Skip to main content
Log in

Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

A 60-day feeding trial was conducted to evaluate the effects of different levels of dietary phospholipid (PL) from soybean lecithin on growth performance, liver fatty acid composition, peroxisome proliferator-activated receptor (PPAR) gene expression levels and antioxidant responses of blunt snout bream fingerlings. Fish (average initial weight 0.35 ± 0.01 g) were fed five experimental diets containing the following inclusion levels of PL: 0, 2, 4, 6 and 8 %. Results showed that final body weight, weight gain and specific growth rate increased significantly (P < 0.05) as dietary PL level increased from 0 to 6 %, meanwhile the survival was not affected by dietary PL supplementation. Increasing dietary PL level significantly (P < 0.05) increased in 20:4n-6 content in neutral lipid of liver, indicating fish had the capacity to convert C18 to C20 and C22 by elongation and desaturation. The expression levels of PPAR-α and PPAR-γ and the activities of catalase, superoxide dismutase and glutathione peroxidase in liver were significantly (P < 0.05) increased, and liver thiobarbituric acid reactive substances value was decreased with dietary PL supplementation up to 6 % compared with the control. Therefore, it was concluded that supplementation of 6 % (18.8 g kg−1, polar lipid of diet) PL could improve growth performance of blunt snout bream fingerlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • AOAC (1990) Official methods of analysis of the association official analytical chemists. In: Helrick K (ed) AOAC international, 15th edn. AOAC, Arlington VA

    Google Scholar 

  • Azarm HM, Abedian-Kenari A, Hedayati M (2013a) Growth response and fatty acid composition of rainbow trout (Oncorhynchus mykiss) fry fed diets containing different levels of soybean and egg lecithin. Aquac Int 21(2):497–509

    Article  CAS  Google Scholar 

  • Azarm HM, Kenari AA, Hedayati M (2013b) Effect of dietary phospholipid sources and levels on growth performance, enzymes activity, cholecystokinin and lipoprotein fractions of rainbow trout (Oncorhynchus mykiss) fry. Aquac Res 44:634–644

    Article  CAS  Google Scholar 

  • Bayer WF, Fridovich JL (1987) Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal Chem 161:559–566

    Google Scholar 

  • Bhattacharyya S, Majhi S, Saha BP, Mukherjee PK (2014) Chlorogenic acid-phospholipid complex improve protection against UVA induced oxidative stress. J Photochem Photobiol B 130:293–298

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  CAS  PubMed  Google Scholar 

  • Burk RF, Trumble MJ, Lawrence RA (1980) Rat hepatic cytosolic GSH-dependent enzyme protection against lipid peroxidation in the NADPH microsomal lipid peroxidation system. Biochim Biophys Acta 618:35–41

    Article  CAS  PubMed  Google Scholar 

  • Cahu C, Zambonino Infante J, Barbosa V (2003) Effect of dietary phospholipid level and phospholipid: neutral lipid value on the development of sea bass (Dicentrarchus labrax) larvae fed a compound diet. Br J Nutr 90:21–28

    Article  CAS  PubMed  Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC handbook of methods in oxygen radical research, 2nd edn. CRC Press, Boca Raton, FL, pp 283–284

  • Daprà F, Geurden I, Corraze G, Bazin D, Zambonino-Infante JL, Fontagné-Dicharry S (2011) Physiological and molecular responses to dietary phospholipids vary between fry and early juvenile stages of rainbow trout (Oncorhynchus mykiss). Aquaculture 319(3):377–384

    Article  Google Scholar 

  • Desvergne B, Wahli W (1999) Peroxisome proliferator-activated receptors: nuclear control of metabolism. Endocr Rev 20:649–688

    CAS  PubMed  Google Scholar 

  • Escher P, Braissant O, Basu-Modak S, Michalik L, Wahli W, Desvergne B (2001) Rat PPARs; quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    Article  CAS  PubMed  Google Scholar 

  • Fontagné-Dicharry S, Lataillade E, Surget A, Larroquet L, Cluzeaud M, Kaushik S (2014) Antioxidant defense system is altered by dietary oxidized lipid in first-feeding rainbow trout (Oncorhynchus mykiss). Aquaculture 424:220–227

    Article  Google Scholar 

  • Gao J, Koshio S, Ishikawa M, Yokoyama S, Mamauag REP, Han Y (2012) Effects of dietary oxidized fish oil with vitamin E supplementation on growth performance and reduction of lipid peroxidation in tissues and blood of red sea bream Pagrus major. Aquaculture 356–357:73–79

    Article  Google Scholar 

  • Gao J, Koshio S, Wang W, Li Y, Huang S, Cao X (2014) Effects of dietary phospholipid levels on growth performance, fatty acid composition and antioxidant responses of Dojo loach (Misgurnus anguillicaudatus) larvae. Aquaculture 426:304–309

    Article  Google Scholar 

  • Geurden I, Radünz-Neto J, Bergot P (1995) Essentiality of dietary phospholipids for carp (Cyprinus carpio, L.) larvae. Aquaculture 131:303–314

    Article  CAS  Google Scholar 

  • Geurden I, Coutteau P, Sorgeloos P (1997) Increased docosahexaenoic acid levels in total and polar lipid of European sea bass (Dicentrarchus labrax) postlarvae fed vegetable or animal phospholipids. Mar Biol 129:689–698

    Article  CAS  Google Scholar 

  • Geurden I, Marion D, Charlon N, Coutteau P, Bergot P (1998) Comparison of different soybean phospholipidic fractions as dietary supplements for common carp (Cyprinus carpio) larvae. Aquaculture 161:225–235

    Article  CAS  Google Scholar 

  • Geurden I, Bergot P, Van Ryckeghem K, Sorgeloos P (1999) Phospholipid composition of common carp (Cyprinus carpio) larvae starved or fed different phospholipid classes. Aquaculture 171:93–107

    Article  CAS  Google Scholar 

  • Gisbert E, Villeneuve L, Zambonino Infante JL, Quazuguel P, Cahu CL (2005) Dietary phospholipids are more efficient than neutral lipids for long chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax development. Lipids 40:1–10

    Article  Google Scholar 

  • Hamza N, Mhetli M, Khemis IB, Cahu C, Kestemont P (2008) Effect of dietary phospholipid levels on performance, enzyme activities and fatty acid composition of pikeperch (Sander lucioperca) larvae. Aquaculture 275:274–282

    Article  CAS  Google Scholar 

  • Hihi AK, Michalik L, Wahli W (2002) PPARs: transcriptional effectors of fatty acids and their derivatives. Cell Mol Life Sci 59:790–798

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo MS, Socorro J, Arantzamendi L, Hernández-Cruz CM (2000) Recent advances in lipid nutrition in fish larvae. Fish Physiol Biochem 22(2):97–107

    Article  CAS  Google Scholar 

  • Ji H, Li J, Liu P (2011) Regulation of growth performance and lipid metabolism by dietary n-3 highly unsaturated fatty acids in juvenile grass carp (Ctenopharyngodon idellus). Comp Biochem Phys B 159:49–56

    Article  Google Scholar 

  • Juaneda P, Rocquelin G (1985) Rapid and convenient separation of phospholipids and non-phosphorus lipids from rat heart using silica cartridges. Lipids 20(1):40–41

    Article  CAS  PubMed  Google Scholar 

  • Kanazawa A, Teshima SI, Ono K (1979) Relationship between essential fatty acid requirements of aquatic animals and the capacity for bioconversion of linolenic acid to highly unsaturated fatty acids. Comp Biochem Phys B 63(3):295–298

    CAS  Google Scholar 

  • Kanazawa A, Teshima S, Kobayashi T, Takae M, Iwashita T, Uehara R (1983) Necessity of dietary phospholipids for growth of the larval ayu. Mem Fac Fish Kagoshima Univ 32:115–120

    Google Scholar 

  • Kennedy SR, Leaver MJ, Campbell PJ, Zheng X, Dick JR, Tocher DR (2006) Influence of dietary oil content and conjugated linoleic acid (CLA) on lipid metabolism enzyme activities and gene expression in tissues of Atlantic salmon (Salmo salar L.). Lipids 41:423–436

    Article  CAS  PubMed  Google Scholar 

  • Kliewer SA, Xu HE, Lambert MH, Willson TM (2001) Peroxisome proliferator-activated receptors from genes to physiology. Recent Prog Horm Res 56:239–265

    Article  CAS  PubMed  Google Scholar 

  • Lee CH, Olson P, Evans RM (2003) Minireview: lipid metabolism, metabolic diseases, and peroxisome proliferator-activated receptors. Endocrinology 144:2201–2207

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Monroig O, Zhang L, Wang S, Zheng X, Dick JR, You C, Tocher DR (2010) Vertebrate fatty acyl desaturase with Δ4 activity. Proc Natl Acad Sci USA 107(39):16840–16845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li XF, Liu WB, Lu KL, Xu WN, Wang Y (2012) Dietary carbohydrate/lipid ratios affect stress, oxidative status and non-specific immune responses of fingerling blunt snout bream, Megalobrama amblycephala. Fish Shellfish Immunol 33(2):316–323

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu KL, Xu WN, Li XF, Liu WB, Wang LN, Zhang CN (2013) Hepatic triacylglycerol secretion, lipid transport and tissue lipid uptake in blunt snout bream (Megalobrama amblycephala) fed high-fat diet. Aquaculture 408–409:160–168

    Article  Google Scholar 

  • Morais S, Torten M, Nixon O, Lutzky S, Conceição LE, Dinis MT, Tandler A, Koven W (2006) Food intake and absorption are affected by dietary lipid level and lipid source in seabream (Sparus aurata L.) larvae. J Exp Mar Biol Ecol 331(1):51–63

    Article  CAS  Google Scholar 

  • Mourente G, Tocher DR, Diaz E, Grau A, Pastor E (1999) Relationships between antioxidants, antioxidant enzyme activities and lipid peroxidation products during early development in (Dentex dentex) eggs and larvae. Aquaculture 179:309–324

    Article  CAS  Google Scholar 

  • Moya-Camarena SY, Heuvel JPV, Blanchard SG, Leesnitzer LA, Belury MA (1999) Conjugated linoleic acid is a potent naturally occurring ligand and activator of PPARα. J Lipid Res 40:1426–1433

    CAS  PubMed  Google Scholar 

  • Poston HA (1990) Performance of rainbow trout fed supplemental soybean lecithin and choline. Progress Fish Cult 52:218–225

    Article  Google Scholar 

  • Qi C, Zhu Y, Reddy JK (2000) Peroxisome proliferator-activated receptors, coactivators, and downstream targets. Cell Biochem Biophys 32:187–204

    Article  CAS  PubMed  Google Scholar 

  • Rinchard J, Czesny S, Dabrowski K (2007) Influence of lipid class and fatty acid deficiency on survival, growth, and fatty acid composition in rainbow trout juveniles. Aquaculture 264:363–371

    Article  CAS  Google Scholar 

  • Ruyter B, Andersen O, Dehli A, Ostlund Farrants AK, Gjoen T, Thomassen MS (1997) Peroxisome proliferator activated receptors in Atlantic salmon (Salmo salar): effects on PPAR transcription and acyl-CoA oxidase activity in hepatocytes by peroxisome proliferators and fatty acids. Biochim Biophys Acta 1348:331–338

    Article  CAS  PubMed  Google Scholar 

  • Saleh R, Betancor MB, Roo J, Benítez-Santana T, Hernández-Cruz CM, Moyano FJ, Izquierdo M (2013a) Optimum krill phospholipids content in microdiets for gilthead seabream (Sparus aurata) larvae. Aquacult Nutr 19(4):449–460

    Article  CAS  Google Scholar 

  • Saleh R, Betancor MB, Roo J, Hernandez-Cruz CM, Moyano FJ, Izquierdo M (2013b) Optimum soybean lecithin contents in microdiets for gilthead seabream (Sparus aurata) larvae. Aquac Nutr 19(4):585–597

    Article  CAS  Google Scholar 

  • Sargent JR, McEvoy LA, Bell JG (1997) Requirements, presentation and sources of polyunsaturated fatty acids in marine fish larval feeds. Aquaculture 155:119–129

    Article  Google Scholar 

  • Sargent JR, Tocher DR, Bell JG (2002) The lipids. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, SanDiego, pp 181–257

  • Suh HN, Huong HT, Song CH, Lee JH, Han HJ (2008) Linoleic acid stimulates gluconeogenesis via Ca2+/PLC, cPLA2, and PPAR pathways through GPR40 in primary cultured chicken hepatocytes. Am J Physiol Cell Physiol 295:C1518–C1527

    Article  CAS  PubMed  Google Scholar 

  • Sun S, Ye J, Chen J, Wang Y, Chen L (2011) Effect of dietary fish oil replacement by rapeseed oil on the growth, fatty acid composition and serum non-specific immunity response of fingerling black carp, Mylopharyngodon piceus. Aquac Nutr 17(4):441–450

    Article  CAS  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Tocher DR, Bendiksen EÅ, Campbell PJ, Bell JG (2008) The role of phospholipids in nutrition and metabolism of teleost fish. Aquaculture 280:21–34

    Article  CAS  Google Scholar 

  • Tsao WS (1960) A biological study of Magalobrama amblycephala and M. terminalis of Liang-tse Lake. Acta Hydrobiol Sin 1:57–78

    Google Scholar 

  • Uyan O, Koshio S, Ishikawa M, Yokoyama S, Uyan S, Ren T, Hernandez LHH (2009) The influence of dietary phospholipid level on the performances of juvenile amberjack, Seriola dumerili, fed non-fishmeal diets. Aquac Nutr 15:550–557

    Article  CAS  Google Scholar 

  • Walczak R, Tontonoz P (2002) PPAR adigms and PPAR adoxes: expanding roles for PPAR gamma in the control of lipid metabolism. J Lipid Res 43:177–186

    CAS  PubMed  Google Scholar 

  • Wheeler CR, Salzman JA, Elsayed NM, Omaye ST, Korte DW (1990) Automated assays for superoxide dismutase, catalase, glutathione peroxidase, and glutathione reductase activity. Anal Chem 184:193–199

    CAS  Google Scholar 

  • Wu Y, Liu WB, Li HY, Xu WN, He JX, Li XF, Jiang GZ (2013) Effects of dietary supplementation of fructooligosaccharide on growth performance, body composition, intestinal enzymes activities and histology of blunt snout bream (Megalobrama amblycephala) fingerlings. Aquac Nutr 19:886–894

    Article  CAS  Google Scholar 

  • Yang SP, Wu ZH, Jian JC, Zhang XZ (2010) Effect of marine red yeast Rhodosporidium paludigenum on growth and antioxidant competence of Litopenaeus vannamei. Aquaculture 309(1):62–65

    Article  CAS  Google Scholar 

  • Zhao J, Ai Q, Mai K, Zuo R, Luo Y (2013) Effects of dietary phospholipids on survival, growth, digestive enzymes and stress resistance of large yellow croaker (Larmichthys crocea Larvae). Aquaculture 410:122–128

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Fundamental Research Funds for the Central Universities (Project 2013PY074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Gao, J. & Huang, S. Effects of different dietary phospholipid levels on growth performance, fatty acid composition, PPAR gene expressions and antioxidant responses of blunt snout bream Megalobrama amblycephala fingerlings. Fish Physiol Biochem 41, 423–436 (2015). https://doi.org/10.1007/s10695-014-9994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10695-014-9994-8

Keywords

Navigation