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Abstract
In the epistemological tradition, there are two main interpretations of the semantic rela-
tion that an empirical theory may bear to the real world. According to realism, the theory-
world relationship should be conceived as truth; according to instrumentalism, instead, it 
should be limited to empirical adequacy. Then, depending on how empirical theories are 
conceived, either syntactically as a class of sentences, or semantically as a class of models, 
the concepts of truth and empirical adequacy assume different and specific forms. In this 
paper, we review two main conceptions of truth (one sentence-based and one model-based) 
and two of empirical adequacy (one sentence-based and one model-based), we point out 
their respective difficulties, and we give a first formulation of a new general view of the 
theory-world relationship, which we call Methodological Constructive Realism (MCR). 
We then show how the content of MCR can be further specified and expressed in a definite 
and precise form. The bulk of the paper shows in detail how it is possible to accomplish 
this goal for the special case of deterministic dynamical phenomena and their correlated 
deterministic models. This special version of MCR is formulated as an axiomatic extension 
of set theory, whose specific axioms constitute a formal ontology that provides an adequate 
framework for analyzing the two semantic relations of truth and empirical correctness, as 
well as their connections.

Keywords Realism · Instrumentalism · Truth · Empirical adequacy · Syntactic view of 
theories · Semantic view of theories

1 Introduction

In this paper, by an empirical theory we mean any scientific theoretical construct, not nec-
essarily of a linguistic type, which is expressly designed to describe or explain specific 
aspects of the real world. This usage of the term thus presupposes the scientific character 
of an empirical theory. In this acceptance, empirical theories are naturally contrasted with 
mathematical ones, which are taken to be all those scientific theoretical constructs that are 
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not empirical theories. The exact nature of the semantic relations that an empirical theory 
may bear to the real world then depends on how the theory and the real world itself are fur-
ther conceived or analyzed.

From a philosophical point of view, the relationship between an empirical theory and 
the real world is often understood in two opposing ways. According to realism, either theo-
ries are true representations of those aspects of reality that they are designed to describe or, 
even if we cannot tell whether theories are actually true or false, they may be objectively 
true and, in some circumstances, we may have good reasons to conjecture that they are not 
(or are). The second alternative is the one set forth and forcibly defended by (Popper 1969, 
ch. 3, sect. 6), while the first one is traditionally attributed to Galileo, as well as to many 
other leading figures of the Scientific Revolution (Popper 1969, ch. 3, sect. 1). According 
to instrumentalism, instead, theories are not true representations of reality, as they are just 
convenient tools to describe, summarize, or forecast our observations. Empirical theories 
do not give us any insight into reality, for they do not have an epistemic value, but only an 
instrumental or practical one. As Duhem put it, empirical theories just save the phenomena 
(Duhem 1985, p. 117). Therefore, the relevant relationship between a theory and the real 
world is not truth, but, at most, empirical adequacy.

In the philosophy of science, empirical theories have been traditionally analyzed accord-
ing to two main alternative approaches, the syntactic or sentential view, and the semantic 
one. For the syntactic view, an empirical theory consists of a purely formal system (an 
axiomatized theory), together with a set of correspondence rules (an interpretative sys-
tem), which is supposed to fix the references of the observational terms of the theory, but 
does not typically suffice to set the references of the theoretical ones (Hempel 1952, 1958, 
sect.  8). The theory itself is then identified with the class of all theorems of the formal 
system, that is, all those sentences that can be logically deduced from its axioms. The syn-
tactic view used to be predominant in the philosophy of science for quite a long time, to the 
extent that it came to be called the received view. It was mainly defended and developed by 
the logical empiricists, but even Popper, one of their most prominent critics, would in fact 
subscribe to a form of the syntactic view (Popper 1959, sect. 16).

Starting from the end of the 1950s, in conjunction with the crisis of Logical Empiricism 
and the rise of what is sometimes called (Sindjelić 2008) the New Philosophy of Science 
(Hanson 1958; Feyerabend 1958, 1965, 1970; Kuhn 1962; Toulmin 1972), there was grow-
ing concern that even the syntactic view might be irremediably flawed. By the end of the 
1960s, a semantic alternative (Beth 1948, 1949, 1960; Adams 1955, 1959; Suppes 1957, 
1967, 1969a, b, 2002; Przełeçki 1969, 1974a, b; Suppe 1967, 1972a, b, 1977, 1989; van 
Fraassen 1970, 1972, 1980, 1989, 2008; Sneed 1971; Dalla Chiara and Toraldo di Francia 
1973, 1976, 1979, 1981; Wójcicki 1974, 1975; Stegmüller 1976, 1979; Balzer et al. 1987; 
Bickle 1998) had been basically devised, even though, unlike its syntactic competitor, the 
semantic view has never been a substantially unitary and well delimited conception (Giunti 
et al. 2016, pp. 15–16). Nevertheless, one basic tenet is shared by many of its advocates: 
An empirical theory is not a class of sentences, but a class of models, which are not lin-
guistic entities, but set-theoretical ones.

It is quite obvious that, depending on how an empirical theory is conceived, either syn-
tactically as a class of sentences, or semantically as a class of models, the kind of relation 
that the theory may bear to the real world changes accordingly. For, in the first case, it is 
a sentences/world relation, while in the second one the relation is models/world. But the 
syntactic and the semantic view also differ on how they tend to conceive of the world itself. 
If sentences are related to the world, it is quite natural to think of it as a collection of facts, 
which may either be regularities (laws) or singular events. Instead, if models are related to 
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the world, it is more suitable to think of it as a collection of phenomena, where each phe-
nomenon cannot be identified with any single fact, but rather with an organized complex of 
events or regularities (Giunti 1992, pp. 136–7). We are now going to briefly review differ-
ent forms that the traditional instrumentalism/realism opposition may assume, depending 
on whether empirical theories are construed syntactically or semantically.

1.1  Instrumentalism Versus Realism from the Syntactic Point of View

We have mentioned above that, for the received view, the interpretative system of an empir-
ical theory can, at most, fix the references of its observational terms, but is not sufficient 
to set the references of the theoretical ones. In this framework, the empirical content of the 
theory is defined as the class of all theorems in which only observational terms occur, and 
a theory is empirically adequate if all sentences in its empirical content turn out to be true 
or, at least, consistent with all actual experiments or observations. The syntactic view is 
thus most naturally conjoined with an instrumentalist epistemology, according to which the 
only significant part of a theory is its empirical content, and the relevant theory/world rela-
tion hence reduces to empirical adequacy.

Even though an instrumentalist reading of a syntactically conceived empirical theory 
is most straightforward, and it was in fact usually associated with the received view, a 
realist interpretation is nevertheless possible. According to standard Tarskian semantics, 
a sentence of a formal language is either true or false just in case the references of all 
non-logical terms occurring in it are fixed. If the sentence belongs to the language of an 
empirical theory, the references of its observational terms can be taken to be fixed by an 
appropriately chosen interpretative system, but, as mentioned, such a system is not usually 
thought to be sufficient to fix the references of the theoretical terms. This limitation of the 
interpretative system, however, is not absolute, but itself depends on how the nature of the 
real world is conceived. If only observable entities are thought to be real, then no interpre-
tative system can fix the real world references of theoretical terms. But, if this empiricist 
assumption is forsaken, theoretical terms may very well refer to unobservable real entities, 
as well as observational terms refer to observable ones. Thus, an empirical theory turns out 
to be true if all its theorems are true with respect to the real world references of all its terms 
(either observational or theoretical), false otherwise. According to (Popper 1969, ch. 10, 
sect. VII), this kind of realist interpretation of a syntactically conceived empirical theory 
finally became available to philosophers when Tarski’s semantic conception of truth (Tar-
ski 1944, 1956) rehabilitated the classic or objective theory of truth as correspondence to 
the facts.

1.2  Instrumentalism Versus Realism from the Semantic Point of View

We have mentioned above that, for the semantic view, an empirical theory is a class of 
models, while the world is typically conceived as a class of phenomena. Thus, the relation 
that a theory bears to the world can in general be characterized as a models/phenomena 
relation. We are now going to sketch how, within a semantic framework, the models/phe-
nomena relation can be interpreted as empirical adequacy or truth, according to, respec-
tively, an instrumentalist or a realist epistemological stance.

A semantic account of the empirical adequacy of a theory has been proposed by (van 
Fraassen 1980, ch. 3). He agrees with Suppes (Suppes 1967, pp. 62–4) that empirical theo-
ries are classes of models that typically have a quite complex mathematical structure and, 
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for this reason, they cannot be directly related to phenomena. He also agrees with Suppes 
that phenomena only provide empirical models (Suppes 1967, pp. 58–9; Suppes 2002, pp. 
4-5; Suppes 1957,  pp. 266–71) of lower complexity, whose base entities and relational 
structures are entirely observable in nature; van Fraassen calls these models appearances 
(van Fraassen 1980, p. 45), and he explicitly recognizes that they are essentially identical 
to Suppes’ empirical models (van Fraassen 1980, pp. 64–5).

According to van Fraassen, customary presentations of an empirical theory usually play 
two different roles. On the one hand, similar to Suppes’ definitions of set theoretical predi-
cates (Suppes 1957, sect. 12.2), they specify the models of the theory, but, on the other 
hand, they also specify a particular class of substructures of such models (van Fraassen 
1980,  p. 65). These substructures are in fact the parts of a model that can be related to 
appearances and, for this reason, they are called empirical substructures (van Fraassen 
1980,  p. 64). Empirical adequacy then obtains just in case empirical substructures and 
appearances turn out to be isomorphic: “the theory is empirically adequate if it has some 
model such that all appearances are isomorphic to empirical substructures of that model” 
(van Fraassen 1980, p. 64).

A realist interpretation of the models/phenomena relation has been put forth by Suppe. 
His conception of the structure of empirical theories is a special version of the semantic 
view that is known as the state-space approach (van Fraassen 1980, p. 67). The origin of 
this approach may be traced back to Birkhoff’s and von Neumann’s studies on the logic and 
the foundations of quantum mechanics (Birkhoff and von Neumann 1936; von Neumann 
1955, 1962). The general lines of the state-space approach were then laid down by (Beth 
1948, 1949, 1960), and later independently developed by (van Fraassen 1970, 1972, 1980, 
2008) and (Suppe 1967, 1972a, b, 1977, 1989). In what follows, we refer to Suppe’s formu-
lation of the state-space approach, which we call the state-space view.

For the state-space view, an empirical theory is first of all characterized by its intended 
scope, the class of the causally possible phenomena that it is designed to describe or 
explain (Suppe 1972b, p. 130; Suppe 1989, p. 82). However, the description is only pos-
sible by selecting a number of parameters p1, p2,… , pn , which are supposed to be the only 
relevant ones for the study of such phenomena. As a matter of fact, the phenomena in the 
intended scope of the theory also depend on other factors, not included in the selected 
parameters. Nevertheless, the theory does not attempt to study such phenomena in their full 
complexity, but only in so far as they would have been, if the selected parameters had been 
the only causally relevant factors.

Thus, in the first place, the selection of the parameters somehow abstracts from the phe-
nomena, or constructs, a class of idealized and counterfactual entities, which Suppe calls 
the causally possible physical systems (Suppe 1972b, p. 132; Suppe 1989, p. 84). But, in 
the second place, it also fixes their state space, that is to say, the class of all possible states 
of such systems. The theory then describes the behavior of such systems by specifying 
appropriate relations on the state space. This is obtained by configuring the state space by 
means of specific laws that, in agreement with a traditional classification, may be laws of 
succession, laws of coexistence, or laws of interaction, as well as deterministic or statistic 
(Suppe 1977, p. 226). According to Suppe, the configuration of the state space is tanta-
mount to determining a third class of systems, the theory-induced physical systems (Suppe 
1972b, p. 132; Suppe 1989 p. 84).

Hence, on the one hand, the state space, together with its relational structure imposed 
by the theoretical configuration, is in fact a model in the standard set-theoretical sense; 
such a model defines the class of the theory-induced physical systems, and it can in fact be 
identified with that class. On the other hand, each theory-induced physical system is, so to 
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speak, the model-theoretic version of a corresponding causally possible physical system. 
On this basis, Suppe finally claims that, if the theory is true, the class of the theory-induced 
physical systems is identical to the class of the causally possible physical systems and, 
conversely, if the two classes are distinct, the theory is false (Suppe 1972b, pp. 132, 145-8; 
Suppe 1989, pp. 84, 96-99). This realist interpretation of the models/phenomena relation is 
known as modified realism (Suppe 1972b, p. 150) or quasi-realism (Suppe 1989, p. 101).

1.3  The Theory‑World Relationship. Open Problems

We have seen that the theory-world relationship is typically intended as a sentences/facts 
relation, or a models/phenomena one, depending on whether theories are conceived syntac-
tically or semantically. Furthermore, depending on whether an instrumentalist or a realist 
stance is taken, such a relation is conceived as empirical adequacy or truth. We have then 
shortly reviewed two main conceptions of empirical adequacy (the sentential one proper 
of the received view, and the model-based one set forth by van Fraassen), and two of truth 
(the sentential one proposed by Popper, and the model-based one put forth by Suppe). It 
is well known that all four positions involve some serious difficulties, which we in turn 
review below.

1.3.1  Problems with the Sentential and the Model‑Based Views of Empirical Adequacy

For the received view, the empirical content of a theory is the class of all its theorems in 
which only observational terms occur, and the theory is empirically adequate just in case 
all sentences in its empirical content turn out to be true or, at least, consistent with all 
actual experiments or observations (see Sect. 1.1, par. 1). One of the most serious problems 
with this kind of definition of empirical adequacy is that it is based on a purely syntactic 
notion of empirical content, which is not tenable. A simple argument brings about this 
point (van Fraassen 1980,  pp. 54-55). As long as a theory asserts the existence of non-
observable entities and negation belongs to the language of the theory, one of its theorems 
will be the sentence � ∶= ∃x(¬O1(x) ∧ ¬O2(x) ∧ … ∧ ¬On(x)) , where O1,O2,… ,On are 
all the observational predicates of the theory. Note that � belongs to the empirical content 
of the theory, for it is one of its theorems and only observational terms occur in it. But 
� ’s meaning is just that a non-observable entity exists. Therefore, as � does not make any 
assertion about observables, it should not belong to the empirical content of the theory.

For van Fraassen, a theory is empirically adequate if it has some model such that all 
appearances are isomorphic to empirical substructures of that model (see Sect. 1.2, pars. 
2-3). Thus, for this notion of empirical adequacy to be applicable to a specific theory, it 
is crucial that the empirical substructures of all its models be clearly specified. However, 
van Fraassen has never set forth a general definition of empirical substructure, nor has he 
given explicit and sufficiently detailed indications as to how empirical substructures should 
be individuated or specified. Furthermore, similar to Suppes’ account of empirical mod-
els, van Frassen’s appearances are models with a simple mathematical structure, entirely 
made up of observable individual entities and observable relations or operations. Appear-
ances are the only phenomenal referents to which a theoretical model, through its empirical 
substructures, is related and, as previously remarked (Sect.  1.2, par. 2), appearances are 
essentially identical to Suppes’ empirical models. Thus, van Fraassen shares with Suppes 
the strong empiricist assumption that the nature of the phenomenal referents of theories is 
purely observational or empirical. But such an assumption does not seem to square well 
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with concrete scientific practice and methodology. Finally, (van Fraassen 1980) does not 
make clear whether the simple mathematical structure of appearances is something that 
belongs to phenomena in themselves, or it is rather constructed or determined in the pro-
cess of connecting theoretical models to phenomena.1

1.3.2  Problems with the Sentential and the Model‑Based Views of Truth

According to Popper’s realistic interpretation of Tarskian semantics, a syntactically con-
ceived empirical theory is true if all its theorems are true with respect to the real world 
references of all its non-logical terms (either observational or theoretical), false otherwise 
(see Sect. 1.1, par. 2). It should first of all be noted that, by this interpretation, it is the real 
world itself that provides a model for the theory, in the standard sense of Tarskian seman-
tics. For the theory is either true or false in the model determined by the real world refer-
ences of all the non-logical terms. But, as already remarked, the models of an empirical 
theory typically have a quite complex mathematical structure. Therefore, such a complex 
mathematical structure belongs to the world itself. Popper’s realistic interpretation of Tar-
skian semantics thus entails a strong form of mathematical realism, according to which all 
the mathematical structure of an empirical theory is physically real. It is safe to say that 
even a scientific realist might not be willing to accept this awkward consequence of Pop-
per’s view.

There is a second objection against his view. Popper takes for granted that Tarski’s defi-
nition of truth equally applies to either mathematical theories or empirical ones. In order to 
formulate Tarski’s definition of truth for a given theory—the so called “object-theory”—, 
it is necessary that both the object-theory and the meta-theory—the theory in which truth 
is going to be defined—have a well specified structure. This condition can be easily satis-
fied if both the object-theory and the meta-theory can be thought as purely formal systems, 
that is to say, linguistic systems such that their (1) primitive terms and (2) sentences are 
formally specified, and (3) the conditions for a sentence to be a theorem, as well as (4) 
formal rules of definition, are also given. In a formal system, “theorems are the only sen-
tences which can be asserted” (Tarski 1944, p. 346). This is all it is needed for the defini-
tion of truth to be applied to a mathematical theory, but, if the theory is empirical, the latter 
requirement is far too restrictive; asserting a sentence cannot reduce to its being a theo-
rem, as sentences may also be asserted on the basis of factual or empirical considerations 
(Tarski 1944, p. 347, par. 2; p. 368, par. 3). But then, it is false that Tarski’s definition of 
truth equally applies to mathematical or empirical theories. For, in the case of an empirical 
theory, its meta-theory cannot be a purely formal system, as the possibility of asserting a 
sentence on the basis of empirical or factual considerations must also be allowed. Unfor-
tunately, however, it is not at all clear what methodological principles might grant such a 
kind of empirical and non-formal assertions.

A well known related difficulty of Popper’s methodology concerns the corrobora-
tion of a hypothesis. A hypothesis is corroborated if there is no severe test that falsifies it 
or, equivalently, if any such test is consistent with the hypothesis (Popper 1959, ch. 10). 

1 However, more recently van Fraassen seems to lean towards the second alternative: “construction of a 
data model is precisely the selective relevant depiction of the phenomena by the user of the theory required 
for the possibility of representation of the phenomenon.” (van Fraassen 2008, p. 253). Note that, according 
to van Fraassen’s new terminology (van Fraassen 2008, ch. 12, note 24), the term “data model” in the previ-
ous passage is to be intended as a synonym of “appearances”.
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However, one of the most serious problems of Popper’s falsificationism consists in ade-
quately defining the consistency between a test and a hypothesis. According to the Duhem-
Quine thesis (Duhem 1954; Quine 1951), the requirement that all severe tests be consistent 
with a hypothesis can always be trivially satisfied, by imputing an inconsistency not to the 
hypothesis itself, but to other hypotheses that are assumed in conjunction with it. Since 
these auxiliary hypotheses are always present, Popper’s concept of corroboration is not 
well defined, unless one is able to specify under what conditions auxiliary hypotheses are 
to be ignored (or considered).

According to Suppe’s state-space view, an empirical theory has three main components. 
First, the intended scope, which is the class of the causally possible phenomena that the 
theory is designed to describe or explain. Second, the class of the causally possible physi-
cal systems, which are idealized systems obtained by selecting a number of causally rele-
vant parameters and by considering how the causally possible phenomena would have been 
if the selected parameters had been the only causally relevant factors. Third, the theoreti-
cal model, which consists of the set of all possible states of the causally possible physical 
systems—the state space—together with the relations specified by the laws that configure 
the state space. The theoretical model thus defines the class of the theory-induced physical 
systems, and it can in fact be identified with such a class. If the theory is true, the class of 
the theory-induced physical systems is identical to the class of the causally possible physi-
cal systems and, conversely, if the two classes are distinct, the theory is false (see Sect. 1.2, 
par. 7). Therefore, if a theory is true, its theoretical model is identical to a class of idealized 
systems (the causally possible physical systems) that are an abstract and counterfactual 
counterpart of the real phenomena in its intended scope.

This way, Suppe’s quasi-realism avoids the strong form of mathematical realism implied 
by Popper’s conception of truth. Nevertheless, there are two main objections that can be 
addressed to Suppe’s view. First, even though the class of the causally possible physi-
cal systems is a crucial ingredient of his conception of truth, Suppe has not sufficiently 
explained how such abstract and counterfactual entities can be constructed, and how they 
may turn out to be identical to the ones defined by the theoretical model. Second, and more 
important, Suppe takes for granted that such an identity involves the whole mathemati-
cal structure of the theoretical model, even though it may be very complex and possibly 
redundant.

1.4  Methodological Constructive Realism (MCR)

Thus far, we have briefly reviewed four different conceptions of the theory/world relation-
ship (Sects.  1.1, and 1.2), and we have found that each of them incurs in some serious 
difficulty (Sect. 1.3). In this Section, we are going to formulate, in an intuitive and infor-
mal way, the main theses of a new conception, which we call Methodological Constructive 
Realism (MCR). The rest of this paper will then be devoted to further specify this view and 
express its precise and detailed content by appropriate formal means.

MCR shares with the semantic approach the conviction that models are essential for an 
adequate understanding of the structure of empirical theories, and that the theory/world 
relationship is thus to be intended as a models/phenomena relation. MCR is a form of 
realism, because it primarily interprets such relation as truth, and not empirical adequacy. 
However, MCR is not subject to the problems of Suppe’s quasi-realism, nor does it sub-
scribe to Popper’s strong mathematical realism. Rather, MCR agrees with Suppes’ and van 
Fraassen’s tenet that theoretical models cannot be directly related to phenomena, because 
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of their complex and rich mathematical structure, which typically exceeds the structural 
complexity that can be granted at the phenomenal level.

More precisely, MCR is a form of model-based and constructive realism. The represen-
tational relation between a model and the real phenomenon that it is designed to explain 
is taken to be truth—not just empirical adequacy—and the model’s truth is based on an 
identity relation between the mathematical structure of the phenomenon under investiga-
tion and an appropriate substructure of the relative model. However, both the phenomenal 
structure and the model substructure are not independently given, but they are rather con-
structed by means of an appropriate interpretation of the model on the phenomenon. This 
interpretation, which in general is not merely empirical, presupposes, besides the model, 
also a low level theoretical element—a functional description—, which is constitutive of 
the phenomenon itself.

MCR is a form of methodological realism, for MCR recognizes that truth is not the only 
relevant semantic relation between a theoretical model and the corresponding phenome-
non; rather, the empirical correctness of the model is important as well. Nevertheless, it 
should be remarked that empirical correctness is not to be thought as a new version of the 
instrumentalist concept of empirical adequacy. Notwithstanding their terminological simi-
larity, the two concepts are in fact very different. According to instrumentalism, empirical 
adequacy is the only relevant relation between a theory and the real world, and it is thus 
completely independent from truth. Instead, according to MCR, empirical correctness and 
truth are not independent notions, and specifying their relations should be taken as one of 
the main goals of methodology.

In this respect, empirical correctness of a model is much more similar to Popper’s cor-
roboration, than to empirical adequacy. For Popper, a hypothesis is corroborated if no 
severe test falsifies it or, equivalently, if all severe tests are consistent with the hypothesis. 
But we have seen that giving an adequate definition of consistency between a severe test 
and a hypothesis is a very serious problem for Popper’s falsificationism (Sect. 1.3.2, par. 
3). Nevertheless, it should be noted that this problem of the falsificationist methodology 
depends on the fact that consistency is intended as a relation between experimental results 
and a hypothesis, that is to say, a sentence. If, as MCR maintains, consistency is instead a 
relation between an experiment and a model, the problem does not arise, or at least, not in 
such a way as to block an adequate formal development of this methodology.

The following eleven theses provide an informal and intuitive formulation of MCR. 

 1. Phenomena are not given in themselves, but are individuated by low level theoretical 
descriptions (functional descriptions). These descriptions are not sufficient to deter-
mine a definite mathematical structure for any phenomenon.

 2. Each model is interpreted on a corresponding phenomenon.
 3. The interpretation links aspects of the model with corresponding aspects of the phe-

nomenon. These aspects may be observational, but also theoretical (this is possible 
because of 1).

 4. The interpretation induces two structures: (1) a substructure of the model and (2) a 
definite mathematical structure of the phenomenon.

 5. If the two induced structures are identical (or isomorphic) the model is true, otherwise 
it is false.

 6. The interpretation also induces a definite empirical content of the model.
 7. The empirical content of the model is a subset of all the experiments that are actually 

performed on the phenomenon under investigation.
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 8. If all experiments in the empirical content of the model are consistent with the model 
itself, the model is empirically correct; otherwise, it is empirically incorrect.

 9. Truth and empirical correctness are not independent notions, for they both presuppose 
a common ontological ground—the phenomenon—to which both are related, even 
though in different ways.

 10. Because of 9, if a model S is true of a certain phenomenon H, then S is empirically 
correct with respect to the same phenomenon H and, conversely, if S is empirically 
incorrect w.r.t. H, S is false of H.

 11. Thus, by 10, truth of a model entails its empirical correctness, and empirical incorrect-
ness entails its falsehood. However, in general, empirical correctness is not sufficient 
for truth.

As stated above, MCR is a quite general methodological theory, whose content needs to be 
further specified and expressed in a more precise and definite form. In the subsequent sec-
tions of this paper we are going to show in detail how it is possible to accomplish this goal 
by focusing on an important class of phenomena, namely, dynamical phenomena and their 
correlated models. Some paradigmatic examples of dynamical phenomena are those that 
Galileo explained: free fall, the motion of a sphere on an inclined plane, the motion of a 
pendulum, projectile motion, etc. But dynamical phenomena are not limited to the domain 
of mechanics or physics. Many other sciences try to explain phenomena of this kind. For 
example, demography is interested in the laws that govern the growth of a population under 
specified conditions. Chemistry may be interested in studying how the concentration of 
some substance varies during a certain reaction. Cognitive science attempts to explain the 
succession of the mental operations of a subject who performs some cognitive task. Very 
probably, all sciences are interested in the explanation of some dynamical phenomenon. 
Obviously, this is not the only type of phenomenon that an empirical science deals with. 
Nevertheless, if we were able to precisely analyze the semantic relations that hold between 
dynamical phenomena and their correlated models, we could demonstrate a deep structural 
identity between scientific disciplines that at a first, superficial, glance may seem worlds 
apart (Giunti 1992, pp. 135–36).

For Suppes, methodology is a formal discipline whose principles are not mathematical 
in nature, for they do not in general follow from the axioms of set theory (Suppes 1969b, p. 
34). MCR agrees with this view. As far as methodology is concerned with relevant models/
phenomena relations, set theory is fundamental in order to deal with the model-theoretic 
side of such relations. However, in order to appropriately treat the phenomenal side, it is 
necessary to consider a specific ontological level for which set theory is no longer suffi-
cient. Set theory must then be supplemented with an adequate formal ontology whose axi-
oms are intended to specify and precisely describe basic features of the phenomenal level.

In the following sections we are going to develop the details of MCR for the special 
case of deterministic dynamical phenomena and their correlated deterministic models. 
This special version of MCR will be formulated as an axiomatic extension of set theory, 
whose specific axioms constitute a formal ontology that provides an adequate framework 
for analyzing the two semantic relations of truth and empirical correctness, as well as their 
connections.
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2  Mathematical Models of Deterministic Motion

In Sect. 2, we consider the mathematical models that can be used to describe and explain 
deterministic motion. We treat them at a very high level of abstraction, for we are not inter-
ested in the details of any specific concept of deterministic motion, but in the most basic 
and essential features of this notion. In particular, in Sect.  2.1, we consider the mathe-
matical models that express the most general concept of a partial deterministic dynamics, 
that is to say, a dynamics in which a state transition of any given duration is defined for 
some states (or even no state) of the system. Then, in Sect. 2.2, we consider the special 
case of a total deterministic dynamics, which obtains when a state transition of any dura-
tion is defined for all states. The two theories presented in Sects. 2.1 and 2.2 are purely 
mathematical theories, whose respective classes of models are specified by Definitions 2 
and 9, which define appropriate set-theoretical predicates in Suppes’ sense (Suppes 1957, 
sect.  12.2). The only mathematical theory that is presupposed is set theory. As usual in 
mathematical practice, set theory is employed in a semi-formal, intuitive, formulation; its 
axioms are not explicitly stated, and its language is the natural language supplemented with 
the usual symbols and terminological conventions of such a theory.

2.1  Partial Dynamical Systems on Monoids and Partial Deterministic Systems 
on monoids

A partial dynamical system DSL on a monoid L is a kind of mathematical model which is 
intended to express the most general intuitive notion of a system that evolves in time with a 
possibly partial, or incomplete, deterministic dynamics, and whose evolutions can be obtained 
by composition of arbitrary sequences of time steps. The monoid L is intended to model the 
minimal additive structure of temporal durations. We recall below the definition of a monoid.

Definition 1 (Monoid)
Let T be an arbitrary non-empty set.
L is a monoid ∶=
1. L = (T ,+);
2. + ∶ T × T → T;
3. (a) ∃u ∈ T  ∀t ∈ T  (u + t = t ∧ t + u = t);

(b) ∀w, v, t ∈ T  ((w + v) + t = w + (v + t)).

We also recall that, for any monoid L = (T ,+) , the element u that satisfies condition 3a 
is in fact unique. Such an element is called the identity element of the + operation, and it is 
indicated by 0.

Notation 1 (Notation for partial functions)
Let h ∶ X → Y  be a partial function.
Pim(h) ∶= {x ∈ X ∶ ∃y ∈ Y  (h(x) = y)} . In other words, Pim(h) is the set of all x ∈ X for 
which h is defined; therefore, “ x ∈ Pim(h) ” can be read as “h is defined on x”. (“Pim(h)” is 
a mnemonic abbreviation for “preimage of h”.)
It should be noticed that we do not assume that, for an arbitrary partial function h ∶ X → Y  , 
Pim(h) ≠ �.
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Im(h) ∶= {y ∈ Y ∶ ∃x ∈ X (h(x) = y)} . (“Im(h)” is a mnemonic abbreviation for “image  
of h”.)

Definition 2 (Partial dynamical system on a monoid)
Let L = (T ,+) be a given monoid, and M an arbitrary non-empty set.
DSL is a partial dynamical system on L ∶=

1. DSL = (M, (gt)t∈T );
• any x ∈ M is called a state, and M the state space;
• any t ∈ T  is called a duration, T the time set, and L = (T ,+) the time model of DSL;
• + ∶ T × T → T  is called the operation of addition of durations or, briefly, duration 

addition;
2. ∀t ∈ T  , gt ∶ M → M is a partial function;

• for any t ∈ T  , gt is called the (state) transition of duration t or, briefly, the t-transi-
tion or the t-advance;

3.   (a)  ∀x ∈ M (x ∈ Pim(g0) → g0(x) = x); 
      (b)  ∀x ∈ M ∀v, t ∈ T  

Definition 2 expresses the intuitive notion of a composable deterministic partial dynam-
ics in the following sense.

In the first place, condition 2 should be interpreted as telling us that, at instant t + i , 
the system will be in state gt(x) , provided that x is the state of the system at instant i and 
gt is defined on x; in other words, if at instant i the system is in state x ∈ M and gt(x) is 
defined, then at instant t + i the system is in state gt(x) . Condition 2 thus expresses the 
idea of a deterministic partial dynamics. Note, however, that Condition 2 does not exclude 
the possibility that some, or even all, state transitions be total functions. Partial dynamical 
systems on monoids thus include as a special case dynamical systems on monoids (see 
Definition 9).

In the second place, condition 3a tells us that, whatever state the system is in, the transi-
tion of duration 0 does not modify that state, provided that such a transition is defined on 
it; and, finally, condition 3b tells us that any transition of duration v + t can be decomposed 
in two successive transitions, the first one of duration t, and the second one of duration v, 
provided that all three state transitions are defined on the respective states. Conditions 3a 
and 3b thus express the idea of a composable partial dynamics.

According to the usual definition of a dynamical system (Arnold 1977; Szłenk 1984; 
Giunti 1997; Hirsch et  al. 2004) durations are taken to be either continuous or discrete 
quantities. In the first case, the time set T is identified with either the set of the real num-
bers ℝ or the non-negative real numbers ℝ≥0 , and the operation + of addition over dura-
tions is the usual addition of two real numbers. In the second case, T is identified with 
either the set of the integers ℤ or the non-negative integers ℤ≥0 , and the operation + of 
addition over durations is the usual addition of two integer numbers. The following are all 
examples of partial dynamical systems with either a discrete or a continuous time model, 
as well as a discrete or a continuous state space.

((x ∈ Pim(gv+t) ∧ x ∈ Pim(gt) ∧ gt(x) ∈ Pim(gv)) →

gv+t(x) = gv(gt(x)))
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Example 1 (Partial dynamical systems with discrete or continuous time model, or state 
space)
1. Discrete time model L = (ℤ≥0,+) and discrete state space: finite state automata, Turing 

machines, cellular automata restricted to finite configurations.2
2. Discrete time model L = (ℤ≥0,+) and continuous state space: many systems specified 

by difference equations, iterated mappings on ℝ , cellular automata not restricted to finite 
configurations.

3. Continuous time model L = (ℝ,+) and continuous state space: systems specified by 
ordinary differential equations, many neural nets.

Definition 2 is a formal rendition of the most general notion of a composable determin-
istic partial dynamics. However, in this paper, we are going to mainly focus on those partial 
dynamical systems whose state space can be factorized into a finite number n ∈ ℤ

≥1 of 
components. A n-component partial dynamical system is defined as follows.

Definition 3 (n-component partial dynamical system on a monoid)
Let DSL = (M, (gt)t∈T ) and, for any i (1 ≤ i ≤ n) , Xi be a non-empty set.
DSL is a n-component partial dynamical system on L := DSL is a partial dynamical system 
on L and M ⊆ X1 ×… × Xn.
Furthermore, for any i, the set Ci ∶= {xi ∈ Xi : for some n-tuple x ∈ M, xi is the i-th element 
of x} is called the i-th component of M.3

As already noted, Definition 2 is a formal rendition of the most general notion of a com-
posable deterministic partial dynamics. The most general notion of a deterministic partial 
dynamics is instead expressed by Definition 4, which only retains the first two conditions 
of Definition 2.

Definition 4 (Partial deterministic system on a monoid)
Let L = (T ,+) be a given monoid, and M an arbitrary non-empty set.
DSL is a partial deterministic system on L ∶= DSL satisfies the first two conditions of 
Definition 2.

It is important to realize that the class of the partial deterministic systems on a monoid 
is a kind of model for which it is appropriate to define a specific isomorphism. For Defini-
tion 4 defines an axiom free, or purely structural, set-theoretical predicate in Suppes’ sense 
(Suppes 1957, pp. 255, 260), as it only specifies the type of the structural entities of the 
model, without imposing any additional requirement on such entities. Below is the defini-
tion of the specific isomorphism for this kind of model.

3 Note that, by Definition 3, Ci = proji(M) , where proji ∶ X1 ×… × Xn → Xi is the i-th projection map, that 
is to say, the function such that, for any (x1,… , xn) ∈ X1 ×… × Xn , proji(x1,… , xn) ∶= xi.

2 The state space of a cellular automaton is discrete (i.e., finite or countably infinite) if all its states are 
finite configurations, that is to say, configurations where all but a finite number of cells are non-empty. If 
non-finite configurations are allowed, the state space has the power of the continuum.
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Definition 5 (Isomorphism for partial deterministic systems on a given monoid)
Let DS1L = (M, (gt)t∈T ) and DS2L = (N, (ht)t∈T ) be partial deterministic systems on a given 
monoid L = (T ,+).
u is an isomorphism of DS2L in DS1L ∶= u ∶ N → M is a bijection; for any t ∈ T  , 
u(Pim(ht)) = Pim(gt) ; for any t ∈ T  , for any y ∈ Pim(ht) , u(ht(y)) = gt(u(y)).

It is not difficult to prove that being a partial dynamical system on a monoid is preserved by 
the specific isomorphism just defined or, in other words, that the property of having a composable 
dynamics is a purely structural property of the partial deterministic systems on a given monoid.

Theorem  1 (Being a partial dynamical system on a monoid is preserved by 
isomorphism)
Let DS1L = (M, (gt)t∈T ) and DS2L = (N, (ht)t∈T ) be partial deterministic systems on monoid 
L = (T ,+).
If u is an isomorphism of DS2L in DS1L and DS2L is a partial dynamical system on L, then 
DS1L is a partial dynamical system on L.

Proof See the Appendix.   ◻

Given a partial deterministic system DSL on monoid L, we now consider the set C of all 
states for which at least one state transition is defined. Any state in C can thus be thought 
as an origin of some state transition and, for this reason, we call C the set of all original 
states. Also note that C is is fact the union of the preimages of all state transitions of DSL . 
The exact definition is as follows.

Definition 6 (The set C of all original states)
Let DSL = (M, (gt)t∈T ) be a partial deterministic system on monoid L = (T ,+).
C ∶= {x ∈ M ∶ ∃t ∈ T  , x ∈ Pim(gt)}

C is called the set of all original states.

Note that the following proposition holds.

Proposition 1 
C ≠ � ↔ ∃t ∈ T ,Pim(gt) ≠ �.

Proof By Definition 6, if C ≠ ∅ , then ∃t ∈ T ,Pim(gt) ≠ � , and conversely.   ◻

For any x ∈ M , we then consider the set q(x) of all durations t whose corresponding 
state transition gt is defined on x. Thus, from an intuitive point of view, q(x) can be thought 
as the temporal span during which x is active or alive. For this reason, we call q(x) the life 
span of x. The exact definition is below.

Notation 2 (Notation for the power set)
For any set X, the power set of X is denoted by P(X).

Definition 7 (The life span q(x) of state x)
Let DSL = (M, (gt)t∈T ) be a partial deterministic system on monoid L = (T ,+).
q ∶ M → P(T)
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∀x ∈ M , q(x) ∶= {t ∈ T ∶ x ∈ Pim(gt)}

q(x) is called the life span of x.

Note that, by Definitions 6 and 7, ∀x ∈ M , q(x) ≠ � ↔ x ∈ C , that is to say, x has a non-
empty life span iff x is an original state. Furthermore, by means of C and q, we can retrieve the 
preimage of any state transition gt , for it holds: ∀t ∈ T , Pim(gt) = {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)} . 
The (obvious) proof of these two facts is in the Appendix.

Proposition 2 
(1) ∀x ∈ M , q(x) ≠ � ↔ x ∈ C;
(2) ∀t ∈ T  , Pim(gt) = {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)}.

Proof See the Appendix.   ◻

We define below the concept of a partial subsystem of a partial deterministic system 
on a monoid, and we then show that this concept preserves the kind of model to which it 
applies, even when the model is a partial dynamical system.

Definition 8 (Partial subsystem of a partial deterministic system on a monoid)
Let DS1L = (M, (gt)t∈T ) be a partial deterministic system on monoid L = (T ,+).
DS2L is a partial subsystem of DS1L ∶=
DS2L = (N, (ht)t∈T ) ∧ ∀t ∈ T  ( ht ∶ N → N is a partial function ∧
Pim(ht) ⊆ Pim(gt) ∧ ∀x ∈ Pim(ht) ht(x) = gt(x) ).

Proposition 3 
(1) If DS1L is a partial deterministic system on monoid L and DS2L is a partial subsystem 

of DS1L , then DS2L is a partial deterministic system on L;
(2) If DS1L is a partial dynamical system on monoid L and DS2L is a partial subsystem of 

DS1L , then DS2L is a partial dynamical system on L.

Proof See the Appendix.   ◻

2.2  Dynamical Systems on Monoids and Deterministic Systems on Monoids

A dynamical system DSL on a monoid L is the kind of mathematical model which is 
intended to express the most general intuitive notion of a system that evolves in time with 
a total, or complete, deterministic dynamics, and whose evolutions can be obtained by 
composition of arbitrary sequences of time steps (Giunti and Mazzola 2012; Mazzola and 
Giunti 2012). Dynamical systems on monoids are a special case of partial dynamical sys-
tems on monoids. They are those partial dynamical systems whose transition functions are 
all total. Therefore, in this special case, the definition of partial dynamical system on a 
monoid (Definition 2) reduces to the following one.
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Definition 9 (Dynamical system on a monoid)
Let L = (T ,+) be a given monoid, and M an arbitrary non-empty set.
DSL is a dynamical system on L ∶=

1. DSL = (M, (gt)t∈T );
2. ∀t ∈ T  , gt ∶ M → M;
3. (a) ∀x ∈ M , g0(x) = x;

(b) ∀x ∈ M ∀v, t ∈ T  , gv+t(x) = gv(gt(x)).

Definition 9 expresses the intuitive notion of a composable deterministic total dynamics. 
Accordingly, in this special case, the definition of a n-component partial dynamical system 
on a monoid (Definition 3) becomes the following.

Definition 10 (n-component dynamical system on a monoid)
Let DSL = (M, (gt)t∈T ) and, for any i (1 ≤ i ≤ n) , Xi be a non-empty set.
DSL is a n-component dynamical system on L := DSL is a dynamical system on L and 
M ⊆ X1 ×… × Xn.
Furthermore, for any i, the set Ci ∶= {xi ∈ Xi : for some n-tuple x ∈ M, xi is the i-th element 
of x} is called the i-th component of M.

Example 2 (The 4-component dynamical system DSLp)
A paradigmatic example of a 4-component dynamical system is the system DSLp (see Eq. 2 
below), which is individuated by the equation of motion of a projectile:

where g ∈ ℝ is a fixed positive constant. The solutions of this ordinary differential equation 
univocally determine the 4-component dynamical system:

where X = Y = Ẋ = Ẏ = T = ℝ , Lp = (T ,+) is the additive group of the real numbers and, 
for any t ∈ T  , for any (x, y, ẋ, ẏ) ∈ X × Y × Ẋ × Ẏ ,

In the special case of a total dynamics, the definition of a partial deterministic system on 
a monoid (Definition 4) in turn reduces to the following.

Definition 11 (Deterministic system on a monoid)
Let L = (T ,+) be a given monoid, and M an arbitrary non-empty set.
DSL is a deterministic system on L ∶= DSL satisfies the first two conditions of Definition 9.

Note that DSL = (M, (gt)t∈T ) is a deterministic system on L = (T ,+) only if its set 
of original states C = M . Also note that DSL is a deterministic system on L iff ∀x ∈ M , 

(1)
(

dx(t)

dt
= ẋ(t) ,

dy(t)

dt
= ẏ(t) ,

dẋ(t)

dt
= 0 ,

dẏ(t)

dt
= −�

)

(2)DSLp = (X × Y × Ẋ × Ẏ , (gt)t∈T ),

(3)gt(x, y, ẋ, ẏ) =
(

ẋt + x , −
1

2
�t2 + ẏt + y , ẋ , −�t + ẏ

)
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q(x) = T  , that is to say, DSL is a deterministic system iff the life span of any state x is the 
whole time set T. The (obvious) proof of these facts is in the Appendix.

Proposition 4 
(1) If DSL is a deterministic system on L, then C = M;
(2) DSL is a deterministic system on L ↔ ∀x ∈ M , q(x) = T .

Proof See the Appendix.   ◻

3  Real Systems and Their Motions

In Sect. 3, we set up a formal ontology that describes the phenomenal side of the models/
phenomena relationship. In particular, in Sect. 3.1, we state two Axioms (1, 2) about the 
primitive notions of real system and temporal evolution, and one more Axiom (3) concern-
ing the theoretical part of a dynamical phenomenon. These three axioms then allow us to 
explicitly define the general concept of a dynamical phenomenon. In Sect.  3.2, we state 
four more Axioms (4, 5, 6, 7) concerning the magnitudes of a dynamical phenomenon and 
their instantaneous values. On this basis, in Sect. 3.3, we are then able to define the concept 
of a deterministic dynamical phenomenon with respect to n (1 ≤ n) of its magnitudes, and 
we prove that the kind of dynamical structure that can be found at the phenomenal level is 
the simplest one, namely, a partial deterministic system on a monoid (Proposition 5). In 
Sect. 3.4, we complete the formal description of the phenomenal level by stating the last 
three ontological Axioms (8, 9, 10), which concern the notions of setting (or preparation), 
measurement, and experiment, with respect to any given dynamical phenomenon.

3.1  Dynamical Phenomena

From an intuitive point of view, we take a deterministic dynamical phenomenon to be any 
manifestation of the real world that a n-component partial dynamical system on a monoid 
can represent. An exact definition of this kind of phenomenon will be given in Sect. 3.3 
(Definition 25). In this Section, we are considering dynamical phenomena in the most gen-
eral sense, irrespectively of their being deterministic or not.

As a first approximation, we think of an arbitrary dynamical phenomenon H as a pair 
(F,BF) of two distinct elements, a theoretical part F and a real part BF . The real part BF 
is a non-empty set of real dynamical systems, while the theoretical part F is a functional 
description that allows us to define such a set.

Intuitively, a real dynamical system can be thought as a real system that has at least one 
temporal evolution, or a motion. Furthermore, any temporal evolution of any real dynami-
cal system cannot be shared by any other system. In order to precisely state these condi-
tions, we first of all assume the following two axioms. We take as primitive the binary 
predicate has temporal evolution (or has motion). We also take as primitive the two con-
stants R and E, whose intended meanings are, respectively, the class of all real systems 
and the class of all temporal evolutions. Throughout this paper, we always take the term 
“motion” as a synonym of “temporal evolution”.
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Axiom 1 (Real systems and temporal evolutions)
∀r∀e(r has temporal evolution e → r ∈ R ∧ e ∈ E);
E ≠ ∅ ∧ ∀e ∈ E ∃r ∈ R (r has temporal evolution e).

Definition 12 (The set E(r) of all temporal evolutions of real system r)
Let r ∈ R.
E(r) ∶= {e ∈ E ∶ r has temporal evolution e}.
E(r) is called the set of all temporal evolutions of r.

Axiom 2 (Different real systems do not share any temporal evolution)
∀r1, r2 ∈ R (r1 ≠ r2 → E(r1) ∩ E(r2) = �).

We now define the set B of all real systems that have at least one temporal evolution. By 
Axiom 1, B is not empty and, by Axiom 2, no two of its elements share any temporal evo-
lution. We can thus identify B with the set of all real dynamical systems.

Definition 13 (Real dynamical systems) B ∶= {b ∈ R ∶ E(b) ≠ �} . The set B is called 
the set of all real dynamical systems, and any b ∈ B is called a real dynamical system.

Axiom 3 (Theoretical part F = (ASF ,CSF) of a dynamical phenomenon)
A theoretical part F = (ASF ,CSF) of a dynamical phenomenon is a functional description 
that consists of:
1. a sufficiently detailed specification of the internal constitution, organization and opera-

tion of any real dynamical system of a certain functional type ASF.
  Formally, ASF is a primitive unary predicate for which it holds:
  ∀b(ASF(b) → b ∈ B);
2. a sufficiently detailed specification of a causal scheme CSF of the external interactions 

that a real dynamical system of functional type ASF is allowed to undergo during its 
temporal evolutions. In particular, the specification of the causal scheme CSF must 
include the specification of (a) the initial conditions that a temporal evolution of a real 
system of functional type ASF must satisfy, (b) the running (intermediate or boundary) 
conditions during the whole subsequent evolution, and possibly (c) the final conditions 
under which the evolution terminates.

  Formally, CSF is a primitive unary predicate for which it holds:
  ∀e(CSF(e) → ∃b(ASF(b) ∧ e ∈ E(b))).

Once a theoretical part F of a dynamical phenomenon is given, its real part BF is the set 
of all real dynamical systems which satisfy the functional description F or, more precisely, 
BF is the set of all real dynamical systems b such that b satisfy the specified functional type 
ASF and at least some temporal evolution e ∈ E(b) satisfy the specified causal scheme CSF . 
Thus, we define BF as follows.

Definition 14 (The realization domain BF of a theoretical part F of a dynamical 
phenomenon)
Let F = (ASF ,CSF) be a theoretical part of a dynamical phenomenon, where ASF is its 
specified functional type, and CSF its specified causal scheme.
BF ∶= {b ∈ B ∶ ASF(b) ∧ ∃e ∈ E(b)(CSF(e))}.
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BF is called the realization domain (or application domain) of F.4 Any real dynamical sys-
tem b ∈ BF is called a F-realizer.

We can now define a dynamical phenomenon as follows.

Definition 15 (Dynamical phenomenon H = (F,BF))
H is a dynamical phenomenon ∶= H = (F,BF) , F is a theoretical part of a dynamical phe-
nomenon, BF is the realization domain of F, and BF ≠ ∅.

As previously remarked (Sect.  1.4, par. 7), the phenomena of motion that Galileo 
explained can be considered paradigmatic examples of dynamical phenomena. Below we 
show in detail how Definition 15 can be applied to projectile motion. By following this 
paradigm, the reader will then be able to similarly apply that definition to any other exam-
ple of her/his choice.5

Example 3 (The phenomenon of projectile motion)
We refer to the phenomenon of projectile motion by the symbol Hp,�� = (Fp,�� ,BFp,��

) , 
where p is an abbreviation for projectile, while � and � are two non-negative real parame-
ters on which the functional description Fp,�� depends, and whose meaning is explained 
below.
Theoretical part—Functional description Fp,�� = (ASFp,��

,CSFp,��
)

1. Specification of any real dynamical system of functional type ASFp,��
:

 any medium size body in the proximity of the earth.
2. Specification of the causal scheme CSFp,��

 of the external interactions that a real dynam-
ical system of functional type ASFp,��

 is allowed to undergo during its temporal evolu-
tions: 
(a) initial conditions: the body is released at an arbitrary instant, with an initial veloc-

ity and position such that the body hits the earth surface at a later instant, the 
maximum vertical distance reached by the body with respect to the earth surface 
is not greater than � , and the maximum horizontal distance is not greater than �;

(b) running conditions: during the whole motion the only force acting on the body is 
its weight;

(c) final conditions: the motion terminates immediately after the impact of the body 
with the earth surface.

5 For free fall and satellite motion, see (Giunti 2014, sects. 4.1 and 5.2); for pendulum motion, (Giunti 
2010, sect. 5.2). In the cognitive domain, all phenomena of human computation, as defined in Giunti and 
Pinna (Giunti and Pinna 2016, sect. 5), are examples of dynamical phenomena. In the domain of computa-
tion theory, all computational setups, as defined in (Giunti 2017, sect. 2.1), are further examples of dynami-
cal phenomena. Computational setups are the real objects described by computational systems. Computa-
tional systems are discrete n-component (partial) dynamical systems that can be effectively represented or 
described (Giunti and Giuntini 2007, pp. 56–7).

4 Since the functional description F typically contains several idealizations, it might be claimed that no real 
dynamical system exactly satisfies F, but it rather fits F up to a certain degree. If we take this point of view, 
the realization domain BF of a dynamical phenomenon H = (F,BF) might be more faithfully described as a 
fuzzy set.
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Real part—Realization domain BFp,��

By the definition of realization domain (Definition 14),
BFp,��

= {b ∈ B ∶ ASFp,��
(b) ∧ ∃e ∈ E(b)(CSFp,��

(e))}.
Thus, BFp,��

 is the set of all medium size bodies in the proximity of the earth such that some 
of their motions satisfy the causal interaction scheme CSFp,��

 . Any body b ∈ BFp,��
 is called 

a projectile.

Definition 16 (The set EF(b) of all temporal evolutions of a F-realizer b)
Let H = (F,BF) be a dynamical phenomenon, and b ∈ BF.
EF(b) ∶= {e ∈ E(b) ∶ CSF(e)}.
EF(b) is called the set of all temporal evolutions of F-realizer b.

Note that, by the definition of realization domain (Definition  14), for any b ∈ BF , 
for some evolution e ∈ E(b) , CSF(e) holds, so that, by Definition  16, EF(b) ≠ � . How-
ever, for some e ∈ E(b) , CSF(e) may not hold, so that EF(b) ⊆ E(b) , but not necessarily 
EF(b) = E(b).

Definition 17 (The set ĒF of all temporal evolutions of a dynamical phenomenon)
Let H = (F,BF) be a dynamical phenomenon, and b ∈ BF.
ĒF ∶=

⋃

b∈BF
EF(b).

ĒF is called the set of all temporal evolutions of H.

3.2  Magnitudes of a Dynamical Phenomenon and Their Instantaneous Values

From an intuitive point of view, we take a magnitude of a dynamical phenomenon 
H = (F,BF) to be a property M of every F-realizer b ∈ BF such that, at different instants of 
any temporal evolution of b, it can assume different values. In order to precisely formulate 
this idea, we first introduce the following axiom.

Axiom 4 (Magnitudes of a dynamical phenomenon and its time magnitude)
We assume that, to any dynamical phenomenon H, the set of all its magnitudes is uniquely 
associated, and it always contains the time magnitude of H.
The set of all magnitudes of H is indicated by �H , its time magnitude is indicated by 
TH , while M or Mj (j ∈ ℤ

≥1) stands for some magnitude member of �H (if not explicitly 
excluded, such a magnitude may be TH).
We further assume that, to each magnitude M ∈ �H , the set of all its possible values is 
uniquely associated.6
The set of all possible values of an arbitrary magnitude M ∈ �H is indicated by V(M) . 
Elements of the set of all possible values of the time magnitude, V(TH) , are called instants 
or durations.
We finally assume that a binary operation +̂ is uniquely associated to V(TH) , and that 
(V(TH), +̂ ) is at least a monoid.

6 It should be noticed that we do not require that the magnitudes of a phenomenon be observable, or even 
measurable. Furthermore, the nature of the possible values of a magnitude is not specified as well. This, in 
particular, means that there may be magnitudes whose possible values are not real numbers.
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The monoid (V(TH), +̂ ) is indicated by LH , and the identity element of the +̂ operation 
by  0̂.

We then assume one further axiom concerning the initial instants of the temporal evolu-
tions of an arbitrary F-realizer b ∈ BF . Axiom 5 stipulates that any temporal evolution of 
any F-realizer has exactly one initial instant, and that the same F-realizer cannot have two 
different temporal evolutions with the same initial instant.

Axiom 5 (The initial instant �H
0
(e) in phenomenon H of a temporal evolution e)

Let H = (F,BF) be a dynamical phenomenon, ĒF the set of all temporal evolutions of H, 
V(TH) the set of all possible values of the time magnitude of H, and EF(b) the set of all 
temporal evolutions of F-realizer b ∈ BF.
𝜄H
0
∶ ĒF → V(TH);

∀b ∈ BF ∀e1, e2 ∈ EF(b) (e1 ≠ e2 → �H
0
(e1) ≠ �H

0
(e2)).

For any e ∈ ĒF , �H
0
(e) is called the initial instant in H of temporal evolution e.

We also assume (Axiom 6 below) that, to any temporal evolution e of a dynamical phe-
nomenon H, a set of instants is uniquely associated, and that the initial instant of e belongs 
to this set.

Axiom 6 (The set JH(e) of all instants in phenomenon H of a temporal evolution e)
Let H = (F,BF) be a dynamical phenomenon, ĒF be the set of all temporal evolutions of H, 
V(TH) be the set of all possible values of the time magnitude of H, and �H

0
(e) be the initial 

instant in H of temporal evolution e ∈ ĒF.
JH ∶ ĒF → P(V(TH));
∀e ∈ ĒF (𝜄

H
0
(e) ∈ JH(e)).

For any e ∈ ĒF , JH(e) is called the set of all instants in H of temporal evolution e.

Axiom 6 allows us to define the set of all instants in a phenomenon H as the union, for 
all temporal evolutions e of H, of the set of all instants of e. This is expressed by the defini-
tion below.

Definition 18 (The set J̄H of all instants in a phenomenon H)
Let H = (F,BF) be a dynamical phenomenon, ĒF be the set of all temporal evolutions of H, 
and e ∈ ĒF.
J̄H ∶=

⋃

e∈ĒF
JH(e).

J̄H is called the set of all instants in phenomenon H.

Axioms 5 and 6 allow us to define the set of all durations of an arbitrary temporal evo-
lution e of a dynamical phenomenon. Intuitively, any such duration is any time that it takes 
to go from the initial instant of the evolution e to some (other) of its instants. The exact 
definition is below.

Definition 19 (The set DH(e) of all durations in phenomenon H of a temporal 
evolution e)
Let H = (F,BF) be a dynamical phenomenon, ĒF be the set of all temporal evolutions of 
H, V(TH) be the set of all possible values of the time magnitude of H, �H

0
(e) be the initial 

instant in H of temporal evolution e ∈ ĒF , and JH(e) be the set of all instants in H of evolu-
tion e.
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∀e ∈ ĒF , DH(e) ∶= {t ∈ V(TH) ∶ t+̂𝜄H
0
(e) ∈ JH(e)}.

For any e ∈ ĒF , DH(e) is called the set of all durations in H of temporal evolution e.

Analogously to Definition 18, we then define the set of all durations in a phenomenon 
H as the union, for all temporal evolutions e of H, of the set of all durations of e. This is 
expressed by the definition below.

Definition 20 (The set D̄H of all durations in a phenomenon H)
Let H = (F,BF) be a dynamical phenomenon, ĒF be the set of all temporal evolutions of H, 
and e ∈ ĒF.
D̄H ∶=

⋃

e∈EF
DH(e).

D̄H is called the set of all durations in phenomenon H.

We are now ready to specify under what conditions a magnitude M of a dynamical phe-
nomenon H has a value. In the first place, the magnitude M may have different values 
depending on the F-realizer b, the evolution e and the instant i that are considered. Thus, it 
makes sense to think of a 4-place function, valH , which applies to an arbitrary magnitude 
M , F-realizer b, time-evolution e, and instant i of the phenomenon H, and returns the value 
of M . The range of this function will thus be the union, for all magnitudes M , of the set 
of values of M . This function, however, must be partial, because, whenever e ∉ EF(b) or 
i ∉ JH(e) , valH(M, b, e, i) should not be defined. In addition, if valH(M, b, e, i) is defined, it 
must belong to the set of values of M . Finally, for the special case of the time magnitude 
TH , we assume that, for any b ∈ BF , e ∈ EF(b) , and i ∈ JH(e) , valH(TH , b, e, i) is defined, 
and that valH(TH , b, e, i) = i . All this is precisely stated by Axiom 7 below.

Axiom 7 (The H-value of magnitude M of realizer b in evolution e at instant i)
Let H = (F,BF) be a dynamical phenomenon, �H the set of all magnitudes of H, ĒF the 
set of all temporal evolutions of H, J̄H the set of all instants in H and, for any magnitude 
M ∈ �H , V(M) be the set of all its possible values.
valH ∶ �H × BF × ĒF × J̄H →

⋃

M∈��
V(M) is a partial function;

∀M ∈ �H , ∀b ∈ BF , ∀e ∈ ĒF , ∀i ∈ J̄H ,

if valH(M, b, e, i) is defined, then e ∈ EF(b) , i ∈ JH(e) , and valH(M, b, e, i) ∈ V(M);
∀b ∈ BF , ∀e ∈ EF(b), ∀i ∈ JH(e),

valH(TH , b, e, i) is defined and valH(TH , b, e, i) = i.
valH(M, b, e, i) is called the H-value of magnitude M of realizer b in evolution e at instant i.

3.3  The H‑State Space w.r.t. Magnitudes M1,… ,M
n
 , and H’s being a deterministic 

dynamical phenomenon w.r.t. magnitudes M1,… ,M
n

Given a dynamical phenomenon H and n ≥ 1 of its magnitudes, we define the state space 
of H with respect to those magnitudes as the cartesian product of their sets of values. The 
exact definition is below.

Definition 21 (The H-state space w.r.t. magnitudes M1,… ,Mn)
Let H = (F,BF) be a dynamical phenomenon, and M1,… ,Mn be n ∈ ℤ

≥1 different magni-
tudes of H.
MH[M1,… ,Mn] ∶= (V(M1) × … × V(Mn)).
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MH[M1,… ,Mn] is called the H-state space w.r.t. magnitudes M1,… ,Mn ; any 
x ∈ MH[M1,… ,Mn] is called a possible H-state w.r.t. magnitudes M1,… ,Mn.

Given n ≥ 1 magnitudes M1,… ,Mn of a dynamical phenomenon H, Axiom 7 and Defi-
nition 21 allow us to define the instantaneous state, with respect to those magnitudes, of a 
realizer b, in evolution e, at instant i. The instantaneous state can be thought as the output 
of a partial function, stH[M1,… ,Mn] , which applies to an arbitrary F-realizer b, time-evo-
lution e, and instant i of the phenomenon H, and returns the values of the n magnitudes, 
whenever all such values are defined. Hence, stH[M1,… ,Mn](b, e, i) is defined just in case, 
for each magnitude Mk (1 ≤ k ≤ n) , valH(Mk, b, e, i) is defined. This is precisely stated by 
the following definition.

Definition 22 (The H-state, w.r.t. magnitudes M1,… ,Mn , of realizer b in evolution e 
at instant i)
Let H = (F,BF) be a dynamical phenomenon, ĒF the set of all temporal evolutions of H, J̄H 
the set of all instants in H, and M1,… ,Mn be n ∈ ℤ

≥1 different magnitudes of H.
stH[M1,… ,Mn] ∶ BF × ĒF × J̄H → MH[M1,… ,Mn] is a partial function;
∀b ∈ BF , ∀e ∈ ĒF , ∀i ∈ J̄H ,

stH[M1,… ,Mn](b, e, i) is defined iff valH(M1, b, e, i),… , valH(Mn, b, e, i) are all defined;
stH[M1,… ,Mn](b, e, i) ∶= (valH(M1, b, e, i),… , valH(Mn, b, e, i)).
stH[M1,… ,Mn](b, e, i) is called the (instantaneous) H-state, w.r.t. magnitudes M1,… ,Mn, 
of realizer b in evolution e at instant i.

We now define, with respect to n ≥ 1 given magnitudes, the set CH[M1,… ,Mn] of all 
those possible states x ∈ MH[M1,… ,Mn] that actually are initial states of some evolution 
of some F-realizer.

Definition 23 (The set CH[M1,… ,Mn] of the H-initial states w.r.t. magnitudes 
M1,… ,Mn)
Let H = (F,BF) be a dynamical phenomenon, and M1,… ,Mn be n ∈ ℤ

≥1 different magni-
tudes of H.
CH[M1,… ,Mn] ∶= {x ∈ MH[M1,… ,Mn] ∶ 
∃b ∈ BF ∃e ∈ EF(b)( stH[M1,… ,Mn](b, e, �

H
0
(e)) is defined and

x = stH[M1,… ,Mn](b, e, �
H
0
(e)) )}.

CH[M1,… ,Mn] is called the set of the H-initial states w.r.t. magnitudes M1,… ,Mn.

Note that, depending on the choice of the n magnitudes M1,… ,Mn , the set 
CH[M1,… ,Mn] may be empty. For, by Definitions 23 and 22, CH[M1,… ,Mn] = � if, for 
any b ∈ BF and any evolution e ∈ EF(b) , some magnitude Mi does not have a value at the 
initial instant of e.

In Example  4 below, we consider again the phenomenon of projectile motion Hp,�� 
(Example 3), and we show how to apply Definition 23 in order to specify the set of the ini-
tial states of such a phenomenon, with respect to the horizontal and vertical components of 
the position and velocity of an arbitrary projectile.
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Example 4 (The set CHp,𝜙𝜃
[X,Y, Ẋ, Ẏ] of the Hp,��-initial states w.r.t. magnitudes 

X,Y, Ẋ, Ẏ)
Let Hp,�� = (Fp,�� ,BFp,��

) be the phenomenon of projectile motion, b ∈ BFp,��
 an arbitrary 

projectile, and rb the point where the projectile b is initially released. Let us then consider 
the plane that contains the initial velocity vector of b and the earth center. On this plane, 
we fix the axes � and Y of a Cartesian coordinate system with origin in the earth center, and 
whose � axis passes through rb . Accordingly, we call the � axis vertical and the � axis hori-
zontal. We take the positive direction of the � axis to be the one from the earth center to the 
point rb.
Let us then consider the following four magnitudes of Hp,��:

X = the horizontal component of the position of b,
Y = the vertical component of the position of b,
Ẋ = the horizontal component of the velocity of b,
Ẏ = the vertical component of the velocity of b.

Let CHp,𝜙𝜃
[X,Y, Ẋ, Ẏ] be the set of the Hp,��-initial states w.r.t. magnitudes X,Y, Ẋ, Ẏ . By 

Definition 23, such a set turns out to be: 
1. CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] = {(x0, y0, ẋ0, ẏ0) ∈ MHp,𝜙𝜃
[X,Y, Ẋ, Ẏ] ∶

  ∃b ∈ BFp,𝜙𝜃
∃e ∈ EFp,𝜙𝜃

(b) ( stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, 𝜄

Hp,𝜙𝜃

0
(e)) is defined and

  (x0, y0, ẋ0, ẏ0) = stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, 𝜄

Hp,𝜙𝜃

0
(e)) )}.

2. Let sE be the distance of the surface of the earth from the earth center. By the equation 
above, because the origin of the coordinate system is in the earth center and the � axis 
passes through the point rb where the projectile b is initially released, we get:

3. for any (x0, y0, ẋ0, ẏ0) ∈ CHp,𝜙𝜃
[X,Y, Ẋ, Ẏ] , x0 = 0 and y0 ≥ sE.

By Definition 16, for an arbitrary projectile b ∈ BFp,��
 , any of its motions e ∈ EFp,��

(b) sat-
isfy the causal scheme CSFp,��

 (see Example 3, 2). Thus, in particular, by the specification 
of the initial conditions (Example 3, 2a), the motion e of b has both an initial position and 
an initial velocity. Therefore, the initial values 0, y0 ≥ sE, ẋ0, ẏ0 of the four magnitudes 
above are defined and, consequently, CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] ≠ �.
Also note that the three initial values y0 ≥ sE, ẋ0, ẏ0 are not completely arbitrary because, 
according to the causal scheme CSFp,��

 , they depend on the two parameters � and �.

Given n ≥ 1 magnitudes M1,… ,Mn of a dynamical phenomenon H, it is important 
to consider the set of all durations that take the initial state x of a F-realizer b, in evolu-
tion e, to some (other) state. This set can be thought as the output of a partial function 
q̄H[M1,… ,Mn] that applies to an arbitrary state x ∈ MH[M1,… ,Mn] , F-realizer b ∈ BF , 
and evolution e ∈ ĒF , and is defined for all and only those triples (x, b, e) such that x is the 
initial state of b in e. This is precisely expressed by Definition 24.

Definition 24 (The set q̄H[M1,… ,Mn](x, b, e) of all durations that transform the initial 
H-state x of realizer b in evolution e into some (other) state)
Let H = (F,BF) be a dynamical phenomenon, and M1,… ,Mn be n ∈ ℤ

≥1 different magni-
tudes of H.
q̄H[M1,… ,Mn] ∶ MH[M1,… ,Mn] × BF × ĒF → P(V(TH)) is a partial function;
∀x ∈ MH[M1,… ,Mn],∀b ∈ BF , ∀e ∈ ĒF ,

q̄H[M1,… ,Mn](x, b, e) is defined iff x ∈ CH[M1,… ,Mn],
stH[M1,… ,Mn](b, e, �

H
0
(e)) is defined, and x = stH[M1,… ,Mn](b, e, �

H
0
(e));

q̄H[M1,… ,Mn](x, b, e) := { t ∈ V(TH)) ∶ stH[M1,… ,Mn](b, e, t+̂𝜄
H
0
(e)) is defined}.
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q̄H[M1,… ,Mn](x, b, e) is called the set of all durations that transform the initial H-state x 
of realizer b in evolution e into some (other) state.

We are now in a position to define what it means for a dynamical phenomenon H = (F,BF) 
to be deterministic. In the first place, such a notion is not absolute, but it must always be relativ-
ized to n ≥ 1 given magnitudes. In the second place, if the phenomenon H is deterministic w.r.t. 
n of its magnitudes, the existence and identity of the instantaneous state, at any stage (t+̂𝜄H

0
(e)) 

of an evolution e ∈ EF(b) of a realizer b ∈ BF , should not depend on either the identity of b, or 
the particular evolution e considered, but only on the initial state x. Thus we define:7

Definition 25 (Deterministic dynamical phenomenon w.r.t. magnitudes M1,… ,Mn)
Let H = (F,BF) be a dynamical phenomenon, M1,… ,Mn be n ∈ ℤ

≥1 different magnitudes 
of H, and CH[M1,… ,Mn] ≠ �.
H is a deterministic dynamical phenomenon w.r.t. magnitudes M1,… ,Mn ∶= 
for any state x ∈ CH[M1,… ,Mn] , for any t ∈ V(TH) , for any two real-
izers b1, b2 ∈ BF , for any two evolutions e1 ∈ EF(b1) , e2 ∈ EF(b2), if 
stH[M1,… ,Mn](b1, e1, �

H
0
(e1)) is defined, stH[M1,… ,Mn](b2, e2, �

H
0
(e2)) is 

defined, stH[M1,… ,Mn](b1, e1, �
H
0
(e1)) = x = stH[M1,… ,Mn](b2, e2, �

H
0
(e2)) , and 

stH[M1,… ,Mn](b1, e1, t+̂𝜄
H
0
(e1)) is defined, then stH[M1,… ,Mn](b2, e2, t+̂𝜄

H
0
(e2)) is 

defined and stH[M1,… ,Mn](b1, e1, t+̂𝜄
H
0
(e1) = stH[M1,… ,Mn](b2, e2, t+̂𝜄

H
0
(e2)).

By Definition 24, the output of the partial function q̄H[M1,… ,Mn] in general depends 
on the initial state x, the realizer b, and the evolution e to which it applies. However, by 
Definition  25, if H is deterministic with respect to M1,… ,Mn , q̄H[M1,… ,Mn] only 
depends on x. Thus, for the special case of deterministic phenomena, we can define 
(see below) a one-place total function qH[M1,… ,Mn] whose only argument is the state 
x ∈ MH[M1,… ,Mn] , and whose output coincides with the output of q̄H[M1,… ,Mn] , 
whenever the latter is defined. When it is not, qH[M1,… ,Mn] outputs the empty set.

Definition 26 (The set qH[M1,… ,Mn](x) of all durations that transform the initial 
H-state x into some (other) state)
Let H = (F,BF) be a deterministic dynamical phenomenon w.r.t. magnitudes M1,… ,Mn.
qH[M1,… ,Mn] ∶ MH[M1,… ,Mn] → P(V(TH));
∀x ∈ MH[M1,… ,Mn],

if x ∉ CH[M1,… ,Mn] , qH[M1,… ,Mn](x) ∶= �,
if x ∈ CH[M1,… ,Mn] , qH[M1,… ,Mn](x) ∶= q̄H[M1,… ,Mn](x, b, e), where
b ∈ BF and e ∈ ĒF satisfy: stH[M1,… ,Mn](b, e, �

H
0
(e)) is defined and

x = stH[M1,… ,Mn](b, e, �
H
0
(e)).

qH[M1,… ,Mn](x) is called the set of all durations that transform the initial H-state x into 
some (other) state.

7 Montague (Montague 1974,  p. 322) defines determinism for a formal theory, while Earman (Ear-
man 1986,  p. 13) similarly defines determinism for a physically possible world; however, neither of the 
two definitions is intended to directly apply to dynamical phenomena. Wójcicki’s definition of determin-
ism (Wójcicki 1975, p. 221) applies to a set theoretic representation � of an empirical phenomenon P, but 
Wójcicki’s � is quite different from a dynamical phenomenon as defined by Definition 15.
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Note that the definition above is well given, because, if b ∈ BF and e ∈ ĒF satisfy the 
previous condition, then, by Definition  24, (i) q̄H[M1,… ,Mn](x, b, e) is defined and (ii) 
since H is a deterministic dynamical phenomenon w.r.t. M1,… ,Mn , q̄H[M1,… ,Mn](x, b, e) 
does not depend on either b or e, but only on x.

In Example  5 below, we examine again the phenomenon of projectile motion Hp,�� 
(Example 3), and we show how to apply Definition 26 in order to specify the set of all 
durations that transform the initial state of an arbitrary projectile into a subsequent state of 
such a phenomenon, when the magnitudes considered are the horizontal and vertical com-
ponents of the position and velocity of the projectile.

Example 5 (The set qHp,𝜙𝜃
[X,Y, Ẋ, Ẏ]((x0, y0, ẋ0, ẏ0)) of all durations that transform the 

initial Hp,��-state (x0, y0, ẋ0, ẏ0) of the phenomenon of projectile motion into some 
(other) state)
Let Hp,�� = (Fp,�� ,BFp,��

) be the phenomenon of projectile motion (see Example  3). We 
recall that CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] is the set of the Hp,��-initial states w.r.t. magnitudes X,Y, Ẋ, Ẏ , 
and that CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] ≠ � (see Example 4).
We also notice that the phenomenon of projectile motion Hp,�� is usually assumed to be 
deterministic w.r.t. magnitudes X,Y, Ẋ, Ẏ , for the existence and identity of the instantane-
ous state (x, y, ẋ, ẏ) , at any stage (t+̂𝜄H

0
(e)) of a motion e ∈ EFp,��

(b) of a projectile b ∈ BFp,��
 , 

is not supposed to depend on either the identity of b, or the particular motion e considered, 
but only on the initial state (x0, y0, ẋ0, ẏ0) . Therefore, by Definition  26, for any 
(x0, y0, ẋ0, ẏ0) ∈ CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] , 
1. qHp,𝜙𝜃

[X,Y, Ẋ, Ẏ]((x0, y0, ẋ0, ẏ0)) = q̄Hp,𝜙𝜃
[X,Y, Ẋ, Ẏ]((x0, y0, ẋ0, ẏ0), b, e) ,

 where b ∈ BFp,��
 and e ∈ ĒFp,𝜙𝜃

 satisfy: stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, 𝜄H

0
(e)) is defined, and 

(x0, y0, ẋ0, ẏ0) = stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, 𝜄H

0
(e)).

 By 1 and Definition 24,
2. qHp,𝜙𝜃

[X,Y, Ẋ, Ẏ]((x0, y0, ẋ0, ẏ0)) = {t ∈ V(THp,𝜙𝜃
) ∶ stHp,𝜙𝜃

[X,Y, Ẋ, Ẏ](b, e, t+̂𝜄
Hp,𝜙𝜃

0
(e)) is 

defined} ,
 where b ∈ BFp,��

 and e ∈ ĒFp,𝜙𝜃
 satisfy: stHp,𝜙𝜃

[X,Y, Ẋ, Ẏ](b, e, 𝜄H
0
(e)) is defined, and 

(x0, y0, ẋ0, ẏ0) = stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, 𝜄H

0
(e)).

As it is customary, we assume that the set V(THp,��
) of all possible values of the time mag-

nitude of the phenomenon of projectile motion is the set ℝ of the real numbers and, accord-
ingly, the associated binary operation +̂ is the usual operation + of addition over the real 
numbers.
Let x0 = (x0, y0, ẋ0, ẏ0) ∈ CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] , and ū(x0, b, e) be the final instant of the motion 
e of b that starts at instant �Hp,��

0
(e) in state x0 . That is to say, ū(x0, b, e) is the instant at which 

the projectile b hits the earth surface.
We can safely assume that stHp,𝜙𝜃

[X,Y, Ẋ, Ẏ](b, e, i) is defined for any instant i such that 
𝜄
Hp,𝜙𝜃

0
(e) ≤ i ≤ ū(x0, b, e) , while it is not at any later instant i > ū(x0, b, e) , because, by the 

causal scheme of projectile motion (Example 3, 2c), the motion e terminates immediately 
after ū(x0, b, e).
Let d̄(x0, b, e) be the duration of the motion e of b that starts at instant �Hp,��

0
(e) in state x0 , 

that is to say, d̄(x0, b, e) ∶= ū(x0, b, e) − 𝜄
Hp,𝜙𝜃

0
(e) . It is not difficult to show that, under the 
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assumption that Hp,�� be deterministic w.r.t. magnitudes X,Y, Ẋ, Ẏ , such a duration does 
not depend on either the projectile b or its motion e, but only on the initial state x0.8
Let us then define d(x0) ∶= d̄(x0, b, e) . d(x0) is thus the duration of any motion of any pro-
jectile whose initial state is x0 . Therefore, the second equation in the list above reduces to 
Equation 4 below (Giunti 2014, par. 5.3):

For an arbitrary state x ∈ MH[M1,… ,Mn] , it is convenient to consider the set of all 
realizers that have at least one evolution whose initial state is x. This set can be thought as 
the output of a total function, which is defined below.

Definition 27 (The set BF[M1,… ,Mn](x) of all realizers with an evolution whose ini-
tial H-state w.r.t. magnitudes M1,… ,Mn is x)
Let H = (F,BF) be a dynamical phenomenon, and M1,… ,Mn be n ∈ ℤ

≥1 different magni-
tudes of H.
BF[M1,… ,Mn] ∶ MH[M1,… ,Mn] → P(BF);
∀x ∈ MH[M1,… ,Mn],

if x ∉ CH[M1,… ,Mn] , BF[M1,… ,Mn](x) ∶= �,
if x ∈ CH[M1,… ,Mn] ,
B
F
[M

1

,… ,M
n
](x) ∶= {b ∈ B

F
∶ ∃e ∈ E

F
(b)( st

H
[M

1

,… ,M
n
](b, e, �H

0

(e)) is defined and 
x = st

H
[M

1

,… ,M
n
](b, e, �H

0

(e)) )}.
BF[M1,… ,Mn](x) is called the set of all realizers with an evolution whose initial H-state 
w.r.t. magnitudes M1,… ,Mn is x.

Note that, if CH[M1,… ,Mn] ≠ � , by Definitions 27 and 23, for any x ∈ CH[M1,… ,Mn] , 
BF[M1,… ,Mn](x) ≠ � as well.

For an arbitrary realizer b ∈ BF , and any state x ∈ MH[M1,… ,Mn] , it is also conveni-
ent to consider the set of all evolutions of b whose initial state is x. This set can be thought 
as the output of a total function, which is defined below.

Definition 28 (The set EF[M1,… ,Mn](b, x) of all evolutions of realizer b whose initial 
H-state w.r.t. magnitudes M1,… ,Mn is x)
Let H = (F,BF) be a dynamical phenomenon, and M1,… ,Mn be n ∈ ℤ

≥1 different magni-
tudes of H.
EF[M1,… ,Mn] ∶ BF ×MH[M1,… ,Mn] → P(EF(b));
∀b ∈ BF , ∀x ∈ MH[M1,… ,Mn],

if x ∉ CH[M1,… ,Mn] , EF[M1,… ,Mn](b, x) ∶= �,
if x ∈ CH[M1,… ,Mn] , EF[M1,… ,Mn](b, x) ∶=

{e ∈ EF(b) ∶ stH[M1,… ,Mn](b, e, �
H
0
(e)) is defined and

x = stH[M1,… ,Mn](b, e, �
H
0
(e))}.

(4)qHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](x0) = {t ∈ ℝ ∶ 0 ≤ t ≤ d(x0)}.

8 Let us assume for reductio that, for some projectile b∗ and evolution e∗ , d̄(x0, b∗, e∗) ≠ d̄(x0, b, e) . 
Suppose d̄(x0, b∗, e∗) < d̄(x0, b, e) . Since stHp,𝜙𝜃

[X,Y, Ẋ, Ẏ](b, e, ū(x0, b, e)) is the state of b in e at 

ū(x0, b, e) = d̄(x0, b, e) + 𝜄
Hp,𝜙𝜃

0
(e) and Hp,�� is deterministic w.r.t. magnitudes X,Y, Ẋ, Ẏ , by Definition 25, 

stHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](b, e, d̄(x0, b, e) + 𝜄

Hp,𝜙𝜃

0
(e)) = stHp,𝜙𝜃

[X,Y, Ẋ, Ẏ](b∗, e∗, d̄(x0, b, e) + 𝜄
Hp,𝜙𝜃

0
(e∗)) . It fol-

lows that ū(x0, b∗, e∗) = d̄(x0, b
∗, e∗) + 𝜄

Hp,𝜙𝜃

0
(e∗) is not the final instant of the motion e∗ of b∗ that starts 

at instant �Hp,��

0
(e∗) in state x0 , because the projectile b∗ , in motion e∗ , has still a state at the later instant 

d̄(x0, b, e) + 𝜄
Hp,𝜙𝜃

0
(e∗) . Analogously for the case d̄(x0, b, e) < d̄(x0, b

∗, e∗).
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EF[M1,… ,Mn](b, x) is called the set of all evolutions of realizer b whose initial H-state 
w.r.t. magnitudes M1,… ,Mn is x.

If  CH[M1,… ,Mn] ≠ �,  for  some  x ∈ CH[M1,… ,Mn]  and    b ∈ BF , 
EF[M1,… ,Mn](b, x) may be empty. However note that, by Definitions 28 and 27, for any 
x ∈ CH[M1,… ,Mn] , for any b ∈ BF[M1,… ,Mn](x) , EF[M1,… ,Mn](b, x) ≠ ∅.

We are now ready to show that, whenever H is a deterministic dynamical phenomenon 
w.r.t. to magnitudes M1,… ,Mn , for the state space MH[M1,… ,Mn] we can define a struc-
ture (gH[M1,… ,Mn]

t)t∈V(TH )
, in such a way that (MH[M1,… ,Mn], (gH[M1,… ,Mn]

t)t∈V(TH )
) 

turns out to be a partial deterministic system on the monoid LH = (V(TH),  +̂) . This is 
shown in detail by Definition 29 and Proposition 5 below.

Definition 29 (The partial deterministic system of H w.r.t. magnitudes M1,… ,Mn)
Let H = (F,BF) be a deterministic dynamical phenomenon w.r.t. magnitudes M1,… ,Mn.
DSH[M1,… ,Mn] ∶= (MH[M1,… ,Mn], (gH[M1,… ,Mn]

t)t∈V(TH )
);

gH[M1,… ,Mn]
t ∶ MH[M1,… ,Mn] → MH[M1,… ,Mn] is a partial function;

∀t ∈ V(TH) , Pim(gH[M1,… ,Mn]
t) ∶=

{x ∈ MH[M1,… ,Mn] ∶ x ∈ CH[M1,… ,Mn] ∧ t ∈ qH[M1,… ,Mn](x)};
∀t ∈ V(TH) , ∀x ∈ Pim(gH[M1,… ,Mn]

t),
gH[M1,… ,Mn]

t(x) ∶= stH[M1,… ,Mn](b, e, t+̂𝜄
H
0
(e)) , where

b ∈ BF[M1,… ,Mn](x) and e ∈ EF[M1,… ,Mn](b, x).
DSH[M1,… ,Mn] is called the partial deterministic system of H w.r.t. magnitudes 
M1,… ,Mn.

Note  that  the  previous  definition  is  well  given;  in  the  first  place, 
∀x ∈ Pim(gH[M1,… ,Mn]

t),  x ∈ CH[M1,… ,Mn]  and  t ∈ qH[M1,… ,Mn](x);  in  the  sec-
ond place, if b ∈ BF[M1,… ,Mn](x) and e ∈ EF[M1,… ,Mn](b, x), then,    by    the    defi-
nitions    of    qH[M1,… ,Mn](x)    (Definition 26)    and q̄H[M1,… ,Mn](x, b, e) (Defini-
tion 24),   (i) stH[M1,… ,Mn](b, e, t+̂𝜄

H
0
(e)) is defined and (ii) stH[M1,… ,Mn](b, e, t+̂𝜄

H
0
(e)) 

does not depend on either b or e, as H is a deterministic dynamical phenomenon w.r.t. mag-
nitudes M1,… ,Mn.

Proposition 5 
DSH[M1,… ,Mn] is a partial deterministic system on the monoid LH = (V(TH), +̂).

Proof The thesis is an immediate consequence of Definitions 29 and 4.   ◻

3.4  Settings, Measurements, and Experiments of a Dynamical Phenomenon

In this Section, we complete the formal description of the phenomenal level by stating the 
last three ontological Axioms (8, 9, 10) which introduce, respectively, the notions of setting 
(or preparation) of a F-realizer b with respect to n ≥ 1 magnitudes, measurement on b in 
evolution e of m ≥ 1 magnitudes, and experiment of a dynamical phenomenon H = (F,BF).

In what follows, we are going to use a compact and uniform notation for intervals of 
integers, as specified below.

Notation 3 (Notation for intervals of integers)
Let ℤ be the set of the integers, and m, n ∈ ℤ.
With the notation ℤ[m,n] we intend the set {x ∈ ℤ ∶ m ≤ x ≤ n}.
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With the notation ℤ≥n , we intend the set {x ∈ ℤ ∶ n ≥ x};
analogously for the notations ℤ>n , ℤ≤n , and ℤ<n.

Given a dynamical phenomenon H = (F,BF) and n ≥ 1 of its magnitudes M1,… ,Mn , 
let us consider an arbitrary F-realizer b ∈ BF . As a first approximation, we think of a set-
ting, or a preparation, of b relative to the n given magnitudes as a procedure that (i) starts 
an evolution e of b and, with respect to this evolution e of b, (ii) simultaneously sets the 
initial values of each of the n magnitudes.

In general, the initial setting of a magnitude should not be thought to exactly fix the initial 
value of the magnitude at issue. A better picture is to think of an initial setting as producing 
an approximate result. As we are not presupposing any special property of the set of possible 
values of a magnitude, we think of an approximate result as generally as possible, namely, as 
a set of values that contains the initial value of the magnitude as one of its members.

According to this picture, we can then think of each setting procedure as a partial func-
tion �k[M1,… ,Mn] that applies to an arbitrary realizer b ∈ BF and, if it is defined on b, it 
returns a pair of outputs. The first output is an evolution e ∈ EF(b) , and the second one is a 
subset of the state space MH[M1,… ,Mn] . For any r ∈ ℤ

[1,n] , the r-projection of this subset 
is to be thought as the approximate result of the initial setting of magnitude Mr of realizer 
b in evolution e. Therefore, with respect to the n magnitudes M1,… ,Mn , the initial state 
of b in e should be defined, and it should belong to the second output. All this is precisely 
stated by Axiom 8 below.

Axiom 8 (The k-th setting w.r.t. magnitudes M1,… ,Mn of realizer b)
Let H = (F,BF) be a dynamical phenomenon and, ∀r ∈ ℤ

[1,n] , Mr ∈ �H.
∀k ∈ ℤ

≥1 , 𝜎k[M1,… ,Mn] ∶ BF → ĒF × P(MH[M1,… ,Mn]) is a partial function.
∀k ∈ ℤ

≥1 , ∀b ∈ BF , if b ∈ Pim(�k[M1,… ,Mn]) , then
�1

k
[M1,… ,Mn](b) ∈ EF(b),

stH[M1,… ,Mn](b, �
1

k
[M1,… ,Mn](b), �

H
0
(�1

k
[M1,… ,Mn](b))) is defined, and

st
H
[M

1

,… ,M
n
](b, �1

k
[M

1

,… ,M
n
](b), �H

0

(�1

k
[M

1

,… ,M
n
](b))) ∈ �2

k
[M

1

,… ,M
n
](b), 

where, for s ∈ ℤ
[1,2] , �s

k
[M1,… ,Mn](b) is the s-th element of �k[M1,… ,Mn](b).

�k[M1,… ,Mn](b) is called the k-th setting w.r.t. magnitudes M1,… ,Mn of b.

Given a dynamical phenomenon H = (F,BF) and n ≥ 1 of its magnitudes M1,… ,Mn , 
let us consider an arbitrary F-realizer b ∈ BF and an arbitrary evolution e ∈ EF(b) . We 
think of a measurement of m ≤ n of the n magnitudes, on realizer b in evolution e, as a pro-
cedure that (i) measures a duration of the evolution e of b and (ii) simultaneously measures 
the values of each of the m ≤ n magnitudes at the instant of e that corresponds to such a 
duration.

Analogously to an initial setting, a measurement of a magnitude does not detect the 
exact instantaneous value of the magnitude, but it rather produces an approximate result 
(Dalla Chiara and Toraldo di Francia 1973, 1981). We think of an approximate result as a 
set of values that contains the instantaneous value of the magnitude as one of its members.

Given n ≥ 1 magnitudes M1,… ,Mn , we can then think of each measurement procedure 
of m ≤ n of the given magnitudes Mi(1),… ,Mi(m) , as a partial function �l[Mi(1),… ,Mi(m)] 
that applies to an arbitrary realizer b ∈ BF and evolution e ∈ ĒF and, whenever it is defined 
on b and e, e ∈ EF(b) and it returns a pair of outputs. The first output is a subset of the set 
of possible values V(TH) of the time magnitude, and the second one is a subset of the state 
space MH[Mi(1),… ,Mi(m)] . The first output is to be thought as the approximate result of 
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a measurement of a duration t of e such that the state, w.r.t. M1,… ,Mn , of b in e at the 
corresponding instant t+̂𝜄H

0
(e) is defined. And, for any p ∈ ℤ

[1,m] , the p-projection of the 
second output is to be thought as the approximate result of the measurement of magnitude 
Mi(p) on realizer b in evolution e, at the instant t+̂𝜄H

0
(e) . Therefore, (i) the duration t should 

belong to the first output, (ii) with respect to the n magnitudes M1,… ,Mn , the state of b in 
e at t+̂𝜄H

0
(e) should be defined, and (iii) with respect to the m magnitudes Mi(1),… ,Mi(m) , 

the state of b in e at t+̂𝜄H
0
(e) should belong to the second output. All this is precisely stated 

by Axiom 9 below.

Axiom 9 (The l-th measurement w.r.t. magnitudes Mi(1),… ,Mi(m) on realizer b in evo-
lution e)
Let H = (F,BF) be a dynamical phenomenon, m, n ∈ ℤ

≥1 , m ≤ n , i ∶ ℤ
[1,m]

→ ℤ
[1,n] , 

∀j1, j2 ∈ ℤ
[1,m](j1 < j2 → i(j1) < i(j2)) , and ∀r ∈ ℤ

[1,n] , Mr ∈ �H.
∀l ∈ ℤ

≥1 , 𝜇l[Mi(1),… ,Mi(m)] ∶ BF × ĒF → P(V(TH)) × P(MH[Mi(1),… ,Mi(m)]) is a par-
tial function.
∀l ∈ ℤ

≥1 , ∀b ∈ BF , ∀e ∈ ĒF , if (b, e) ∈ Pim(�l[Mi(1),… ,Mi(m)]) , then
e ∈ EF(b) and ∃t such that
t ∈ �1

l
[Mi(1),… ,Mi(m)](b, e) and

stH[M1,… ,Mn](b, e, t +̂ 𝜄H
0
(e)) is defined, and

stH[Mi(1),… ,Mi(m)](b, e, t +̂ 𝜄H
0
(e)) ∈ 𝜇2

l
[Mi(1),… ,Mi(m)](b, e) where, for s ∈ ℤ

[1,2] , 
�s
l
[Mi(1),… ,Mi(m)](b, e) is the s-th element of �l[Mi(1),… ,Mi(m)](b, e).

�l[Mi(1),… ,Mi(m)](b, e) is called the l-th measurement w.r.t. magnitudes Mi(1),… ,Mi(m) on 
realizer b in evolution e.

On the basis of Axioms 8 and 9, we can now think of a possible experiment of a dynam-
ical phenomenon H = (F,BF) as a setting, w.r.t. n ≥ 1 magnitudes M1,… ,Mn , of a realizer 
b ∈ BF , together with a measurement, on b in evolution e, w.r.t. m ≤ n of the n magnitudes 
Mi(1),… ,Mi(m) . The setting and the measurement must be conveniently correlated, in the 
sense that the setting should be defined on the realizer b, while the measurement should be 
defined on the same realizer b and the evolution e which is the first output of the setting. 
This is precisely expressed by Definition 30.

Definition 30 (Possible experiment of a dynamical phenomenon H)
Let H = (F,BF) be a dynamical phenomenon, b ∈ BF , e ∈ ĒF , k, l,m, n ∈ ℤ

≥1 , m ≤ n , 
i ∶ ℤ

[1,m]
→ ℤ

[1,n] , ∀j1, j2 ∈ ℤ
[1,m](j1 < j2 → i(j1) < i(j2)) , and ∀r ∈ ℤ

[1,n] , Mr ∈ �H.
exp is a possible experiment of H ∶=

exp = (�k[M1,… ,Mn](b),�l[Mi(1),… ,Mi(m)](b, e)),
�k[M1,… ,Mn](b) is the k-th setting w.r.t. M1,… ,Mn of b,
�l[Mi(1),… ,Mi(m)](b, e) is the l-th measurement w.r.t. Mi(1),… ,Mi(m) on b in e,
b ∈ Pim(�k[M1,… ,Mn]),
(b, e) ∈ Pim(�l[Mi(1),… ,Mi(m)]) , and
e = �1

k
[M1,… ,Mn](b).

Finally, according to Axiom  10 below, we think of the experiments that are actually 
performed with respect to a dynamical phenomenon H as a special subclass ExpH of its 
possible experiments.
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Axiom 10 (The set ExpH of all experiments of a dynamical phenomenon H)
We assume that, to any dynamical phenomenon H, the set of all (actual) experiments of 
H is uniquely associated. Such a set is indicated by ExpH . We further assume that, for 
any exp ∈ ExpH , exp is a possible experiment of H. Any exp ∈ ExpH is called an (actual) 
experiment of H.

4  Real World Semantics for Partial Dynamical Systems with Finitely 
Many Components

In Sect. 4,9 we develop a real world semantics for models (in contrast with the usual possi-
ble worlds semantics for sentences), in the case of a widely used class of dynamical models, 
namely, the n-component partial dynamical systems. In particular, we define an interpreta-
tion IDSL,H of a n-component partial dynamical system DSL on a dynamical phenomenon H. 
The interpretation IDSL,H then allows us to define what it means, for the interpreted system 
(DSL, IDSL ,H) , to be a true/false model of H (Definition 38). We also show how such inter-
pretation induces, on the one hand, a substructure of DSL (Definition 34 and Proposition 6) 
and, on the other one, a mathematical structure of H (Definition 35). Finally, we prove that 
(DSL, IDSL ,H) is a true model of H if, and only if, the substructure of DSL induced by IDSL,H 
is identical to the structure of H induced by IDSL,H (Theorem 2 and Corollary 1).

4.1  Correct Interpretation of a n‑Component Partial Dynamical System 
on a Dynamical Phenomenon

Let us now see how a n-component partial dynamical system DSL = (M, (gt)t∈T ) on a 
monoid L = (T ,+) can be interpreted on a dynamical phenomenon H = (F,BF) . The key 
point of the interpretation consists in establishing a correspondence between each com-
ponent Ci (1 ≤ i ≤ n) of the state space M of DSL and a different magnitude Mi of the phe-
nomenon H, as well as between the time model L = (T ,+) of the dynamical system and the 
monoid LH = (V(TH), +̂ ) of the possible values of the time magnitude TH of the phenom-
enon (see Axiom 4).

More specifically, an interpretation is obtained by stating that (i) each component Ci of 
the state space M of DSL is included in, or is equal to, the set V(Mi) of the possible values 
of a magnitude Mi of the phenomenon H and (ii) the time model L of the partial dynamical 
system is identical to the monoid LH of the time values of the phenomenon. Thus, an inter-
pretation IDSL,H of a dynamical system DSL on a dynamical phenomenon H can always be 
identified with a set of n + 1 special statements. The exact definition is below.

Definition 31 (Interpretation of a n-component partial dynamical system on a dynam-
ical phenomenon)
Let DSL be a n-component partial dynamical system on a monoid L, H = (F,BF) be a 
dynamical phenomenon, and LH be the monoid of the possible values of the time magni-
tude of H.

9 The main ideas and results of Sect. 4 were first presented in Giunti (2016).
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IDSL,H is an interpretation of DSL on H ∶= IDSL ,H = {C1 ⊆ V(M1),… ,Cn ⊆ V(Mn), L = LH} , 
where Ci is the i-th component of the state space of DSL , Mi is a magnitude of H and, for 
any i, j (1 ≤ i, j ≤ n) , if i ≠ j , then Mi ≠ Mj.
M1,… ,Mn are called the n magnitudes of H specified by IDSL,H.

Going back to Example 2, we notice that the 4-component dynamical system DSLp is not 
usually thought as a pure mathematical system. Instead, it is conceived together with a 
largely implicit intended interpretation, which makes it a model of the phenomenon Hp,�� 
of projectile motion (Example  3). This interpretation is made explicit in the following 
example.

Example 6 (The intended interpretation IDSLp ,Hp,��
 of the dynamical system DSLp on the 

phenomenon Hp,�� of projectile motion)
We use the symbol IDSLp ,Hp,��

 to indicate the intended interpretation of the dynamical system 
DSLp = (X × Y × Ẋ × Ẏ , (gt)t∈T ) on the phenomenon Hp,�� = (Fp,�� ,BFp,��

) of projectile 
motion. Let X,Y, Ẋ, Ẏ be the four magnitudes of Hp,�� specified in Example 4.
We now let the four components X, Y , Ẋ, Ẏ  of the state space of DSLp and its time model 
Lp = (T ,+) correspond, respectively, to these four magnitudes of Hp,�� , and to the monoid 
LHp,��

= (V(THp,��
), +̂ ) of the possible values of the time magnitude THp,��

 of the phenome-
non. The intended interpretation of the dynamical system DSLp on the phenomenon Hp,�� of 
projectile motion is thus the following set of five statements:

From an intuitive point of view, as soon as an interpretation IDSL,H is fixed, we expect 
that the n-component partial dynamical system DSL = (M, (gt)t∈T ) would provide a repre-
sentation of some, or even all, temporal evolutions e ∈ ĒF of the phenomenon H. However, 
for such a representation to obtain, four obvious conditions must be satisfied.

First, if M1,… ,Mn are the n magnitudes of H specified by IDSL,H , then the set 
CH[M1,… ,Mn] of the H-initial states w.r.t. those magnitudes must not be empty. For, if 
CH[M1,… ,Mn] = � , there is no evolution e ∈ ĒF whose initial state, w.r.t. M1,… ,Mn , 
is defined. Second, the phenomenon H must be deterministic w.r.t. M1,… ,Mn , for DSL is 
a partial dynamical system, and it is thus intended to represent a deterministic dynamics. 
Third, the set CH[M1,… ,Mn] of the H-initial states w.r.t. M1,… ,Mn must be included 
in the set C of the original states of DSL . For, if some x ∈ CH[M1,… ,Mn] and x ∉ C , no 
evolution e ∈ ĒF whose initial state is x can be represented by any state transition gt of 
DSL , as no state transition gt is defined on x. Fourth, for any x ∈ CH[M1,… ,Mn] , the set 
qH[M1,… ,Mn](x) of all durations that transform x into some (other) state must be a subset 
of the life span q(x). For, if t ∈ qH[M1,… ,Mn](x) and t ∉ q(x) , the state transition gt is 
not defined on x, so that it cannot represent how the duration t transforms state x into some 
(other) state.

It is thus quite clear that, whenever the interpretation IDSL,H satisfies the four conditions 
just stated, the n-component partial dynamical system DSL = (M, (gt)t∈T ) can be thought 
to provide a representation of any temporal evolution e ∈ ĒF whose initial state is mem-
ber of CH[M1,… ,Mn] . We call any interpretation IDSL,H that satisfies those four conditions 
admissible. The formal definition is below.

(5)IDSLp ,Hp,𝜙𝜃
= {X = V(X), Y = V(Y), Ẋ = V(Ẋ), Ẏ = V(Ẏ)), Lp = LHp,𝜙𝜃

}.
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Definition 32 (Admissible interpretation of a n-component partial dynamical system 
on a dynamical phenomenon)
Let DSL = (M, (gt)t∈T ) be a n-component partial dynamical system on a monoid L, C be the 
set of all original states, q(x) be the life span of state x ∈ M , H be a dynamical phenom-
enon, IDSL,H be an interpretation of DSL on H, and M1,… ,Mn be the n magnitudes of H 
specified by IDSL,H.
IDSL,H is an admissible interpretation of DSL on H ∶= CH[M1,… ,Mn] ≠ � , H is a 
deterministic dynamical phenomenon w.r.t. M1,… ,Mn , CH[M1,… ,Mn] ⊆ C and, 
∀x ∈ CH[M1,… ,Mn] , qH[M1,… ,Mn](x) ⊆ q(x).

We now show that the intended interpretation (Example  6) of the dynamical system 
DSLp (Example 2) on the phenomenon of projectile motion (Example 3) is admissible.

Example 7 (Admissibility of the intended interpretation IDSLp ,Hp,��
 of the dynamical sys-

tem DSLp on the phenomenon Hp,�� of projectile motion)
Let us consider again (see Example 6) the intended interpretation IDSLp ,Hp,��

 of the dynami-
cal system DSLp on the phenomenon Hp,�� of projectile motion.
We already know that CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] ≠ � (Example 4), and that Hp,�� is usually assumed 
to be a deterministic dynamical phenomenon w.r.t. X,Y, Ẋ, Ẏ (Example 5).
Recall that DSLp = (X × Y × Ẋ × Ẏ , (gt)t∈T ) is a dynamical system on Lp = (T ,+) . Let Cp 
be its set of all original states (see Definition 6) and, ∀x ∈ X × Y × Ẋ × Ẏ  , qp(x) be the life 
span of state x (see Definition  7). Thus, by Proposition  4, Cp = X × Y × Ẋ × Ẏ  and, 
∀x ∈ X × Y × Ẋ × Ẏ , qp(x) = T  . We then notice that the intended interpretation IDSLp ,Hp,��

 
entails CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] ⊆ X × Y × Ẋ × Ẏ = Cp , for all its component sentences are identi-
ties (see Equation 5 above). Also, ∀x ∈ CHp,𝜙𝜃

[X,Y, Ẋ, Ẏ] , qHp,𝜙𝜃
[X,Y, Ẋ, Ẏ](x) ⊆ T = qp(x) . 

It thus follows that IDSLp ,Hp,��
 is an admissible interpretation of DSLP on Hp,��.

We remarked above that, given an admissible interpretation IDSL,H , the n-component 
partial dynamical system DSL = (M, (gt)t∈T ) can be thought to provide a representation of 
any temporal evolution e ∈ ĒF whose initial state is member of CH[M1,… ,Mn] . In more 
detail, for any initial state x ∈ CH[M1,… ,Mn] , for any F-realizer b ∈ BF[M1,… ,Mn](x) , 
for any evolution e ∈ EF[M1,… ,Mn](b, x) , such a representation is provided by all state 
transitions gt such that t belongs to the set qH[M1,… ,Mn](x) of all durations that transform 
x into some (other) state. The representation will then be correct if, for any such t, gt(x) is 
identical to the state stH[M1,… ,Mn](b, e, t + �H

0
(e)) into which the initial state x is trans-

formed by duration t. Accordingly, we call any admissible interpretation IDSL,H that satisfies 
this condition a correct interpretation. Below is the exact definition.

Definition 33 (Correct interpretation of a n-component partial dynamical system on a 
dynamical phenomenon)
Let DSL = (M, (gt)t∈T ) be a n-component partial dynamical system on a monoid L, H be a 
dynamical phenomenon, IDSL,H be an interpretation of DSL on H, and M1,… ,Mn be the n 
magnitudes of H specified by IDSL,H.
IDSL,H is a correct interpretation of DSL on H ∶=

IDSL,H is an admissible interpretation of DSL on H, and
∀x ∈ CH[M1,… ,Mn],∀t ∈ qH[M1,… ,Mn](x),
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∀b ∈ BF[M1,… ,Mn](x),∀e ∈ EF[M1,… ,Mn](b, x),

gt(x) = stH[M1,… ,Mn](b, e, t + �H
0
(e)).

We are now going to show that, whenever IDSL,H is an admissible interpreta-
tion of DSL = (M, (gt)t∈T ) that specifies magnitudes M1,… ,Mn of H, for the state 
space MH[M1,… ,Mn] , we can define a structure (g[M1,… ,Mn]

t)t∈T such that 
(MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T ) turns out to be a partial subsystem of DSL . The pair 
(MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T ) is called the partial subsystem of DSL induced by the 
admissible interpretation IDSL,H . This is shown in detail by Definition 34 and Proposition 6 below.

Definition 34 (The partial subsystem SDSL [IDSL,H] of n-component partial dynamical 
system DSL , induced by admissible interpretation IDSL,H)
Let DSL = (M, (gt)t∈T ) be a n-component partial dynamical system on a monoid L, H 
be a dynamical phenomenon, IDSL,H be an admissible interpretation of DSL on H, and 
M1,… ,Mn be the n magnitudes of H specified by IDSL,H.
SDSL [IDSL,H] ∶= (MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T );
g[M1,… ,Mn]

t ∶ MH[M1,… ,Mn] → MH[M1,… ,Mn] is a partial function;
∀t ∈ T  , Pim(g[M

1

,… ,Mn]
t) ∶=

{x ∈ MH[M1

,… ,Mn] ∶ x ∈ CH[M1

,… ,Mn] ∧ t ∈ qH[M1

,… ,Mn](x)};
∀t ∈ T  , ∀x ∈ Pim(g[M1,… ,Mn]

t) , g[M1,… ,Mn]
t(x) ∶= gt(x).

SDSL [IDSL,H] is called the partial subsystem of DSL induced by admissible interpretation 
IDSL,H.

Proposition 6 
SDSL [IDSL,H] is a partial subsystem of DSL.

Proof See the Appendix.   ◻

If IDSL,H is an admissible interpretation of DSL on H that specifies magnitudes 
M1,… ,Mn , by Definition  32, H is a deterministic dynamical phenomenon with respect 
to M1,… ,Mn . Thus, by Definition  29 and Proposition  5, the partial deterministic sys-
tem of H w.r.t. magnitudes M1,… ,Mn , DSH[M1,… ,Mn] , is well defined. We then call 
DSH[M1,… ,Mn] the partial deterministic system of H induced by IDSL,H , and we indicate 
it by DSH[IDSL,H] . The exact definition is below.

Definition 35 (The partial deterministic system of H induced by admissible interpre-
tation IDSL,H)
Let DSL be a n-component partial dynamical system on a monoid L, H be a dynamical 
phenomenon, IDSL,H be an admissible interpretation of DSL on H, and M1,… ,Mn be the n 
magnitudes of H specified by IDSL,H.
DSH[IDSL,H] ∶= DSH[M1,… ,Mn].
DSH[IDSL,H] is called the partial deterministic system of H induced by admissible interpre-
tation IDSL,H.

We have thus seen that any admissible interpretation IDSL,H induces, on the one hand, 
a partial subsystem of DSL and, on the other one, a partial deterministic system of H. We 
prove below that the interpretation IDSL,H turns out to be correct if, and only if, the two 
induced systems are identical.
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Theorem 2 (Correct interpretation as interpretation induced structure identity)
Let DSL = (M, (gt)t∈T ) be a n-component partial dynamical system on a monoid L, H 
be a dynamical phenomenon, IDSL,H be an admissible interpretation of DSL on H, and 
M1,… ,Mn be the n magnitudes of H specified by IDSL,H.
Let SDSL [IDSL,H] = (MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T ) be the partial sub-
system of DSL induced by IDSL,H , and DSH[IDSL,H] = DSH[M1,… ,Mn] = 
(MH[M1,… ,Mn], (gH[M1,… ,Mn]

t)t∈V(TH )
) be the partial deterministic system of H 

induced by IDSL,H.
IDSL,H is a correct interpretation of DSL on H iff SDSL [IDSL,H] = DSH[IDSL,H].

Proof See the Appendix.   ◻

4.2  True Models of Dynamical Phenomena

We have seen in Sect.  4.1 that, whenever an interpretation IDSL,H is fixed, the par-
tial dynamical system DSL may provide a representation of any temporal evolution 
e ∈ EF[M1,… ,Mn](b, x) , for any F-realizer b ∈ BF[M1,… ,Mn](x) and any initial state 
x ∈ CH[M1,… ,Mn] , where M1,… ,Mn are the n magnitudes specified by the interpreta-
tion. Hence, the system DSL together with the interpretation IDSL,H can be thought as a 
model of the phenomenon H. This idea is precisely expressed by the definition below.

Definition 36 (Model of a dynamical phenomenon)
DSH is a model of H ∶= DSH = (DSL, IDSL,H) , DSL is a n-component partial dynamical sys-
tem on a monoid L, H is a dynamical phenomenon, and IDSL,H is an interpretation of DSL 
on H.

Example 8 (The projectile model DSHp,��
= (DSLp , IDSLp ,Hp,��

))
Let DSLp be the 4-component dynamical system individuated by the equation of motion of 
a projectile (see Example 2), and IDSLp ,Hp,��

 be the intended interpretation of DSLp on the 
phenomenon of projectile motion Hp,�� (see Example 6). Let DSHp,��

= (DSLp , IDSLp ,Hp,��
).

By Definition 36, DSHp,��
 is a model of Hp,�� . DSHp,��

 is called the projectile model (Giunti 
2014, sect. 4.2.1).

An admissible model of a dynamical phenomenon is a model whose interpreta-
tion is admissible. From an intuitive point of view, an admissible model does provide a 
representation of any temporal evolution e ∈ EF[M1,… ,Mn](b, x) , for any F-realizer 
b ∈ BF[M1,… ,Mn](x) and any initial state x ∈ CH[M1,… ,Mn] , where M1,… ,Mn are the 
n magnitudes specified by the interpretation.

Definition 37 (Admissible model of a dynamical phenomenon)
Let DSH = (DSL, IDSL,H) be a model of H.
DSH is an admissible model of H ∶= IDSL ,H is an admissible interpretation of DSL on H.
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Example 9 (Admissibility of the projectile model DSHp,��
)

Let DSHp,��
= (DSLp , IDSLp ,Hp,��

) be the projectile model (see Example 8).
We know that IDSLp ,Hp,��

 is an admissible interpretation of DSLp on Hp,�� (see Example 7). 
Therefore, by the definition of admissible model (Definition 37), DSHp,��

 is an admissible 
model of Hp,��.

A true model of a dynamical phenomenon is a model whose interpretation is correct. 
From an intuitive standpoint, a true model provides a correct representation of any tempo-
ral evolution e ∈ EF[M1,… ,Mn](b, x) , for any F-realizer b ∈ BF[M1,… ,Mn](x) and any 
initial state x ∈ CH[M1,… ,Mn] , where M1,… ,Mn are the n magnitudes specified by the 
interpretation. A false model is a model whose interpretation is not correct.

Definition 38 (True/False model of a dynamical phenomenon)
Let DSH = (DSL, IDSL,H) be a model of H.
DSH is a true model of H ∶= IDSL ,H is a correct interpretation of DSL on H;
DSH is a false model of H ∶= IDSL ,H is not a correct interpretation of DSL on H.

We can finally reformulate Theorem 2 as stating a necessary and sufficient condition for 
the truth of an admissible model of a phenomenon.

Corollary 1 (Truth as interpretation induced structure identity)
Let DSH = (DSL, IDSL,H) be an admissible model of H and M1,… ,Mn be the n magnitudes 
of H specified by IDSL,H.
Let SDSL [IDSL,H] = (MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T ) be the partial subsystem of DSL 
induced by IDSL,H.
Let DSH[IDSL,H] = DSH[M1,… ,Mn] =

(MH[M1,… ,Mn], (gH[M1,… ,Mn]
t)t∈V(TH )

) be the partial deterministic system of H 
induced by IDSL,H.
DSH is a true model of H iff SDSL [IDSL,H] = DSH[IDSL,H].

Proof The thesis follows from Definitions 36, 37, 38, and Theorem 2.   ◻

5  Empirical Semantics for Partial Dynamical Systems with Finitely 
Many Components

In Sect. 5, we work out an empirical semantics for partial dynamical systems with a finite 
number of state-space components. In the first place, we define under what conditions an 
interpretation IDSL,H of a n-component partial dynamical system DSL on a dynamical phe-
nomenon H is empirical (Definition  40). The empirical interpretation IDSL,H then allows 
us to define what it means, for the interpreted system (DSL, IDSL ,H) , to be an empirically 
correct/incorrect model of H (Definition 45). And, finally, we are able to prove: For any 
empirical interpretation IDSL,H , if (DSL, IDSL ,H) is a true model of H, then (DSL, IDSL ,H) is an 
empirically correct model of H and, conversely, if (DSL, IDSL ,H) is an empirically incorrect 
model of H, then (DSL, IDSL ,H) is a false model of H (Theorem 3 and Corollary 3).
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5.1  Empirical Interpretation of a n‑Component Partial Dynamical System 
on a Dynamical Phenomenon, and Its Consistency with an Experiment

We have seen in the previous Section that any interpretation IDSL,H induces, on the one 
hand, a partial subsystem of DSL and, on the other one, a partial deterministic system of H. 
It is important to realize that the interpretation IDSL,H also induces a definite subset of the 
set ExpH of all experiments of H. Its elements are all those experiments whose magnitudes 
M1,… ,Mn are exactly the n magnitudes of H specified by IDSL,H . We call this subset of 
ExpH the empirical content of IDSL,H , and we indicate it by ExpH(IDSL,H) . The exact defini-
tion is below.

Definition 39 (The empirical content ExpH(IDSL,H) of interpretation IDSL,H)
Let IDSL,H be an interpretation of n-component partial dynamical system DSL on dynamical 
phenomenon H = (F,BF) , and M1,… ,Mn be the n magnitudes of H specified by IDSL,H.
ExpH(IDSL,H) ∶= {exp ∈ ExpH ∶ ∃k, l ∈ ℤ

≥1
,∃m ∈ ℤ

[1,n]
,

∃i( i ∶ Z[1,m]
→ Z[1,n] ∧ ∀j

1

, j
2

∈ ℤ
[1,m](j

1

< j
2

→ i(j
1

) < i(j
2

)) ),∃b ∈ BF ,

exp = (�k[M1,… ,Mn](b),�l[Mi(1),… ,Mi(m)](b, �
1

k
[M1,… ,Mn](b)))}.

ExpH(IDSL,H) is called the empirical content of IDSL,H.

Example 10 (The empirical content ExpH(IDSLp ,Hp,��
) of the intended interpretation of 

DSLp on the phenomenon of projectile motion Hp,��)
Let IDSLp ,Hp,��

 be the intended interpretation of the n-component dynamical system DSLp on 
the phenomenon Hp,�� = (Fp,�� ,BFp,��

) of projectile motion (see Example  6), and 
M1 = X,M2 = Y,M3 = Ẋ,M4 = Ẏ be the four magnitudes of Hp,�� specified by IDSLp ,Hp,��

.
By Definition 39, the empirical content of IDSLp ,Hp,��

 is as follows:
ExpHp,��

(IDSLp ,Hp,��
) = {exp ∈ ExpHp,��

∶ ∃k, l ∈ ℤ
≥1
,∃m ∈ ℤ

[1,4]
,

∃i( i ∶ ℤ
[1,m]

→ ℤ
[1,4] ∧ ∀j

1

, j
2

∈ ℤ
[1,m](j

1

< j
2

→ i(j
1

) < i(j
2

)) ), ∃b ∈ BF ,

exp = (�k[M1,M2,M3,M4](b),�l[Mi(1),… ,Mi(m)](b, �
1

k
[M1,M2,M3,M4](b)))}.

We notice that ExpHp,��
(IDSLp ,Hp,��

) ≠ � , because there are actual experiments that consist in 
(i) starting a motion of a projectile while setting its initial velocity and position, and (ii) 
measuring a duration of the projectile motion, as well as its corresponding instantaneous 
position and/or velocity.

According to the following definition, an interpretation is called empirical whenever its 
empirical content is not empty.

Definition 40 (Empirical interpretation of DSL on H)
Let IDSL,H be an interpretation of n-component partial dynamical system DSL on dynamical 
phenomenon H.
IDSL,H is an empirical interpretation of DSL on H ∶= ExpH(IDSL,H) ≠ �.

Example 11 (IDSLp ,Hp,��
 is an empirical interpretation of DSLp on the phenomenon of pro-

jectile motion Hp,��)
We argued that the empirical content ExpHp,��

(IDSLp ,Hp,��
) is not empty (see Example 10). 

Therefore, by the definition of empirical interpretation (Definition  40), IDSLp ,Hp,��
 is an 

empirical interpretation of DSLp on the phenomenon of projectile motion Hp,��.
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Given n ≥ 1 arbitrary sets X1,… ,Xn , a choice of m ≤ n of these sets Xi(1),… ,Xi(m) , 
and a set of n-tuples X ⊆ X1 ×… × Xn , it will be convenient to consider the subset of 
Xi(1) × … × Xi(m) whose elements y have, in each place j ∈ ℤ

[1,m] , the i(j)-th element xi(j) 
of some x ∈ X . According to the following notational convention, we call this subset the 
[i(1),… , i(m)]-projection of X.

Notation 4 (The [i(1),… , i(m)]-projection of a set of n-tuples)
Let m, n ∈ ℤ

≥1 , m ≤ n , i ∶ ℤ
[1,m]

→ ℤ
[1,n] , and ∀j1, j2 ∈ ℤ

[1,m](j1 < j2 → i(j1) < i(j2)) . For 
any r ∈ ℤ

[1,n] , let Xr be an arbitrary set, and X ⊆ X1 ×… × Xn.
proj

[i(1),…,i(m)](X) ∶= {y ∈ X
i(1) × … × X

i(m) ∶ for some (x1,… , xn) ∈ X, y = (xi(1),… , xi(m))}.
proj[i(1),…,i(m)](X) is called the [i(1),… , i(m)]-projection of X.

Given  an  empirical  interpretation  IDSL,H  and  an  experiment  exp ∈ ExpH(IDSL,H) , 
we ask under what conditions the experiment is consistent with the results 
that are expected according to the theoretical model DSL . The experiment 
exp = (�k[M1,… ,Mn](b),�l[Mi(1),… ,Mi(m)](b, e)) consists in (i) starting a motion 
e ∈ EF(b) of a realizer b ∈ BF while (ii) approximately setting the initial values of the n 
magnitudes M1,… ,Mn of H specified by IDSL,H , and then approximately measuring, w.r.t. 
a choice of m ≤ n of the n magnitudes Mi(1),… ,Mi(m) , (iii) a duration of the motion e of 
b and, (iv) the value of each magnitude Mi(j) at the instant of e that corresponds to such 
a duration. Thus, in accordance with the theoretical model DSL = (M, (gt)t∈T ) , we expect 
that, for some t that belongs to the approximate result �1

l
[Mi(1),… ,Mi(m)](b, e) of the dura-

tion measurement, if we apply gt to the approximate result �2

k
[M1,… ,Mn](b) of the setting 

procedure, then the [i(1),… , i(m)]-projection of the resulting set should have a non-empty 
intersection with the approximate result �2

l
[Mi(1),… ,Mi(m)](b, e) of the measurements of 

the m chosen magnitudes. Whenever an experiment exp ∈ ExpH(IDSL,H) satisfies the previ-
ous condition we say that the experiment is consistent with the interpretation IDSL,H . The 
exact definition is stated below.

Definition 41 (Consistency of an experiment exp ∈ ExpH(IDSL,H) with empirical inter-
pretation IDSL,H)
Let IDSL,H be an empirical interpretation of n-component partial dynamical sys-
tem DSL = (M, (gt)t∈T ) on dynamical phenomenon H = (F,BF) , and M1,… ,Mn 
be the n magnitudes of H specified by IDSL,H . Let exp ∈ ExpH(IDSL,H) and 
exp = (�k[M1,… ,Mn](b),�l[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b))) , where b ∈ BF , 

k, l ∈ ℤ
≥1 , m ∈ ℤ

[1,n] , i ∶ ℤ
[1,m]

→ ℤ
[1,n] , and ∀j1, j2 ∈ ℤ

[1,m](j1 < j2 → i(j1) < i(j2)).
exp is consistent with IDSL,H ∶= ∃t ∈ �1

l
[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b)),

( proj[i(1),…,i(m)](gt(�2

k
[M

1

,… ,Mn](b)))
⋂

�2

l
[Mi(1),… ,Mi(m)](b, �

1

k
[M

1

,… ,Mn](b)) ) ≠ �.

We are now able to prove an important result that, with respect to an arbitrary empirical 
interpretation, connects the notion of correctness of Sect. 4.1 (Definition 33) with the one 
of consistency just defined (Definition 41). More precisely, we prove below that, whenever 
an empirical interpretation is correct, it turns out to be consistent with any experiment in 
its empirical content.
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Theorem 3 (Correctness of an empirical interpretation entails its consistency with all 
experiments in its empirical content)
Let IDSL,H be an empirical interpretation of n-component partial dynamical system 
DSL = (M, (gt)t∈T ) on dynamical phenomenon H = (F,BF) , and M1,… ,Mn be the n mag-
nitudes of H specified by IDSL,H.
For any exp ∈ ExpH(IDSL,H) , if IDSL,H is a correct interpretation of DSL on H, then exp is 
consistent with IDSL,H.

Proof See the Appendix.   ◻

5.2  Galilean Models. Truth and Empirical Correctness for Empirical Models

Given a model DSH = (DSL, IDSL,H) of a dynamical phenomenon H, we define the empiri-
cal content of DSH as the empirical content of its interpretation IDSL,H.

Definition 42 (The empirical content ExpH(DSH) of model DSH)
Let DSH = (DSL, IDSL,H) be a model of H.
ExpH(DSH) ∶= ExpH(IDSL ,H).
ExpH(DSH) is called the empirical content of DSH.

We can now define an empirical model of a dynamical phenomenon H as a model 
whose empirical content is not empty or, equivalently, whose interpretation is empirical. 
The definition of an empirical model of H can be thought as a formal explication of the 
concept of a Galilean model (Giunti 1995, sect. 18.4; Giunti 2009, sect. 2; Giunti 2014, 
sect. 4.1).

Definition 43 (Empirical, or Galilean, model of a dynamical phenomenon)
Let DSH = (DSL, IDSL,H) be a model of H.
DSH is an empirical model of H ∶= ExpH(DSH) ≠ �.
Any empirical model of H is also called a Galilean model of H.

Example 12 (The projectile model DSHp,��
 is an empirical, or Galilean, model of the 

phenomenon of projectile motion Hp,��)
Let us consider the projectile model DSHp,��

= (DSLp , IDSLp ,Hp,��
) (see Example  8). By 

Example 10, ExpHp,��
(IDSLp ,Hp,��

) ≠ � . Thus, by Definition 42 and Definition 43, DSHp,��
 is 

an empirical, or Galilean, model of Hp,��.

Given an empirical  model  DSH = (DSL, IDSL,H) , an experiment  exp ∈ ExpH(DSH) is 
consistent with DSH just in case it is consistent with the interpretation IDSL,H.
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Definition 44 (Consistency of an experiment exp ∈ ExpH(DSH) with an empirical 
model DSH)
Let DSH = (DSL, IDSL,H) be an empirical model of H and exp ∈ ExpH(DSH).
exp is consistent with DSH ∶= exp is consistent with IDSL,H.

The previous definitions allow us to reformulate Theorem  3 as stating a connection 
between the notion of truth of an empirical model and the one of consistency with the 
experiments in its empirical content. More precisely, it is shown below that, whenever an 
empirical model is true, it turns out to be consistent with any experiment in its empirical 
content.

Corollary 2 (Truth of an empirical model entails its consistency with all experiments 
in its empirical content)
Let DSH = (DSL, IDSL,H) be an empirical model of H.
For any exp ∈ ExpH(DSH) , if DSH is a true model of H, then exp is consistent with DSH.

Proof The thesis follows from Definitions 38, 42, 43, 44, and Theorem 3.   ◻

We finally define an empirically correct model of a dynamical phenomenon as any 
empirical model that is consistent with all experiments of its empirical content. If it is not 
consistent with some of these experiments, the model is empirically incorrect.

Definition 45 (Empirically correct/incorrect model of a dynamical phenomenon)
Let DSH = (DSL, IDSL,H) be an empirical model of H.
DSH is an empirically correct model of H ∶=

for any exp ∈ ExpH(DSH) , exp is consistent with DSH.
DSH is an empirically incorrect model of H ∶=

for some exp ∈ ExpH(DSH) , exp is not consistent with DSH.

Example 13 (For large � and � , the projectile model DSHp,��
 is an empirically incorrect 

model of the phenomenon of projectile motion Hp,��)
We know that the projectile model DSHp,��

= (DSLp , IDSLp ,Hp,��
) is an empirical model of 

Hp,�� (see Example 12). However, if the two parameters � and � are sufficiently large, we 
also know that there are experiments in its empirical content that are not consistent with it. 
These are the experiments in which the instantaneous position and/or velocity of a projec-
tile is measured with a precision sufficient to detect the error due to the fact that the accel-
eration of gravity is not constant during the whole motion of the projectile, but it rather 
depends on its position. Therefore, for sufficiently large � and � , the projectile model is an 
empirically incorrect model of the phenomenon of projectile motion Hp,��.

On the basis of Definition 45 we are finally able to rephrase Corollary 2 as stating a 
relation between the truth/falsehood of an empirical model and its empirical correctness/
incorrectness.
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Corollary 3 (Truth of an empirical model entails its empirical correctness; conversely, 
empirical incorrectness of an empirical model entails its falsehood)
Let DSH = (DSL, IDSL,H) be an empirical model of H.
If DSH is a true model of H, then DSH is an empirically correct model of H.
If DSH is an empirically incorrect model of H, then DSH is a false model of H.

Proof The first thesis follows from Definition 45 and Corollary 2. The second one follows 
from Definition 45, Corollary 2, and Definition 38.   ◻

Example 14 (For large � and � , the projectile model DSHp,��
 is false)

Let DSHp,��
 be the projectile model, and Hp,�� the phenomenon of projectile motion. By 

Example  13, for sufficiently large � and � , DSHp,��
 is an empirically incorrect model of 

Hp,�� . Therefore, by the second thesis of Corollary 3, for sufficiently large � and � , DSHp,��
 

is a false model of Hp,��.

6  Concluding Remarks: Further Developing MCR

This paper has focused on the semantic relations that an empirical theory may bear to the 
real world, and it has proposed Methodological Constructive Realism (MCR) as a new 
epistemological framework for dealing with this kind of problem. In Sect.  1.4, we have 
given a general and informal formulation of MCR, and we have then elaborated an axi-
omatic version of MCR (Sects. 2–5) for the special case of deterministic dynamical phe-
nomena and their correlated deterministic dynamical models.

In agreement with the semantic view, MCR interprets the relevant aspects of the theory/
world relationship as involving two semantic relations—truth and empirical correctness—
which primarily apply to models on the one hand, and phenomena on the other one. How-
ever, both the general and the special versions of MCR worked out in this paper do not pro-
vide a definite view of the structure of empirical theories, and how the application domain 
of the two semantic relations of truth and empirical correctness can be extended to include 
full blown theories, and not just the models of which they are made.

These problems are the subjects of ongoing research, and they will be the topics of 
future dedicated papers. For the moment, we can just anticipate that MCR conceives of 
an empirical theory as a framework that (i) first of all specifies a particular class of phe-
nomena—the intended domain of the theory—and then (ii) for each phenomenon in this 
class, specifies a class of models of that phenomenon—its theoretical models. The the-
oretical models of a phenomenon have the main function of constituting the theoretical 
search space out of which that particular model which is most likely to be empirically 
correct should be selected. The selected model should then undergo appropriate empiri-
cal testing, in order to actually assess its empirical correctness (Giunti and Pinna 2016, p. 
567). According to this view, then, both empirical correctness and truth can be naturally 
extended to empirical theories. An empirical theory is empirically correct just in case, for 
any intended phenomenon, at least one of its theoretical models turns out to be empiri-
cally correct. From this definition, by substituting “true” for “empirically correct”, we then 
obtain an analogous definition for truth.

To sum up, the line of development described above will thus consist of two main steps. 
First, the general version of MCR will be supplemented with the above sketched general 
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conception of the structure of an empirical theory and the relative notions of truth and 
empirical correctness. And, second, the special axiomatic version of MCR for determin-
istic dynamical models will be accordingly extended to the special case of deterministic 
dynamical theories.

Once these steps are accomplished, however, a second line of development should also be 
considered. So far, a formal version of MCR has been given exclusively for one special type 
of phenomenon, namely deterministic dynamical phenomena. But, quite obviously, this is not 
the only type of phenomenon that scientific research is involved with. To elaborate an adequate 
classification of the different types of phenomena is not a trivial matter, and we believe that 
this is the most basic goal of methodology, on which all its subsequent developments depend. 
We also believe that this goal can only be achieved by employing a piece-meal strategy (Giunti 
1992 p. 139). That is to say, we need to individuate other specific types of phenomena, and then 
produce an axiomatic version of MCR for each specific type, analogous to the one we have 
formulated here for deterministic dynamical phenomena. To conclude, we can just advance a 
guess on some plausible candidates as further phenomenal types. The first, quite natural, can-
didate is the class of all dynamical phenomena that are not deterministic. We then obtain two 
more candidates if, in accordance with the traditional classification of scientific laws (van Fraas-
sen 1970, p. 330; Suppe 1977, p. 226), we consider those non-dynamical phenomena that are 
described by coexistence laws, either of the deterministic or the indeterministic variety.
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Appendix: Proofs of Theorems and Selected Propositions

Theorem  1 (Being a partial dynamical system on a monoid is preserved by 
isomorphism)
Let DS1L = (M, (gt)t∈T ) and DS2L = (N, (ht)t∈T ) be partial deterministic systems on monoid 
L = (T ,+).
If u is an isomorphism of DS2L in DS1L and DS2L is a partial dynamical system on L, then 
DS1L is a partial dynamical system on L.
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Proof 
It is sufficient to prove that conditions 3a and 3b of Definition 2 hold. All other condi-
tions are satisfied by DS1L . For, by the assumed hypotheses, DS1L is a partial determin-
istic system on L.
• Thesis 3a: ∀x ∈ M (x ∈ Pim(g0) → g0(x) = x).
 Let x ∈ Pim(g0).

 As u is an isomorphism of DS2L in DS1L , by Definition 5,
 u(h0(u−1(x))) = g0(u(u−1(x))) = g0(x).
 On the other hand, as DS2L is a partial dynamical system on L,
 h0(u−1(x)) = u−1(x).
 Therefore,
 g0(x) = u(h0(u−1(x))) = u(u−1(x)) = x.
• Thesis  3b: ∀x ∈ M ∀t2, t1 ∈ T  ((x ∈ Pim(gt2+t1 ) ∧ x ∈ Pim(gt1 ) ∧ gt1 (x) ∈ Pim(gt2 )) →

gt2+t1 (x) = gt2 (gt1 (x))).
 Let x ∈ Pim(gt2+t1 ) ∧ x ∈ Pim(gt1 ) ∧ gt1 (x) ∈ Pim(gt2 ).
 As u is an isomorphism of DS2L in DS1L , by Definition 5,
 u(ht1 (u−1(x))) = gt1 (u(u−1(x))) = gt1 (x) and u(ht2 (u−1(gt1 (x)))) = gt2 (u(u−1(gt1 (x)))) =

gt2 (gt1 (x)).
 From this, by substituting u(ht1 (u−1(x))) for gt1 (x) , and because DS2L is a partial dynami-

cal system on a monoid,
 gt2 (gt1 (x)) = u(ht2 (u−1(gt1 (x)))) = u(ht2 (u−1(u(ht1 (u−1(x)))))) = u(ht2 (ht1 (u−1(x)))) =

u(ht2+t1 (u−1(x))).
 As u is an isomorphism of DS2L2 in DS1L1 , by Definition 5,
 u(ht2+t1 (u−1(x))) = gt2+t1 (u(u−1(x))) = gt2+t1 (x).
 Therefore,
 gt2+t1 (x) = gt2 (gt1 (x)).
  ◻

Proposition 2 
(1) ∀x ∈ M , q(x) ≠ � ↔ x ∈ C;
(2) ∀t ∈ T  , Pim(gt) = {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)}.

Proof 
• Thesis (1)
 Let x ∈ M . If q(x) ≠ � , then, by the definition of q(x) (Definition 7), ∃t ∈ T  such that 

x ∈ Pim(gt) . Therefore, by the definition of C (Definition  6), x ∈ C . Conversely, if 
x ∈ C , by Definition 6, ∃t ∈ T  such that x ∈ Pim(gt) . Hence, by Definition 7, t ∈ q(x) , 
so that q(x) ≠ �.

• Thesis (2)
 Let x ∈ M . If x ∈ Pim(gt) , then, by the definition of C (Defini-

tion  6), x ∈ C and, by the definition of q(x) (Definition  7), t ∈ q(x) . Thus, 
Pim(gt) ⊆ {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)} . Conversely, if t ∈ q(x) , by the defini-
tion of q(x), x ∈ Pim(gt) . Thus, {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)} ⊆ Pim(gt) . Therefore, 
Pim(gt) = {x ∈ M ∶ x ∈ C ∧ t ∈ q(x)}.

  ◻
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Proposition 3 
(1) If DS1L is a partial deterministic system on monoid L and DS2L is a partial subsystem 

of DS1L , then DS2L is a partial deterministic system on L;
(2) If DS1L is a partial dynamical system on monoid L and DS2L is a partial subsystem of 

DS1L , then DS2L is a partial dynamical system on L.

Proof 
• Thesis (1)
 Assume that DS1L is a partial deterministic system on monoid L and DS2L is a partial 

subsystem of DS1L . Then, by the definition of partial subsystem (Definition 8) and the 
definition of partial deterministic system on a monoid (Definition 4), DS2L is a partial 
deterministic system on L.

• Thesis (2)
 Assume that DS1L is a partial dynamical system on monoid L and DS2L is a partial sub-

system of DS1L . Then, by the definition of partial subsystem (Definition 8) and the defi-
nition of partial dynamical system on a monoid (Definition 2), DS2L is a partial dynami-
cal system on L.

  ◻

Proposition 4 
(1) If DSL is a deterministic system on L, then C = M;
(2) DSL is a deterministic system on L ↔ ∀x ∈ M , q(x) = T .

Proof 
• Thesis (1)
 If DSL is a deterministic system on L, then ∀t ∈ T  ∀x ∈ M , gt is defined on x. There-

fore, by Definition 6, C = M.
• Thesis (2)
 If DSL is a deterministic system on L, by the definition of deterministic system (Def-

inition  11), ∀t ∈ T  , ∀x ∈ M , x ∈ Pim(gt) . Therefore, by the definition of q(x) (Defi-
nition  7), ∀x ∈ M , q(x) = T  . Conversely, if ∀x ∈ M , q(x) = T  , then, by Definition  7, 
∀t ∈ T  , ∀x ∈ M , x ∈ Pim(gt) . Therefore, by Definition 11, DSL is a deterministic sys-
tem on L.

  ◻

Proposition 6 
SDSL [IDSL,H] is a partial subsystem of DSL.

Proof 
By the definition of SDSL [IDSL,H] (Definition 34),
IDSL,H is an admissible interpretation of DSL on H;
thus, by the definition of admissible interpretation (Definition 32),
CH[M1,… ,Mn] ⊆ C and, ∀x ∈ CH[M1,… ,Mn], qH[M1,… ,Mn](x) ⊆ q(x);
hence, by Definition 34 and Thesis (ii) of Proposition 2, ∀t ∈ T ,
Pim(g[M1,… ,Mn]

t) ⊆ Pim(gt) and ∀x ∈ Pim(g[M1,… ,Mn]
t) , g[M1,… ,Mn]

t(x) = gt(x).
Therefore, by the definition of partial subsystem (Definition 8),
SDSL [IDSL,H] is a partial subsystem of DSL .   ◻
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Theorem 2 (Correct interpretation as interpretation induced structure identity)
Let DSL = (M, (gt)t∈T ) be a n-component partial dynamical system on a monoid L, H 
be a dynamical phenomenon, IDSL,H be an admissible interpretation of DSL on H, and 
M1,… ,Mn be the n magnitudes of H specified by IDSL,H.
Let SDSL [IDSL,H] = (MH[M1,… ,Mn], (g[M1,… ,Mn]

t)t∈T ) be the partial sub-
system of DSL induced by IDSL,H , and DSH[IDSL,H] = DSH[M1,… ,Mn] = 
(MH[M1,… ,Mn], (gH[M1,… ,Mn]

t)t∈V(TH )
) be the partial deterministic system of H 

induced by IDSL,H.
IDSL,H is a correct interpretation of DSL on H iff SDSL [IDSL,H] = DSH[IDSL,H].

Proof 
We prove first (i) the left-right implication, and then (ii) the right-left one.

• Thesis  (1):      If IDSL,H  is  a  correct  interpretation  of DSL on H, then SDSL [IDSL,H] = 
DSH[M1,… ,Mn].

 Assume that IDSL,H is a correct interpretation of DSL on H.
 Then, in the first place, as IDSL,H is an interpretation of DSL on H, by Definition 31,
 L = LH.
 In the second place, by the definition of SDSL [IDSL,H] (Definition 34), and by the defini-

tion of DSH[M1,… ,Mn] (Definition 29),
 MH[M1,… ,Mn] is the state space of both SDSL [IDSL,H] and DSH[M1,… ,Mn].
 Furthermore, by the same definitions, ∀t ∈ T ,
 g[M1,… ,Mn]

t ∶ MH[M1,… ,Mn] → MH[M1,… ,Mn] is a partial function,
 gH[M1,… ,Mn]

t ∶ MH[M1,… ,Mn] → MH[M1,… ,Mn] is a partial function,
 and Pim(g[M1,… ,Mn]

t) = Pim(gH[M1,… ,Mn]
t) =

 {x ∈ MH[M1,… ,Mn] ∶ x ∈ CH[M1,… ,Mn] ∧ t ∈ qH[M1,… ,Mn](x)}.
 Let t ∈ T  , x ∈ Pim(g[M1,… ,Mn]

t) , b ∈ BF[M1,… ,Mn](x) , and
 e ∈ EF[M1,… ,Mn](b, x).
 Then, in the first place, since x ∈ Pim(g[M1,… ,Mn]

t),
 t ∈ qH[M1,… ,Mn](x).
 Thus, by Definition 34, by the definition of correct interpretation (Definition 33), and 

by Definition 29,
 g[M1,… ,Mn]

t(x) = gt(x) = stH[M1,… ,Mn](b, e, t + �H
0
(e)) = gH[M1,… ,Mn]

t(x).
 Therefore,
 SDSL [IDSL,H] = DSH[M1,… ,Mn].
• Thesis (2): If SDSL [IDSL,H] = DSH[M1,… ,Mn] , then IDSL,H is a correct interpretation of 

DSL on H.
 Assume that SDSL [IDSL,H] = DSH[M1,… ,Mn].
 By the hypotheses of the theorem,
 IDSL,H is an admissible interpretation of DSL on H.
 Let x ∈ CH[M1,… ,Mn] , t ∈ qH[M1,… ,Mn](x) , b ∈ BF[M1,… ,Mn](x) , and 

e ∈ EF[M1,… ,Mn](b, x).
 Thus, by the definition of SDSL [IDSL,H] (Definition 34), the assumption above, and the 

definition of DSH[M1,… ,Mn] (Definition 29),
 gt(x) = g[M1,… ,Mn]

t(x) = gH[M1,… ,Mn]
t(x) = stH[M1,… ,Mn](b, e, t + �H

0
(e)).

 Therefore, by the definition of correct interpretation (Definition 33),
 IDSL,H is a correct interpretation of DSL on H.

  ◻
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Theorem 3 (Correctness of an empirical interpretation entails its consistency with all 
experiments in its empirical content)
Let IDSL,H be an empirical interpretation of n-component partial dynamical system 
DSL = (M, (gt)t∈T ) on dynamical phenomenon H = (F,BF) , and M1,… ,Mn be the n mag-
nitudes of H specified by IDSL,H.
For any exp ∈ ExpH(IDSL,H) , if IDSL,H is a correct interpretation of DSL on H, then exp is 
consistent with IDSL,H.

Proof 
Since IDSL,H is an empirical interpretation of DSL on H, by Definition  40, 
ExpH(IDSL,H) ≠ � . Thus, suppose 

 1. exp ∈ ExpH(IDSL,H).
  Suppose
 2. IDSL,H is a correct interpretation of DSL on H.
  As IDSL,H is an interpretation of DSL on H, by Definition 31,
 3. L = LH.
  By assumption 2 and the definition of correct interpretation (Definition 33),
 4. IDSL,H is an admissible interpretation of DSL on H and
  ∀x ∈ CH[M1,… ,Mn],∀t ∈ qH[M1,… ,Mn](x),

  ∀b ∈ BF[M1,… ,Mn](x),∀e ∈ EF[M1,… ,Mn](b, x),

  gt(x) = stH[M1,… ,Mn](b, e, t + �H
0
(e)).

  By 1 and the definition of empirical content (Definition 39),
 5. exp ∈ ExpH and
  ∃k, l ∈ ℤ

≥1
,∃m ∈ ℤ

[1,n]
,∃i( i ∶ Z[1,m]

→ Z[1,n] ∧ ∀j
1

, j
2

∈ ℤ
[1,m](j

1

< j
2

→ i(j
1

) < i(j
2

)) ),∃b ∈ BF ,

  exp = (�k[M1,… ,Mn](b),�l[Mi(1),… ,Mi(m)](b, �
1

k
[M1,… ,Mn](b)))}.

  By 5, the ExpH axiom (Axiom 10), and the definition of possible experiment (Defini-
tion 30),

 6. b ∈ Pim(�k[M1,… ,Mn](b)).
  By 6 and the k-th setting axiom (Axiom 8),
 7. �1

k
[M1,… ,Mn](b) ∈ EF(b),

  stH[M1,… ,Mn](b, �
1

k
[M1,… ,Mn](b), �

H
0
(�1

k
[M1,… ,Mn](b))) is defined, and

  stH[M1,… ,Mn](b, �
1

k
[M1,… ,Mn](b), �

H
0
(�1

k
[M1,… ,Mn](b))) ∈ �2

k
[M1,… ,Mn](b).

  Let
 8. x0 = stH[M1,… ,Mn](b, �

1

k
[M1,… ,Mn](b), �

H
0
(�1

k
[M1,… ,Mn](b))).

  By 8, the first and second conjunct of 7, 5, and the definition of CH[M1,… ,Mn] (Defi-
nition 23),

 9. x0 ∈ CH[M1,… ,Mn].
  By 9, 8, the first and second conjunct of 7, 5, and the definition of BF[M1,… ,Mn](x0) 

(Definition 27),
 10. b ∈ BF[M1,… ,Mn](x0).
  By 9, 8, the first and second conjunct of 7, 5, and the definition of EF[M1,… ,Mn](b, x0) 

(Definition 28),
 11. �1

k
[M1,… ,Mn](b) ∈ EF[M1,… ,Mn](b, x0).

  By 5, the ExpH axiom (Axiom 10), and the definition of possible experiment (Defini-
tion 30),

 12. (b, �1

k
[M1,… ,Mn](b)) ∈ Pim(�l[Mi(1),… ,Mi(m)]).

  By 3, 12, and the l-th measurement axiom (Axiom 9),
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 13. ∃t ∈ �1

l
[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b)) such that

  stH[M1,… ,Mn](b, �
1

k
[M1,… ,Mn](b), t + �H

0
(�1

k
[M1,… ,Mn](b))) is defined and

  stH[Mi(1),… ,Mi(m)](b, �
1

k
[M1,… ,Mn](b), t + �H

0
(�1

k
[M1,… ,Mn](b))) ∈

  �2

l
[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b)).

  By the first conjunct of 13, 5, the first and second conjunct of 7, 8, 9, and the definition 
of q̄H[M1,… ,Mn](x0, b, 𝜎

1

k
[M1,… ,Mn](b)) (Definition 24),

 14. t ∈ q̄H[M1,… ,Mn](x0, b, 𝜎
1

k
[M1,… ,Mn](b)).

  By the first conjunct of 4 and the definition of admissible interpretation (Definition 32),
 15. H is a deterministic dynamical phenomenon w.r.t. M1,… ,Mn.
  By 15, 14, and the definition of qH[M1,… ,Mn](x0) (Definition 26),
 16. t ∈ qH[M1,… ,Mn](x0).
  By the second conjunct of 4, 9, 16, 10, and 11,
 17. gt(x0) = stH[M1,… ,Mn](b, �

1

k
[M1,… ,Mn](b)), t + �H

0
(�1

k
[M1,… ,Mn](b)))).

  By 8 and the third conjunct of 7,
 18. gt(x0) ∈ gt(�2

k
[M1,… ,Mn](b)).

  By 18 and 17,
 19. st

H
[M

1

,… ,M
n
](b, �1

k
[M

1

,… ,M
n
](b)), t + �H

0

(�1

k
[M

1

,… ,M
n
](b)))) ∈

gt(�2

k
[M

1

,… ,Mn](b)).
  By 19 and the notational convention for proj[i(1),…,i(m)](gt(�2

k
[M1,… ,Mn](b))) (Nota-

tion 4),
 20. stH[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b), t + �H

0
(�1

k
[M1,… ,Mn](b))) ∈

  proj[i(1),…,i(m)](gt(�2

k
[M1,… ,Mn](b))).

  By the third conjunct of 13,
 21. stH[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b), t + �H

0
(�1

k
[M1,… ,Mn](b))) ∈

  �2

l
[Mi(1),… ,Mi(m)](b, �

1

k
[M1,… ,Mn](b)).

  By 20 and 21,
 22. ( proj[i(1),…,i(m)](gt(�2

k
[M

1

,… ,Mn](b)))
⋂

�2

l
[M

i(1),… ,M
i(m)](b, �

1

k
[M

1

,… ,M
n
](b)) ) ≠ �.

  By 22 and the definition of consistency of an experiment with an empirical interpreta-
tion (Definition 41),

 23. exp is consistent with IDSL,H .   ◻
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