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Abstract
Chemistry educator Alex H. Johnstone is perhaps best known for his insight that chemistry 
is best explained using macroscopic, submicroscopic, and symbolic perspectives. But in 
his writings, he stressed a broader thesis, namely that teaching should be guided by scien-
tific research on how the brain learns: cognitive science. Since Johnstone’s retirement, sci-
ence’s understanding of learning has progressed rapidly. A surprising discovery has been 
when solving chemistry problems of any complexity, reasoning does not work: students 
must apply very-well-memorized facts and algorithms. Following Johnstone’s advice, we 
review recent discoveries of cognitive science research. Instructional strategies are recom-
mended that cognitive studies have shown help students learn chemistry.

Keywords  General chemistry · Working memory · Long-term memory · Overlearning · 
Cognitive science

Introduction

Alex H. Johnstone (1930–2017) is perhaps the most highly regarded chemistry educator of 
the past century. Dr. Johnstone taught and conducted research at the University of Glasgow 
from 1969 until his retirement in 2006 (Reid 2019). Known for his insight that chemistry 
teaching should help students connect macroscopic, submicroscopic, and symbolic per-
spectives, the “Johnstone triplet” was only a part of his fundamental belief that educators 
should know the science of how the brain learns.

Following his retirement, he received the ACS Award for Achievement in Research for 
the Teaching and Learning of Chemistry. In his award address, he noted that in seeking 
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success in first-year college chemistry, a gateway to science majors, many students did not 
“get there.” He observed that in chemistry education,

[W]hat may have been missing was an understanding of how students learn…. 
Chemists require theories and models to inform their research …. My own research 
has led me to accept, develop, and use a model based on information processing. 
(2010)

The model he had adopted is diagrammed in Fig. 1.
This ‘information processing (IP) model’ had first been proposed by cognitive scientists 

Atkinson and Shiffrin (1968) and extended by Baddeley and Hitch (1974, 1999) to explain 
how the brain learns.

Johnstone wrote that during his career, he had applied the IP model to pursue a goal of 
all chemistry educators, to identify “problems students have with learning chemistry and 
indicate ways to remove the learning obstacles”. Since his retirement, cognitive scientists 
have continued to refine the IP model. In recent decades, substantial progress has been 
made in understanding the model and its implications for education. An example is a 2021 
diagram by cognitive scientist Stephen Chew (2021) which added “choke points” and ‘pit-
falls” in learning, with explanations of how students can work around each (Fig. 2).

During his career, Johnstone worked at the leading edge of learning research. Many of 
his understandings have proven to be correct. At other points, science’s understanding has 
changed. But the fundamentals of Johnstone’s adopted model, updated by recent discover-
ies, “indicate ways to remove the learning obstacles”.

With help from new technologies (Tang and Pienta 2012; Delazer et al. 2004; Dhond 
et al. 2003), cognitive experts have measured substantial strengths and stringent limitations 
of the brain during problem solving (Geary et al. 2008). As a result of this progress, chem-
istry education has become a multi-disciplinary science: combining knowledge of molecu-
lar behavior with science described by Johnstone as “understanding of how students learn.” 
(2010).

The findings of this new science offer an opportunity to transform chemistry educa-
tion from opinion-based theories to science-informed best practices. There is substantial 

Fig. 1   The cognitive science model for information processing. From Johnstone (2010)
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evidence that when instructors design instruction based on the science of both their disci-
pline and how the brain learns, students reach higher levels of achievement (Rosenshine 
2012; Willis et al. 2021; Zhang et al. 2021; Gulacar et al. 2022).

Our paper compares Johnstone’s understandings to the current scientific consensus on 
how the brain solves problems. Where possible, we cite research summaries written by 
cognitive scientists for educators that limit technical terminology but reference extensive 
peer-reviewed studies. Our goal is to assist faculty in designing experiments to better align 
instruction with the science of learning.

Cognitive science and learning

Cognitive science is the study of how the brain thinks and learns. Contributing disciplines 
include neuroscience, evolutionary biology, and cognitive and educational psychology. In 
chemistry, we ask students to solve problems. Within cognitive science, a sub-discipline 
focuses on how the brain solves problems and learns to do so.

Types of problems

By our DNA, humans are ‘programmed’ to solve some types of problems automatically 
(Geary 2002). We take our first breath automatically in response to appropriate stimulus 
and learn to communicate with our parents from day 1. But not all knowledge needed for 
survival is programmed. Learning evolved to adapt individuals to varied environments. To 
learn is to move knowledge gained through experience into the brain’s long-term memory 
(LTM) (Dehaene 2021, p 25).

In a 1991 paper Johnstone asked, “Why is science difficult to learn?” Over the next dec-
ade, evolutionary psychologists discovered part of the answer.

Fig. 2   From Chew (2021)
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Instinctive primary learning

During ‘window periods of human development’ (also known as ‘sensitive periods’), 
for limited topics, the brain evolved to instinctively, automatically, and seemingly effort-
lessly store knowledge gained from experience in LTM (Pinker 2007; Geary 2002; 
Geary and Berch 2016). As one example, creating speech is cognitively incredibly com-
plex, but simply by exposure, children become fluent in speaking the language they hear 
spoken around them. During speech, we apply complex rules with minimal conscious 
knowledge of what those rules are (Pinker 2007).

Children also learn automatically in limited additional topics, including facial rec-
ognition, conventions of social relationships (evolutionary psychologists term these 
‘folk psychology’), and a practical ‘folk physics’ and ‘folk biology’ of how things work 
(Geary 2002; Geary and Berch 2016).. Over thousands of generations, these drives 
evolved to promote survival in difficult primitive environments. Instinctive and auto-
matic learning is termed evolutionarily primary. During childhood, extensive primary 
knowledge is automatically stored in LTM.

Secondary learning

Because reading, writing, and mathematics did not assist in prehistoric survival, their 
learning did not evolve to be automatic. Non-instinctive learning can be achieved 
but nearly always requires effort, attention, rehearsal, and practice at recall (Geary 
2002; Geary and Berch 2016). Learning that requires effort is termed evolutionarily 
secondary.

Among cognitive scientists who study secondary problem-solving, a ‘problem’ is 
broadly defined as “cognitive work that involves a moderate challenge” (Willingham 
2009a). The purpose of schools is to structure secondary learning: to teach citizens to 
solve problems found in modern society that we do not learn to solve automatically 
(Sweller 2008). When the window period for learning a primary topic closes, it becomes 
secondary. For example, after about age 12, gaining fluency in a new language nearly 
always requires effort (Pinker 2007, pp. PS17–18).

Types of problems

Recurrent and non‑recurrent problems

Secondary learning can be divided into problems we learn to solve automatically after 
exerting the necessary effort, and those we do not. Cognitive experts term the former 
recurrent if they are familiar and encountered often. Recurrent skills are “performed as 
rule-based processes after the training; routine and sometimes fully automatic aspects 
of behavior”. (Van Merriënboer and Kirschner 2007) Keeping your car in its lane 
becomes automatic and often unconscious with practice (Clark 2006; Dehaene 2021, 
pp. 160–61). Most problems assigned in introductory chemistry are non-recurrent—not 
yet solvable automatically.
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Well‑structured problems

Cognitive experts divide non-recurrent problems into two types. Well-structured prob-
lems have a specific goal, initial state, constraints, and precise correct answers that can 
be found by step-wise procedures. Scientific calculations are one example. All other 
types of unfamiliar problems can be categorized as ill-structured, including those for 
which correct answers are debatable or not known (Jonassen 1997).

Bennett (2008) determined that “over ninety percent” of chemistry examination ques-
tions at universities in England were well-structured. In widely-adopted U.S. textbooks, 
a similar portion of ‘end-of-chapter’ problems are well-structured.

This focus is determined by student goals. For example, in the U.S., for each college-
graduating chemistry major about 14 students graduate in biology, health care, or engi-
neering majors (Trapani and Hale 2019). Cognitive experts view chemistry, physics, and 
mathematics as overlapping subsets of the words and symbols invented by science to 
explain the physical universe. To learn the language, first-year chemistry is expected 
in part to teach strategies to solve well-structured problems encountered across the sci-
ences which science knows how to solve precisely. Lecture sections grade primarily on 
how well students solve well-structured problems.

Because the work of scientists can impact public safety, students in ‘science-major 
general chemistry’ are taught to solve well-structured problems by applying proven pro-
cedures (algorithms) rather than less-reliable ‘heuristics’ that may involve speculation.

Scope

For the remainder of this article, except where noted, we limit our scope to questions 
of how students solve well-structured problems of the type assigned in the lecture com-
ponent of college ‘science-major’ general chemistry and in college and high school 
courses preparing students for general chemistry.

Cognitive architecture

In broad outline, the IP model diagrammed by Johnstone above continues to be applied 
by cognitive scientists to explain problem solving and learning. The model has three 
major components: the perception filter (attention), working space (or working mem-
ory—WM), and long-term memory (LTM) (Fig. 1).

Perception

Johnstone (2010) wrote that at every conscious moment, “we are victims of … a torrent 
of sensory stimuli,” but “we have a filtration system that enables us to … focus upon 
what we consider to matter.” (Fig. 1) The perception filter, he wrote, “must be driven by 
what we already know” to let limited items through. In stoichiometry, a student might 
read to first answer “what unit and formula are wanted?” The strategy previously stored 
in LTM (learned) will determine which data receive attention.
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Johnstone then described the “information we admit through the filter” entering 
“working memory” (2010).

WM and attention

WM holds what we are conscious of at the moment. Johnstone described working mem-
ory as the.

limited working space in which conscious thought takes place, bringing together 
new information admitted through the filter and information retrieved from long-
term memory. There they interacted, looking for linkages between old and new 
knowledge (i.e., making sense of the new) … This working space has two func-
tions: to hold information temporarily and to process it. (2010)

This summary is consistent with the current cognitive science explanation of working 
memory’s functions during problem solving (Chew 2021; Dehaene 2021, pp. 160–61).

In recent descriptions, the ‘perception filter” is often labeled ‘attention’ to emphasize 
a distracting noise or image can shift attention and send extraneous data into WM. Dis-
tracting data may bump stored problem data out of WM, which tends to cause confusion 
(Alloway and Gathercole 2006). From ‘attention’ we draw our first instructional impli-
cation of the IP model. Students may benefit from advice to study in a library or similar 
location where attention is on learning—and cell phones are off.

Long‑term memory and neurons

Since Johnstone’s retirement, the detail of science’s description of LTM has been 
updated, in part based on neuroscience’s improving ability to observe the brain during 
learning.

LTM is where we store what we have learned in networks of specialized cells termed 
neurons. Each neuron can form connections with and share information among thousands 
of other neurons. In neuronal networks, information is encoded: stored as representations 
that can be recalled to solve problems.

A neuron can fire, meaning it can create an electrical impulse which can transmit stored 
information to other neurons. Surrounding a neuron’s central cell body are thousands of 
small fibers that carry incoming electrical signals to the central body and thousands of fib-
ers that carry outgoing signals (Dehaene 2021, p. 10).

Synapses are structures at narrow gaps between wires of two neurons. When an outgo-
ing signal reaches a synapse, molecules termed neurotransmitters, such as serotonin and 
dopamine, can be released and cross the gap. This can cause the fiber of the adjacent neu-
ron to send an electrical signal to its cell body, which may cause the neuron to fire. In 
neuroscience, the fibers and synapses that can carry signals are termed the brain’s wiring. 
Via wiring, each neuron can connect and exchange signals with thousands of other neurons 
(Dehaene 2021, pp. 86–89).

During learning, changes are made in the brain’s wiring that enable knowledge to be 
stored. The human brain contains over 80 billion neurons, each with about 10,000 synaptic 
connection whose strength can vary. This gives human LTM an enormous potential capac-
ity to store learning (Dehaene 2021, p. 10).
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Memory storage in chunks

How does LTM store learning? Let’s begin with an overview. LTM comes “pre-wired” to be 
able to break images and sounds into small elements LTM can encode (store). Among those 
elements, new connections in LTM can be made that result in new learning. (Anderson and 
Lebiere 1998) For example, a child learns to recognize a certain lines and curves as the number 
5. During this learning, the brain creates a “wired connection” storing the fact those encoded 
lines, curves, and arrangement represent the symbol 5. (Dehaene 2021, pp. 6, 86, Furst 2020).

The storage of these relationships is said to create an LTM chunk. Cognitive science defines 
a chunk as a collection of connected knowledge elements that has meaning. (Anderson 1996; 
Willingham 2006; Dehaene 2021, p. 6). In chemistry problems, data are typically words, num-
bers, or symbols previously stored in LTM as a small chunk.

As learning is applied to solve new problems, small knowledge chunks become wired into 
increasingly larger chunks. The symbol and sound and spelling of 5 become linked into a 
larger chunk. As more complex problems are solved, this chunking combines growing net-
works of smaller chunks into rich and well-organized conceptual frameworks for topics (each 
termed a schema, plural schemata) (Taber 2013, Dehaene 2021, pp. 220–225, Kalyuga et al. 
2003).

Cues prompt recall of chunks

How do students solve chemistry problems? A summary would be: problem data moved into 
WM that has been previously been stored within larger LTM chunks can locate useful rela-
tionships within those chunks. Those relationships can be recalled to convert problem data to 
the answer.

As the brain focuses attention on a problem, input collected by the senses enters WM. The 
brain uses the elements of data entering WM as a cue to search LTM for a matching chunk 
(Willingham 2008; Dehaene 2021 p 90). When a match for a cue such as ‘5’ is found, LTM 
neurons holding the match activate (fire), sending a signal to other neurons to which they are 
connected (chunked). Depending on the characteristics of the signal, neurons in these con-
nected chunks may activate and fire. Neuroscientists have observed the working of WM dur-
ing problem solving as “the vigorous firing of many neurons” primarily in the brain’s cortex 
(Dehaene 2021, p. 90, 160).

These activated chunks are said to be recallable by WM) (Willingham 2006; Furst 2018; 
Anderson et al. 2004). In WM, unique problem data plus activated, recallable chunks stored 
by previous learning can converted and integrated, step by step, to reach the problem goal 
(Alloway and Gathercole 2006; Willingham 2009a; Dehaene 2021, pp. 159–60). An example 
would be ‘units to moles to moles to units’ conversions in stoichiometry.

In brief, that is science’s current description of how the brain solves problems. The steps 
are more detailed but similar to Johnstone’s 2010 explanation of the operation of the IP model.

What makes learning science difficult?

Asking “Why is science difficult to learn?” Johnstone prepared a list of chemistry topics 
students found difficult. Research by his group found that for “questions of increasing com-
plexity … a point is reached after which most students fail. It comes somewhere between 
five and six pieces of information and operations.” (1997).
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Working memory limits

Seeking an explanation, Johnstone found research by Harvard psychologist George Miller 
which Johnstown summarized, “working memory space can hold seven plus or minus two 
pieces of information … if no processing is required…. [If] holding and processing…. val-
ues are nearer five plus or minus two.” (2010).

Johnstone’s determination of WM capacity essentially replicated Miller’s. Johnstone 
was among the first educators to consider the implications of this ‘working memory limit’ 
for student problem solving. He explained, “working space is of limited capacity… If there 
is too much to hold, there is not enough space for processing.” (1997).

Johnstone also noted Miller’s finding of a way to work around the WM limit: “This 
process is called chunking and it is this that enables us to use the limited working space 
efficiently.” (1997).

How does chunking circumvent WM limits? Try this brief experiment.

Find a pencil and paper. Mentally read three times: 6.021023
Look away and write the value 100 times larger.
Mentally read three times: 4.850279
Hide the number and write the value 10 times larger.

 Which problem was easier? For a chemist, the first number may contain smaller chunks 
(numbers) previously memorized together that can be recalled as a larger chunk (i.e., 
Avogadro’s number). With fewer chunks in WM slots, remembering is easier and more 
room is available in WM for processing (De Groot, 1946; Chase and Simon 1973}.

Johnstone theorized chemistry was difficult because “the quantity of information that 
needs to be manipulated, … [was a] major source of overload of working memory.” 
(2010) He noted Miller’s observation that for experts, whose memory was organized in 
large chunks, WM limits could be circumvented (1980). But Johnstone worried, given an 
average WM capacity of five items, “Even the ‘simplest’ mole calculations require more 
than five manipulation steps for a novice….” and as courses progressed, “the complexity 
increased, leaving many students intellectually stranded.” (2010).

Though WM is limited, there is good news. Science has discovered two additional strat-
egies, in addition to chunking, to circumvent WM limits.

Automaticity and overlearning

Daniel Willingham is a cognitive scientist who has made a special effort to disseminate 
findings of cognitive research to educators. In a 2004 article, he advised the “lack of space 
in working memory is a fundamental bottleneck of human cognition” but described two 
recently discovered strategies, in support of chunking; to work-around WM limits: auto-
maticity in recall of facts and automaticity in the application of algorithms. Both can be 
achieved by student effort termed overlearning: repeated practice to perfection in recalling 
information (Geary 1994; Willingham 2004).

In 2006, Kirschner, Sweller, and Clark summarized that WM is “very limited in dura-
tion and capacity” when processing information not quickly recallable from LTM, but 
“when dealing with previously learned information stored in long-term memory, these lim-
itations disappear.” In a 2008 report on well-structured problem solving, leading cognitive 
scientists Geary, Berch, Boykin, Embretson, Reyna, and Siegler advised:
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There are several ways to improve the functional capacity of working memory. The 
most central of these is the achievement of automaticity, that is, the fast, implicit, and 
automatic retrieval of a fact or a procedure from long-term memory. (pp. 4–5)

‘Achieving automaticity in retrieval’ is also termed automatization or automating recall. 
Example: How much is 6 times 7? Quickly answering means the multiplication has been 
automated. Geary et al. add:

In support of complex problem solving, arithmetic [fundamental] facts and funda-
mental algorithms should be thoroughly mastered, and indeed, over-learned, rather 
than merely learned to a moderate degree of proficiency. (pp. 4-6)

To reliably solve multi-step problems in a topic, students must overlearn (very well 
memorize) its fundamental facts and algorithms.

WM’S strengths and limitations

These findings answer Johnstone’s fundamental question: how can instructors “remove 
the learning obstacles?” Chunking works around WM limits –- if needed chunks are made 
recallable “with automaticity” and overlearned over time. The requirement for automaticity 
is explained by the measured characteristics of WM.

Limited slots in WM

WM can be described as composed of slots. During problem solving, these slots must 
hold novel (new, problem-specific) chunks of data, including the goal, initial data, answers 
found at middle steps, and needed relationships that must be ‘looked up’ or calculated 
(Willingham 2006; Alloway and Gathercole 2006; Luck and Vogel 2013). Johnstone wrote,

[W]orking space reaches a maximum about the age of 16 …. It seems that it cannot 
expand beyond that limit, but that we can learn to use it more efficiently in topics … 
in which we have some expertise… (2010)

Science’s current description of WM is similar. If data are words, numbers, or symbols, 
adults typically have only 3–5 slots that can hold a novel data chunk (Cowan 2001, 2010). 
If data are supplied from multiple senses (such as both visual and auditory), a few addi-
tional slots may be available, but the number of novel slots remains quite limited (Paivio 
2014).

On average, WM capacity roughly doubles between age 5 and 12, plateaus in adult-
hood, and declines in the elderly. In individuals, maximum adult WM capacity is resistant 
to change (Cowan 2001, 2010). WM is also limited in duration. When information is being 
processed, each WM slot can retain a novel chunk for less than 30 s (Peterson and Peterson 
1959).

Unlimited room when automated

WM also has strengths. Information stored in LTM is “kept directly accessible by means 
of retrieval cues.” (Ericsson and Kintsch 1995) This means for activated chunks, WM lim-
its are circumvented. A data cue and the LTM chunks it activates are treated by WM as 



248	 J. R. Hartman et al.

1 3

one large chunk. Components within the chunk can be accessed by WM to convert data to 
reach the problem goal.

Capacity and ‘bump out’

Johnstone found, “Students began to fail when working space was overloaded.” (1997) 
Recent cognitive studies add detail. At problem steps, if a needed relationship has not been 
memorized, novel WM will then need slots for both the data cue and its needed looked-up 
relationship. In a complex problem, the limited slots for novel data are likely already full. 
Trying to store a non-recallable chunk in WM is then said to cause overload (Willingham 
2004; Gathercole and Alloway 2004; Furst 2018).

What happens in overload? If ‘phosphate ion’ is supplied as data, it needs one slot. But 
if its multi-component formula is needed and must be looked up, storage for transfer of the 
formula’s components to paper will also require WM slots. If WM slots are already full, 
either the formula chunks will not store, or they store by ‘bumping out’ problem data previ-
ously stored in slots. If the ‘bumped out’ data chunk is needed at later steps of processing, 
confusion results, as when trying to remember 4.850279 during processing.

In contrast, if the name to formula relationship is in a well-memorized chunk in LTM, 
only one component needs a novel WM slot and overload is less likely.

Speed and ‘time out’

During problem solving, speed is also important. Automated information is recalled 
instantly. Finding an answer from a table, calculator, or the internet takes time. Because 
information in WM is stored for less than 30 s during processing, during a search, other 
problem data being held in novel slots tend to ‘time out’ and be lost. But if a relationship 
is automated, information ‘timed out” can be quickly restored by cued recall (Ericsson and 
Kintsch 1995; Kirschner et al. 2006; Willingham 2008).

The impact of limits

When prior production of chunks by students has been limited, Alloway and Gathercole 
advise,

The capacity of working memory is limited, and the imposition of either excess stor-
age or processing demands in the course of an on-going cognitive activity will lead 
to catastrophic loss of information from this temporary memory system. (2006)

Among cognitive scientists, WM limits and their impact are not contested. Neuroscience and 
cognitive psychology may vary in terminology, but all current scientific descriptions of prob-
lem solving include space in WM that is stringently limited for novel data and non-recallable 
relationships but essentially unlimited for relationships quickly recallable.

Three work‑arounds

Johnstone summarized,
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Chunking usually depends upon some recognizable conceptual framework that enables 
us to draw on old, or systematize new, material. For an experienced chemist, the recog-
nition… bases …are related provides a helpful chunking device. (1997)

Since Johnstone’s retirement, cognitive research has confirmed that to efficiently learn a new 
and well-structured topic, to circumvent WM limits, students must take three steps.

1.	 Facts that are fundamental must be made recallable ‘with automaticity’ early in the 
study of a new topic – by rehearsal then distributed retrieval practice.

2.	 Algorithms solving topic problems by applying recallable facts must be automated 
using interleaved and distributed practice that solves problems in a variety of distinctive 
contexts.

3.	 To chunk new knowledge into a robust and long-lasting conceptual framework, initially 
automated facts and algorithms must be overlearned by practice in applications over 
days, then re-visited in weeks, then months.

Richard Clark summarizes, “We appear to have innate, unconscious routines for auto-
mating all behavior that is perceived as successful and repeated over time.” (2006) Stanislas 
Dehaene, awarded the 2014 Brain Prize in neuroscience, explains the basis in the brain for the 
automaticity work-around:

Automatization mechanisms ‘compile’ the operations we use regularly into more effi-
cient routines. They transfer them to other brain circuits, outside our conscious aware-
ness. As long as a mental operation …has not yet been automated by overlearning, it … 
prevents us from focusing on anything else. (2021, pp. 222–23)

Each new topic in general chemistry includes new vocabulary and other fundamentals. To 
build conceptual frameworks efficiently, fundamentals must first be automated.

Information in automated circuits can be applied with minimum use of the WM where 
conscious knowledge is held. To work around WM limits, in any structured activity (including 
sports and music), a goal is to automate facts and procedures needed frequently. After automa-
tion, steps are effortless.

Automate factual recall

As a priority, what must be automated? Facts and procedures needed most often. Let’s begin 
with facts.

Recalling facts

A fact (also termed ‘declarative knowledge’) is composed of two or more related 
chunks of knowledge. A new term is defined with terms previously memorized. If 
‘mole’ is unfamiliar but types of small particles and exponential notation have both 
been well learned, the factual definition ‘1 mol of particles = 6.02 × 1023 particles’ can 
be understood.

Facts can be definitions of words, symbols, and abbreviations. In introductory 
courses, pico-, phosphate, potential energy, proton, photon, P, P, Pb, pH, pKa, and 
kPa are likely to be vocabulary of an unfamiliar foreign language. When new terms are 
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needed for a new topic, definitions must be automated early in study as a foundation 
for understanding.

Facts can be rules. 106/10−3 = 109. Cation is pronounced as cat ion. Facts can be 
mathematical relationships. pH = − log[H+]. Individual facts can be automated into 
larger chunks with conditions and context chunks attached. For ideal gases: PV = nRT. 
For first-order kinetics: ln(fraction remaining) = − kt.

When listening to lecture, reading a text, or solving problems, if the definition of 
a new terms have not been stored in automated circuits, ‘information overload ‘ can 
occur. But after automating the meaning of new technical vocabulary, students can lis-
ten to lecture and read detailed textbooks with improved comprehension.

Johnstone and Kellett wrote in 1980, “If the pupil can ‘chunk’ the information [s]he 
may have sufficient ‘spare capacity’ to operate upon the information with some hope 
of success.” We know now what in 1980 they did not. Chunking can provide more than 
“hope” for help in solving complex problems—if recall of new fundamentals has first 
been automated.

Maintenance rehearsal

At the start of a new topic, needed new facts can be learned quickly. The steps are: the 
instructor supplies a limited list of new and prerequisite facts for the topic, students 
practice rehearsal and retrieval practice of those fundamentals for a few days, and a 
brief announced quiz encourages assignment completion. Without this instructor guid-
ance, novice learners tend to have difficulty identifying what is most important in a 
detailed reference text.

Factual learning begins with maintenance rehearsal (or simply rehearsal). Repeat-
edly reciting an unfamiliar phone number—or an unfamiliar chemistry definition—is 
the first step in making it recallable. To speed learning, maintenance rehearsal should 
involve as many senses as possible: hearing, seeing, saying, thinking, and writing the 
fact repeated for several days.

When learning to speak, the brain of a child automatically moves frequently over-
heard phrases into LTM. After about age 12, learning phrases in a new language, 
including chemistry, becomes more difficult, but it remains achievable with effort and 
practice (Pinker 2007, pp. PS17–18). Flashcards can help. If a student writes ‘phos-
phate’ on an index card and PO4

3− on the other side, then finds a place to whisper 
without distracting others: “phosphate is (flip) P O 4 3 minus,” recital practice for sev-
eral days in both directions automates recall of both phrases.

Elaborative rehearsal

Thinking about meaning is elaborative rehearsal. Here, associations are made between 
the new information and what you already know. This can involve organizing or reor-
ganizing, thinking of examples, creating an image in your head, or applying a mne-
monic device. For information which is complex or likely to be encountered in specific 
contexts, elaborative rehearsal is generally more efficient than maintenance rehearsal at 
making new information retrievable (Bransford 2000; Willingham 2004).

While both types of rehearsal should be practiced, when learning simple facts, main-
tenance rehearsal is usually sufficient.
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Retrieval practice

Retrieval practice divides rehearsal into a question and an answer, then requires the 
answer be recalled. Retrieval practice creates a desirable difficulty (Bjork and Bjork, 
2019). When effort is made to recall information from LTM, it strengthens the wired 
connection within the rehearsed chunk. The effort can include self-testing such as flash-
card use, teachers giving short, no-stakes quizzes, writing tables of relationships (such 
as metric-prefix definitions) from memory, recalling mnemonics (RoyGBiv), sequence 
recitation (methane, ethane, …), and answering clicker questions (Agarwal et al. 2013; 
Carpenter and Agarwal 2019).

Flashcards are especially useful for simple relationships such as vocabulary defini-
tions. If possible, each of the two parts of a flashcard relationship should be practiced 
as visual cues, spoken cues, and for written practice: Seeing one side, write the other. 
Writing words teaches spelling. Writing chemical symbols teaches case, subscripts, and 
superscripts. With sufficient rehearsal and retrieval practice, answers are moved into 
automated circuits in LTM, working around WM limits. That’s the goal.

Retrieval practice applies the testing effect: recall is strengthened more by testing, 
including low- or no-stakes or self-testing, than by highlighting or re-reading (Dunlosky 
2013; Brown et al. 2014, Deans for Impact 2015).

Verbatim versus gist learning

Retrieval practice is especially important in chemistry because knowledge in the 
physical sciences is precise. Geary et al. (2008) note that verbatim (precise) facts “are 
encoded separately from gist” (summary) memories, and verbatim information “often 
requires more effort to learn than the gist…. Verbatim recall … requires a great deal 
of time, effort, and practice.” For example, everyone has a summary, operational, gist 
understanding of temperature, but “temperature is a measure of the average kinetic 
energy of particles” requires overlearning to remember long-term.

Why retrieval works

Dehaene suggests we advise students:

Active engagement followed by error feedback maximizes learning…. Using 
flashcards, for each card, try to remember the answer (prediction) before checking 
it by turning it to the other side (error feedback). (2021, p.186)

Repeated engagement, prediction, and feedback signals the brain to move the relationships 
among chunks being processed in WM into automated circuits in LTM.

Willingham’s best-known adage may be, “memory is the residue of thought.” (Willingham 
2009c) We tend to remember what we think about, especially if we think about it often. For 
example, during a lecture or reading assignment that includes many new terms, an occasional 
pause for ‘clicker questions’ can move short definitions from WM into initial LTM storage. 
(Trafton 2017) This can free space in WM for additional new information, assisting for a day 
or two with comprehension of speech or reading, and tends to assist longer-term if retrieval is 
repeated (Willingham 2006).
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Overlearn with spaced practice

Recall practiced several times in one long sitting (such as the night before a test) but not in 
shorter sittings on multiple days is termed massed practice or cramming. Crammed knowl-
edge can help for the next day or two (increasing performance) but tends to be quickly forgot-
ten (it is not learned; there is no change in LTM) (Kirschner et al. 2006). After several days 
without re-study, to regain recall of crammed knowledge tends to require a repeat of intensive 
and time-consuming study.

The spacing effect is the improved recall that results from retrieval practiced over multiple 
days. Repeated practice over several days, combining the testing and spacing effects, is termed 
distributed practice (Willingham 2002a, 2015; Carpenter and Agarwal 2019). For a day or 
two after massed practice, learning can be used to solve problems because retrieval strength is 
high. However, storage strength is low (Bjork and Bjork 2019). Distributed practice promotes 
both storage in and retrieval of knowledge from LTM.

Repeated practice to perfection is overlearning. Willingham advises, “Practice makes per-
fect—but only if you practice beyond the point of perfection… Regular, ongoing review … 
past the point of mastery” is necessary to move knowledge into automated circuits. (Willing-
ham 2004).

Overlearning distributed over weeks and months is termed spaced overlearning. Neuro-
scientists advise that when studying new facts and procedures, “To keep the information in 
memory as long as possible…. start with rehearsals every day, then review the information 
after a week, a month, then a year.” (Dehaene 2021, p. 219) For maximum long-term reten-
tion, the goal in study for a science career, spaced overlearning is required.

Must everything be well-memorized? No. Willingham suggests what should be over-
learned are “core skills and knowledge that will be used again and again.” (2004) Geary et al. 
(2008) write that fundamental facts and procedures should be overlearned. If fundamentals 
are not thoroughly memorized at the start of a topic, cognitive experts predict new learning 
will not be as efficient and effective as needed for the rigor and pace of science-major science 
courses (Kirschner et al. 2006; Willingham 2009b).

Making learning stick

On a cumulative final examination, if facts, algorithms, and concepts are remembered, they 
were successfully overlearned. But three months later, some knowledge will no longer be 
recallable. In six months, more will be forgotten (Ebbinghaus 1885). Is that a problem? 
Cognitive experts say no.

Johnstone expressed the concern that “rote-learned material …. is easily lost” from 
LTM (2010). Cognitive studies have found, for material previously overlearned, forgetting 
may occur, but if needed in a higher-level course, quick recall can be restored with far less 
re-study. Cognitive experts call this ability to refresh overlearned memory the ‘savings in 
relearning’ effect (Willingham 2002a, 2015). After the quick review, the necessary founda-
tion of prerequisites is accessible to expand conceptual frameworks by problem solving.

Spaced overlearning also tends to ‘flatten the forgetting curve,’ meaning what has been 
learned tends to be better remembered for longer periods of time (Ebbinghaus 1885). Spac-
ing day or longer time gaps between retrieval practice sessions lead to some forgetting, 
creating a desirable difficulty: The increased mental effort required for retrieval (i.e., the 
difficulty) promotes longer lasting cued recall (i.e., which is desirable). ‘Forgetting then 
remembering’ strengthens both storage and retrieval (Bjork and Bjork 2019).
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Rote memorization

Johnstone’s concern, shared possibly by other educators, was that “students can imagine 
that learning chemistry is a rote process.” (1997) Though a new chemistry topic must get 
well beyond learning initial vocabulary, in introductory courses, new topic fundamentals 
will tie up WM slots until they are well-memorized. After fundamentals are automated, 
solving problems wires the new fundamentals to prior learning, speeding construction of 
the robust cognitive schemata needed for deeper conceptual understanding. Neuroscience 
educator Efrat Furst summarizes, “Time is better spent at teaching the basics than trying to 
teach the new without it.” (2018).

Willingham advises much of what is deprecated as “rote learning” is actually “inflexible 
knowledge” with a narrow meaning. He advises, “What turns the inflexible knowledge of 
a beginning student into the flexible knowledge of an expert seems to be a lot more knowl-
edge, more examples, and more practice.” (2002b).

Incidental memorization

Instead of by initial retrieval practice, can students learn new vocabulary as they solve 
problems? Yes, but it is slow and frustrating. In a problem with unfamiliar terms, WM 
overloads quickly. If a student uses problems to learn what new terms mean, given WM 
limits, solving the problem will be less likely. Success is motivating; repeated failure is not.

Automate algorithms by practice

Johnstone expressed concern that, because WM capacity was limited, the multiple steps of 
complex calculations would leave “many students intellectually stranded.” (2010) Cogni-
tive science research has recently shown that even for complex, many-step problems, struc-
tured algorithms can work around the WM bottleneck.

Algorithms

An algorithm (also termed a well-structured or fixed procedure) is a ‘recipe’ that solves a type 
of complex problem in a sequence of steps (Willingham 2009a; Van Merriënboer and Kirsch-
ner 2007). Examples of algorithms include sequences remembered by mnemonics (RICE, 
ICE, BCA tables), solubility schemes, the algorithms of arithmetic and algebra, and the steps 
of a worked example.

For a specific type of problem, a useful algorithm is one that has empirically proven to suc-
cessfully convert data to an answer, breaking a problem into a sequence of steps such that at 
each step, WM does not overload (Geary et al. 2008; Willingham 2009a, 2009b). Cognitive 
studies have found, “With mastery… algorithms can be executed automatically and without 
need for explicit recall and representation of each problem-solving step in working memory.” 
(Geary et al. 2008, pp. 4–32) Practice moves algorithms into automated circuits that minimize 
the need to for WM processing.

When trying to solve problems with complex data and/or multiple steps, reasoning strate-
gies that do not rely on algorithms nearly always fail. Trying to reason without an algorithm 
quickly overloads WM (Kirschner et  al. 2006; Alloway and Gathercole 2006; Geary et  al. 
2008).
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For each problem type, many algorithms will likely work. However, if multiple algorithms 
are practiced, recall of different steps tends to ‘interfere’ with each other. For this reason, cog-
nitive experts suggest instructors identify and teach one ‘best’ algorithm for each problem type 
(Anderson and Neely 1996; Dewar et al. 2007). The most useful algorithms will be widely 
applicable, rely on fundamental concepts, apply fundamental factual relationships, and be easy 
to remember.

Algorithms require implicit retrieval

Avoiding WM limits requires “the fast, implicit, and automatic retrieval of a fact or a proce-
dure” from LTM (Geary et al. 2008). Implicit retrieval can be described as intuitive or tacit 
recall, which may not include a conscious ability to identify a particular chunk or why it was 
recalled (Clark 2006). Implicit means the student must be able to look at problem data and 
intuitively, fluently decide which automated facts and algorithms to apply.

To help students gain algorithmic fluency, instructors should assign practice problems con-
taining typical problem cues and distinctive problem contexts (Willingham 2003). Practice 
that processes context cues at the same time as facts and algorithms tends to connect all of 
those related chunks into a larger chunk in an accessible memory schema. The brain is then 
able to choose correct facts and algorithms to recall intuitively in a manner similar to assem-
bling fluent speech, a task humans evolved to accomplish with ease (Geary et al. 2008; Pinker 
2007). Anderson and Neely write,

Retrieval cues can be anything from component of the desired memory to incidental 
concepts associated with that item during its processing.… Retrieving a target item 
[occurs] when the cues available at the time of recall are sufficiently related to that target 
to identify it uniquely in memory. (1996)

Interleaved practice

In problem sets, practicing one algorithm is termed blocked practice. Mixing problem 
types that require different algorithms in a random order is termed interleaved practice. 
Seemingly different problems may require the same algorithm while seemingly similar 
problems may require different algorithms. Practice that is interleaved helps students to 
discriminate among different problem types. With interleaving, solving is initially more 
difficult, but the difficulty is desirable. Long-term, students attain improved memory 
of which cues and contexts are paired with which algorithms (Bjork and Bjork 2019; 
Gulacar et al. 2022).

Johnstone observed, if “much information has to be held [in WM], little room remains 
for processing.” (2010) However, if facts and algorithms have been automated, WM slots 
tend to remain open to store context cues. Students then learn a sense of which facts and 
algorithms to apply while solving fewer problems, improving study efficiency.

Concepts and reasoning

Concepts are fundamental principles that categorize and explain knowledge, often 
within a hierarchical structure. As defined by Geary et  al., “conceptual knowledge 
refers to general knowledge and understanding stored in long-term memory.” (2008) 
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Willingham writes, “conceptual knowledge refers to an understanding of meaning, 
… understanding why” something is true (2009b). Potential energy, conservation of 
energy, and conservation of matter are examples of concepts that organize knowledge 
components.

Facts before concepts

Cognitive science emphasizes that conceptual understanding is vitally important and 
needs to be taught (Siegler and Lortie-Forgues 2015). Geary et al. advise, “The cogni-
tive processes that facilitate rote retention… such as repeated practice, can differ from 
the processes that facilitate transfer and long-term retention, such as conceptual under-
standing.” (2008).

Learning concepts helps the brain efficiently consolidate knowledge in LTM by the 
deeper structure of its meaning. But among facts, procedures, and concepts, Willingham 
writes, “conceptual knowledge is the most difficult to acquire… A teacher cannot pour 
concepts directly into students’ heads. Rather, new concepts must build on something 
students already know.” (2009b) Furst summarizes, “New knowledge is built on the 
basis of the previous knowledge and they must be related by meaningful connections.” 
(2019).

Willingham cites evidence that during the initial moving of information into mem-
ory, “the mind much prefers that new ideas be framed in concrete rather than abstract 
terms.” (2002b) Johnstone’s advice in chemistry was similar: “Begin with things that 
they will perceive as interesting and familiar so that there are already anchorages in 
their long term memory on which to attach the new knowledge,” (2000) and “Concepts 
must be built from the macroscopic and gradually be enriched with submicroscopic and 
representational aspects.” (2010).

If examples to illustrate concepts are simple, concrete, and familiar, and quantitative 
reasoning can be solved using automated facts and algorithms, explanations of concepts 
tend to avoid WM overload (Willingham 2002b; Geary et al. 2008).

Use concepts, not memory?

To solve problems, some in chemistry education have advocated using “online resources” 
to ‘look up’ rather than memorize factual knowledge (Pienta 2018). This assumption, that 
the brain could apply new information with the same facility it applies well-memorized 
information, has proven to be mistaken. Cognitive studies have found stringent limits apply 
when processing not-quickly-recallable information that do not apply when processing 
relationships quickly recallable from LTM.

Some instructional reform proposals have expressed concern that “students are often 
able to answer well-defined (i.e., close-ended) problems, without making use of conceptual 
understanding.” (Cooper and Stowe, 2018) Widely implemented ‘reform’ curriculum for 
general chemistry topics has been based on “shifting away from a paradigm that empha-
sized algorithmic problem solving and content knowledge…” (Rushton 2014).

Students need to be taught concepts, but cognitive research has established that to reli-
ably solve problems of any complexity, reasoning based on conceptual understanding that 
does not apply memorized algorithms and memorized content fundamentals is highly 
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unlikely to work. Without recallable algorithms and facts, WM overloads (Geary et  al. 
2008; Rosenshine 2012).

John R. Anderson, a leader in the study of information processing, counsels, “one fun-
damentally learns to solve problems by mimicking examples of solutions,” such as those 
learned from worked examples (1996). Willingham advises that when students seem to 
solve complex problems based on “understanding” without a recalled procedure, research 
nearly always finds “understanding is remembering in disguise.” (2009c, pp. 68–72).

Reasoning

When does generalized reasoning without an algorithm work to solve problems? Experts 
can reason in their discipline because of their vast storehouse of knowledge in LTM (De 
Groot 1946; Chase and Simon, 1973; Kirschner et al. 2006). For topics of primary (instinc-
tive) learning, including speech and the ‘folk’ biology, physics, and psychology of daily 
life, the brain fills with knowledge automatically. In those areas, we all become experts and 
able to reason generally. But in secondary learning, including chemistry, moving knowl-
edge into LTM is not automatic. Becoming an expert requires years of increasingly com-
plex study. In chemistry, students can use general reasoning strategies to solve only very 
simple problems in which data and steps do not overload WM (Geary et al. 2008).

How to speed chunking

In 1980, Johnstone and Kellett wrote, “problem‐solving ability is associated with students’ 
ability to organize or ‘chunk’ the information ….” Forty years later, chunking remains one 
of the three strategies identified by cognitive experts that circumvent WM limits. How can 
instructors help to speed the rate at which students wire chunks?

Chunking in detail

To solve problems, WM holds and processes information. This processing is also the 
first step in learning. Furst writes: “processing in working memory is … information’s 
‘entry ticket’” to LTM (2018). During problem solving, if a step is “perceived as useful 
and successful” (Clark 2006), the chunks that are processed together in WM either tend 
to form new connections or their existing connections are reinforced in LTM (Trafton 
2017). In the (simplified) formula of neuroscience: “Neurons that fire together, wire 
together.” (Hebb 1949) Feedback can help to signal when a step has been successful 
(Dehaene 2021, p. 186).

If similar processing does not take place again over several days, new wiring tends to 
be lost (Willingham 2015; Dehaene 2021, p. 216). But if chunks are repeatedly processed 
together during the next several days, a record of chunks processed at the same time tends 
to become consolidated: organized and wired into long-term memory (Taber 2013, Trafton 
2017; Dehaene 2021, pp. 221–235; Furst 2020).

Using advanced microscopy, neuroscientists have imaged the brain’s learning plastic-
ity: the growth and strengthening of synaptic connections among neurons in response to 
problem solving, as well as the loss of connections not repeatedly used in processing (Yang 
et  al. 2014; Dehaene 2021, p. 87, 137). As new relationships are applied to subsequent 
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problems, connections among related components strengthen, so that if one component is a 
problem data cue, it more likely brings to mind (activates) others in the larger chunk.

Room for context cues

Johnstone noted that in WM, “if much information has to be held, little room remains for 
processing.” (2010) Science’s updated understanding is similar. To speed the construction 
of conceptual frameworks (schemata), as many slots as possible in WM should be kept 
open to store “context cues” during processing. The context in which a problem is solved 
helps to provide an intuitive, implicit, automated sense of which facts and procedures to 
recall out of the millions stored in LTM.

The bottleneck of WM limits means that learning must be gradual, step by problem-
solving step. But by solving problems in a variety of distinctive contexts, cued recall can 
solve more problems with more success, speeding the rate of learning. Willingham notes 
“Knowledge is not only cumulative, it grows exponentially. Those with a rich base of fac-
tual knowledge find it easier to learn more—the rich get richer.” (2006).

Inquiry and discovery

Cognitive research strongly supports activities that engage students, but the timing of those 
activities markedly affects the learning that may result. Scientific studies have consistently 
found “the most effective teachers” employed “hands-on activities, but they always did the 
experiential activities after, not before, the basic material was learned.” (Rosenshine 2012) 
Cognitive studies also have repeatedly shown that it is not a best practice to ask students 
to engage in “inquiry” to discover what experts struggled to learn (Kirschner et al, 2006; 
Mayer 2004). Dehaene summarizes: “Discovery learning methods are seductive ideas 
whose ineffectiveness, unfortunately, has repeatedly been demonstrated.” (2021, p. 180).

Conclusion

Johnstone recommended that as instructors, we consider the implications of cognitive 
science research. Scientists who study the brain have found problem solving of any 
complexity must be based on remembering, not reasoning. Efficient learning builds on 
overlearned knowledge of fundamental facts and algorithms, gradually moving the stu-
dent toward the knowledge and intuition of an expert.

Science’s discovery of the necessity for spaced overlearning to achieve efficient long-
term learning is a paradigm shift: a change in science’s fundamental understanding of how 
the brain manages information. Accepting paradigm shifts can be difficult (Kuhn 1962).

In the United States and some other nations, many instructional reforms have been 
proposed, and some adopted, that de-emphasize memorization and emphasize reli-
ance on conceptual understanding and non-algorithmic reasoning. Others de-empha-
size explicit instruction in favor of inquiry or discovery learning. In crucial respects, 
those reforms oppose the strategies cognitive science has verified are necessary to learn 
chemistry. This may be contributing to the high failure rates seen in general chemistry.
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If memorization can be reduced, we should try. But learning is a progression. Auto-
mating recall of new and pre-requisite fundamentals is an essential first step in creating 
a conceptual foundation for subsequent learning.

Johnstone’s fundamental insight? Students benefit when instructors know both the 
science of molecular behavior and the science of learning. Cognitive studies have iden-
tified specific steps students can take to learn with more success, and how instructors 
can assist them in doing so. This scientific progress is potentially a great gift to students 
and our society.

Johnstone sought ways “that students will learn efficiently,” but also “with under-
standing and enjoyment.” (2010) Applying cognitive research, we can design more effi-
cient learning during both lecture and study time. That efficiency opens opportunities 
during lecture for activities such as demonstrations that engage students in chemistry.

As recently witnessed, science can save millions of lives, but work at the front lines 
can require personal risk and sacrifice. Students who seek to pursue challenging sci-
ence majors have courage. If we apply the science of learning in our instruction, can we 
better help our brave students as Johnstone wished, with efficiency, understanding, and 
enjoyment, pass through the chemistry gateway to scientific careers?
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