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Abstract Various generalizations of Boolean algebras are being studied in algebraic
quantum logic, including orthomodular lattices, orthomodular po-sets, orthoalgebras
and effect algebras. This paper contains a systematic study of the structure in and
between categories of such algebras. It does so via a combination of totalization (of
partially defined operations) and transfer of structure via coreflections.

Keywords Effect algebra · Partial commutative monoid · Tensor product · Limit
and colimit

1 Introduction

The algebraic study of quantum logics focuses on structures like orthomodular lat-
tices, orthomodular posets, orthoalgebras and effect algebras, see for instance [3–
5, 11]. This paper takes a systematic categorical look at these algebraic structures,
concentrating on (1) relations between these algebras in terms of adjunctions, and
(2) categorical structure of the categories of these algebras. Typical of these alge-
braic structures is that they involve a partially defined sum operation � that can be
interpreted either as join of truth values (in orthomodular lattices/posets) or as sum
of probabilities (in effect algebras).

The leading example of such a partially defined sum � is addition on the (real)
unit interval [0,1] of probabilities: for x, y ∈ [0,1] the sum x � y = x + y is defined
only if x + y ≤ 1. Because this operation � is so fundamental, the paper takes the
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notion of partial commutative monoid (PCM) as starting point. An effect algebra, for
instance, can then be understood as an orthosupplemented PCM, in which for each
element x there is a unique element x⊥ with x � x⊥ = 1.

The paper studies algebraic quantum logics via a combination of:

– totalization of the partially defined operation � into a richer algebraic structure,
forming a coreflection with the original (partial) structures. Such a coreflection is
an adjunction where the left adjoint is a full and faithful functor;

– transfer of structure along these coreflections. It is well-known (see [1, I, Proposi-
tion 3.5.3]) that limits and colimits can be transferred from one category to another
if there is a coreflection between them. Here we extend this result to include also
transfer of adjunctions and of monoidal structure.

In Sect. 3 we show that effect algebras also form a reflection with test spaces
(following [8, 15]), so that we have a situation:

(
test spaces

) (
effect algebras

)reflection coreflection (
barred comm.

monoids

)

Both the reflection and the coreflection can be used to study the categorical structure
of the category of effect algebras. However, here we shall do so via the coreflection
only, because this coreflection involves total operations that are easy to work with.

In particular, we obtain tensors of effect algebras via this coreflection. They are not
new: they are constructed explicitly in [2, 6]. Here they simply arise from a transfer
result based on coreflections. The presence of these tensors is an important advan-
tage of effect algebras over orthomodular lattices [11]. They naturally lead to notions
like ‘effect monoid’ (monoid in the category of effect algebras) and ‘effect module’
(action for such a monoid). For instance, the effects of a Hilbert space—positive op-
erators below the identity—form an example of such an effect module, with the effect
monoid [0,1] as scalars. A systematic study of these structures will appear elsewhere.

2 Partial Commutative Monoids and Effect Algebras

Before introducing the main objects of study in this paper we first recall some basic
notions about commutative monoids and fix notation.

The free commutative monoid on a set A is written as M(A). It consists of
finite multisets n1a1 + · · · + nkak of elements ai ∈ A, with multiplicity ni ∈ N.
Such multisets may be seen as functions ϕ : A→ N with finite support, i.e. the set
sup(ϕ)= {a ∈A | ϕ(a) �= 0} is finite. The commutative monoid structure on M(A) is
then given pointwise by the structure in N, with addition (ϕ +ψ)(a)= ϕ(a)+ψ(a)

and zero element 0(a)= 0. These operations can be understood as join of multisets,
with 0 as empty multiset.

The mapping A �→ M(A) yields a left adjoint to the forgetful functor CMon →
Sets from commutative monoids to sets. For a function f : A → B we have
a homomorphism of monoids M(f ) : M(A) → M(B) given by (

∑
i niai) �→
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(
∑

i nif (ai)), or more formally, by M(f )(ϕ)(b) = ∑
a∈f−1(b) ϕ(a). The unit ι :

A→ M(A) of the adjunction may be written as ι(a)= 1a.
If M = (M,+,0) is a commutative monoid we can interpret a multiset ϕ ∈ M(M)

over M as an element �ϕ� =∑
x∈sup(ϕ) ϕ(x) · x, where n · x is x + · · · + x, n times.

In fact, this map �−� is the counit of the adjunction mentioned before. Each monoid
M carries a preorder � given by: x � y iff y = x + z for some z ∈M . In free com-
mutative monoids M(A) we get a poset order ϕ � ψ iff ϕ(a)≤ ψ(a) for all a ∈ A.
Homomorphisms of monoids are monotone functions wrt. this order �. This applies
in particular to interpretations �−� : M(M)→M .

Definition 1 A partial commutative monoid, or PCM, is a triple (M, �,0) consisting
of a set M , an element 0 ∈M and a partially defined binary operation � such that
the three axioms below are satisfied. We let the expression ‘x ⊥ y’ mean ‘x � y is
defined’, and call such elements x, y orthogonal.

1. x ⊥ y implies y ⊥ x and x � y = y � x.
2. y ⊥ z and x ⊥ (y � z) implies x ⊥ y and (x � y)⊥ z and x � (y � z)= (x � y) � z.
3. 0⊥ x and 0 � x = x.

An effect algebra is a PCM with a special element 1 and an additional unary
operator (−)⊥ called the orthosupplement such that

1. x⊥ is the unique element such that x � x⊥ = 1.
2. x ⊥ 1 implies x = 0.

An orthoalgebra is an effect algebra in which x⊥x implies x = 0.

In some texts (e.g. [3, 6]) it is required that 0 �= 1 however we allow {0} as an
effect algebra since it will be the final object in the category EA. We shall call {0} the
trivial effect algebra.

An obvious example of a PCM is the unit interval [0,1] of real numbers, with
x � y defined, and equal to x + y, iff this sum x + y fits in [0,1]. It even forms an
effect algebra with x⊥ = 1− x.

A different class of effect algebras are the orthomodular lattices [11]. Let L =
(L,∨,∧,0,1, (−)⊥) be an orthomodular lattice. We can turn L into an effect algebra
(in fact an orthoalgebra) by restricting the ∨ operator. We will let x⊥y iff x ≤ y⊥ and
then set x � y = x ∨ y. This construction applies in particular to Boolean algebras.

Historically the notion of an orthomodular lattice is one of the first attempts at
defining what a quantum logic should be. Later this notion was generalized to that of
an orthomodular poset, then orthoalgebras and finally effect algebras. In this paper we
focus on effect algebras but our results and techniques will also work orthoalgebras.
We will not discuss orthomodular lattices and posets any further in this paper, we
refer interested readers to [12, 13].

We list a few elementary properties of effect algebras.

Proposition 1 Let E be an effect algebra:

1. (x⊥)⊥ = x and 1= 0⊥.
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2. The relation ≤, defined by x ≤ y iff there exists z ∈ E such that x � z = y, is a
partial order with 0 as bottom and 1 as top element.

3. x⊥y iff x ≤ y⊥.
4. x ≤ y iff x⊥ ≥ y⊥.
5. x � y = z and x � y′ = z implies y = y′.
6. x � y = 0 implies x = y = 0.

Definition 2 We organize partial commutative monoids into a category PCM as fol-
lows. The objects are PCMs and homomorphisms f : (M, �,0) → (N, �,0) are
(total) functions from M to N such that f (0) = 0, and for x, y ∈M , x ⊥ y implies
f (x)⊥ f (y) and f (x � y)= f (x) � f (y).

We also form the category EA of effect algebras. An effect algebra homomor-
phism is a PCM homomorphism such that f (1) = 1. This condition implies that
effect algebra homomorphisms preserve the orthosupplement.

Remark 1 In the beginning of this section we described the interpretation �
∑

i nixi � =∑
i ni ·xi of a multiset (

∑
i nixi) ∈ M(M) in a monoid M . In case M is a PCM, such

an interpretation need not always exist. Over a PCM M we call a multiset ϕ an or-
thogonal multiset in M if the interpretation �ϕ� = �x∈sup(ϕ)ϕ(x) ·x exists in M . Here
we write n · x for the n-fold sum x � · · · � x, assuming it exists.

We shall write Or(M) ↪→ M(M) for the subset of orthogonal multisets in M .
The subset Or(M) is downclosed (ϕ � ψ ∈ Or(M) implies ϕ ∈ Or(M)), and
forms a PCM itself, with the interpretations �−� forming homomorphisms of PCMs
�−� : Or(M)→M .

Notice that 1x ∈ Or(M), for x ∈M , so that
⋃

ϕ∈Or(M) sup(ϕ) =M . For a map
f : M → N in PCM, if ϕ = (

∑
i nixi) ∈ Or(M) then M(f )(ϕ) = (

∑
i nif (xi)) ∈

Or(N), by definition of ‘morphism in PCM’, and:

�
M(f )(ϕ)

� =
� ∑

i

nif (xi)

�

= �ini · f (xi)= f (�ini · xi)= f
(

�ϕ�
)
. (1)

Because the interpretation function �−� is partial for a PCM there are different
forms of equality, depending on whether existence of interpretations is required or
assumed.

1. Assuming existence leads to the following notion of ‘partial equality’; it is the one
that is most frequently used for partially defined operations. We write:

ϕ 
M ψ for

⎧⎨
⎩

if �ϕ� is defined, also �ψ � is defined and �ϕ� = �ψ �,
and
if �ψ � is defined, so is �ϕ� and �ψ � = �ϕ�.

(2)

The subscript ‘M’ in 
M is sometimes omitted when M is clear from the context.
2. When existence is required one does not get an equivalence relation, like above,

but only that what is called a partial equivalence relation (PER) ≡⊆ M(M) ×
M(M). It is a relation that is symmetric and transitive but not necessarily reflex-
ive. In this case:

ϕ ≡ψ ⇐⇒ both �ϕ�, �ψ � exist in M and are equal. (3)
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Partial equivalence relations (PERs) are used extensively in the semantics of
higher order lambda calculi, see for instance [9, 16]. In general, for a PER R ⊆X×X

one writes dom(R) = {x ∈ X | R(x, x)} for the domain of R. Notice that R(x, y)

implies x, y ∈ dom(R). When R is restricted to dom(R) ⊆ X it forms an equiv-
alence relation. Hence such a PER R gives rise to a “subquotient” of the form
X � dom(R) � dom(R)/R.

For the PER ≡ associated in (3) with a PCM M , the subset Or(M) = {ϕ ∈
M(M) | �ϕ� exists} is the domain dom(≡) = {ϕ ∈ M(M) | ϕ ≡ ϕ} of the PER ≡.
Hence ≡ is an actual equivalence relation on Or(M), so that one can form the quo-
tient Or(M)/≡.

For later use we observe the following.

Lemma 1 Partial equality 
M⊆ M(M)×M(M), for a PCM M , is an equivalence
and a congruence relation.

Proof Clearly,
 is an equivalence relation. Suppose ϕ 
 ϕ′ and ψ 
ψ ′, and assume
�ϕ + ψ � is defined. Then both �ϕ� and �ψ � are defined, and �ϕ + ψ � = �ϕ� � �ψ �.
From ϕ 
 ϕ′ and ψ 
 ψ ′ we obtain that also �ϕ′� and �ψ ′

� are defined, and �ϕ′� =
�ϕ� and �ψ ′

� = �ψ �. Hence:

�ϕ +ψ � = �ϕ� � �ψ � = �ϕ′� � �ψ ′
� = �

ϕ′ +ψ ′�
,

so that ϕ +ψ 
 ϕ′ +ψ ′. �

3 Tests

So-called test spaces have been introduced by Foulis and Randall [8, 15] in their
reformulation of probability theory. Here we take the freedom to adapt the definition
in such a way that it can also be made to work for PCMs. We will show that the
constructions from [6] transforming test spaces into effect algebras and vice versa
take the form of a reflection.

Definition 3 A test perspective is given by a set A together with a partial equivalence
relation ≡A⊆ M(A)× M(A) satisfying:

1. 0≡A 0;
2. ϕ ≡A ψ implies ∀α ∈ M(A).ϕ + α ∈ dom(≡A)⇒ ϕ + α ≡A ψ + α;
3. the domain dom(≡A)= {ϕ | ϕ ≡A ϕ} covers A, in the sense that

⋃{sup(ϕ) | ϕ ∈
dom(≡A)} =A;

We form a category TestPer with such test perspectives as objects and morphisms
f : (A,≡A)→ (B,≡B) given by functions f : A→ B between the underlying sets,
satisfying ϕ ≡A ψ ⇒ M(f )(ϕ)≡B M(f )(ψ).

The following result shows how such structures can arise.
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Lemma 2 Each PCM M yields (M,≡) ∈ TestPer, in a functorial manner—where
≡⊆ M(M)× M(M) is the PER introduced in Remark 1. We shall write this functor
as Te : PCM→ TestPer. It is full and faithful.

Proof For a PCM M we recall that the domain of the associated PER ≡ on M(M) is
dom(≡)= Or(M)= {ϕ ∈ M(M) | �ϕ� exists}. Hence the three requirements in the
definition obviously hold. For a morphism of PCMs f : M → N the resulting map
M(f ) : M(M)→ M(N) preserves these PERs ≡. Faithfulness is immediate. And
for fullness we need to show that a map of test perspectives f : (M,≡)→ (N,≡) is
also a PCM-map f : M →N . Therefore we note that 1(x � y)≡ 1x + 1y, assuming
x ⊥ y in M , and similarly, as nullary case, 10≡ 0. Hence 1f (x � y)= M(f )(1(x �

y))≡ M(f )(1x + 1y)= 1f (x)+ 1f (y) and 1f (0)= M(f )(10)≡ M(f )(0)= 0.
This means that we get in N , f (x � y)= �1f (x � y)� = �1f (x)+ 1f (y)� = f (x) �

f (y) and f (0)= �1f (0)� = �0� = 0. �

In the other direction one can also turn test perspectives into PCMs. For the PCM
associated with a test perspective (A,≡A) we use the ad hoc notation A↙≡A. This
construction uses the downset of the domain ↓dom(≡A) = {ϕ ∈ M(A) | ∃α.ϕ +
α ∈ dom(≡A)}. It is not hard to see that ϕ ≡A ϕ′ and ϕ ∈ ↓dom(≡A) implies ϕ′ ∈
↓dom(≡A). Thus we can define

A↙≡A =
{[ϕ]A | ϕ ∈ ↓dom(≡A)

}
,

where [ϕ]A ⊆ M(A) is the equivalence class [ϕ]A = {ψ | ϕ ≡A ψ}. For ϕ,ψ ∈
↓dom(≡A) we define [ϕ] ⊥ [ψ] iff ϕ + ψ ∈ ↓dom(≡A), and in that case we take:
[ϕ]A � [ψ]A = [ϕ + ψ]A. By the second requirement in Definition 3 this is well-
defined. Clearly, [0]A ∈A↙≡A is zero element.

Proposition 2 Partial commutative monoids form a reflective category in test per-
spectives, in the following situation:

TestPer

Q

⊥ PCM

Te
(full & faithful)

where the functor Q : TestPer→ PCM is (A,≡A) �→A↙≡A.

Proof For (A,≡A) ∈ TestPer and M ∈ PCM we have a bijective correspondence:

A↙≡A

f

M in PCM

(A,≡A)
g

(M,≡) in TestPer
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Given f : A↙≡A→ M we obtain f : (A,≡A) → (M,≡) by f (a) = f ([1a]).
Conversely, given g : (A,≡A) → (M,≡) we get g : A↙≡A→ M by g([ϕ]) =
� M(g)(ϕ)�. It is routine to check that these operations (−) are well-defined, and
only show that they are each others inverse:

f
([ϕ]) = �

M(f )(ϕ)
�

= �inif (ai) if ϕ =
∑

i

niai

= �inif
([1ai]

)

= f

([∑
i

niai

])
since f is a map of PCMs

= f ([ϕ])
g(a) = g

([1a])

= �
M(g)(1a)

�

= �
1g(a)

�

= g(a). �

Notice that the situation A = ∅ is allowed in Definition 3. In that case we get
M(A)= {0} and ≡= {(0,0)}. Hence A↙≡A is the singleton PCM.

Definition 4 A test space is a test perspective (A,≡A) satisfying the following ad-
ditional requirement. Define the subset �A ⊆ dom(≡A) ⊆ M(A) of top elements
as:

�A =
{
ϕ ∈ dom(≡A) | ∀ψ ∈ dom(≡A).ϕ ≤ψ ⇒ ϕ ≡A ψ

}
. (4)

Then a test space should satisfy:

1. ϕ,ψ ∈�A implies ϕ ≡A ψ .
2. dom(≡A)=↓�A;
3. if ϕ ≡A ψ and ϕ + α ≡A ψ + β then α ≡A β , for all α,β ∈ dom(≡A).

We shall write TestSp ↪→ TestPer for the subcategory of test spaces with mor-
phisms f : (A,≡A) → (B,≡B) that map �A to �B , in the sense that ϕ ∈ �A ⇒
M(f )(ϕ) ∈�B .

Recall from Definition 3 that 0 ≡A 0 holds in a test perspective (A,≡A). This
means that 0 ∈ dom(≡A)=↓�A in a test space. Hence �A is a non-empty subset.

Note that our definition of a test space differs from the one in [6] and [3] in the fact
that we take the relation ≡A as primitive and define �A while in the older definition
this is reversed. We chose the current approach to accommodate for PCMs where
starting from �A would make no sense.
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Theorem 1 The reflection TestPer � PCM from Proposition 2 restricts to a reflec-
tion:

TestSp

Q

⊥ EA

Te
(full & faithful)

Proof We first check that (M,≡) is a test space if M is an effect algebra. We claim
that �M as defined in (4) satisfies:

�M = {
ϕ ∈ M(M) | �ϕ� is defined and �ϕ� = 1

}
.

The inclusion (⊇) is easy: if �ϕ� exists and equals 1, and ϕ ≤ ψ in M(M), then
1 = �ϕ� ≤ �ψ � in M , so that �ψ � = 1, and thus ϕ ≡ ψ . For (⊆), assume ϕ ∈ �M

but �ϕ� �= 1. Then ψ = ϕ + 1(�ϕ�
⊥) ∈ M(M) satisfies ϕ ≤ ψ and so we get ϕ ≡ ψ

because ϕ ∈ �M . But �ψ � = �ϕ� � �ϕ�
⊥ = 1 �= �ϕ�. We check the two points in the

above definition.

1. We have dom(≡) = Or(M) = {ϕ | �ϕ� exists} ∗= ↓�M , where the marked equa-
tion holds by the following argument. For the inclusion (⊆), if �ϕ� exists in M ,
then, as before ϕ ≤ ϕ + 1(�ϕ�

⊥) ∈�M . For the reverse inclusion (⊇), notice that
if ϕ ≤ψ with �ψ � existing and equal to 1, then also �ϕ� exists.

2. Suppose ϕ ≡ψ and ϕ+α ≡ ϕ+β , i.e. �ϕ�, �ψ � exist and are equal, and similarly
for �ϕ + α� and �ψ + β�. Then: �ϕ� � �α� = �ϕ + α� = �ψ + β� = �ψ � � �β� =
�ϕ� � �β�. Then �α� = �β� because the cancellation law holds in effect algebras.
Hence α ≡ β .

In the other direction, we prove that A↙≡A is an effect algebra if (A,≡) is a test
space. The orthosupplement of [ϕ] ∈A↙≡A, for ϕ ∈ ↓dom(≡A), is given as follows.
We use ↓dom(≡A) ⊆ ↓�A and write ϕ + α ∈ �A, for some α ∈ M(A). Now we
simply put [ϕ]⊥ = [α]. This is well-defined since:

– the orthosupplement does not depend on the choice of α: if both ϕ+α,ϕ+β ∈�A,
then ϕ + α ≡A ϕ + β and thus α ≡A β by requirement 3 in Definition 4; hence
[α] = [β];

– the choice of representative does not matter: if ϕ ≡A ψ and both ϕ + α ∈ �A and
ψ + β ∈ �A, then ϕ + α ≡A ψ + β . By requirement 2 in Definition 3 we get
ψ + α ≡A ϕ + α, and by transitivity ψ + α ≡A ψ + β so that α ≡A β and thus
[ϕ]⊥ = [α] = [β] = [ψ]⊥.

The top element 1 ∈A↙≡A is [γ ] for any γ ∈ �A. We still have to check that ortho-
supplements are unique: if [ϕ] � [α] = 1= [ϕ] � [β]. Then ϕ + α ≡A γ ≡A ϕ + β .
But then α ≡A β and thus [α] = [β]. Finally, if [ϕ] ⊥ 1, then ϕ + γ ∈ ↓dom(≡A).
But since γ ∈ �A and γ ≤ ϕ + γ we get γ ≡A ϕ + γ . This can be reformulated
as γ + 0 ≡A γ + ϕ, and thus ϕ ≡A 0, by requirement 2 in Definition 4. Thus
[ϕ] = [0] = 0 ∈A↙≡A.

The adjunction Q � Te works just like in Proposition 2. �
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Test spaces have been used to construct a tensor product for effect algebras (cf.
[3, 6]), however this construction is cumbersome and not very revealing. In the rest
of the paper we shall pursue a different approach to constructing this tensor product
making use of a coreflection rather than the reflection presented in this section.

This coreflection will embed effect algebras into structure with total operations.
They are more familiar structures and easier to work with than tests, involving partial
equivalence relations.

4 Coreflections

We now turn to some technical results on coreflections which will be used for various
constructions with PCMs and effect algebras.

4.1 Preliminaries on Coreflections

Recall that a coreflection is an adjunction F �G where the left adjoint F : A → B
is full and faithful, or equivalently, the unit η : id → GF is an isomorphism. It is
well-known (see [1]) that in this situation A is as complete and cocomplete as B.

Theorem 2 Suppose D : J → A is a diagram in A and that lj : L → FDj (resp.
cj : FDj → C) is a limit (resp. colimit) of F ◦D in B then η−1

Dj
◦G(lj ) :G(L)→Dj

(G(cj ) ◦ ηDj
:Dj →G(C)) is a limit (colimit) of D in A.

Below we shall show that A not only inherits limits and colimits from B but also
a (symmetric) monoidal structure under some mild conditions. Furthermore we can
also transfer adjoints in the sense that functors with domain A will have adjoints if
certain related functors with domain B have adjoints.

The following lemma proves to be central in all these results.

Lemma 3 Let F :A→ B be part of a coreflection F �G and let B ∈ B. If the counit
εB : FGB → B is a split epi then εB is an isomorphism.

Proof Suppose g : B → FGB is such that εB ◦ g = idB then it follows that g = ε−1
B

since:

g ◦ εB = FG(εB) ◦ F(ηGB) ◦ g ◦ εB (triangular identity)

= FG(εB) ◦ F(ηGB) ◦ εFGB ◦ FG(g) (naturality)

= FG(εB) ◦ FG(g) (*)

= FG(idB)= idFGB,

where (*) follows from the fact that ηGB is an isomorphism and εFGB ◦F(ηGB)= id
by the triangular identities. �

Since the dual notion of a coreflection is a reflection, i.e. an adjunction where the
right adjoint is full and faithful and the counit an isomorphism, all results from this
section can also be formulated for reflections instead.
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4.2 Coreflections and Adjunctions

The situation we will be studying here is as follows. We have a coreflection
(F1,G1, η

1, ε1) : A1 → B1 and an adjunction (F2,G2, η
2, ε2) : A2 → B2 as well

as a map of adjunctions (H :A1 →A2,K : B1 → B2). This means that we have nat-
ural isomorphisms α : KF1 → F2H and β : HG1 → G2K such that the following
diagrams commute for all X ∈A1 and Y ∈ B1.

HX

η2
HX

Hη1
X

G2F2HX KF1G1Y

Kε1
Y

αG1Y

KY

HG1F1X
βF1X

G2KF1X

G2αX

F2HG1Y
F1βY

F2G2KY

ε2
KY

(5)

Next we suppose that K is part of an adjunction (L,K, δ, ξ) and define J :A2 →
A1 as J =G1 ◦L ◦ F2.

B1

G1�
K

⊥ B2

G2�

L

A1

F1

H

A2

F2

J

Theorem 3 In the situation described above, the functor J =G1LF2 is left adjoint
to H .

Proof Let X ∈A2 and define θX :X→HJX by θX = β−1
LF2X

◦G2(δF2X) ◦ η2
X .

X
θX

η2
X

HJX =HG1LF2X

G2F2X
G2δF2X

G2KLF2X

β−1
LF2X

We want to show that θX is a universal arrow towards H . So let f :X→HY , we
need to construct f̂ : JX = G1LF2X → Y . To do so define f ′ : F2X → KF1Y by
f ′ = α−1

Y ◦ F2(f ). Now using the L � K adjunction we can find an f̂ ′ : LF2X →
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F1X such that K(f̂ ′) ◦ δF2X = f ′. Now define f̂ = (η1
Y )−1 ◦G1(f̂ ′).

F2X
F2(f )

δF2X

f ′

KLF2X

K(f̂ ′)

LF2X

f̂ ′F2HY
α−1

Y

KF1Y F1Y

(6)

We now compute:

H(f̂ ) ◦ θX =H
(
(η1

Y )−1) ◦HG1
(
f̂ ′

) ◦ β−1
LF2X

◦G2(δF2X) ◦ η2
X

=H
(
(η1

Y )−1) ◦ β−1
F1Y

◦G2K
(
f̂ ′

) ◦G2(δF2X) ◦ η2
X (naturality)

=H
(
(η1

Y )−1) ◦ β−1
F1Y

◦G2
(
f ′

) ◦ η2
X (by (6))

=H
(
(η1

Y )−1) ◦ β−1
F1Y

◦G2
(
α−1

Y

) ◦G2F2(f ) ◦ η2
X (by (6))

=H
(
(η1

Y )−1) ◦ β−1
F1Y

◦G2
(
α−1

Y

) ◦ η2
HY ◦ f (naturality)

= f (by (5))

Next we need to show that f̂ is the only arrow with this property. Like before we
need an auxiliary result. �

Lemma 4 The counit ε1
LF2X

: F1G1LF2X→ LF2X is an isomorphism.

Proof (of the lemma) We need to construct an inverse g : LF2X → F1G1LF2X

using the L � K adjunction we can do this by constructing a map F2X →
KF1G1LF2X ∼= F2HG1LF2X. We can use F2(θX) there. So define

g = ξF1JX ◦L
(
α−1

JX ◦ F2(θX)
)

g : LF2X→ LF2HG1LF2X→ LKF1G1LF2X→ F1G1LF2X

Write h= ε1
LF2X

◦g : LF2X→ LF2X to show h= id we could take the transpose

h : F2X → KLF2X and prove h = δF2X . And to show this it is enough to take h :
X→G2KLF2X and show that this equals βLF2X ◦ θX . We have

h=G2
(
K(ε1

LF2X ◦ g)
) ◦G2(δF2X) ◦ η2

X

and compute:

β−1
LF2X

◦ h= β−1
LF2X

◦G2K
(
ε1
LF2X

◦ g
) ◦G2δF2X ◦ η2

X

=HG1
(
ε1
LF2X

◦ g
) ◦ β−1

LF2X
◦G2δF2X ◦ η2

X
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=HG1
(
ε1
LF2X

◦ g
) ◦ θX

=HG1
(
ε1
LF2X

◦ ξF1JX ◦L
(
α−1

JX ◦ F2(θX)
)) ◦ θX

=HG1
(
ε1
LF2X

) ◦HG1(ξF1JX) ◦HG1L
(
α−1

JX

)

◦HG1LF2(θX) ◦ θX

=HG1(ξLF2X) ◦HG1LK(ε1
LF2X

) ◦HG1L
(
α−1

JX

)

◦HG1LF2
(
β−1

LF2X

) ◦HG1LF2G2(δF2X) ◦HG1LF2
(
η2

X

) ◦ θX

=HG1(ξLF2X) ◦HG1L
(
ε2
KLF2X

) ◦HG1LF2G2(δF2X)

◦HG1LF2
(
η2

X

) ◦ θX

=HG1(ξLF2X) ◦HG1L(δF2X) ◦HG1L
(
ε2
F2X

)

◦HG1LF2
(
η2

X

) ◦ θX

= θ

Where equalities 2,6 and 8 follow from naturality, the 7th equality follows from (5)
and the final equation follows from the triangular identities. Thus we have ε1

LF2X
◦

g = id. The result now follows from Lemma 3. �

Proof (Continuation of the proof of Theorem 3) Suppose k : JX → Y is such that
H(k) ◦ θX = f . We need to prove k = f̂ = (η1

Y )−1 ◦ G1(f̂ ′). To do so we define
k′ = F1(k) ◦ (ε1

LF2X
)−1 : LF2X→ F1Y . We have

K
(
k′

) ◦ δF2X =KF1(k) ◦K
((

ε1
LF2X

)−1) ◦ δF2X

=KF1(k) ◦ α−1
JX ◦ F2

(
β−1

LF2X

) ◦ (
ε2
KLF2X

)−1 ◦ δF2X

= α−1
Y ◦ F2H(k) ◦ F2

(
β−1

LF2X

) ◦ (
ε2
KLF2X

)−1 ◦ δF2X

= α−1
Y ◦ F2H(k) ◦ F2

(
β−1

LF2X

) ◦ F2G2(δF2X) ◦ (
ε2
F2X

)−1

= α−1
Y ◦ F2H(k) ◦ F2

(
β−1

LF2X

) ◦ F2G2(δF2X) ◦ F2
(
η2

X

)

= α−1
Y ◦ F2H(k) ◦ F2(θX)

= α−1
Y ◦ F2

(
H(k) ◦ θC

)

= α−1
Y ◦ F2(f )= f ′

Here equality (2) follows from (5) and equalities (3) and (4) follow from naturality.
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Since f̂ ′ was the unique map with this property we see k′ = f̂ ′. Finally we see:

f̂ = (
η1

Y

)−1 ◦G1
(
f̂ ′

)
= (

η1
Y

)−1 ◦G1F1(k) ◦G1
((

ε1
LF2X

)−1)

= k ◦ (
η1

G1LF2X

)−1 ◦G1
((

ε1
LF2X

)−1) (naturality)
= k. (triangular identity) �

We can prove a similar result for right adjoints. This will be easier to prove and
involves less stringent conditions. We require (F1,G1, η

1, ε1) to be an adjunction
between A1 and B1 but we only require a full and faithful functor F2 : A2 → B2.
Like before we suppose we have two functors H : A1 → A2 and K : B1 → B2 as
well as a natural isomorphism α : KF1 → F2H . This time we suppose K has right
adjoint R : B2 → B1 and define J =G1 ◦R ◦ F2.

B1

G1�
K

� B2

R

A1

F1

H

A2

F2

J

Theorem 4 The above functor J =G1RF2 is right adjoint to H .

Proof This follows from a series of natural isomorphisms as below:

X→ JY

X→G1RF2Y

F1X→RF2Y

KF1X→ F2Y

F2HX→ F2Y

HX→ Y �

These results about adjunctions capture part of the results about (co)limits. If J is
some index category then a category A has all (co)limits of type J iff the diagonal
A→AJ has a left or right adjoint. If F :A→ B is part of a coreflection (F,G,η, ε)

we can create a coreflection between AJ and BJ in the obvious way. Now the diagonal
functors satisfy the conditions of Theorems 3 and 4 so that if B has all (co)limits of
type J then so has A.

4.3 Coreflections and Monoidal Structure

In this section we will work with a coreflection (F,G,η, ε) where F : A→ B. This
time we will assume that B comes equipped with a (possibly symmetric) monoidal
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structure (⊗, I ) with the standard natural coherence isomorphisms

α :X⊗ (Y ⊗Z)→ (X⊗ Y)⊗Z

ρ :X⊗ I →X

λ : I ⊗X→X

and optionally γ :X⊗ Y → Y ⊗X.
Our goal is to use this monoidal structure on B to create one on A. For this we will

assume that the composite functor FG : B→ B is monoidal, say via (natural) maps

I
ζ

FGI FGX⊗ FGY
ξ

FG(X⊗ Y)

and that the counit ε is a monoidal natural transformation. This means ε ◦ ζ = id and
ε ◦ ξ = ε⊗ ε.

We now define a bifunctor ⊗A :A×A→A by

X⊗A Y :=G
(
FX⊗B FY

)
(7)

and also define IA :=G(IB). We omit the superscripts for these tensors and tensor
units when confusion is unlikely.

We first prove a lemma

Lemma 5 The counits εIB : F(IA)= FG(IB)→ IB and

εFX⊗FY : F
(
X⊗A Y

)= FG
(
FX⊗B FY

)→ FX⊗B FY

are isomorphisms.

Proof Because of Lemma 3 it is enough to show that these counits are split epis.
Since ε is monoidal we have εIB ◦ ζ = id and so εIB is a split epi.

The candidate inverse for εFX⊗FY is

FX⊗ FY
F(ηX)⊗F(ηY )

FGFX⊗ FGFY
ξ

FG(FX⊗ FY)

and we see

ε ◦ ξ ◦ (
F(η)⊗ F(η)

)= (ε⊗ ε) ◦ (
F(η)⊗ F(η)

)= id

�

As an aside we mention that in the current situation with a coreflection the induced
comonad FG is not only monoidal as a functor but also as a comonad. This means
that the diagonal δ = FηG : FG⇒ FGFG is also a monoidal transformation. This
follows because δX = F(ηGX)= ε−1

FGX and ε is a monoidal natural transformation.

Theorem 5 In the situation sketched above:
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1. The tensor (7) yields (symmetric) monoidal structure on the category A in such a
way that the functor G : B→A is automatically monoidal, via the maps:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

IA =G(IB)
=

G(IB)

GX⊗A GY =G(FGX⊗B FGY)
G(εX⊗εY )

G(X⊗B Y).

2. The functor F :A→ B is strongly monoidal, via the isomorphism from the previ-
ous lemma:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

IB
ε−1
I =ζ

∼=
FG(IB)= F(IA)

FA⊗B FB
ε−1

∼=
FG(FA⊗B FB)= F(A⊗A B).

3. If B is monoidal closed, then so is A via:

B �A C :=G(FB �B FC).

Proof 1. We can define the required isomorphisms α, ρ, λ and optionally γ in A as
follows:

A⊗A
(
B ⊗A C

) αA (
A⊗A B

)⊗A C

G
(
FA⊗B FG

(
FB ⊗B FC

))

G(id⊗ε)

G
(
FG

(
FA⊗B FB

)⊗B FC
)

G
(
FA⊗B

(
FB ⊗B FC

)) G(αB)

G
((

FA⊗B FB
)⊗B FC

)
G(ε−1⊗id)

A⊗A IA
ρA

A IA ⊗A A
λA

G
(
FA⊗B FG

(
IB

))

G(id⊗ε)

G
(
FG

(
IB

)⊗B FA
)

G(ε⊗id)

G
(
FA⊗B IB

)
G(ρB)

GFA

η−1

G
(
IB ⊗B FA

)
G(λB)
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A⊗A B

γ A

B ⊗A A

G
(
FA⊗B FB

)
G(γ B)

G
(
FB ⊗B FA

)

The coherence identities easily follow from the corresponding identities in B. The
fact that G is monoidal follows from a routine computation.

2. The maps that are to make F monoidal are clearly isomorphisms. Checking the
required identities is trivial.

3. This follows immediately from Theorem 4 but we also give a direct proof.

A⊗A B =G
(
FA⊗B FB

)
C

FA⊗B FB ∼=FG
(
FA⊗B FB

)
FC

FA FB �B FC

A G
(
FB �B FC

)= B �A C �

5 The Categorical Structure of PCM and EA

In this section we will embed PCMs and effect algebras into algebraic structures with
total operations which are easier to work with. Categorically this will take the form of
a coreflection so that we can use the results from Sect. 4. The construction presented
below is similar to the unigroups of Foulis, Greechie and Bennet [7]. However we use
monoids instead of groups. While unigroups essentially only work for interval effect
algebras our barred commutative monoids (BCMs) work for all effect algebras. Also
the product of BCMs is just the Cartesian product, unlike for unigroups [7].

5.1 Totalization

Definition 5 Define a category DCM of downsets in commutative monoids as fol-
lows. Its objects consist of pairs (M,U) where M is a commutative monoid and
U ⊆M is a nonempty downclosed subset of M : 0 ∈U , and a ∈U and b � a implies
b ∈ U . The morphisms f : (M,U) → (N,V ) consist of monoid homomorphisms
f :M →N such that f (U)⊆ V .

Definition 6 Define a totalization functor To : PCM → DCM as follows. Let M =
(M, �,0) be a partial commutative monoid and put

To(M) := (
M(M)/∼,

{[1x]∼ | x ∈M
})
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where ∼ is the smallest congruence such that 1x + 1y ∼ 1(x � y), for all x, y ∈M

with x ⊥ y, and 0M(M) ∼ 1(0M). Thus, ϕ ∼ 1�ϕ�, for each ϕ ∈ Or(M). Note that
[1x]∼ + [1(0M)]∼ = [1x] = [1(x � 0M)]∼ in To(M).

For f :M → N a homomorphism of partial commutative monoids define To(f )

by To(f )([∑i nixi])= [∑i nif (xi)].

We will usually omit the square brackets when denoting elements of To(M), so we
simply write 1x instead of [1x]∼, and �ϕ� instead of �[ϕ]∼�. To see that To is indeed a
well-defined functor we need to see that {1x | x ∈M} is actually a downset in To(M).

Lemma 6 For a PCM M we have

(i) ∼⊆
 where 
 is as in Remark 1.
(ii) If ϕ � 1x in To(M), then ϕ ∼ 1�ϕ�.
(iii) {1x | x ∈M} is a downset in To(M).

Proof For (i) recall that 
M is a congruence and if x⊥y then 1x + 1y 
 1(x � y).
For (ii) suppose ϕ � 1x in To(M), say via ϕ + ψ ∼ 1x. Then ϕ + ψ 
 1x, by the
previous lemma. Clearly, �1x� is defined. Hence also �ϕ+ψ � is defined. In particular,
�ϕ� is defined, and thus ϕ ∼ 1�ϕ�.

Point (iii) follows immediately from (ii). �

To see that To(f ) is well-defined note:

To(f )(1x + 1y)= To(f )(1x)+ To(f )(1y)= 1f (x)+ 1f (y)

= 1
(
f (x) � f (y)

)= 1
(
f (x � y)

)= To(f )
(
1(x � y)

)

whenever x ⊥ y.

Definition 7 Define a functor Pa : DCM → PCM by Pa(M,U) = U , for (M,U) a
monoid with downset; clearly 0 ∈ U , and for x, y ∈ U we set x ⊥ y iff x + y ∈ U ,
and then x � y = x + y. For a homomorphism f : (M,U)→ (N,V ) define Pa(f )=
f |U :U → V .

We use the fact that U is a downset in M to show that Pa(M,U) is a PCM. Com-
mutativity is obvious because M is commutative. Furthermore if x � (y � z) is defined
then x + y + z ∈U and because U is a downset x + y ∈U and so (x � y) � z is also
defined and equal to x � (y � z).

Theorem 6 The totalization functor To : PCM → DCM is a (full and faithful) left
adjoint to Pa. Hence we have a coreflection.

Proof We need to construct a natural isomorphism η : idPCM → PaTo. Let M be a
PCM and define a function ηM :M → PaTo(M) by ηM(x)= 1x. In To(M) we have
10M = 0 and 1(x � y)= 1x + 1y, for x ⊥ y, so that ηM is a PCM homomorphism.
Using Lemma 6 part (i) we see that if 1x = 1y in To(M) then 1x 
 1y so that x =
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�1x� = �1y� = y, making ηM injective. Since PaTo(M)= {1x | x ∈M} it is clear that
ηM is surjective.

We still need to check that η−1
M is a PCM homomorphism. Of course whenever

1x ⊥ 1y in PaTo(M) then 1x+ 1y = 1z for some z. Again by Lemma 6 we get x ⊥ y

and x � y = z. So we see that ηM is an isomorphism. It is clearly natural.
To see that ηM is universal note that when we have a PCM homomorphism f :

M → Pa(N,V ), for some monoid with downset (N,V ), then f is a function from M

to N . We can extend f to a monoid homomorphism f from the free monoid M(M)

to N , by f (
∑

i nixi) = ∑
i nif (xi). Now we see f (10M) = f (0M) = 0N = f (0)

and:

f (1x + 1y)= f (1x)+ f (1y)

= f (x)+ f (y)

= f (x � y)= f
(
1(x � y)

)
,

where the third equality follows from the fact that f is a PCM homomorphism. As a
result f factors through To(M). This factorization gives us a monoid homomorphism
g : To(M)→N such that g(1x)= f (x). Since f (x) ∈ V by assumption, we get g is
a morphism To(M)→ (N,V ) in DCM, with f = Pa(g) ◦ ηM . It is clear that this g is
unique. �

We now turn to a similar construction for effect algebras.

Definition 8 A barred commutative monoid (or BCM) (M,+,0, u) is a commutative
monoid (M,+,0) that is positive i.e. a + b = 0 implies a = b = 0 together with an
element u ∈M called the unit such that a + b= a + c= u implies b= c.

The name barred commutative monoid comes from the fact that the unit forms a
bar, below which certain properties must hold. However beyond this bar those proper-
ties need not hold, for example the cancellation law holds for elements below the bar
but it generally need not hold for arbitrary elements in a barred commutative monoid.

Definition 9 We form the category BCM of barred commutative monoids as
follows. Let the objects be the BCMs (M,+,0, u) and let the homomorphisms
f : (M,+,0, u) → (M ′,+,0, u′) be monoid homomorphisms M → M ′ such that
f (u)= u′.

Definition 10 If E is some BCM and x ∈E is such that x � u then we call the unique
y with x + y = u the complement of x and write y = x⊥.

We view the category BCM as a (non full) subcategory of DCM by taking the
unit interval {a ∈ M | a � u} as the required downset. Similarly we view EA as a
subcategory of PCM.

Proposition 3 We can restrict the functors To and Pa to EA and BCM. This remains
a coreflection.
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Proof We need to check that whenever E is an effect algebra then To(E) is a BCM.
We let 11E be the unit of To(E). Using Lemma 6 we see that the unit interval of
To(E) is {1x | x ∈E}.

To see that To(E) is positive let a, b ∈ To(E) with a+ b= 0. Clearly a+ b � 11E

so also a, b � 11E . So there are x, y ∈ E such that a = 1x and b = 1y. Now we get
1x + 1y = 0 = 10E so x⊥y and x � y = 0. Because E is an effect algebra we see
x = y = 0 and so a = b= 0.

Now suppose a + b = a + c = 11E , like before there are x, y, z ∈ E such that
a = 1x, b= 1y and c= 1z. Now using Lemma 6 again we see that x � y = 1= x � z

and so y = z and therefore b= c.
We also need to check that when F is a BCM then Pa(F ) is an effect algebra. But

because F is positive we see that Pa(F ) is positive and because a+ b= u= a+ c in
F implies c= b we see that complements in Pa(F ) are unique.

It is also clear that Pa maps BCM homomorphisms to effect algebra homomor-
phisms and similarly for To.

Finally note that ηE : E → PaTo(E) is in fact an effect algebra homomorphism
since it maps 1E to 11E which is the unit of PaTo(E). �

Example 1 Here are a few examples of what the totalization of an effect algebra looks
like.

– To([0,1])∼=R≥0
– To(P (X))∼=N

X .

We can do something similar for orthoalgebras. If M ∈ BCM then Pa(M) is an
orthoalgebra iff a + a � u implies a = 0. We can then take the full subcategory
of such objects and in this way we obtain a coreflection for orthoalgebras. If one
does this then all the results below can also be obtained for orthoalgebras with minor
changes to the proofs.

Remark 2 We have introduced the notion of a barred commutative monoid purely for
the purpose of creating the coreflection between EA and BCM. However frequently
the totalization of an effect algebra has more structure. For example consider the ef-
fects Ef (H) of a Hilbert space H, recall that Ef (H) consists of the positive operators
on H that are less than the unit. Then To(Ef (H)) is isomorphic to the collection of
all positive operators on H.

5.2 Limits and Colimits

The categories PCM, EA, DCM and BCM will all turn out to be both complete
and cocomplete. Products, coproducts and equalizers can be described directly in all
categories. But coequalizers in PCM and EA are a different story. However thanks to
Theorem 2 it suffices to describe them in DCM and BCM. We start with limits and
colimits in DCM. They are basically obtained as for commutative monoids.

Proposition 4 Let I be some set and let {(Mi,Ui) | i ∈ I } be a family of monoids
with downsets, indexed by I .
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(a) The product of this family in DCM is:
(∏

i∈I Mi,
{
φ ∈∏

i∈I Mi | ∀i ∈ I .φ(i) ∈Ui

})
,

where
∏

i∈I Mi is the product of monoids. It consists of functions φ : I →⊔
i∈I Mi with φ(i) ∈ Mi for all i, with the operation defined pointwise. Here⊔
denotes the disjoint union of the underlying sets.

(b) The coproduct is given by
(∐

i∈I Mi,
{
φ ∈∐

i∈I Mi | ∃i ∈ I .φ(i) ∈Ui and ∀j.i �= j ⇒ φ(j)= 0
})

,

where
∐

i∈I Mi is the monoid coproduct. It consists of functions φ : I →⊔
i∈I Mi with φ(i) ∈Mi and {i ∈ I | φ(i) �= 0} is finite.

Next, let f,g : (M,U)→ (N.V ) be two arrows in DCM.

(c) The equalizer of f and g is (E,W) where E = {m ∈ M | f (m) = g(m)} and
W =E ∩U .

(d) The coequalizer of f and g is (N/∼, {[v] | v ∈ V }) where ∼ is the smallest
monoid congruence such that f (m)∼ g(m).

Since DCM has all products and coproducts as well as equalizers and coequalizers
we see that DCM is both complete and cocomplete.

Proposition 5 Let I be a set and let {Mi | i ∈ I } be a family of PCMs.

(a) The product of this family is given by the Cartesian product
∏

i∈I Mi .
(b) The coproduct is given by the disjoint union (

⊔
i∈I Mi \ {0})∪ {0} with all the 0

elements identified.

Proof

(a) The � operation on the product is defined pointwise. If φ,ψ ∈∏
i∈I Mi then φ ⊥

ψ iff φ(i)⊥ψ(i) for all i ∈ I and then (φ � ψ)(i)= φ(i) � ψ(i). The projections
are just the set-theoretic ones. They are easily seen to be PCM homomorphisms.

(b) The � operation on the coproduct is defined as follows

x ⊥ y ⇔

⎧
⎪⎨
⎪⎩

x = 0 or

y = 0 or

x, y ∈Mi and x ⊥ y in Mi

x � y =

⎧⎪⎨
⎪⎩

y if x = 0

x if y = 0

x � y if x, y ∈Mi and x ⊥ y in Mi.

The obvious inclusions are PCM homomorphism and turn this construction into the
coproduct. �

Proposition 6 Let f,g :M →N be two PCM homomorphisms.



952 Found Phys (2012) 42:932–958

(a) The equalizer of f and g is E = {m ∈M | f (m)= g(m)}.
(b) The coequalizer of f and g is Pa(h) ◦ ηN where h : To(N) → To(N)/∼ is the

coequalizer of To(f ) and To(g) (cf. Theorem 2).

We now turn to EA and BCM. Products and equalizers in EA and BCM are con-
structed in the same way as in PCM and DCM. The products are just the Cartesian
products with pointwise operations and the equalizers are just the set-theoretic ones.

Before tackling colimits we first study congruences on BCMs and see what con-
sequences this has for effect algebras.

Definition 11 A congruence ∼ on a BCM E is an equivalence relation such that the
following conditions hold:

(i) a1 ∼ a2 and b1 ∼ b2 implies a1 + b1 ∼ a2 + b2;
(ii) a + b∼ 0 implies a ∼ 0 and b∼ 0;
(iii) a + b∼ u and a + c∼ u implies b∼ c.

We will denote the set of all congruences on E with Cong(E).

Definition 12 If M is some monoid and u ∈ M is an element and ∼ is a monoid
congruence on M then we call ∼ a bar congruence with respect to u if it satisfies
conditions (ii) and (iii) from Definition 11.

Proposition 7

(a) If (E,+,0, u) is a BCM and ∼ is a congruence on E then E/∼ is a BCM with
unit [u]∼. There exists a canonical surjective homomorphism π : E → E/∼ that
sends x to [x]∼.

(b) When M is a monoid and ∼ is a bar congruence with respect to u then M/∼ is
an BCM with unit [u]∼.

Proof (a): Addition on E/∼ is defined by [a] + [b] = [a + b] this is well-defined
thanks to condition (i). Condition (ii) makes sure that E/∼ is positive since if [a] +
[b] = 0 then a + b ∼ 0 and so a ∼ 0 and b ∼ 0. To show that [u] is a cancellative
unit note that [a] + [b] = [u] = [a] + [c] implies a + b∼ u∼ a + c and so b∼ c by
condition (iii). The fact that π is a homomorphism is obvious as is its surjectivity.

(b): The proof is analogous to that of (a). �

Proposition 8 If M is a monoid and E is a BCM and f : M → E is a monoid
homomorphism then if c ∈M is such that f (c) = u then ker(f ) = {(a, b) | f (a) =
f (b)} is a bar congruence with respect to c.

The main advantage of BCM over EA (and of DCM over PCM) is that the in-
tersection of congruences is again a congruence. So it makes sense to talk about the
smallest congruence containing a given relation.

Example 2 Dividing out congruences in BCM gives rise to some epis in EA that do
not occur by dividing out some equivalence on an effect algebra. For example, con-
sider E =MO(4) = {0, a, b, c, d, a⊥, b⊥, c⊥, d⊥,1} and F := ℘({a, b, c, d}) both
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viewed as effect algebras.

1

a a⊥ b b⊥ c c⊥ d d⊥

0

1

abc abd acd bcd

ab ac ad bc bd cd

a b c d

0

There is an effect algebra homomorphism from E to F that maps x to {x} for
x ∈ {a, b, c, d}. It is readily seen to be an epi in EA. However F has 16 elements
whereas E has 10 so clearly F does not arise by dividing out some congruence on E.
However consider the congruence∼ on To(E) generated by 1a+1b+1c+1d ∼ 11E

then we see that To(F )∼= To(E)/∼.

We now move on to the construction of coproducts and coequalizers in BCM
and EA.

Proposition 9 Let I be a nonempty set and let (Ei)i∈I be a collection of barred
commutative monoids. Let C :=∐

i∈I Ei be the monoid coproduct of the Ei and let
κi : Ei → C be the inclusions. Choose some i ∈ I and let ∼ be the smallest bar
congruence with respect to κi(u) such that for all j ∈ I we have κj (u)∼ κi(u). The
coproduct of the Ei in BCM is given by C/∼. The choice of i does not make a
difference.

Proof Let F ∈ BCM and let fi : Ei → F be a collection of homomorphisms. Since
each fi is a monoid homomorphism we get a monoid homomorphism f : C → F

such that fi = f ◦ κi . By Lemma 8 the kernel of f is a bar congruence with respect
to κi(u) for any i. As a result ∼⊆ ker(f ) and so f factors uniquely through C/∼. �

The empty coproduct also exists and is the initial object (N,+,0,1).

Proposition 10 Let I be a set and let (Ei)i∈I be a collection of non-trivial effect
algebras. Their coproduct is given by their disjoint union with zeros and units identi-
fied.

∐
i∈I Ei =

(⊔
i∈I Ei \ {0,1})∪ {0,1}

The operations are defined like for PCMs.

If one of the Ei was trivial then the coproduct is also trivial due to the fact that the
trivial effect algebra is a strict final object.
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Proposition 11 (a) If f,g : E → F are two BCM maps then their coequal-
izer is given by π : F → F/∼ where ∼ is the smallest congruence containing
{(f (a), g(a)) | a ∈E}.

(b) For two effect algebra maps f,g :E → F their coequalizer is given by To(h) ◦
ηE where h : To(F )→ To(F )/∼ is the coequalizer of To(f ) and To(g) in BCM.

Since creating the coequalizer of f,g in EA involves dividing out a congru-
ence BCM, it can happen that the coequalizer of two morphisms is not surjective.
An example: let E = ℘({a, x, b}) + ℘({c, y, d}) and F = ℘({a, b, c, d}) and let
22 = {0,p,p⊥,1}. Below are pictures of 22 and E, a picture of F can be found
on page 953.

1

p p⊥

0

1

ax ab bx cy cd dy

a x b c y d

0

There are two maps f,g : 22 →E such that f (p)= {a, b} and g(p)= y. There is
also a map h : E → F such that h({z}) = {z} for all z ∈ {a, b, c, d}, h({x}) = {c, d}
and h({y})= {a, b}. Note that F has 16 elements while E only has 14.

To see that h is the coequalizer of f and g let k : E → G be an effect algebra
homomorphism such that k ◦ f = k ◦ g. We need to construct k′ : F →G such that
k = k′ ◦ h. k′ is easily defined on the atoms and coatoms of F and also on {a, b} and
{c, d}. We have no choice to send {a, c} to k(a) � k(c) but we need to know this is
defined. We have

k(a � x)= k(a) � k(x)= k(a) � k(c � d)= k(a) �
(
k(c) � k(d)

)

so by the associativity axiom k(a)⊥k(c). A similar argument works for the remaining
elements of F .

5.3 Tensor Products

Definition 13 Let M,N,L be partial commutative monoids. A bimorphism (of
PCMs) f is a function f :M ×N → L such that

f (m,n1 � n2)= f (m,n1) � f (m,n2) whenever n1⊥n2

f (m1 � m2, n)= f (m1, n) � f (m2, n) whenever m1⊥m2

f (m,0)= 0= f (0, n)

for all m,m1,m2 ∈ M and n,n1, n2 ∈ N . An effect algebra bimorphism is a PCM
bimorphism such that f (1,1)= 1.
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Let (M,U), (N,V ), (L,W) be commutative monoids with downsets. A bimor-
phism (of monoids with downsets) f is a function f :M ×N → L such that

f (m,n1 + n2)= f (m,n1)+ f (m,n2)

f (m1 +m2, n)= f (m1, n)+ f (m2, n)

f (m,0)= 0= f (0, n)

f (u, v) ∈W

for all m,m1,m2 ∈ M , n,n1, n2 ∈ N , u ∈ U and v ∈ V . A bimorphism of
barred commutative monoids is a bimorphism of monoids with downsets such that
f (u,u)= u.

We recall the usual definition of tensor products in terms of bimorphisms.

Definition 14 Let M and N be PCMs (or effect algebras, monoids with downsets or
BCMs). A tensor product of M and N is a pair (T , t) consisting of a PCM (effect
algebra, . . . ) T and a universal bimorphism t :M × N → T such that for every bi-
morphism f : M × N → L there is a unique homomorphism g : T → L such that
f = g ◦ t .

Of course the tensor product is unique up to isomorphism should it exist. We will
now construct the tensor product for all four categories DCM, PCM, BCM, EA.

We will write � for the tensor product in the category CMon of commutative
monoids, with the universal bimorphism M×N →M �N given by (m,n) �→m�n.

Definition 15 Let (M,U), (N,V ) ∈DCM, define:

(M,U)⊗ (N,V )= (
M � N,↓{u � v | u ∈U,v ∈ V })

Theorem 7 Let (M,U), (N,V ) ∈ DCM, (M,U) ⊗ (N,U) together with the map
χ : (m,n) �→m � n forms the tensor product of (M,U) and (N,V ).

Proof The map χ is readily seen to be a bimorphism. If (L,W) ∈ DCM and φ :
M × N → L is a bimorphism then φ is also a monoid bimorphism. Therefore φ

factors through M � N say by ψ , so φ = ψ ◦ χ . We still need to check that ψ is a
morphism in DCM. It suffices to show that ψ(u � v) ∈W for u ∈U and v ∈ V . But
this is clear because φ(u, v) ∈W . �

The category DCM is symmetric monoidal. The tensor unit is (N, {0,1}) and the
coherence isomorphisms are inherited from CMon. We want to apply Theorem 5 to
create a monoidal structure on PCM. So we must show that To ◦ Pa is a monoidal
functor.

Since ε : ToPa(N, {0,1})→ (N, {0,1}) is an isomorphism we set ζ = ε−1. To con-
struct ξ : ToPa(M,U) ⊗ ToPa(N,V ) → ToPa((M,U) ⊗ (N,V )) we use the bimor-
phism

ToPa(M,U)× ToPa(N,V )→ ToPa
(
(M,U)⊗ (N,V )

)
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(
∑

niui,
∑

mjvj ) �→∑
nimj (ui ⊗ vj )

It is easy to check that this is natural and that ε is a monoidal natural transformation.
Thus we get a symmetric monoidal structure on PCM given by M ⊗ N =

Pa(To(M)⊗ To(N)). This construction is in fact a tensor product in the sense of Def-
inition 14.

Theorem 8 If M and N are PCMs then Pa(To(M)⊗ To(N)) together with the map
(x, y) �→ 1x � 1y is the tensor product of M and N .

Proof Let φ : M × N → L be a bimorphism. We can extend φ to a bimorphism
φ : To(M)× To(N)→ To(L) as follows.

φ

(
k∑

i=n

nixi,

l∑
j=1

mjyj

)
=

k∑
i=1

l∑
j=1

nimjφ(xi, yj ).

This is well-defined because φ is a bimorphism. It is clear from the definition that φ is
again a bimorphism. So we get a homomorphism ψ : To(M)⊗ To(N)→ To(L) such
that ψ(m ⊗ n) = φ(m,n) for all m ∈ To(M) and n ∈ To(M). In particular ψ(1x �
1y)= φ(1x,1y)= 1φ(x, y) for all x ∈M and y ∈N .

So define ψ : Pa(To(M)⊗ To(N))→ L as ψ = η−1
L ◦ Pa(ψ) and then we see that

ψ(1x � 1y)= φ(x, y). This factorization is clearly unique. �

Definition 16 Let E,F be two barred commutative monoids. Define E⊗F := (E �
F)/∼, where � is the commutative monoid tensor product and ∼ is the smallest bar
congruence with respect to u � u. We will denote the ∼ equivalence class of e � f

by e⊗ f .

Theorem 9 Let E,F be BCMs, E ⊗ F together with the map χ : (e, f ) �→ e ⊗ f

forms the tensor product of E and F .

Proof The map χ : (e, f ) �→ e⊗ f is a bimorphism thanks to the defining relations
of ∼. To see that it is universal let φ : E × F → D be a bimorphism. Define ψ :
E⊗F →D by ψ(e⊗f )= φ(e,f ). To see that this is well defined note that φ is also
a monoid bimorphism therefore we get a monoid homomorphism φ : E � F → D.
But the kernel of this map is a bar congruence with respect to u � u so φ factors
through E ⊗ F .

E × F

χ

φ

E � F

φ

E ⊗ F

ψ

D
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�

Like DCM the category BCM is also symmetric monoidal and the functor ToPa is
monoidal with (N,1) as the tensor unit. So EA is also symmetric monoidal and just
like before this monoidal structure on EA is in fact a tensor.

Theorem 10 If E and F are effect algebras then Pa(To(E)⊗ To(F )) together with
the map (x, y) �→ 1x ⊗ 1y is the tensor product of E and F . The tensor unit is the
two element effect algebra {0,1}.

Proof The proof is analogous to that of Theorem 8. �

The categories DCM and PCM are in fact closed symmetric monoidal categories
as we will see in a moment. BCM and EA are not. One cannot give Hom(E,F ) an
effect algebra structure for arbitrary effect algebras E and F . If one tries to define �

and ⊥ pointwise, the following problem pops up f⊥(1) = f (1⊥) = f (0) = 0. This
problem does not occur in PCM and DCM.

Definition 17 Let (M,U), (N,V ) ∈DCM define an exponent:

(M,U) � (N,V ) := (
HomCMon(M,N),HomDCM

(
(M,U), (N,V )

))

This exponent is again a commutative monoid with a downset in the obvious way.
For M,N ∈ PCM define M � N := HomPCM(M,N), where the PCM structure

on M � N is as follows. For f,g : M → N we define f � g : M → N by (f �

g)(m) = f (m) � g(m). Of course f � g is only defined when f (m)⊥g(m) for all
m ∈M .

We view � as a bifunctor in the usual way.

Theorem 11 For M ∈ PCM (or DCM) the functor M � (−) is a right adjoint to
the functor (−)⊗M .

Since EA is monoidal we can talk about monoids in EA. The real unit interval
[0,1] is such a monoid, since multiplication is a bimorphism we can view it as a
morphism [0,1] ⊗ [0,1]→ [0,1]. A state on an effect algebra E is essentially just a
homomorphism from E to [0,1]. If E and F are two effect algebras equipped with a
state then their tensor product also admits a state, and therefore is non trivial (see [3]).

The role of [0,1] can be played by any monoid

I = {0,1} e

M M ⊗M
m

in EA that is non trivial. For two effect algebras E,F with morphisms s : E →M

and t : F →M , the tensor product E ⊗ F is non trivial if M is since m ◦ s ⊗ t is a
morphism E ⊗ F →M .



958 Found Phys (2012) 42:932–958

We can now also describe monoid actions in EA. They consist of a map a :
M ⊗ E → E that commutes appropriately with the monoid maps. For the interval
[0,1] such monoid actions (or effect modules) are exactly the convex effect algebras
from [14].

If M is an effect module then, since To([0,1])∼=R≥0, To(M) carries a R≥0 action.
In fact it can be shown that To(M) carries the structure of an abstract positive cone.
In [10] we have use this and other results from this paper in order to obtain a duality
for effect modules.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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3. Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures. Kluwer Academic, Dordrecht
(2000)

4. Engesser, K., Gabbay, D.M., Lehmann, D. (eds.): Handbook of Quantum Logic and Quantum Struc-
tures. Elsevier, Amsterdam (2007)

5. Foulis, D.J., Bennett, M.K.: Effect algebras and unsharp quantum logics. Found. Phys. 24(10), 1331–
1352 (1994)

6. Foulis, D.J., Bennett, M.K.: Tensor products of orthoalgebras. Order 10(3), 271–282 (1994)
7. Foulis, D.J., Greechie, R.J., Bennett, M.K.: The transition to unigroups. Int. J. Theor. Phys. 37(1),

45–63 (1998)
8. Foulis, D.J.: C. Randall. Operational statistics I: basic concepts. J. Math. Phys. 13, 1667–1675 (1972)
9. Jacobs, B.: Categorical Logic and Type Theory. North Holland, Amsterdam (1999)

10. Jacobs, B., Mandemaker, J.: The expectation monad. In: EPTCS Proceedings of Quantum Physics
and Logic (2011) (to appear)

11. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)
12. Pták, P.: Categories of orthomodular posets. Math. Slovaca 35, 59–65 (1985)
13. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer Academic, Dordrecht,

Boston, London (1991)
14. Pulmannová, S., Gudder, S.: Representation theorem for convex effect algebras. Comment. Math.

Univ. Carol. 39(4), 645–659 (1998). Available from http://dml.cz/dmlcz/119041
15. Randall, C., Foulis, D.J.: Operational statistics II: manuals of operations and their logics. J. Math.

Phys. 14, 1472–1480 (1973)
16. Streicher, Th.: Semantics of type theory. Correctness, completeness and independence results. In:

Progress in Theor. Comp. Sci. Birkhäuser, Boston (1991)

http://dml.cz/dmlcz/119041

	Coreflections in Algebraic Quantum Logic
	Abstract
	Introduction
	Partial Commutative Monoids and Effect Algebras
	Tests
	Coreflections
	Preliminaries on Coreflections
	Coreflections and Adjunctions
	Coreflections and Monoidal Structure

	The Categorical Structure of PCM and EA
	Totalization
	Limits and Colimits
	Tensor Products

	References


