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Abstract This paper explains the delayed choice quantum eraser of Kim et al. (A
delayed choice quantum eraser, 1999) in terms of the transactional interpretation
(TI) of quantum mechanics by Cramer (Rev Mod Phys 58:647, 1986, The quantum
handshake, entanglement, nonlocality and transactions, 1986). It is kept deliberately
mathematically simple to help explain the transactional technique. The emphasis is on
a clear understanding of how the instantaneous “collapse” of the wave function due
to a measurement at a specific time and place may be reinterpreted as a relativistically
well-defined collapse over the entire path of the photon and over the entire transit time
from slit to detector. This is made possible by the use of a retarded offer wave, which
is thought to travel from the slits (or rather the small region within the parametric
crystal where down-conversion takes place) to the detector and an advanced counter
wave traveling backward in time from the detector to the slits. The point here is to
make clear how simple the transactional picture is and how much more intuitive the
collapse of the wave function becomes if viewed in this way. Also, any confusion
about possible retro-causal signaling is put to rest. A delayed choice quantum eraser
does not require any sort of backward in time communication. This paper makes the
point that it is preferable to use the TI over the usual Copenhagen interpretation for a
more intuitive understanding of the quantum eraser delayed choice experiment. Both
methods give exactly the same end results and can be used interchangeably.
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1 Complementarity, Which Path Information and Quantum Erasers

Feynman 1965, in his famous lectures on physics [1] stated that the Young’s double
slit experiment contains nearly all mysteries of quantum mechanics, namely, wave–
particle duality, particle trajectories, collapse of thewave function and non locality.We
may see interference, or wemay know throughwhich slit the photon passes, but we can
never know both at the same time. This is what is commonly referred to as the principle
of complementarity. We say two observables are complementary if precise knowledge
of one implies that all possible outcomes of measuring the other are equally likely.
The fundamental enforcement of complementarity arises from correlations between
the detector and the interfering particle in a way that show up in the wave function
for the system. It is not, as some undergraduate text books would have you believe, a
consequence of the uncertainty principle, although the application of the uncertainty
principlemakes for an easy calculationwhen thewave function of the system is difficult
to write out. There have been many gedanken (German for thought) experiments over
the years to show complementarity. The most famous are the Einstein recoiling slit,
Feynman’s light scattering scheme both discussed in Feynman’s lectures on physics
[1] and Wheeler’s delayed choice experiment [2]. The TI of Cramer is preferred
in this paper, over the usual Copenhagen interpretation (CI), for a more intuitive
understanding of the quantum eraser delayed choice experiment. An alternative theory,
which also claims to present an alternative perspective to the CI and provides an
intuitive understanding of the paradoxes of quantummechanics, including the quantum
eraser and delayed choice, is that by Sohrab [3,4] which wemention for completeness,
but will not discuss further there.

Of particular interest here is the delayed choice quantum eraser gedanken experi-
ment by Scully and Druhl [5]. This work described a basic quantum eraser experiment
and a delayed choice quantum eraser arrangement. The basic quantum eraser exper-
iment is described using two 3-level �-type atoms [6], in the place of two slits. See
Fig. 1. The atoms start off in the ground state and then a laser pulse comes in and

(a) (b)

Fig. 1 The figure shows the Scully Druhl quantum eraser 2 slit arrangement. Two 3-level atoms are in
place of the two slits. A laser excites either atom to the upper level a which may then decay to level b or
c. If the atom decays to level c, the ground state, then there will be interference since there is no way to
distinguish between the two atoms and so no which path information. a The green dots represent the single
slit diffraction pattern. The solid line is the intensity detected. If the atom decays to level b, then there is
which path information and there will be no interference pattern as in (b). The drawings are simplified
(Color figure online)
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Fig. 2 The figure shows the Scully Druhl delayed choice quantum eraser. Two 4-level atoms, labeled A
and B are in place of the two slits. The atoms are inside a double elliptic cavity with a shared focus. Both
atoms and the idler detector are located at foci. The first laser pulse excites either atom to the upper level
a, which then decays to level c, emitting a signal photon (green), which leaves the cavity. The second laser
pulse immediately excites the same atom from level c to level b, which then decays to the ground state
d, emitting an idler photon (red). The idler photons cannot leave the cavity. When closed, the trapdoor
prevents idler photons from atom B being detected. When the trapdoor is open, the cavity detector may
detect idler photons from either atom (Color figure online)

excites either atom A or B. The excited atom then decays and emits a signal pho-
ton. Interference fringes are sought between these signal photons on a screen some
distance away. Let the identical 3-level atoms have one upper level a and two lower
levels b and c. The laser excites one of the atoms up to the level a but the atom can
de-excite to either state b or c. If both atoms start off in the ground state c, there are
two possibilities. The excited atom decays and falls back to level c, so the excited atom
becomes indistinguishable from the other atom which was not excited. In this case we
would expect to see an interference pattern since there is no which path information.
In the second case, the excited atom drops to level b which is distinguishable from
level c. In this case we have which path information and we would get no interference
pattern. That describes the basic quantum eraser.

For a delayed choice quantum eraser [5], the 3-level atoms change to 4-level atoms
with levels a, b, c, d, with d the ground state. See Fig. 2. Instead of one exciting laser
pulse there are two closely spaced pulses, whichwill both go to the same atom. The first
laser pulse excites either atom A or B from the ground state d to the upper level a. The
excited atom then spontaneously decays to c emitting the signal photon. The second
laser pulse then excites the atom from level c to level b, which then decays with the
emission of a lower energy idler photon to the ground state. Now the atoms are inside a
cleverly constructed cavity with a trap door separating them. The cavity is transparent
to the signal photons and laser light but strongly reflects the idler photons. There is a
detector capable of detecting the idler photons only near atom A. The trap door will
prevent the idler photon from B being detected. Nowwe have a choice whether to open
the trap door or leave it closed. The signal photon detection is now correlated with the
idler photon detection. The experiment has become a delayed choice quantum eraser,
whether we see interference or not will depend on whether we leave the trap door
open or closed. If the trap door is closed and we detect an idler photon, we know that
atom A was excited. If we do not detect a photon then atom B was excited, either way
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we have which path information that will destroy the fringes. If the trap door is open,
then we no longer have which path information since either atom could have emitted
the idler photon. In principle the decision, to leave the trap door open or closed, can
be made after the signal photons have been detected. The paradox is, how does the
signal photon knowwhich pattern to make, a single slit diffraction pattern or a two-slit
interference pattern, if we have not yet decided to leave the trap door open or closed?

Englert et al. [7,8] in 1991 constructed a very nice atom interference gedanken
experiment that shows the theory in a very straightforward manner, although the
experiment would be extremely difficult to perform in practice. Soon afterward in
1993, a polarization experiment by Wineland’s group [9], was the first to demonstrate
an actual realization of the Scully–Druhl quantum eraser gedanken experiment. They
used mercury ions in trap as the two “atoms” and observed linear π and circularly σ

polarized light. Choosing to detect linear polarized light, corresponded to the case that
the ions in a trap were in the same initial and final state. This implies that there was no
which path information and so there was interference. Choosing to observe circular
polarized light, corresponded to the situation that the ions were in distinguishable end
states after scattering a photon, so which path information was available and hence
there was no interference. You could choose to observe interference or not depending
on whether you chose to observe linear or circularly polarized light.

There have been many quantum optics experiments involving two photon entan-
gled states and quantum eraser arrangements to demonstrate the complementarity
arguments above. Four of the better ones are [10–13]. One experiment in particular by
Zeilinger’s group [14] is worthy of a special note. The arm lengths in their apparatus
were very long, between 55 m up to 144km. They point out that there is no possible
communication between one photon and the other in the entangled pair because of the
space-like separation between them and they assume no faster-than-light communi-
cation is possible.

The most famous real experiment of the delayed choice type is that by Kim et al.
[15], using parametric down conversion entangled photons. It has drawn considerably
more press than any other experiment of this type and even has a couple of online
animations [16]. We choose to present our case for the transactional interpretation
(TI) of quantum mechanics using the Kim experiment as our example, but any of the
delayed choice quantum erasers would work just as well.

2 Introduction to the Transactional Interpretation of Quantum
Mechanics

The TI of quantum mechanics was proposed by Cramer [17] in a review article in
1986 and a short overview in 1988 [18]. More recently Cramer has written a book [19]
which should become available early in 2016. It is a way to view quantum mechanics
that is very intuitive and easily accounts for all the well known quantum paradoxes,
Einstein Rosen Podolsky (EPR) experiment [20], which-way detection and quantum
eraser experiments, [21,22]. Unfortunately, it has garnered little support over the years
and has fallen off the radar. It deserves a much broader dissemination and part of the
motivation to publish this paper was to bring Cramer’s ideas, and the advanced wave
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concept, to the attention of the younger generation of physicists, who may not have
heard of them before. The advanced wave is a standard solution of relativistic wave
equation and was utilized by such notable physicists as Dirac, Wheeler, Feynman,
Davies, Hoyle and his doctoral student Narlikar. The direct particle interaction the-
ory (which uses advanced waves, traveling backward in time) was used by Wheeler,
Feynman, Schwinger, Hoyle and Narlikar. The direct particle interaction does away
with the idea of a field, the vacuum field then would be truly empty, with zero energy,
as Feynman believed. Frank Wilczek recounts a conversation with Feynman [23].

Around 1982, I had a memorable conversation with Feynman at Santa Barbara.
Usually, at least with people he didn’t know well, Feynman was “on” – in per-
formance mode. But after a day of bravura performances he was a little tired
and eased up. Alone for a couple of hours, before dinner, we had a wide-ranging
discussion about physics. Our conversation inevitably drifted to the most mys-
terious aspect of our model of the world– both in 1982 and today– the subject of
the cosmological constant. (The cosmological constant is, essentially, the energy
density of empty space. Anticipating a little, let me just mention that a big puz-
zle in modern physics is why empty space weighs so little even though there’s
so much to it.) I asked Feynman, “Doesn’t it bother you that gravity seems to
ignore all we have learned about the complications of the vacuum?” To which
he immediately responded, “I once thought I’d solved that one.” Then Feynman
became wistful. Ordinarily he would look you right in the eye, and speak slowly
but beautifully, in a smooth flow of fully formed sentences or even paragraphs.
Now, however, he gazed off into space; he seemed transported for a moment,
and said nothing. Gathering himself again, Feynman explained that he had been
disappointed with the outcome of his work on quantum electrodynamics. It was
a startling thing for him to say, because that brilliant work was what brought
Feynman graphs to the world, as well as many of the methods we still use to do
difficult calculations in quantum field theory. It was also the work for which he
won the Nobel Prize. Feynman told me that when he realized that his theory of
photons and electrons ismathematically equivalent to the usual theory, it crushed
his deepest hopes. He had hoped that by formulating his theory directly in terms
of paths of particles in space–time – Feynman graphs – he would avoid the field
concept and construct something essentially new. For a while he thought he had.
Why did he want to get rid of fields? “I had a slogan,” he said. Ratcheting up the
volume and his Brooklyn accent, he intoned it:
The vacuum doesn’t weigh anything [dramatic pause] because there’s nothing
there!

Experimental observations show that the vacuum energy density is in fact very close
to zero. To calculate the vacuum energy in quantum field theory, we must admit that
spacetime is probably not a continuum but rather has a discrete nature, at quantum
dimensions, and only sum the zero-point energies for vibrational modes having wave-
lengths larger than, the Planck length (10−35 m) and less than or equal to the size of
the universe (diameter approx. 8.8× 1026 m). This gives a ridiculously large but finite
vacuum energy density of about 10111 Jm−3 or in terms of mass density 1094 kgm−3.
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Clearly, no where near the experimentally observed value for energy density near zero
and mass density, near the critical value of 10−26 kgm−3. The quantum field theory
vacuummass density is about 120 orders of magnitude too large—rather embarrassing
really.

3 Absorber theory and Advanced Waves and Direct Particle Interaction
Theory

The idea of advanced waves in classical electrodynamics started with Dirac [24] in
1938 and his derivation of the radiation reaction of a charged accelerated particle.
Advanced waves travel backward in time and are a perfect way to allow for action-
at-a-distance. A remote particle can interact with a local source particle by absorbing
retarded waves from the source in the future and in response, emits an advanced
wave which travels backward in time and interacts with the source immediately, at the
instant the retarded wave was emitted. This is a direct particle interaction and does not
require the presence of a field. This direct particle interaction conserves momentum.
Dirac assumed an advanced wave, in his radiation reaction calculations, but gave no
physical explanation as to where it came from. Later Wheeler and Feynman [25]
wrote papers in 1945 and 1949 on absorber theory, which was their attempt to give
a physical description of the origins of the advanced waves introduced by Dirac. An
added motivation was to try and remove the self energy from the electron, but that was
not entirely successful, as Wilzcek recounts above. The radiation reaction could be
accounted for without self interaction, but at the quantum level self-interaction became
unavoidable for charge renormalization, electron–positron pairs are still required to
shield the infinite negative baremass.With an upper bound (Rindler horizon caused by
an accelerating expansion) and lower length cutoff (Schwarzschild radius of a particle
about 10−45 cm) , the standard renormalization procedure can be applied to the direct
particle interaction approach, which is then no less suitable than conventional field
theory, but has no cosmological constant problem. There are no classical divergences if
the self-interaction is non-quantized. Feynman’s PhD thesis included the path integral
approach to non-relativistic quantum mechanics, which was used to describe how to
quantize the direct particle interaction of absorber theory [26]. Paul Davies later
generalized these classical results for the relativistic case of absorber theory [27,28].
Hoyle and Narlikar also worked on the relativistic absorber theory [29]. There are
now three different models for absorbers which have slightly differing advanced wave
behavior. Wheeler–Feynman [25], Csonka [30] and Cramer [17]. These models differ
with regard to what exactly happens when there is a less than perfect absorber present.
They are discussed in the very readable paperback by Nick Herbert [31]. So far,
we have a working theory for classical electrodynamics and now for QED. Hoyle
and Narlikar have also generalized Einstein’s theory of gravitation by using a direct
particle interaction. Their theory reduces to Einstein’s general relativity in the limit
of a smooth fluid approximation, in the rest frame of the fluid. This has the benefit of
completely incorporating Mach’s principle as a radiative interaction between masses,
[32,33]. Cramer spells out the general quantum version of the theory applicable to all
systems not just electrons [34,35].
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4 Transactional Interpretation

For an interaction to take place between two particles, emitter and the absorber, Cramer
says the emittermust send out an offerwave. This offerwavewould be half an advanced
and half a retarded wave going out in all directions looking for an absorber, something
to interact with. When the retarded offer wave reaches the absorber, that particle sends
out a counterwave, also half retarded and half advanced. SeeCramer’swiggle diagram,
Fig. 3. The advanced counter wave would travel backward in time, along the exact
incident path of the original retarded offer wave (it is the complex conjugate of the
retarded offer wave), thus constructive interference takes place along the path between
the particles. In the one spatial dimension drawn in Fig. 3, the advanced counter wave
reaches the emitter particle at the exact timewhen the retarded offer wave was emitted.
This enables the advanced wave from the absorber to exactly cancel with the advanced
wave from the emitter at the location of the emitter. Likewise, the retarded wave from
the emitter will cancel the retarded wave from the absorber at the location of the
absorber. Only the retarded wave from the emitter and the advanced wave from the
absorber along the adjoining path are enhanced by the superposition, they do not cancel
out. These waves represent the interaction between the particles.

In three spatial dimensions things are a little more complicated. Advanced and
retardedwaves travel in all directions not just in the direction of one absorber. Retarded
waves carry on into the future and maybe absorbed at some later point in time. An
advanced wave travels backward in time to the big bang. At this point it is reflected and
will move forward in time as an advanced wave identical to, and π out of phase with,
the incident advanced wave. This will produce a cancellation at every point along the

Fig. 3 Cramer’s wiggle diagram. The figure shows a plane-wave transaction between an emitter and an
absorber particle. The black vertical lines are the world-lines for each particle. Waves from the emitter are
solid lines, waves from the absorber are dotted. The retarded waves are red for both emitter and absorber
and the advanced waves are blue. Red retarded waves move up toward the right. Blue advanced waves move
downward to the left. Note that along the path between the emitter and absorber the waves add constructively
but before the emitter and after the absorber the waves destructively interfere (Color figure online)
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world-line back to the point of emission of the wave. All advanced waves therefore
cancel out, [36]. Note that the waves are assumed to travel at speed c the speed-of-light
in a vacuum, although the advanced wave is traveling backward in time, or with -t
[34]. Basically, in quantum terms, the regular wave function is the offer wave, (or at
least the retarded wave part that does not cancel out) the complex conjugate wave
function is the confirmation wave (the advanced part moving between the absorber
going back in time to the emitter) and together they give a handshake [35], which
allows an interaction to take place.

Recently Kastner [37] has expounded the virtues of the transactional method with
an additional twist allowing for free will. There are many examples of the use of the
transactional method in the book and it is well worth a read. In this paper we make
no distinction between the original Cramer TI and the Kastner version of possibilist
transaction interpretation (PTI). Kastner’s approach [38],

is to consider a growing emergent universe in which the future is not set in stone
but is actualized from an underlying substratum of quantum possibilities.

Cramer’s approach means (from the authors view point) that the future is set, the
past, present and future may all coexist and we simply have the illusion of flowing
through time. To avoid confusion, we quote Cramer on his own interpretation [39];

Let me give an example. When you use your cash card at the grocery store to
pay for your purchases, the electronic handshake that occurs between the bank
and the cash register insures that money is “conserved” and is neither created
nor destroyed, but it does not determine what you elected to purchase. The same
is true with quantum transactions, which guarantee the conservation laws but
do not determine the future. The real difference between Kastner’s PTI and
my TI is that for her, offer and confirmation waves exist as objects only in some
multidimensional Hilbert space. In the TI thewaves exist in real 3+1 dimensional
space. Hilbert spacewas invented by theorists prone to abstraction because it was
the only way they could imagine that quantum waves could be entangled. The
TI explains how they can be entangled, because the multi-particle transactions
allow only those subset of the waves that satisfy the conservation laws to become
real transactions.

Others have considered a Many-Worlds Interpretation, with every possible event
happening along parallel realities in order to maintain free will. Neither Kastner nor
Cramer agree with the many-worlds view [20]. Here, the reader is asked to make up
their own mind. This paper is concerned only with; Does the TI fit the data or not?
It is found that all the usual quantum results hold and the TI is simply an alternative
point of view from the CI, and the instantaneously collapsing wave function, way of
thinking.

5 The Delayed Choice Quantum Eraser by Kim et al.

First we briefly explain the experiment and the observed results. The experimental
arrangement can be seen in Fig. 4. An argon laser (λp = 351.1 nm) is passed through
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a double slit and illuminates a type II phase matching nonlinear crystal of β-Barium
Borate BBO (β-BaB2O4) The slit A allows region A of the crystal to be illuminated
and slit B allows only region B of the crystal to be illuminated. This small region is
about 0.3 mm long which we take to be the slit width a. The separation d of the two
regions is about 0.7 mm as specified in the paper [15]. So we may discuss regions A
and B of the crystal just as well as the original 2 slits. Parametric down conversion
will occur at both sites and from the one pump photon will emerge two photons, a
signal and an idler. Note that all possible frequencies are created νp = νs + νi . We
are selecting two of the same frequency, or equivalently, twice the pump wavelength
λs = 702.2 nm. The signal and idler photons represent the e-ray and o-ray of the
nonlinear crystal.

These photons are momentum entangled and are created essentially at the same
time. The probability for a downconversion event is slight, so we may assume that
there is only one entangled pair of photons in the system at any given time. Differ-
ent wavelengths of signal and idler photons exit the crystal at different angles. The
required wavelengths are selected by restricting the exit angle. Usually a small range
of wavelengths would be selected. For convenience we track only one wavelength, but
we should bear in mind that there will be a small bandwidth of wavelengths which
will affect the interference pattern of the signal photons and change the visibility of
the fringes accordingly. The bandwidth can also be changed using filters in front of
the detectors. The detectors will have a less than perfect efficiency which will also
affect the fringe visibility. The efficiency of the detectors was not mentioned in the
experiment however, and neither was the effective bandwidth.

The signal photons are sent though a lens, of focal length f , (not specified in the
paper [15]) and then focussed onto a screen where they can be detected by detector
D0. The detector scans, via stepper motor, along the x-axis to build up a pattern. The
lens is used to create the far field condition at the detector so we expect a Fraunhofer
type pattern which is built up over time. The idler photons, from region A and B of the
crystal, are sent in the direction of a Glen-Thompson prism (a wedge mirror is used
in Fig. 4. instead) which separates them into different paths. The idler photons from
region A hit BSA and are either reflected or transmitted. The reflected photons will
be detected by D3. The transmitted photons will be reflected by mirror MA and then
either transmitted through the beamsplitter BS to detector D2 or reflected by BS into
detector D1. The idler photons from B hit BSB and are either reflected or transmitted.
The reflected photonswill be detected by D4. The transmitted photonswill be reflected
by mirror MB and then either transmitted through the beamsplitter BS to detector D1
or reflected by BS into detector D2.

The time of flight from the crystal to the detector D0 for the signal photons is 8 ns
shorter than for the idler photons which go in the direction of the beamsplitters and
were eventually detected by detectors D3, D4 or by D1 or D2. The equivalent path
length is approximately 2.5 m. We assume that all the detector path lengths, D1–D4,
are the same and equal to 2.5 m. This path length will introduce a constant phase shift
into each joint detection. It is also assumed that all mirror reflection angles are the
same in both paths so that no additional phase shift differences need to be considered.
Since all the phase shifts are considered equal they will cancel out and will not effect
the overall interference pattern.
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Fig. 4 The figure shows the set up for the Kim et al. delayed choice experiment. All three beamsplitters,
BSA, BSB and BS, are 50:50 lossless beamsplitters. A pump laser is incident on two slits A and B which
also corresponds to two different small regions within a BBO (β-BaB2O4) crystal for parametric down
conversion. We assume that the signal and idler photons are the same frequency and are both half the pump
frequency. Photons from region A are colored red and photons from region B are colored blue for tracking
convenience only. The signal photons (marked s) from both regions go to detector D0 where an interference
patternmay ormay not be observed. The idler photons (marked i) fromboth regions are separated by awedge
mirror (a prism was used in the actual experiment) and then go to beamsplitters BSA and BSB respectively.
Idler photons from A alone are recorded by detector D3 by reflection from BSA and idler photons from
B alone are detected by D4 by reflection from BSB. If the idler photons are transmitted through BSA or
BSB then they are mixed by the third beamsplitter BS and can be detected by either detector D1 or D2.
The idler photons at these detectors no longer carry any which path information. All detectors then go to
a coincidence counter. The diagram is meant to illustrate the same arm lengths for the red and blue idler
photons, the reflections from the mirrors and beamsplitters are not accurately drawn with correct angles
and refraction is not included (Color figure online)

All the detectors are linked to a coincidence counter and the interference patterns
are recorded. The intensity pattern recorded at D0 shows no interference when there
is a coincidence between D0 and D3 or D4. In these cases, we have which path
information, since D3 only records idler photons from slit A and D4 only records idler
photons from slit B. Since the signal and idler photons come from the same region of
the crystal, we would then know through which path the signal photons came and we
expect no interference.

When the coincidence counts are between D0 and D1 there is an interference
pattern. The beamsplitter BS mixes the idler photons from both regions and we have
now erased the which path information. There is also an interference pattern when
there is a coincidence between D0 and D2 but this pattern differs from the previous one
by a phase shift of π . In other words if one pattern shows a co-sinusoidal interference
the other will be sinusoidal. The experiment is considered a delayed choice quantum
eraser since the signal photons path length is shorter than the idler photons. It would
seem that the signal photons are detected first, then we make a selection of which
coincidence detections to look at, and depending on that choice we see or do not see
interference of the signal photons. The paradox being, how can you influence the signal
photon, basically tell it to interfere or not, by making a choice of detector D1–D4,
8 ns after the signal photon has already been detected by D0. This however is the
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wrong way to think about this problem. If looked at in the correct way there is no
paradox.

These observations can easily be explained in terms of the TI of quantummechanics
as follows. A brief account of this experiment is given in the book by Kastner [37],
we give a bit more detail here.

6 Transactional Interpretation Derivation

Let us start with a few preliminaries. The three beamsplitters in the experiment are all
50:50 lossless beamsplitters. When a photon wavepacket goes through one of these
beamsplitters there is no loss so one would expect the probability amplitude of the
wave function to remain unaltered.

|ψ |2 = |rψ + tψ |2
= [|r |2 + |t |2 + (r∗t + r t∗)]|ψ |2 (1)

This means that the amplitude reflection and transmission coefficients obey,

|r |2 + |t |2 = 1

|r |2 = |t |2 = 1

2
r∗t + r t∗ = 0

hence r = i√
2

and t = 1√
2
. (2)

We take all the beamsplitters to be identical for convenience. It will be assumed that
each optical path length for the idler photons, is the same and any phase changes due
to mirror reflections have been compensated for.

An offer wave will go out from the slits and get absorbed by a detector. The detector
will then send back an advanced wave (backwards in time) along the same path as the
incident wave to the slits to handshake and confirm the interaction. Only then does
the photon actually leave the slit region. The offer wave is a momentum entangled
two-photon state (or bi-photon). The possible transactions will depend on the detector
configuration which generates the counter wave. We will go through the process step
by step.

The original offer wave from the slits comes from the pump laser beam, we will
take this to be,

ψ = α√
2

(|Ap〉 + |Bp〉
)

(3)

where the subscript p stands for pump. The α is the single slit diffraction pattern, a
sinc function of the usual kind. A and B stand for the photon wave functions from the
two slits, of plane wave type. Parametric downconversion inside the β-barium borate
(BBO) crystal duplicates each pump photon into a signal and an idler photon. For type
I parametric down conversion, the signal and idler have the same polarization, for type
II the signal and idler polarizations are perpendicular. This is of no importance here
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since the signal photons from regions A and B interfere at detector D0 and both idler
photons interfere at one of the four detectors D1–D4. The offer wave from the 2 slits
and crystal then becomes,

ψ = α√
2

(|As〉|Ai 〉 + |Bs〉|Bi 〉) . (4)

We select both the signal and idler photons of half the pump frequency, by restricting
the exit angle from the crystal. Even so there will be a small spread in frequency, and
thuswavelength, whichwill cause the fringe visibility to be less than perfect. However,
we will continue thinking of the photons wave functions as simple monochromatic
plane waves for simplicity. It is easy to generalize the end result for more than one
wavelength.

The time dependent, correlation function calculation can be found in Appendix 1.
This is for comparison with the TI approach taken below. We skip the details of the
parametric downconversion process in what follows, but they can be found in [6,40–
42] and these results are used in the Appendix 1 calculation. The first reference refers
to 5 basic quantum experiments and has simple theory accessible to undergraduates
[40]. The second reference has more theory but still some experiment, and is geared
more for graduates and researchers [41] and the last two reference is a theory paper
and a text book [6,42].

The signal photons are sent to the detector D0. The idler photons are sent to the
beamsplitter setup. The path lengths in the experiment are arranged so that the signal
photons reach detector D0 before the idler photons reach their final destination. So if
the signal photon is detected at position x on the screen, then our offer wave becomes
[37]

ψ = α√
2

(〈x |As〉|Ai 〉 + 〈x |Bs〉|Bi 〉) . (5)

A simple fourier transform of a slit with a constant electric field will give the single
slit diffraction amplitude α in the form

α = sinc(kxa/2) (6)

where a is the slit width and kx = k sin θ and the angle θ is the angular displace-
ment from the center of the slits to the position x on the screen. For the paraxial ray
approximation this would be

kx = k sin θ = kx

f
= πx

λ f
(7)

where f is the focal length of the lens which is taken to be roughly the slit screen
distance and λ is the wavelength of the signal photons and we have used k = 2π/λ.
Hence

α = sinc

(
kxa

2 f

)
= sinc

(
πxa

λ f

)
(8)
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We will now assume that

〈x |As〉 = eikx dA

〈x |Bs〉 = eikx dB (9)

where dA and dB are the distances from the crystal regions A and B to the screen at
position x . Also we assume that the slit separation can be given by d = dA − dB . The
offer wave can now be written as,

ψow = α√
2

(
eikx dA |Ai 〉 + eikx dB |Bi 〉

)
. (10)

Note that we have now dealt with the signal photons and only have to concern our-
selves with the idler photon detection. At this point we can continue with the Cramer
interpretation or take the wave function Eq. (10) as a standard wave function and use
spontaneous emission photon wave packets and expand them in terms or retarded and
advanced waves to clearly see the overlap of the two and how the advanced waves
retrace the retarded wave in time. This is carried out, for Case 1. below, in Appendix
2. to show the technique. Three cases follow:

Case 1
Assume the idler photon will be detected at detector D1. The offer wave produced

by passing photons through the beamsplitters will be

ψow = α√
2

(
eikx dA tr |Ai 〉 + eikx dB t2|Bi 〉

)
(11)

the Ai idler photon is transmitted through BSA and reflected from BS to reach D1.
The Bi idler photon is transmitted through BSB and transmitted through BS to reach
D1. See Fig. 4 for details of the paths. We have assumed that the extra path length in
traveling through the beamsplitters is the same for both photons Ai and Bi , otherwise
we would need additional phase factors to account for the path length difference. The
counter wave produced by detector D1 will be the complex conjugate wave traveling
backward in time towards the slits,

ψ∗
cw = α∗

√
2

(
e−ikx dA t∗r∗〈Ai | + e−ikx dB t∗2〈Bi |

)
. (12)

The probability that this transaction will occur then becomes,

ψ∗
cwψow = 1

2
|α|2

[
|r |2|t |2〈Ai |Ai 〉 + |t |4〈Bi |Bi 〉

+|t |2
(
r∗t〈Ai |Bi 〉e−ikx d + r t〈Bi |Ai 〉eikx d

)]
(13)

Let the amplitudes 〈Ai |Ai 〉 = 〈Bi |Bi 〉 = 1, 〈Ai |Bi 〉 = η
1/2
1 exp(−iφ) and complex

conjugate 〈Bi |Ai 〉 = η
1/2
1 exp(iφ) , where η1 represents the detector efficiency of D1

which is most likely less than unity. The detector efficiency has been incorporated into
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the probability amplitude for convenience only. Then we may write,

ψ∗
cwψow = 1

2
|α|2|t |2

[
(|r |2 + |t |2) + η1

(
r∗te−i(kx d+φ) + r tei(kx d+φ)

)]
. (14)

Using our earlier results Eq. (2) for the amplitudes r and t of the lossless beamsplitters
and

e±iπ/2 = cosπ/2 ± i sin π/2 = ±i (15)

we get,

ψ∗
cwψow = 1

4
|α|2 [1 + η1 cos(kxd + φ + π/2)]

= 1

4
|α|2

[
1 + η1 cos

(
πd

λ f
+ φ + π/2

)]
(16)

It is more general to leave the result in this form. However the Kim paper [15] goes
on to simplify further, uses η1 = 1 for perfect detection and writes,

ψ∗
cwψow = 1

2
|α|2 cos2

[
kxd

2
+ φ

2
+ π

4

]
(17)

where α is given by Eq. (8) and kx is given by Eq. (7). In the last step we used the
double angle formula for cos 2β = 2 cos2 β−1. This is the coincidence result between
detector D1 together with detector D0 and shows interference.

Using our result Eq. (16) it is easy to generalize to a small spread of wavelengths
(bandwidth=
λ) by using a computer code to plot the equation and summing the
interference patterns for λ, λ ± 
λ, λ ± 
λ/2 and λ ± 
λ/4. This will give a quite
accurate interference pattern which will match the experimental data very well. If you
also include the detector efficiency η1 then you can match the experimental fringe
visibility almost exactly. This is easy to do with a symbolic manipulation code like
Mathematica, which also plots the results for you.

Case 2
When the idler photons are detected at D2 the offer wave becomes,

ψow = α√
2

(
eikx dA t2|Ai 〉 + eikx dB tr |Bi 〉

)
(18)

Note that the Ai photon is transmitted by both BSA and BS, and the Bi photon is
transmitted by BSB but reflected by BS to reach D2. See Fig. 4 for details. The
detector produces a counter wave which is the complex conjugate of the offer wave
above,

ψ∗
cw = α∗

√
2

(
e−ikx dA t∗2〈Ai | + e−ikx dB t∗r∗〈Bi |

)
(19)

Using the same manipulations as before, leaving the detector efficiency as unity, the
joint probability detection of coincidence counts between D0 and D2 becomes,
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ψ∗
cwψow = |α|2

2
|t |2

[
|t |2〈Ai |Ai 〉 + |r |2〈Bi |Bi 〉

+
(
t∗r〈Ai |Bi 〉e−ikx d + r∗t〈Bi |Ai 〉eikx d

)]

= |α|2
4

[
1 + i

2
e−i(kx d+φ) − i

2
ei(kx d+φ)

]

= |α|2
4

[
1 + cos

(
kxd + φ − π

2

)]

= |α|2
2

cos2
(
kxd

2
+ φ

2
− π

4

)
(20)

which also shows interference. The factor α is given by Eq. (8). Note that this inter-
ference is π out of phase with the interference pattern obtained from the coincidence
count between D0 and D1. This is easier to see in the cosine result rather than the cos2

result. That means if the interference with D1 is co-sinusoidal then this interference
would be sinusoidal. This is exactly what was observed in the experiment [15].

Case 3
If the idler photon is detected at either D3 or D4 then the corresponding offer waves

would be,

ψow = αr√
2

(
eikx dA |Ai 〉 + eikx dB |Bi 〉

)
(21)

and the counter waves would be

ψ∗
cw3 = α∗r∗

√
2

〈Ai |e−ikx dA for detector D3

ψ∗
cw4 = α∗r∗

√
2

〈Bi |e−ikx dB for detector D4 (22)

The probability of a coincidence count between D0 and D3 becomes,

ψ∗
cw3ψow = |α|2|r |2

2
〈Ai |Ai 〉 = |α|2

4
(23)

which shows no interference only a single slit diffraction pattern. The probability of
a coincidence count between D0 and D4 becomes,

ψ∗
cw4ψow = |α|2|r |2

2
〈Bi |Bi 〉 = |α|2

4
(24)

which likewise shows no interference. Again, the single slit diffraction amplitude α is
given by Eq. (8). This also agrees with the experimental results of Kim et al. [15].

7 Discussion

The TI is related to the direct particle interaction theory of Wheeler–Feynman and
Hoyle–Narlikar and involves advanced waves as well as the usual retarded waves.
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The advanced waves are natural solutions to the relativistic wave equation and are
required to conserve momentum in direct particle interactions. This paper has briefly
considered the pros and cons of direct particle interactions verse conventional field
theory methods. In terms of vacuum energy density the direct particle approach tells
us there is no vacuum field and thus its energy is identically zero, close in fact to the
observed value. Quantum field theory tells us that the vacuum energy density is huge
and gives a value 120 times too large. Direct particle or source theory does away with
self interaction and subtracting infinities is only needed for charge renormalization.
Charge renormalization follows in the same manner as in the field theory case when
you introduce a size cutoff (no point particles) of the Schwarzschild radius of the
particle. There is also a size limit to the universe to prevent a divergent advanced wave
integral due to the Rindler horizon for an accelerating expansion of the universe [43].
Advanced waves have never been detected in practice and this lack of experimental
evidence is enough for some to rule them out altogether.

It only takes one experimental observation to refute a theory. Cramer and Her-
bert [44] considered several experimental possibilities of nonlocal quantum signaling
(retrocausal signals) involving path entangled systems and in all cases found that
the complementarity between two-photon interference and one-photon interference
blocks any potential nonlocal signal [45]. The traditional way of thinking about an
instantaneous wave function collapse, at a certain time at a certain place, which is
clearly in conflict with relativity, is superseded in the transactional picture. The wave
function collapse is among the most confusing aspects of quantum mechanics (as a
component of the measurement problem) and is simply resolved using the TI method
of Cramer, or PTI of Kastner. Indeed the Copenhagen approach actually evades the
entire issue by taking the wave function and its collapse as epistemic—a measure of
knowledge rather than a physical entity. This approach is observer-dependent; it is sub-
ject to the ‘Heisenberg Cut’ in which there is no physically grounded and non-arbitrary
account of what constitutes an ‘observer’. In the transactional approach, there is no
observer-dependence: it is absorbers that provide the missing ingredient that defines
when a measurement and attendant collapse occurs.

Advanced waves are natural solutions to relativistic wave equations. In order to
use this theory for the nonrelativistic case it is necessary to think of two Schrödinger
equations: one Schrödinger equation for the wave function ψ and one for its complex
conjugate ψ∗, which becomes the advanced wave. This makes sense if we think of
the Schrödinger equation as a square root version of the relativistic Klein Gordon
equation.

Furthermore, work by Hogarth [46] and Hoyle and Narlikar (HN) [32,33,47–49]
has paved the way to a new version of direct particle interaction gravitational theory,
which is fully Machian, incorporates advanced waves and has Einstein’s theory as a
special case. The HN theory may be quantized as in their book [32,33] using the path
integral technique pioneered by Feynman [26].

It is interesting to note that the mass field m(x) in HN theory looks similar to the
source field S(x) introduced by Schwinger [50,51]. Wheeler never gave up on the
absorber theory, which is a direct particle interaction (action-at-a-distance) theory. It
simplywasn’t popular at the time anddropped off the radar.Gerard t’Hooft found away
to renormalize Yang Mills field theories in a way similar to QED and most physicists
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took that path. We believe the works of Cramer, Wheeler–Feynman, Hoyle–Narlikar,
and Schwinger’s source theory, are all direct particle interactions. How source theory
is related to the Feynman path integrals is explained by Schweber [52]. It should
be noted that Schwinger was able to derive the Casimir force using the source field
method in which there are no nontrivial vacuum fields [53,54]. The action at a distance
theories are well worth study and may lead to a consistent picture of quantum gravity.
Radiation reaction can be dealt with using the half retarded half advanced absorber
picture. Many QED results thought to be vacuum fluctuation related can in fact be
derived by considering source fields instead, including the Lamb shift and particle self
energy [53].

8 Conclusions

The main aim of this paper is to draw attention to the fact that the TI of quantum
mechanics by John Cramer is perfectly viable and legitimate, and should be given due
consideration by the physics community, which has not been the case thus far. The
TI by Cramer [17], gives a simple and intuitive picture for wave function collapse
distributed over the entire path of the interacting system (in Kastner’s approach, the
collapse is what establishes that path). In the case of the Kim experiment [15], the
wave function would collapse along the entire path between the slits (or the regions
A and B of the down converting crystal) and the detectors and it would happen in a
way distributed over time, not in an instant. The TI picture rules out the possibility
of any backward in time signals using quantum delayed choice experiments. In fact it
makes clear the idea is nonsense since the advanced counter wave from the detector
must travel the entire distance back to the slit in order for the photon (from the slit) to
make the trip in the first place. The choice is really no longer delayed since the photon
knows where it will end up because of the advanced wave coming backwards in time
to confirm the interaction or handshake, as Cramer puts it. The alternative way of
avoiding wave function collapse is to use the correlation functions as in Appendix 1.
The calculations are far more long winded, than the fairly quick and easy calculation
in the main paper, and in the opinion of the author the correlation function method
masks what is really going on and thus leaves room for misinterpretation.
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Appendix 1

Here we derive the Shih experimental result via the usual quantum optics correla-
tion function approach and show the steps omitted in the experimental paper, [15].
You could approximate the parametric down conversion photons with spontaneous
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emission photons and use the results in the Scully Druhl paper [5]. This would give
a sensible answer, but we have given the parametric downconversion theory in detail
in what follows. The quantum mechanical interaction picture Hamiltonian for the
non-degenerate parametric downconversion in the rotating wave approximation [6] is

Vint = h̄κ(a†sa†i ap + asaia† p) (25)

where a†s , a†i and a† p are the creation operators for the signal, idler and pump
beams respectively and as , ai and ap are the corresponding annihilation operators. The
coupling constant κ depends on the second order susceptibility tensor which mediates
the interaction, [6]. In the non degenerate operation we find a twomode squeezed state
output. In degenerate operation, where the signal and idler frequencies are the same
and each half the pump frequency, you would get a single mode squeezed state. In
the parametric approximation, the pump beam is treated classically as a coherent state
and pump depletion can be neglected. If we allow αp and θ to be the real amplitude
and phase of the pump then the interaction Hamiltonian becomes,

Vint = h̄καp

(
a†sa†i e

−iθ + asai e
iθ

)
(26)

The equation of motion for the signal annihilation operator, taking the expectation
over the signal vacuum becomes ;

ȧs = i

h̄
〈0|[Vint, as]|0〉s

= −i�pa†i e
−iθ (27)

where �p = καp. The signal creation operator equation of motion becomes ȧ†s =
i�pai eiθ .Similarly for the idler operators we use the idler vacuum to find;

ȧi = −i�pa†se
−iθ

ȧ†i = i�pase
iθ (28)

By differentiating the above equations with respect to time and substitution we can
find,

as(t) = As cosh(�pt) + Bs sinh(�pt)

a†s(t) = A†
a cosh(�pt) + B†

s sinh(�pt) (29)

from which you can set t = 0, and find solutions for the initial conditions. By substi-
tuting back the original equations, you can easily find the As , Bs coefficients in terms
of initial conditions for the creation and annihilation operators as follows,

as(t) = as(0) cosh(�pt) − ie−iθa†i (0) sinh(�pt)

a†s(t) = a†s(0) cosh(�pt) + ieiθai (0) sinh(�pt). (30)
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Similarly for the idler operators,

ai (t) = ai (0) cosh(�pt) − ie−iθa†s(0) sinh(�pt)

a†i (t) = a†i (0) cosh(�pt) + ieiθas(0) sinh(�pt). (31)

For θ = π/2 these look like non degenerate squeezed state transformations, [6]. For
simplicitywe are using type I parametric down conversion and degenerate frequencies.
The frequency of the pump is the sum of the signal and idler frequencies. The signal
and idler frequencies are taken to be the same.ωp = ωs +ωi , whereωs = ωi . In type I
parametric downconversion the polarization of the signal and idler are the same. In the
experiment [15], the signal photons interfere and the idler photons interfere separately
so it makes no difference that they are from type II parametric down conversion
and thus in perpendicular polarization states. We shall also use the same simplifying
assumptions as in the previous transactional interpretation method. We assume that
the separation of the region A and B from the detector D0 are very similar the only
difference in path length being the region separation. We further assume that the idler
distances from region A or B to the same detector D1–D4 are the same. This brings
about a great simplification in that the integrations are over 2 times and not 4. The
extra work involved in allowing the signal photons to have two distinct path lengths
and the two idler photons to also have two distinct path lengths, to the same detector,
does not add to the physics and only complicates the integrations unnecessarily. This
is easy to set up but gets messy, very quickly, in practice.

Joint Detection D0 and D1 Detectors

For the probability of joint detection R0,1 from detectors (D0, D1) we set up the
following integration [15],

R01 ∝ 1

T

∫ T

0

∫ T

0
dt0dt1

〈
: E (−)

s (t0)E
(+)
s (t0)E

(−)
i (ti )E

(+)
i (ti ) :

〉
(32)

where 〈 : : 〉 denotes normal ordering where all creation operators are to the left of all
the annihilation operators. The i will take values of 1-4 depending on the idler detector
D1– D4. Here t0 is the time for the signal photons to go from the crystal to the detector
D0 and t1 is the time for the idler photons to get from the crystal to detector D1. We
take the signal path length to be dA or dB for the two regions and the idler path length
to be xA and xB from the crystal to detector one. From the experiment t0 < t1 by
about 8ns. Shih et al [15] tell us that the above integral is approximately the same as
the integral of |〈E (+)(t0)E (+)(t1)〉|2. The positive frequency part of the electric signal
is E (+)

s (t) = E0as(t)eiωs t the negative part is E (−)
s (t) = E0a†s(t)e−iωs t , where E0

is some constant. The interference results are usually normalized so we set E0 = 1 in
what follows. We drop all the ω terms , ωp = ωs + ωi since they will all cancel out,
and we take ωs = ωi for simplicity. Actually if you expand the 4th order correlation
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function you get 3 such terms as follows, see Collett and Loudon [55];

〈 : E (−)
s (t0)E

(+)
s (t0)E

(−)
i (t1)E

(+)
i (t1) : 〉 = 〈E (−)

s (t − t0)E
(+)
i (t ′ − t1)〉

〈E (−)
i (t ′ − t1)E

(+)
s (t − t0)〉

+〈E (−)
s (t − t0)E

(−)
i (t ′ − t1)〉

〈E (+)
s (t − t0)E

(+)
i (t ′ − t1)〉

+〈E (−)
s (t − t0)E

(+)
s (t − t0)〉

〈E (−)
i (t ′−t1)E

(+)
i (t ′−t1)〉 (33)

It turns out only the first term cancels but the other two terms are non zero. Collett
and Loudon [55] outline a more advanced time integration procedure. We are approx-
imating with two times only assuming the distances for both signal photons are almost
the same and the idler photons have equal path lengths to the same detector. The signal
and idler electric fields for detection at D0 and D1 can be written as;

E (+)
s (t) =

√
α

2

(
ase

ikx dA cosh(�pt0) − ia†i t
�r�e−ikxAe−iθ sinh(�pt1)

)

+
√

α

2

(
ase

ikx dB cosh(�pt0) − ia†i t
�2e−ikxB e−iθ sinh(�pt1)

)

E (+)
i=1(t) =

√
α

2

(
a1r te

ikxA cosh(�pt1) − ia†se
−ikx dAe−iθ sinh(�pt0)

)

+
√

α

2

(
a1t

2eikxB cosh(�pt1) − ia†se
−ikx dB e−iθ sinh(�pt0)

)
(34)

where the first line of each electric field equation is from region A of the crystal, and
the second line comes from region B. The α term is the sinc function or the square root
of the single slit diffraction pattern as defined in the TI section. See Eqs. (6–9) in this
paper. The expectation values are evaluated in a vacuum. After some tedious algebra
it can be shown that the first term in Eq. (33) gives zero. The only non-zero terms
have combinations of 〈0|asa†s |0〉 , 〈0|aia†i |0〉 in them. The second order correlation
functions in the second term are;

〈E (+)
s E (+)

1 〉 = −ie−iθ 〈asa†s〉α
2
2 sinh(�pt0) cosh(�pt0)(1 + cos[kxd])

〈E (−)
s E (−)

1 〉 = ieiθ 〈a1a†1〉α
2

|t |2 sinh(�pt1) cosh(�pt1)

×
[
|r |2 + |t |2 + r�te−ik(xA−xB ) + r t�eik(xA−xB )

]
(35)

wherewehaveused the lossless beamsplitter result that r t�+r�t = 0 and |r |2+|t |2 = 1
and d = dA−dB is the slit separation (distance between regions A and B or the crystal).
It is also assumed that xA = xB so the idler photons travel the same distance to the
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same detector D1. The second term in the expansion with i = 1 for D1 becomes;

〈E (+)
1 E (+)

s 〉〈E (−)
1 E (−)

s 〉 = α2

4
cosh(�pt0) sinh(�pt0) cosh(�pt1) sinh(�pt1)

×2|t |2(1 + cos[kxd]). (36)

Similarly,

〈E (−)
s E (+)

s 〉 = 〈a1a†1〉α
2
sinh2(�pt1)|t |2

[
(|r |2 + |t |2) + r�t + r t�

]

〈E (−)
1 E (+)

1 〉 = 〈asa†s〉α
2
2 sinh2(�pt0)(1 + cos[kxd]) (37)

The third term in the expansion Eq. (33) becomes;

〈E (−)
s E (+)

s 〉〈E (−)
1 E (+)

1 〉 = α2

2
sinh2(�pt0) sinh

2(�pt1)|t |2
×(1 + cos[kxd]) (38)

Hence, adding terms 2 , Eq. (36) and term 3, Eq. (38) we find the probability R01 to
be,

〈
: E (−)

s (t0)E
(+)
s (t0)E

(−)
1 (t1)E

(+)
1 (t1) :

〉
∝ α2

2
|t |2 sinh(�pt0) sinh(�pt1)

× cosh(�p[t0+t1])(1+cos[kxd]). (39)

The 1
T

∫ T
0 cosh2(�pt0)dt0 and 1

T

∫ T
0 cosh2(�pt1)dt1 integrals, can be performed

and lead to constants so long as �pT > 0. Clearly the cos[kxd] term leads to inter-
ference of the signal photons.

Joint Detection D0 and D2 Detectors

The joint probability R0,2, detection of (D0, D2) leads to similar interference terms.
The starting electric fields for detector 2 become;

E (+)
s (t) =

√
α

2

(
ase

ikx dA cosh(�pt0) − ia†2t
�2e−ikxAe−iθ sinh(�pt2)

)

+
√

α

2

(
ase

ikx dB cosh(�pt0) − ia†2t
�r�e−ikxB e−iθ sinh(�pt2)

)

E (+)
2 (t) =

√
α

2

(
a2t

2eikxA cosh(�pt2) − ia†se
−ikx dAe−iθ sinh(�pt0)

)

+
√

α

2

(
a2tre

ikxB cosh(�pt2) − ia†se
−ikx dB e−iθ sinh(�pt0)

)
(40)

Since we have chosen to calculate type I, there will be no polarization change and
we expect a similar result to that of R0,1 above with the only difference that t1 → t2.
We have not worried about any subtle phase changes on reflection here.
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Joint Detection D0 and D3 Detectors

The joint probability R0,3 , detection of (D0, D3) signal and idler photons can be
calculated using a similar technique but the starting electric fields would be, using
i = 3;

E (+)
s (t) =

√
α

2

(
ase

ikx dA cosh(�pt0) − ia†3r
�e−ikxAe−iθ sinh(�pt3)

)

E (+)
3 (t) =

√
α

2

(
a3re

ikxA cosh(�pt3) − ia†se
−ikx dAe−iθ sinh(�pt0).

)
(41)

In this case only idler photons from region A can reach detector 3. This implies that
the signal photons also came from region A and no interference results. The new term
2 becomes;

〈E (+)
s E (+)

3 〉 = 〈asa†s〉α
2

(−ie−iθ ) cosh(�pt0) sinh(�pt0)

〈E (−)
s E (−)

3 〉 = 〈a3a†3〉α
2

(ieiθ ) cosh(�pt3) sinh(�pt3)|r |2

〈E (+)
s E (+)

3 〉〈E (−)
s E (−)

3 〉 = α2

4
cosh(�pt0) sinh(�pt0) cosh(�pt3) sinh(�pt3)|r |2.

(42)

The new term 3 becomes;

〈E (−)
s E (+)

s 〉 = 〈a3a†3〉α
2

|r |2 sinh2(�pt3)

〈E (−)
3 E (+)

3 〉 = 〈asa†s〉α
2
sinh2(�pt0)

〈E (−)
s E (+)

s 〉〈E (−)
3 E (+)

3 〉 = α2

4
|r |2 sinh2(�pt0) sinh

2(�pt3). (43)

The point probability R03 becomes ;

〈 : E (−)
s (t0)E

(+)
s (t0)E

(−)
3 (t3)E

(+)
3 (t3) : 〉

∝ α2

4
|r |2 sinh2(�pt0) sinh

2(�pt3) cosh(�p[t0 + t3]) (44)

Clearly no interference present.
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Joint Detection D0 and D4 Detectors

The joint probability R0,4, detection of (D0, D4) signal and idler photons i = 4, can
be calculated using the electric fields below;

E (+)
s (t) =

√
α

2

(
ase

ikx dB cosh(�pt0) − ia†4r
�e−ikxB e−iθ sinh(�pt4)

)

E (+)
4 (t) =

√
α

2

(
a4re

ikxB cosh(�pt4) − ia†se
−ikx dB e−iθ sinh(�pt0).

)
(45)

Only idler photons from region B can reach detector 4. This implies the signal photons
came from region B also, and so no interference. The joint probability R0,4 is very
similar to the previous result for R03 with t3 → t4.

Appendix 2

Here we derive the results for Case 1, treated in the main paper, but using a symmetric
wavefunction with both retarded and advanced waves. Using the notation from the
book by Zubairy and Scully [6] we find that a spontaneously emitted photon (idler
photon in our case) can be represented by a wave function of the type,

〈0|E+|φi 〉 = −i
℘ab sin η

8ε0π2
r

ω2

c2

∫ ∞

−∞
dνk

[
e−iνk t+iνk
r/c

νk − ω + iγ /2
− e−iνk t−iνk
r/c

νk − ω + iγ /2

]
(46)

Using the contour integration in [6] the upper hemisphere anti clockwise gives zero
since there is no pole, the lower hemisphere clockwise gives a simple residue at
νk = ω − iγ /2. This gives the result,

〈0|E+|φi 〉 = ε0

[
e(−iω−γ /2)(t−
r/c)θ(t − 
r/c) − e(−iω−γ /2)(t+
r/c)θ(t + 
r/c)

]

ε0 =
(

ω2℘ab sin η

4πε0
rc2

)
(47)

where the spontaneous decay is γ , the atomic transition dipole matrix element is ℘ab

and η is the angle between the dipole matrix element and the z–axis. The frequency ω

is the idler frequency. The θ(t ± 
r/c) functions are determined from the direction
around the contour integration taken to find a nonzero result. The negative sign is for
retarded waves the positive sign is for the advanced waves going backward in time.
The Eq. (47) is used for both idler photons for the Case 1. Starting from Eq. (10) in the
main text the wave function for the idler photon to be detected by detector 1 becomes,

ψ1 = αε0√
2

[
e(−iω−γ /2)(t−L1A/c)eikx dAθ(t − L1A/c)−e(−iω−γ /2)(t+L1A/c)eikx dAθ(t+L1A/c)

+e(−iω−γ /2)(t−L1B/c)eikx dB θ(t−L1B/c)−e(−iω−γ /2)(t+L1B/c)eikx dB θ(t + L1B/c)
]

(48)
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where we have approximated by missing out the r and t reflection and transmission
coefficients. These would lead to a numerical factor and possibly a phase shift which
is not of importance at the moment. (Note—this is to eliminate any confusion between
the transmission coefficient and the time t .) The lengths from region A,B of the crystal
to detector 1 are L1A , L1B respectively. For interference we want to find ψ�

1ψ1. It
is quite straightforward to multiple this out. For convenience we make the further
simplifying assumptions;

L1A ≈ L1B = L
L1A − L1B

c
≈ δt (49)

It is assumed that the path lengths from the regions A,B of the crystal to detector 1 are
almost the same and equal to length L , which could be a meter or more in length. It is
further assumed, that if there is a path difference from regions A,B of the crystal to the
detector 1, it is very small so that the path difference divided by c becomes δt → 0.
The following result is then found for ψ�

1ψ1,

ψ�
1ψ1 = |α|2ε20

{
e−γ (t−L/c)θ2(t − L/c) + e−γ (t+L/c)θ2(t + L/c)

+ cos[ωδt + kxd]e−γ (t−L/c)θ2(t − L/c)

+ cos[ωδt − kxd]e−γ (t+L/c)θ2(t + L/c)

+ cos[2Lω/c + kxd]
[
e−γ (t−δt/2) + e−γ (t+δt/2)

]
θ(t − L/c)θ(t + L/c)

− 2e−γ t cos(2ωL/c)θ(t − L/c)θ(t + L/c)
}

(50)

where d = dA − dB as before. The result is symmetric in the retarded and advanced
waves. The advanced waves are normally not detectable. The first line shows single
slit diffraction terms. These theta squared terms were just in lengths for paths L1A
or L1B alone and a factor of 2 has been removed. The interference is clear from the
second and third lines of the above equation. This results from a path interference
between lengths L1A and L1B . Both terms are either retarded or both advanced. The
4th and 5th lines show an interference between the retarded and advanced waves. The
4th line is actually a mixture of theta functions from paths L1A and L1B , the 5th line
was originally two terms, one from region A and the other from region B. The full
expression is rather long, so both arm lengths from crystal to detector 1 were taken to
be approximately the same length L . The value of 2Lω/c can be very large of order
∼107 for lengths L of a meter, and frequency ω = 3 × 1015rad/s. Interference of the
retarded and advanced waves takes place along the entire path length L . An advanced
wave returns along the same path as the outgoing retarded wave, but the advanced
wave travels in the reverse time direction from detector to slits and thus collapses the
wave function along the entire path of the photon. The last term would most likely
not be visible due to the large argument of the cosine which would have a tendency
to cause rapid oscillation and wash out the fringes as a result (for any variation in ω).
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This appears to confirm Cramer’s hypothesis that the wave function collapse is not
instantaneous, but is distributed in time along the flight path of the photon.
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