31,32] on the relation between the
black hole states and strings, it was noted that our theory is geometrically related to
string theory. Our operators p™* (6, ¢) have the same form as string vertex insertions;
the horizon simply plays the role of a string world sheet. In string theory, the claim
that the quantum states are described by string vertex insertions, is considered quite
acceptable. We adopt the same verdict in the present formalism.?°

19 Note that, in such calculations, the partial wave expansion is not a quantum superposition of angular
momentum states, but a linear decomposition of operators. Thus, although our mathematics shows a strong
resemblance to the hydrogen atom, the physical machinery described here is different in important ways.

20 In fact, our algebra is closely related to the Virasoro algebra used in string theory [2], apart from two
subtleties: first, our surface is a Euclidean one while the string world sheet is Minkowskian, which means
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(a) - (b)

Fig. 4 The Penrose diagram with soft particles added. a Possible locations of the in-particles. At positive
values of ™ they enter the hole in region /, at negative u~ they enter the hole in region II. b Showing
possible out-particles. If ut > 0, they emerge in region /, if u™ < 0, they emerge in region II

This leaves open the question how one arrives at the desired Standard Model quan-
tum state once 7"V is given. This is an important open question at this moment. Note
that, sooner or later, we should observe that globally conserved quantum numbers such
as baryon number, will be inadmissible in most black hole theories, and the question
will be raised how such constraints will arise in practice, and how they should be dealt
with.

All we can do at this stage is conjecture that the mapping from energy-momentum
density operators to Standard Model Fock space states, will be a unitary one. This
conjecture requires that, when enumerating the states, and when proper cut-offs are
used, the total number of relevant Fock space states should be equal to the number of
possible values for p* and u™.

The second step taken in this section concerns the physical interpretation of regions
I and II. The gravitational shifts du~ (6, ¢) described in Eq. (5.4), can easily be seen
to carry a particle over from region / to region /1, or back (when an amount of p~ is
annihilated). Consequently, our algebra (5.8) only closes properly if all in-particles
are allowed to superimpose states in I with states in /1. The p~ states are Fourier
transforms of the u™ states. These are sharply defined only if the in-particle position
operators are allowed to have both signs; we should be allowed to have them enter
in / or in /I or in a superposition of such states; we cannot restrict ourselves to one
sign of u™ only. The same must be true for the out-particles. In Fig. 4 the situation is
illustrated. Both the u™ operators and the p* operators must be allowed to range from
positive to negative, in which case the different regions both get involved. So how can
we ensure unitarity in our system of quantum states?

The answer to this can only be that region / and region /I must both represent
physical black holes. Now, if these were allowed to be different black holes, then it
would be inevitable to have cross-talk between these two, possibly widely separated,

Footnote 20 continued

that we have “strings” with an imaginary slope parameter ’, and secondly, the central charge is missing.
The central charge shows up when the Lorentz group is made complete; in our theory, transverse Lorentz
rotations have been disregarded, but they may well lead to the same complications as in string theory,
necessitating central charges.
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black holes, which would generate irreparable damage to any form of locality and
causality.?!

It turns out that there exists exactly one clear and simple cure to this problem:
regions I and II represent the same black hole. Now if these would also be describing
the same spot on the horizon, then this would generate conical singularities at the
centre of the Penrose diagram. This would violate the principle of general relativity,
since physics at a conical singularity is different from the physics of locally regular
regions of space-time; we cannot allow this.

The correct answer must be that 7 and /I represent different regions on the horizon
of the same black hole. This means that we must have a Z, mapping of the horizon
onto itself: if we move from one spot to its Z, image, we get the points connecting to
region /1. The square of the mapping must be one, and there should be no fixed point.
In Appendix B, we show that there is exactly one solution satisfying these constraints,
which is that this Z, mapping is the antipodal mapping: moving from a fixed point of
0, @) from I to Il or back, must correspond to a transition to the antipodal points:

0,p) «~— (T —0, ¢+ m). 5.9)

Physically, such a space-time is remarkably regular. Since in all regions from which
information can reach us, the radial coordinate r obeys r > 2GMpp, the points
that we identify never come closer than 2w G Mpp, so local observers never notice
anything unusual. In fact, one discovers two features that seem to be most welcome
in a quantum theory of general relativity:

(1) Every point in our physical space-time now represents exactly one point in the
Penrose diagram, not two, as we have in the conventional theory. Thus we uncov-
ered a principle that may be a necessary one for the quantum theory: When fields
on a manifold are quantised, it is essential that the entire asymptotic domain of
the manifold maps one-to-one onto that of ordinary space-time, while preserving
the metric. (see the explanation of this statement in the Introduction, Sect. 1: It
must be possible to find time-like paths that connect all space-time points in co™
to all points in co™). This is the way to eliminate all problems with unitarity.

(i) All Cauchy surfaces must go through the origin of the Penrose diagram, so that,
at a given time slice, there is no “interior” region of the black hole. As we never
enter regions /11 or IV further than by an infinitesimal amount, all time slices used
to describe black holes contain physically accessible points only (in the sense that
they are connected to the outside world by time-like geodesics, both to the future
and the past), with the exception of regions of measure zero (Fig. 5).

2L Often, it is brought forward that, therefore, these two black holes will be entangled. This would not be a
problem if the entanglement would be time-independent and hence not transmit information. In the present
case, such entanglement would be influenced by in- and out-going material, and this would violate unitarity
at the local scale. See Appendix B; finding such unitarity violation inadmissible, we searched for—and
found—a better solution.
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Fig. 5 The antipodal mapping illustrated on planet Earth. Figure at the right shows the map formed by
the antipodes of the figure at left, after rotating it 180° around the z-axis. Notice that the continents are
unfamiliar; they are parity-reflected

5.1 Quantum Clones

Now there is a third step to be taken. Looking at the in- and out-states of Fig. 4,
we see that, as time T evolves, the in-states move further in, and the out-states move
further out. This means that the momentum of the in-states increases exponentially as
time runs forward, and for the out-states the momenta increase in the backwards time
direction. In both time directions, therefore, we encounter hard particles (as defined
in Sects. 1 and 4). The description of the micro-states as in Fig. 4, using soft particles
only, therefore only works for time scales of the order of G Mgy in natural units.

If we want to cover larger time domains, our algebra (5.8) comes to the rescue. It
states that, if in-momenta p~ become large, then the out-distances u~ will increase
exponentially as well. Similarly, the p* momenta of the out states follow the u™
positions of the in-states. Soon, the point will be reached that we are describing particles
whose coordinates u™ (6, ¢) are so large that they have left the scenery of the black
hole. Such particles may be ignored. Note, that removing these particles that are far
away now, allows us to redefine the black hole mass by subtracting the mass of the
distant particles from the original expression. Thus, the black hole mass varies in time
as expected physically.

Now comes something very important: the coordinates u™ are directly related to
the momenta p* according to Eq. (5.8c) in the algebra (5.8). They do not represent
different states, but refer to the same quantum states. What used to generate cloning
problems now works as desired: the coordinates #~ and p~ are redundant, we only
need one of the two to specify the quantum state. Similarly, we need either u™ or p™
to describe a single quantum state. To be able to ignore the gravitational back reaction,
it is best to use these substitutions to obtain momenta p when they are small, and/or
coordinates u when they are big.

If we disregard particles that are too far separated from the black hole, we must,
at the same time, disregard the high momentum particles to which they are linked
according to Eq. (5.8¢). This is how we remove the particles that cease to be soft.

We can also phrase this is as follows: the hard in-particles, with values p™(£2)
for their momenta, are equally aptly described as if they were the soft out-particles,
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with p~ replaced by u ™, in accordance with the algebra (5.8). The hard in-particles
are quantum clones of the soft out-particles. The appropriate way to describe Hilbert
space of all allowed states is to remove all particles with p* exceeding some bound,
by replacing them by the corresponding soft particles, for which u* is now big enough
to consider it as departed from the black hole.

It was these “hard” particles that generated “firewalls” in earlier investigations [6].
Now we see that there is a natural way to remove them. They are removed because
they represent quantum states that can be better described as states containing soft
particles sufficiently far away from the black hole’s horizon.

Thus we replace all hard particles by soft ones, which also replaces in-particles
by out-particles, and generates, in fact, the scattering matrix relating in- to out-. We
refer to this transformation as the ‘firewall transformation’. it is what we alluded to
earlier: firewalls can be systematically and completely removed. Thus, our description
of matter in terms of soft particles only, is validated a posteriori. As this includes the
early matter particles that formed the black hole through an implosion, we see that now
also our use of the eternal Penrose diagram, Fig. 1a, is justified. See also Footnote 15
in Sect. 4: the hidden asymptotic region near the two horizons is linked to the physical
asymptotic region infinitely far away from the black hole.

6 Novel Aspects of this Theory

There is a number of important points that must be mentioned. We noted that the
coordinates u™ (6, ¢), when positive, refer to region I and when negative refer to
region /1, the antipode of /. Something similar happens to the momenta. Upon careful
examination of the algebra, we see that when a particle with momentum p~ enters
the black hole in region /, it has the same effect as a particle with momentum —p~
entering at the antipodal point. Here also, one must avoid double counting. If these two
configurations lead to the same coordinate configuration for the out-going particles,
then they must represent the same state. Thus, the momentum entering a point (6, ¢)
on the horizon always equals minus the momentum entering at the antipodal point.
It is the demand that the «™ variables, by definition, have opposite signs in region /
and region /I, from which we infer that, in the spherical wave expansion, only the odd
values of £ contribute.

This does not lead to any direct contradiction; physical particles can enter the black
hole from both sides independently. This is because the energies «, as experienced
by the outside observer, are something totally different from the momentum variables
p*, which are the ones observed by the observer near the intersection of future and
past event horizon. What one has to keep in mind is that, every in-going and out-going
particle, enters or leaves at a different point (6, ¢) on the horizon. This is so because
all in- and out-particles carry exactly one u™ coordinate, which is allowed either to
be positive or negative, but not both. A particle with positive u™ enters in region 1,
and negative ™ in region II. The momenta p~ are then ill-defined because of the
uncertainty relation. In the momentum frame, positive p~ means either a positive
contribution in region I or a negative contribution in region II. The energies « are
defined for regions / and /I separately. At all «, the wave functions in regions / and I/
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are different, so that the energy distribution over the horizon is an arbitrary function
of 6 and ¢. The firewall transformation helps us to transform away states where either
one u coordinate is too small or one of the momenta p is too large (both in Planck
units).

Another important point is that the spherical wave expansion mixes up positive and
negative signs (every Yy, function swings from positive to negative values), so as
soon as we look at definite (£, m) states, we mix up particles at one hemisphere with
particles at the other hemisphere.

The energies « are the energies associated to the external time variable 7. In our
dynamical equations, these energies are conserved regardless whether parts of a wave
switch from region 7 to II or back. Thus, total energy will be conserved, in spite of the
sign switch of local energies discussed in Sect. 3.2.

The mode with £ = m = 0 does not exist, as we just noted that £ has to be odd.
This implies that we cannot handle a single ‘dust shell” entering (or leaving) the black
hole. What this really means is that such a ‘dust shell state’ is ill-defined. The dust
shell actually consists of myriads of ‘dust particles’, each of which being allowed to
be in a number of different quantum states. If a dust particle enters at one solid angle
(6, @), no particle is allowed to enter exactly at its antipode. It is perfectly allowed to
enter at any other point very close by—but not too close.??

The energies of the in- and out-going particles, as observed by the external observer,
refer to the plane waves in terms of the tortoise (Eddington-Finkelstein) coordinates
(4.1). These tortoise coordinates commute with the sign operators o*, since, close to
the horizon, we have

+
ut =0 el (6.1)

Thus, at every point on the horizon (Footnote 22) we will see just one particle entering
or leaving, either at (6, ¢) or at its antipode, but not at both.

The energy « for each particle is independent of the local momenta p*, and can
always be kept positive. Smearing the energies equally over all allowed solid angles
gives us a dust shell, where “dust” indeed stands for very many particles.

The Hamiltonian H; is the operator that causes the operators p~ and # ™~ to increase
exponentially with 7, while p* and u™ should decrease exponentially. The operator
that does this is the dilation operator. At each £ and m, we have (close to the horizon):

H,=L= H;—Hj = fwrp +puh) = put+ii
. — 8 1 . + a 1 . 8
= i(p - 3) = —i(u au_++7) = Ty
(6.2)

where the symmetrisation, which led to the terms i%i, was needed to keep the Hamil-
tonian hermitian.

22 The total number of points to be considered on the horizon will equal €max (¢max + 1), where £max
is the cut-off for the spherical waves, as the transverse momenta there reach the Planck value. Since
max = O(Mppg) in Planck units, this happens to be of the order of the total number of Hawking particles
emitted by the average black hole [33, G. Dvali, personal communication].
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It was observed by Betzios et al. [34], that this dilaton Hamiltonian in the variables
u®* and p* can be transformed into an apparently more conventional form, being the
inverted harmonic oscillator. Rather than ellipses, the classical orbits in this potential
are hyperbolas in phase space. An orbit may or may not bounce against the top of the
potential, and on that it will depend whether a dynamical variable ends up in the same
region or in the antipodal region of phase space.

We keep our own notation. In a given spherical wave, energy eigenstates with energy
K ¢, have wave functions of the form

W — Celkme@ (6.3)

In a quantum field theory, when disregarding the interactions, the Hamiltonians in
regions I and /I are [9] (Note the discussion on the sign of H; at the end of Sect. 3.1):

H = Z/o da)Zwal{rZ(w)al{m(w),

l,m

o
Hip=Y) /0 do ) wag, @) af, (), (6.4)
i l,m

where the first summation symbol stands for the summation over different possible
field types I. The operators a; and aj; are superpositions of the usual creation and
annihilation operators of the field theory through a Bogolyubov transformation [24—
26].

Observe that, in Eq. (6.4), both H; and Hj; are non negative, while Eq. (6.2) can
have any sign. This has to be taken into account when mapping our states |k¢,,) onto
the Standard Model states, a procedure that has not yet been elaborated to the author’s
satisfaction.

One more remark here about the sign flip of Hj;. At first sight it looks as if the
sign of this part of the Hamiltonian makes our theory inconsistent. Yet no problems
were encountered in the explicit calculations. There is a good observation to be made
to reassure us at this point. The crossing of the horizon, as described by the S-matrix
also given in Appendix B, involves a substitution of the kind p < u, or, a Fourier
transformation. As is well known, replacing p with u also replaces i by —i. Now
the matrix also contains terms on the diagonal, and these would generate the wrong
sign. However, these terms are suppressed by factors e "%, so they cannot affect
the signs. What counts, eventually, is that the matrix is unitary and the energy is
conserved.

6.1 The Black Hole Interior
The antipodal identification holds in particular for points situated on the horizon,

i.e., the points at the centre of the Penrose diagram, Fig. la. Outside the horizon,
the points in region [ are identified with the antipodal points of region /I. This
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means that the observable points outside the horizon (all living in region I), are not
identified.

Nevertheless, the antipodal identification implies one important modification of our
interpretation of the black hole metric, as compared to earlier work: the states |k, n)|
and |k, n)y; both refer to matter particles outside the horizon, so that the HH state
(3.3) is a single, pure state. This does away with the information problem and the
unitarity problem in a radical fashion. Unitarity holds iff the regions 7 and II together
represent the state the black hole is in.

Where then is the interior of the black hole? There is no interior. All equal-time
lines (for the external observer) cross the centre point of the Penrose diagram, which
is the intersection of future and past horizon, a space with measure zero. This means
that, if one would move faster than the local velocity of light (that is, on a space-like
geodesic), one could hop from a point on the horizon to its antipode instantly. It is as
if, in 3-space, a sphere of radius Rpy = 2G My has been excavated, after which the
antipodal points are glued together. In a conformal model, one could identify

X =—R%%/|x|%. (6.5)

Notice, that this effectively just removes all points X with |X| < R. Notice also, that
the transformation in (6.5) does not invert the parity of local displacements dx.

In flat space-time, the transformation in Eq. (6.5) may seem to violate special
relativity because two space-like separated points are identified. In the black hole, there
is no local or global violation of special or general relativity. This we say because, on
a time-like geodesic, the time it takes to reach a point at distance ¢ from the horizon,
takes an amount of time that diverges as |loge|. Once we reach the Planck scale,
information can cross the horizon as it is spread over the Fourier transform of an
out-going signal. Therefore, we can say that if we try to send information from some
point r = a to its antipode, the trip through the horizon takes an amount of time of
the order of R log[(a — R)/R], while the detour around the black hole takes time of
the order of w R, where R = 2G Mppy is the radius of the horizon. So the detour is
actually faster.

Even if our identification would suggest that one can beat the local velocity of
light, this would still not have to violate special relativity because we have a prefer-
ence frame induced by the background metric. We briefly continue on this subject in
Appendix B.

The only ‘inside’ region would be regions /II and IV. For the outside observer,
however, these would be regions where his time coordinate is ‘beyond infinity’, or
‘before minus infinity’, and therefore these regions are unphysical for the outside
observer.

A different—but equivalent—way of saying this is that regions /II and IV of the
Penrose diagram of the eternal black hole, contain just quantum clones of the particles
in regions / and /1. A Cauchy surface must cover regions / and /1 or be replaced partly
to go through IIT or IV, but care must be taken not to count any physically relevant
degree of freedom more than once. This should be guaranteed if the Cauchy surface
is space-like everywhere.

@ Springer



Found Phys (2017) 47:1503-1542 1529

6.2 The Central Singularity

Eventually, however, the antipodal identification does have an effect on the singularity
structure of the black hole space-time. At all space-time points on, or in the immediate
neighbourhood of, the horizon, antipodal points are all separated from one another by
distances close to w Rpp. Therefore, the identification is smooth and regular every-
where near the horizon.

Only at the plane r = 0, the effect of the antipodal identification will be more
profound. The metric actually already has a singularity there, since, near the origin,
its » component takes the shape —C d(r3/?)? (being time-like in this region). The
two branches here must again be identified antipodes, so that, perhaps, 7>/2 is a more
natural coordinate. Note however, that we have cosmic censorship in the Schwarzschild
metric: the r — 0 singularity occurs when, according to outside observers, time would
be beyond infinity, so that no physical clashes occur at finite time. See Footnote 12.

7 Hawking Radiation II

Although one might still express some doubts about the true nature of Hawking par-
ticles at opposite sides of the black hole, we have noted that, applying Eq. (3.3) to
describe them, suggests a strong entanglement. This then would lead to a prediction,
if ever experiments could be done with radiating black holes. We now shall explain
our prediction that, if at one point (6, ¢) on the black hole horizon a Hawking particle
is detected in spite of being suppressed by some fairly large Boltzmann factor e #£,
then its anti-particle should emerge at the antipode without any further suppression.

The situation can be read off from the diagrams on the lowest line of Fig. 3a, b.
Fig. 3ais how one usually understands the emergence of Hawking radiation from local
vacuum fluctuations at the horizon. A particle (upwards arrow) is created together
with its antiparticle (arrow down). Any quantum numbers are arranged as following
the arrows, so that the antiparticle has opposite quantum numbers—it is a C inversion
of the particle. When we flip it back (b), we would be tempted to make another C
inversion, so that one might expect a particle at the point X to be emitted together with
the same particle at —x. This is what we expected in Refs. [11,12].

However, the points —X are parity reflections of the point X. Indeed, if one would
consider the map of planet Earth generated by the antipodes of the conventional map,
one would notice it to be parity reflected. Quantum field theory of the elementary
particles is not invariant under parity P, but only under the combination CPT, where
C is charge conjugation and T is time reflection. Consequently, the parity image of a
Hawking particle might not even exist (think of left-handed neutrinos). Thus, if parity
is inverted, we expect the left-handed neutrinos to be replaced by right-handed ones.
In addition, time must be reflected, but this is easy to interpret: the Hawking particles
stay on one trajectory while the local time parameter flips from one sign to the other,
so time reversal should not affect the particles.??

23 But this does mean that, at both sides of the horizon, we see the entangled particles at different times,
as if p = —t1. Consequently, the particles will not behave identically. As soon as they left the horizon, one
particle might decay differently from the other.

@ Springer



1530 Found Phys (2017) 47:1503-1542

We conclude that Hawking particles at opposite points of the black hole are each
other’s CPT reflections. Our conclusion at present is:

Hawking particles emerging from the black hole horizon are 100% entangled:
if a particle emerges that is strongly suppressed by the thermal Boltzmann factor
¢~ E/KTHawking ' then at the antipode the antiparticle emerges with 100% probability,
and in particular, with no further Boltzmann suppression at all. Locally, we see a
perfect thermal mixture with Hawking’s expression for the temperature, but globally
not: the two entangled particles together are suppressed by exactly one Boltzmann
factor e &/ kTHaWki“g, while in a thermal state one would have expected the square of
that.

The subject of the entanglement of antipodal Hawking particles is still under inves-
tigation. It is also not yet clear how the actual value of the Hawking entropy can
be deduced from the micro-states in this scheme. Locally, close to the horizon, we
do expect Hawking’s original value for the temperature to emerge, although, due to
the entanglement, and our general philosophy that provides the black hole with pure
quantum states, the entire black hole is not thermal at all.

8 Modifications of More Conventional Views; Misconceptions and
Criticism

In discussions, the author became more aware of the thorny points in our arguments.
Some of these we now discuss.

8.1 The Approximations Made

Two simplifications were assumed, in order to make our calculations possible. First,
we ignored non-gravitational interactions, in particular electromagnetism. Actually,
with some extra effort, electromagnetism can be included, but since the fine structure
constant « is not infinitesimally small, higher order corrections would become more
problematic. Electromagnetism can be included by treating it as a gravitational force
in a compactified Sth dimension. It produces extra components to our algebra [9].

Primarily, this and other standard model interactions would have to take place during
the short time interval when an out-going particle meets an in-going one. As long as
these effects are perturbative and renormalizable, we expect them to be small. In any
case, most other treatments of black holes also disregard such effects. A systematic
study of standard model interactions at the black hole horizon will be interesting
and important, but we expect the basic features discussed here not to undergo major
changes due to these.

A second approximation made was that we ignored gravitational interactions in
the transverse direction: these cause in- and out going particles to shift sideways. As
long as £ < £max, these corrections are also expected to be small, but as soon as ¢
approaches its maximal value, of the order of M py in Planck units, this effect cannot
be ignored; indeed, it is assumed to be responsible for the existence of an upper bound
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for £. So, our approximations become less accurate for spherical waves approaching
this limiting value.?*

For lower values of ¢, however, we expect our results to be quite accurate. It was
claimed that our result was a “merely classical approximation” [35], but then this
would apply equally to the spherical wave expansion of the standard hydrogen atom,
since also there, the photon, responsible for the e?/r potential, is a quantum object.
As in the hydrogen atom, also the gravitational potential between in- and out-going
matter can be treated as if it were classical. In any case, the operators arising from it
are commuting, and that is what counts.

8.2 The Penrose Diagram

In many treatises about black holes, fundamental distinctions are made between the
Penrose diagrams Fig. 1a—c, while Fig. 1d is rarely mentioned. Outside the past hori-
zon, region / represents the surrounding universe; it is the same in all these diagrams.
Regions /I, IIl, and IV are different. These differences come about because matter
going in along the past event horizon, or emerging along the future event horizon, is
either omitted or included in the picture. The fact that both quantum mechanics and
general relativity are symmetric under time reversal, while the purported solutions are
not, was rarely regarded as an oddity.

In most other branches of physics, it is customary that the laws of evolution only
refer to the state the system is in at the same moment, not to its distant past history, nor
to what is to be expected in the distant future, yet in black hole physics, often different
laws are expected, depending on whether we are dealing with a black hole with a
collapse in its past, or with an “eternal black hole”, or whether Hawking radiation in
the distant future will get entangled one way or another. This cannot be right.

In our approach, it is crucial that the black hole carries no memory of how and when
it came into being, nor is it affected by whether or not it will evaporate or accumulate
more mass in the distant future. We emphasise that we only wish to study the evolution
laws for a black hole during relatively short periods of time, so short that neither matter
going in, nor matter going out has had time to accumulate on the horizons; we claim that
the effects of these distant areas in time should be irrelevant. This makes sense when
we realise that the complete Hilbert space is spanned by having only soft particles on
the Cauchy surface (dotted line) in the Penrose diagram of Fig. 1a at all times. As soon
as the time evolution turns a soft particle into a hard one, the firewall transformation
can be applied to replace it by its quantum clone, a soft particle again.

We have seen that the momentum p~ (€, ¢) going in, is linked, one-to-one, with the
positions of particles going out. Either the # coordinates, or the p operators, suffice
to characterise the states, just as what we have for the positions x and the momenta p
for ordinary quantum particles. If, in a given spherical harmonic wave configuration
(¢, m), we Fourier transform the momentum wave operator of an in-particle, we get

24 These waves would have to accommodate for details of Planckian dimensions; one might expect string
theories to deal with them, in principle, but in our formalism, the Planck domain of our theory has not yet
been carefully examined.
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the quantum clone of the out-particle wave with the same harmonic wave numbers
(¢, m). A particle going in region I, lives on in region /II, while a particle entering in
region /1 lives on in region /V. Thus we can say that, if we work with the eternal metric
Fig. la, regions /II and IV are quantum clones of regions / and II. For the outside
observer, no contradiction arises since that observer has no access to regions /II and
IV. We can also say that regions /1] and IV are our universe at an exotic time ¢ “beyond
+infinity”.

Itis very important to consider carefully how the gravitational back reaction should
be represented in the Penrose diagram. In the diagram depicted in Fig. 1b, the particles
contributing to the original collapse were taken to be classical; they strongly affect
space-time curvature, allowing for the Minkowski geometry at epochs before the
black hole was formed, but the Hawking particles, which all together represent as
much energy as the imploding particles did, here seem to leave no trace. This is
actually defendable: the Hartle—-Hawking state is a single quantum state, which, for
a local observer falling in, is indistinguishable from the vacuum state—hence, no
gravitational effect.

However, the Hawking particles can emerge in multitudes of modes, basically
forming what looks like a thermal ensemble, so we do not want to represent them as a
single mode, but in terms of as many quantum states as one can imagine coming out.
These states cannot all be identified to the vacuum state, so the Penrose diagram must
be something else as well. Hawking had proposed Fig 1c. But why this asymmetry
under time reversal? This asymmetry is linked to the fact that not all information that
went into the black hole was expected to come out. Most researchers today think that
that is not evidently correct.

Our way to treat in-going and out-going matter, entirely symmetrically under time
reversal, forces us to use more general wave functions for the out-going material,
which means that the asymptotically far parts, as depicted in Fig 1b—d, actually should
form quantum superpositions, for which Penrose diagrams are not suited. This is why
we advocate to stick to soft particles, added any way we like in Fig 1a, after which we
leave it to the firewall transformation to continue our quantum states to (much) later
or earlier time epochs.

8.3 The Black Hole’s Global History as an Instanton

Eventually, what one wishes to describe is the black hole’s entire history in terms of
wave equations, from initial collapse all the way to the final explosion. This is what
was considered to be the black hole scattering matrix; the idea was that the black
hole here acts as a virtual intermediate “particle”. When we consider the entire event
as a tunnelling event, the picture may be seen as an instanton. The dominating parts
of tunnelling amplitudes can be derived from classical equations in Euclidean space,
which is why classical solutions in Euclidean space, in particular those that obey
topologically non-trivial boundary conditions, are often considered with interest in
particle physics. The instanton that would be of relevance for the black hole would
be one where a region is excavated from a topologically trivial domain of Euclidean
space, after which antipodal points on its boundary are identified [34].
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Wick rotating back to Minkowski space, we find that the black hole still behaves as
an instanton with the same internal boundary condition. The antipodes in question are
antipodes both in space and in time, although one has to keep in mind that, formally,
time stands still at the horizon. This means that the firewall transformation procedure,
linking the positions u of in- and out going particles, applies in one stroke to all
particles entering and leaving the black hole during its entire life time. It is in the
infinitesimal neighbourhoods of the horizons where we see that time is also inverted.

8.4 The Spherical Dust Shell

As was stated at the beginning of Sect. 6, we only allow in- and out-going shells in
the form of spherical harmonics with odd values for £. This also raised objections.
A black hole with perfect spherical symmetry should form if the collapse starts with
a perfectly spherical collapsing shell, that is, only the wave with ¢ = 0 is excited.
What happens with such a black hole? Hawking’s derivation of its perfectly thermal
spectrum seems to be immaculate.

Hawking’s result however is a statistical one. He could not derive any pure quantum
state. This means that, regarding pure states, the collapsing shell must have myriads
of pure states to choose from. This agrees with our general procedure. All odd values
of ¢, as long as ¢ < {pyax (see Footnote 22), participate. Yet we can neither put all
u}m equal to zero, nor all u,,, , since in these cases, p,,, or pZm would tend to infinity;
these would have to be removed by our firewall removing transformation. If, on the
other hand, u,, would be put equal to infinity, so that all pZm vanish, then we would
be dealing with particles far away from the black hole. These particles, no longer of
physical interest, formally blur our pure quantum states; averaging over them might
reproduce Hawking’s thermal state, so again, there is no immediate conflict.

How the local momentum distributions p* are distributed over the spherical waves,
as opposed to the energy distribution « (6, ¢), is further discussed in Sect. 6.

We conclude that the pure, spherical dust shell is unsuitable to serve as a model for
a single quantum state of a black hole.

8.5 Black Hole Formation Through Collapse

An objection sometimes brought forward is that our approach does not explain how a
black hole forms by collapse. By time reversal symmetry, this complaint should also
apply to the final stages of the black hole evaporation process. We seem to be focussing
only on small changes taking place when a black hole captures or emits amounts of
matter small compared to the total black hole mass.

Indeed, our theory is not completely finished. When a large amount of matter is
captured or emitted, the total black hole mass before and after, should be different.
How to accommodate for this was not yet studied in much detail in our theory, but we
can make some general remarks.

As is well-known, in classical physics, black hole collapse is accompanied by a
horizon opening up at one or several points in space-time. In the spherically symmetric
case, one only has one such point. Behind that point, call it O, there is a small region
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where the horizon takes the shape of a future-directed light cone. Behind that horizon,
we have the region from which no signal can escape to infinity. In every respect, this
region is to be regarded as a ‘region /I’ opening up. As stated in Sect. 8.2, region 111 is
a quantum clone of regions / and /I. This means that we should use tortoise coordinates
surrounding the point O. We can now consider a space-like sphere of infinitesimal
size dr, at a moment d¢ after the space-time point O, where again we identify the
antipodes. While more particles cross the horizon inwards, we continue to describe
the evolution process as before, but because much more matter moves inwards that
outwards, the black hole rapidly grows towards its final size and mass.

What we see here is, that we can apply our procedures from here on to describe an
evolving quantum state. The actual process of growth was not yet fully described in our
procedures, but this is a complicated non-stationary background that requires further
work. What we do see is that our principle of antipodal identification begins while the
black hole still is infinitesimal in size, or more likely, it is of Planckian dimensions.
This is one of the glimpses of our ‘new physics’; the only thing not understood about it
today, is how it starts up in the Planckian domain, a domain that is still little understood
as of this day. Once we have antipodal identification, this identification continues to
apply for the entire lifetime of the black hole, and no further new physics is needed to
understand that.

Two important remarks about black hole growth: the total number of partial wave
modes (¢, m), is limited by a maximal value, £,.x & M ppg in Planck units. This means
that there is approximately one particle (or wave) entering the horizon (or leaving) per
unit surface area in Planck units [33, G. Dvali, personal communication]. We could
turn this observation around and define the horizon area as being equal to the total
number of (¢, m) modes, in units yet to be derived. As more spherical waves enter, or
as more particles enter, the black hole then automatically grows.

Combine this observation with the fact that, at the intersection point of future and
past event horizons, the outside observer’s notion of time is not directly applicable.
This point is eternal; it assembles all particles coming in and all particles going out
during the entire lifetime of the black hole. During this long period, the black hole
mass may have varied wildly; whenever an out going particle has moved out of the
black hole’s vicinity, one naturally deducts its mass-energy from the total mass of the
system, to observe a new mass value for the hole itself, and the converse action is
applied when particles enter.

Thus, the firewall transformation comes with an adjustment of the black hole total
mass value, and with that, with the actual horizon area defining the radius R in the
transverse directions, such as it occurs in our algebra, Egs. (5.4) and (B.1).

Our second remark is that the increase or decrease of the black hole mass itself will
be taken care of automatically when we realise that the black hole is actually made
of the in- and out-going particles. After the firewall transformation, we see particles
going out. They originated from spots infinitesimally close to the horizon, at which
time the energies k were definitely included in the black hole mass parameter Mgy,
and the total flux of its gravity field. As an out-going particle moves further out, the
moment comes that it should no longer be considered as part of the black hole. As
measured by the total flux of gravity, one must subtract the mass-energy « of the out-
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particle from the black hole mass value: Mpy = Mppy — k. So from this kinematical
point of view the total mass of the black hole will be taken care of automatically.

9 Conclusions

What is agreed upon by many investigators, is that ‘new physics’ is needed to resolve
the information paradox and the quantum cloning problem, which led to the necessity
to take ‘firewalls’ seriously. We do claim to have arrived at ‘new physics’, but, perhaps
surprisingly, our approach does not require any modifications either in general relativ-
ity or in quantum mechanics. Our first ‘new physics’ step is to add an extra condition
to constrain the allowed general coordinate transformations (see Sect. 5):

When fields on a manifold are quantised, it is essential that the entire asymptotic
domain of the manifold maps one-to-one onto that of ordinary space-time, while
preserving the metric.

This does not hold for the Kruskal-Szekeres coordinates (they are one-to-two), which
is why unitarity seems to be violated there. The cure is simple, but leads to important
new space-time features: an element of a Z(2) subgroup of O(3) has to be chosen to
identify pairs of points in the Kruskal-Szekeres coordinates. As to how the identifi-
cation should take place, we have no choice: the only element of the O (3) space-time
symmetry group that obeys our requirement of also keeping our coordinates singular-
ity free, is the element —I of O(3), yielding the antipodal identification (as explained
in Appendix B). The fact that the arrow of time flips at the horizon—and with that,
the sign of the Hamiltonian—seems to be no major obstacle. To understand what is
going on, the expansion in spherical harmonics is essential.

We had found that the firewall problem is a serious complication when one attempts
to deduce the quantum properties of black holes from standard physical theories such
as general relativity and quantum field theory. The problem could not be easily solved
by declaring firewalls to be unphysical; as was noted by several authors, one would
“need new physics for that”. Many authors leave it at that. However, the roots of a
solution were already present in our early papers [8,9,31,32], though not very explicit.
The fact that this remained unobserved makes me suspect that, although these papers
were cited, they were not carefully read.?

A much more satisfactory answer was found more recently [10-12]: if one expands
the in-going and out-going matter in spherical harmonics, then at given ¢, m, par-
tial differential equations in one space- and one time dimension are obtained, which
can be solved by the average undergraduate student. One then notices the effects of
gravitational back reaction much more explicitly: in-going waves are transmuted into
out-going waves. The Hamiltonian near the horizon is simply the dilation operator,
—%(u - p+ p - u), where u is the position of the in-going wave and p its momentum.
This implies that u shrinks towards the horizon exponentially in time, while p blows

up.

25 They were certainly summarised incorrectly.
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The gravitational back reaction links the in-going wave to the out-going wave, by
interchanging momentum and position. Thus, for the out-going wave, the Hamiltonian
is +%(u - p+ p-u),so that u blows up and p shrinks. The fact that 1 expands means
that these waves quickly depart from the horizon, and subsequently from the black
hole itself.

Thus our second ‘new physics’ step amounts to identifying the position operators
for the out-going wave with the momentum of the in-going one. Thus, the particle
going out is a quantum clone of a particle going in. To avoid double counting, we
must keep either the in-going particle (in the from of a spherical wave) or the out-
going one, but not both. Replacing in-going by out-going or vice versa is what we
call the ‘firewall transformation’. It results in a picture where all hard particles (in the
longitudinal direction) can be replaced by soft ones.

Note that the spherical harmonics used here refer to operator distributions, not
directly to wave functions (as in the hydrogen atom). The spherical harmonics refer
to particle distributions, so surely all particles here are highly entangled, but since we
have the explicit equations, there is no need to worry that ‘entanglement’ would lead
to any further problems here; all quantum states involved are in a well-defined basis
of their Hilbert space, and how they evolve is uniquely determined, see the scattering
matrix in Appendix B.

We emphasise that the wave functions we introduced on the variables ufzt’m and/or
pzm (obeying the usual commutation rules for positions and momenta) cannot and
should not be ‘second quantised’. This is because u™ (9, ¢) already represent the aver-
age positions of all particles at (9, ¢), and p* (6, ¢) represents the fotal momentum
there (as seen by a local observer close to the horizon).

Note also, that the antipodal identification of the points on the intersection of future
and past horizon, is a crucial condition for the wave functions to remain pure. We
described the entanglement between Hawking particles emerging at antipodal points.
This is arguably the most novel aspect of our ‘new physics’.

A mathematical curiosity is the fact that the antipodal identification comes with
time inversion (7), besides parity (P) and charge conjugation (C). In space-time,
consider a closed trajectory (not a geodesic) generated by a point that travels in outside
space, first making a big circle fragment from a point on the horizon to its antipode,
then hopping back from the antipode to the point where it started. Projected on the
horizon, the neighbourhood of this trajectory forms a Mobius strip. Indeed, antipodal
identification has turned the horizon into a (non orientable) projective plane, allowing
Mabius strips to be planted on it.”® Curiously, our Mébius strip is also time-like: going
around it once causes the time coordinate to be inverted.

In other proposals for the resolution of the information paradox [36], the points we
noted were not observed, so that many mysteries were encountered that could not be
resolved [7].

On the other hand, we do not claim that all mysteries are resolved now. A systematic
procedure must be found for a one-to-one mapping of the states generated by the

26 Acknowledging a remark by Glynn, who also emphasises that it should actually be called a “Listing
strip” : “Listing did more in the foundations of topology than Mobius”.
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spherical waves of momentum distributions and positions, onto states of the Fock
space of a quantum field theory (some grand unified version of the standard model,
relevant in the vicinity of the Planck scale, simply referred to as “standard model”
elsewhere in this paper). It is here that the machinery of string theory might be of
much help.

An other point where our theory becomes vague is where the Planckian dimensions
are reached. Usually it is assumed that string theory will provide all the answers, but
string theory did not tell us about gravitational back reaction or antipodal identification,
so we respectfully conclude that string theory is not fool-proof.?’
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Appendix A: The Antipodal Identification for Kruskal-Szekeres
Coordinates

The Kruskal-Szekeres coordinates (x, y, 6, ¢) are defined by

x/y = o/CGCM) (A1)

where r and ¢ are the usual Schwarzschild coordinates, and 6 and ¢ are unchanged.
In terms of these coordinates, the usual Schwarzschild metric is found to be

dr?
| _ 2GM

r

ds? = —dr? (1 - 29M) 4 + r?dQ?

= ”%ﬂ e—r/(2GM) dxdy + r2dQ? ; dQ? = d6? +sin% 6 dgoz. (A.2)

These coordinates are useful because they do not exhibit any manifest singularity
atr =2GM.

The point emphasised in this paper is that every point (r, ¢) in the Schwarzschild
space-time is associated to two points in the Kruskal-Szekeres notation: (r, t) corre-
sponds both with (x, y) and (—x, —y). This situation requires extra attention when
quantised fields are considered in this metric. Usually, the points (x, y, 8, ¢) and

27 Having said that, we do not wish to imply that string theory would be wrong; rather, we did not make
use of it in our analysis. There is also the possibility that revised versions of string theory will enter: strings
with a calculable, and purely imaginary, string tension parameter o’.
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(—x, —y, 0, @) are assumed to be two different spots in space-time. When the space-
time is disturbed by matter falling in or coming out, the points (—x, —y, 6, ¢) seem
not to be there, but region /I is there: x > 0, y < 0, and it is tempting to extend
space-time further. In our discussion, we consider states where soft particles roam
about in a background not disturbed by matter at all, so it would include region I
(the region x < 0, x < 0). This is a new representation of the black hole states, but
we notice that it over-counts. To cure this shortcoming, we identify points, by the
identification

(=x, =y, 0,9) = (x,y, 1 =0, p+m), (A3)

which we can also account for by stating that we constrain ourselves to (0 < 6 < 7,
0 < ¢ < m), imposing (A.3) as a boundary condition.

On the intersection of the future and the past event horizon, x = y = 0, this turns
the sphere into a projective sphere (a sphere with antipodal points identified), but
when (x, y) # (0, 0), this is better to be seen as an identification of region /I with
region /. Since far from the black hole we only have region /, so this leaves the entire
Schwarzschild space-time unchanged in the asymptotic domain; our identification just
drops region /1. Thus, our identification poses no restriction on the states seen by an
observer in the visible part of the universe; it does imply that, in this representation of
black holes, the invisible part is absent, or equivalently, it is identified with the visible
part.

In case black holes carry electric charges and/or angular momentum, the Reissner
Nordstrom solution, the Kerr and the Newman et al solutions apply. These have also
regions V, VI and more, which do also contain asymptotic domains, but these regions
lie either in the infinite future or the infinite past, so that they will play no role in our
analysis. The Kerr and Newman solutions do require extra attention as the horizon
rotates with super-luminal speeds, although we do not expect the need for major
modifications of our analysis for these cases.

The singularity at » = 0 in the Schwarzschild metric and the inner horizon(s) in the
Reissner-Nordstrom, Kerr and Newman solutions do become slightly more complex
when our antipodal identification is applied, but this does not harm the theory because
these singularities are shielded by the first horizon. They belong in regions where time
goes beyond infinity or before minus infinity, where our theories need not be applied
ever,

We emphasise that, locally, we do not deviate from that standard Schwarzschild
metric, its Kruskal-Szekeres extension, or its Penrose diagram, but globally our mod-
ification is significant; it leads to big deviations from what was once thought to be
a thermal state, and to new entanglements among the Hawking particles. Also we
emphasise that our way of identifying antipodes does not lead to any singularity. This
is because for all physical values of r, its value is bounded by 2GM — & where ¢
is small. Singularities would only occur when r tends to zero. For the black hole,
the region where this happens is unphysical; this would not have been the case if we
assumed such an identification in flat space-time. In a polar coordinate representation
of flat space-time, this identification would indeed generate cusp-like singularities.
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Appendix B: Locality Violation for Entangled Black Holes

Some authors brought forward a slogan “ER=EPR”, meaning that the Einstein Rosen
bridge yields entanglement as in the Einstein—Rosen—Podolsky set-up: the ER bridge
is then assumed to connect different black holes. In the present theory, we claim
that the ER bridge does not explain the phenomenon of entanglement, but it does
lead to entanglement between the different black holes, to the extent that it causes a
violation of locality, or local unitarity, unless the bridge connects a black hole with
itself. Furthermore, general relativity and unitarity demand the absence of singularities
on the horizon, so that we are only left with exactly one option: the ER bridge connects
the antipodes on the horizon.

The violation of locality, in the case of different black holes, can be demonstrated
explicitly. In all quantum field theories that were successful in the Standard Model,
locality amounts to the demand that two localised operators O (x(") and O, (x@)
must commute, [O1, O] = 0,if x( and x@ are space-like separated points in space-
time. Suppose that region I/ of a black hole would refer to another black hole (with
exactly the same mass, charge, and angular momentum) that is space-like separated
from the first one. Locality then demands that operators on black hole (1) should all
commute with the operators on black hole (2), but we now show, that for regions I and
11, this is not the case.

Assume that the two black holes we start from, are not entangled, so we can call
this state | I ) | /1 ). Now assume that we drop a particle at a position u™ in black hole
region . This we describe as the product state | I + {u*}i,) | I1). It evolves into a
state | I, I1 + {pT}ou). This is a wave of particles going out in a state where it is
a superposition of positions in black hole / and black hole /I. To get the position u~
for the out-particle, we have to Fourier transform the in-particle state {u™ }in, and this
Fourier transform covers both regions I and II, as was calculated explicitly in Refs.
[11,12].

The scattering matrix S for the energy eigen modes |«) was derived in the spherical
wave expansion:

i —iK 1 1
Y AN 1 87G/R? e~ ITK jotaTK
S_<,3 Ol>_ mr(z iK) <—€2+€+1 iptbme gt | (B.1)

where R is the black hole radius, G is Newton’s constant, £ the partial wave coefficient,
k the wave number on the tortoise coordinates, also corresponding to the energy for
the external observer; I"(x) is Euler’s gamma function. The two elements of the wave
function on which this matrix acts, correspond to regions / and /I of Penrose diagram.

One easily checks that unitarity holds, S ST = I, only if we do include the off-
diagonal elements of the matrix, which are indeed dominant if the energy « > 0. One
must conclude that, if the in-going particle enters exclusively in region /, the out-going
signal is a superposition of a signal going out in region / and a signal in region /1.
Symbolically:

lin) = |1+ {wf D I11),  lout) = |l + {ugy D 1IT) + BII) T+ {ug,}),

@ Springer



1540 Found Phys (2017) 47:1503-1542

(B.2)

where |a|? 4+ |81> =1, B #0.

Consider now the effects of an annihilation operator a; acting on the added particle
inregion / and a similar operator a;; forregion /1. As we see in Eq. (B.1), the coefficient
«a tends to zero if « is large, so let us take the simplified case « = 0, 8 = 1. In that
case, consider the state |/)|/]). We can create an in-going particle in region /, after
which an out-going particle in region /I can be annihilated. Conversely, if we first
annihilate the out-going particle in region /I, we get zero because the in-going particle
was not yet created. Hence

arra \DITY = D), ajai | =0 = [agg, a1 |[I)|I1) # 0.
(B.3)

If regions / and /I would refer to black holes that are far separated, in particular
space-like, then the non-vanishing commutator assures that a signal can be sent. In
conventional quantum field theories, space-like separation always guarantees that com-
mutators vanish. This is why we maintain that regions 7 and /7 should not be taken to
refer to widely separated black holes.

What if they would refer to the same black hole? One could still ask, what if the
two points considered are space-like separated? In that case, two observations can be
made:

1. The two points are in the curved space-time background of a stationary black hole.
If signals could be transmitted faster than light between these points, there would
as yet be no clash with special or general relativity because we have a preference
frame: the frame where the black hole is at rest. However,

2. The particle going in region / needs a sizeable amount of time to reach the vicinity
of the horizon, and after showing up in region /7, the emerging particle also requires
alarge amount of time to creep out. Both time lags are O(Mpy log M ) in Planck
units, which goes to infinity in the classical limit. In practice therefore, these points
are time-like separated.

We conclude that locality forbids that regions 7 and II in Eq. (B.1) refer to different
black holes, but allows for the possibility that we are dealing with one and the same
black hole, even if the points on the horizon are antipodal.

The mapping must refer to different points on the horizon. Why are they antipodal
points? The answer to this is that the mapping must preserve the metric, so it is an
element of O(3). Applying it twice must give the original point, so it is an element
of a Z, subgroup of O(3). As an O(3) mapping, its eigenvalues are therefore £1. If
any of its eigenvalues would be +1, there would have been an invariant point, which
would generate a conical singularity on the horizon. If we demand the absence of
such singularities, we can only have all eigenvalues equal to —1. This is the antipodal
mapping.

One might observe that, actually, time is inverted as well (see Sect. 8.3), so we have
the element —I of SO(3, 1). Itis still a special element in this group, but in Euclidean
space, this element is homotopically identical to the identity itself. This is why any
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theory that can be analytically continued to Euclidean space, automatically obeys CPT
symmetry. The antipodal identification is symmetric under CPT.
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