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Abstract Despite their important applications in metrology and in spite of numerous
experimental demonstrations, weak measurements are still confusing for part of the
community. This sometimes leads to unjustified criticism. Recent papers have experi-
mentally clarified themeaning and practical significance ofweakmeasurements, yet in
Kastner (Found Phys 47:697–707, 2017), Kastner seems to take us many years back-
wards in the the debate, casting doubt on the very term “weak value” and the meaning
of weakmeasurements. Kastner appears to ignore both the basics and frontiers of weak
measurements and misinterprets the weak measurement process and its outcomes. In
addition, she accuses the authors of Aharonov et al. (Ann Phys 355:258–268, 2015) in
statements completely opposite to the ones they have actually made. There are many
points of disagreement between Kastner and us, but in this short reply I will leave
aside the ontology (which is indeed interpretational and far more complex than that
described by Kastner) and focus mainly on the injustice in her criticism. I shall add
some general comments regarding the broader theory of weak measurements and the
two-state-vector formalism, as well as supporting experimental results. Finally, I will
point out some recent promising results, which can be proven by (strong) projective
measurements, without the need of employing weak measurements.

Keywords Weak measurements · Weak values · Pre- and postselected ensembles

Weak measurements and weak values [1–3] are attracting an increasing amount of
attention thanks to their successful assistance in solving conceptual [4–7] and practical
questions [8–13]. Recent experimental evidences strengthen the profound quantum
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nature of weak values [14] and their physical meaning, which goes far beyond a
conditional average [15].

In what follows, I examine and disprove several of Kastner’s claims [16], but first
I shall correct some injustice made to the authors of [17], which Kastner denotes
by ACE. She asserts that “It should also be clarified that taking post-selection into
account does not indicate any departure from standard one-vector quantum theory, as
ACE suggest”. In fact, we have never suggested that. This claim of Kastner stands in
stark contrast with the statements that Aharonov, Elitzur and I have made in [17]: “As
TSVF and traditional quantum theory are equivalent, obliging one- and two-vector
explanations to be equally valid, this contradiction can be resolved in two ways” and
“TSVF is unique among the above models in that it has derived several predictions
that, although fully consistent with the standard formalism (see Appendix B), seem
surprising and more acutely opposed to classical laws”. Moreover, we have explained
in Appendix B of [17] that the resulting probabilities in the one- and two-state-vector
approach are identical. Kastner’s repetitive claims that weak measurements and weak
values are part of standard quantummechanics, are therefore obvious andwell-known.
To suggest that ACE think differently is highly misleading, as we obviously claimed
otherwise.

First, we have argued that weak values simplify calculations. In [17], for instance,
one had to calculate the measurement outcomes of 9 sequential weak measurements.
This could be a daunting task when one considers a standard forward-in-time calcu-
lation followed by projection on the final state. But when using weak values, and thus
both pre- and postselection at the same time, all outcomes can be easily found (up to
minor corrections which scale like the square of coupling strength).

Our second claim was that weak values can be insightful and this is actually an
historical fact. In addition to the above mentioned practical importance, weak mea-
surements have led to the discovery of superoscillations [18,19]; to the development
of quantum random walks [20]; and to a fresh look on many paradoxes [21] such as
Hardy’s [22,23], to name just a few examples.

Regarding the definition of weak values, Kastner states “It is important to note that
this is a theoretical quantity defined in terms of operators and states, without regard to
any particular process of measurement. Thus, the term ‘weak value’ is something of
a misnomer: there is nothing ‘weak’ about the value itself”. This claim can be math-
ematically falsified, as the weak value naturally emerges when employing the linear
approximation of a system’s time evolution. This approximation is usually possible
when the coupling is weak enough, and upon using the von Neumann measurement
scheme. Incidently, the well-known derivation below has recently appeared in a book
which Kastner co-edited [24].

Let us, then, employ the following von Neumann interaction Hamiltonian

H = Hint = g(t)A ⊗ pd , (1)

where A is the observable to be measured, pd is the momentum of the pointer (canon-
ically conjugated to its position q) and

∫ T
0 g(t)dt = g for a coupling time T and

coupling strength g.
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When performing aweakmeasurement on a pre- and postselected ensemble 〈φ| |ψ〉
using a measurement pointer with initial wave function described by |�(q)〉, the time
evolution of the measured system + pointer is:

〈φ|e−i
∫
Hdt/h̄ |ψ〉 ⊗ |�(q)〉 ≈ 〈φ|1 − igA ⊗ pd |ψ〉 ⊗ |�(q)〉

= 〈φ|ψ〉 (1 − ig〈A〉w pd) |�(q)〉 ≈
〈φ|ψ〉e−ig〈A〉w pd |�(q)〉 = 〈φ|ψ〉|�(q − g〈A〉w)〉 (2)

Hence, the weak value defined by

〈A〉w = 〈φ|A|ψ〉
〈φ|ψ〉 (3)

naturally emerges. Yes, weak values can be seen as normalized transition amplitudes as
Kastner insists, but it does not mean they do not possess the above important property.
One then may choose to ignore the physics leading to the emergence of weak values
(for instance, the reason we need to normalize these transition amplitudes), as well
as their general appearance when two systems are weakly coupled [25]. But then one
may reach incomplete conclusions.

Furthermore, Kastner then ventures to assert that weak values merely reflect a
statistical quantity, rather than a quantity pertaining to each individual system in the
measured ensemble. She further compares weak values to classical averages in this
respect. This, however, was recently challenged on experimental grounds by [6,7]
and [14] showing that weak values reveal themselves in the single particle level,
and moreover by [15], proving that a weak value resembles more an eigenvalue than a
conditional expectation value. It is worth mentioning that in all the above experiments,
weak values exhibited inherently quantum features, hence the comparison to a classical
averages is misleading.

I now turn to what seems to be Kastner’s main argument, namely, “Assertions in the
literature that weak measurements leave a system negligibly disturbed... are therefore
unsupportable”. In light of the above, this claim might seem shocking, but it rests on
three basic misunderstandings:

1. Kastner writes: “Clearly, therefore (unless we have exactly a = b = 1/
√
2), S has

been non-negligibly disturbed”. This, in my opinion, reflects a misunderstanding
of the term “negligibly”. In the case described by Kastner, the system is absolutely
not affected by the measurement, so the adverb “negligibly” is not in place. If,
however, a = [(1 + ε)/2]1/2 and b = [(1 − ε)/2]1/2, for ε � 1, which is indeed
justified in the weak measurement regime, then the fidelity is 1 up to O(ε2).
Therefore, by definition, the state has been negligibly disturbed, and this is now a
precise claim. In fact, it is this unique regime granting weak measurements their
significance.

2. An ancilla-based measurement, like the ones ACE and Kastner analyze, is com-
monly used. Clearly, during the measurement process entanglement between the
measured system and the measuring pointer is created and then vanishes, but this
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fact alone does not tell us how much the measured state has changed. This distur-
bance depends on the coupling strength between the systems. When performing a
projective measurement, the systems are strongly entangled, and hence a change
in the pointer state definitely reveals itself in the state of the measured system.
The power of weak measurements lies in the weak entanglement between the sys-
tem and pointer, which upon a strong measurement of the pointer breaks down,
but leaves only a minute change in the system’s state. Therefore claims such as
“The only difference between this ‘weak measurement’ and the standard ‘strong’
or ‘sharp’ measurement is that S is not in an eigenstate of its observable” are
erroneous and miss the importance of weak measurements.

3. As I emphasized in [26],weakmeasurements are non-invasive, that is, the probabil-
ity of evolving the initial state to an orthogonal state through a weak measurement
decreases like g2. This property significantly limits the amount of backaction, but
seems to be ignored by Kastner.

Kastner also suggests that: “ontological claims based on such assertions need to be
critically reassessed”. The problem with the last sentence is that Kastner seems to be
unfamiliar with recent ontological claims [24,27–30]. It is unfair to judge an ontology
without referring to the actual works presenting it. The fallacy here is obvious: The
TSVF does not provide an ontology. It is the Two-Time Interpretation [31] further
developed either within the Schrödinger picture [24,27,28] or within the Heisenberg
picture [30] that outlines the ontology, but Kastner does not address these works. The
claims regarding ontology are therefore completely unsupported.

Finally, it is worth pointing out a growing number of recent promising results
which enable clarifying the TSVF predictions using strong, non-counterfactual mea-
surements [32–34]. Being non-statistical in character, they are therefore immune to
this criticism of Kastner, as well as to any criticism of the TSVF based on weak
measurements. Moreover, they accord well with the school to which Kastner herself
adheres, namely, the Transactional Interpretation. In some sense, these advances agree
with Kastner’s demand that weak values should be revealed by sharp measurements,
but we refer only to special cases where weak values coincide with the measured
projector’s eigenvalues. Even in light of those cases we remember that weak measure-
ments and weak values have provided throughout the years an invaluable source of
both helpful tools and insightful clues for addressing foundational topics in quantum
theory.
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