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Abstract. A ubiquitous source of uncertainty in fire modeling is specifying the
proper heat release rate (HRR) for the fuel packages of interest. An inverse HRR
calculation method is presented to determine an inverse HRR solution that satisfies
measured temperature data. The methodology uses a predictor-corrected method and
the Consolidated Model of Fire and Smoke Transport (CFAST) zone model to cal-
culate hot gas layer (HGL) temperatures in single compartment configurations. The
inverse method runs at super-real-time speeds while calculating an inverse HRR solu-
tion that reasonably matches the original HRR curve. Examples of the inverse
method are demonstrated by using a multiple step HRR case, complex HRR curves,
experimental temperature data with a constant HRR, and a case with an experimen-
tally measured HRR. In principle, the methodology can be applied using any reason-
ably accurate fire model to invert for the HRR.

Keywords: Compartment fires, Fire growth, Fire modeling, Heat release rate,
Inverse fire modeling problems

1. Introduction

Currently, the use of fire models in scenarios involving firefighter injuries, line-of-
duty deaths, or forensic applications requires a tedious and manual iterative pro-
cess of modifying the input parameters to create the desired or expected results
from a zone or field fire model and comparing the results to a timeline of observa-
tions. This process can result in significant errors or nonphysical results from fire
models and might not include a sufficiently wide range of conditions that ade-
quately describe the fire effects or fire behavior for a given scenario.

Previous work by Jahn et al. [1] has demonstrated a method to forecast the fire
size in an enclosure using sensor-driven inputs. That study used real-time sensor
data (e.g., heat detectors, smoke detectors) to steer a fire model and account for
changes in the environment of a fire scenario. The goal of that study was to use
information from the evolving fire scenario to accelerate model predictions. A
study by Cowlard et al. [2] describes the process of using real-time sensor data to
assist firefighting operations through the use of high performance computers run-
ning numerous fire simulations in parallel and fetching pre-computed scenarios.
That study also demonstrated the sensitivity of the model results to the input
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parameters and how sensor data could be used to steer and correct the simula-
tions.

Additional studies have been performed on sensor-driven fire simulations to deter-
mine the location and size of the fire. A paper by Davis and Forney [3] outlines a
process for using correlations and zone models as a sensor-driven zone model. A
study by Koo et al. [4] used a sensor-driven steering method that performed at
super-real-time speeds using high performance computing resources with the ability
to run 1,000 scenarios per minute. A study by Richards et al. [5] used transient tem-
perature data from ceiling sensors to determine the heat release rate (HRR) and
location of fires in large-scale compartments, but the inverse HRR solution had an
error of 300% to 500% of the measured HRR. Studies by Neviackas [6], Neviackas
and Trouvé [7], and Leblanc and Trouvé [8] used hot gas layer (HGL) temperatures
in an enclosure (single and multiple compartments) and a genetic algorithm to search
for an average inverse HRR. The genetic algorithm required multiple hours of run-
time, and the solution was limited to a constant, time-averaged HRR. In general, the
approaches used in these studies are infeasible for general applications because of the
amount of computational expenditure required or the inaccuracy of their inversions.
However, the need for such inversion capability is evident. The focus of this study is
to develop a quick, inexpensive method to compute transient HRR data using
known temperature data in an enclosure.

A study by Lee and Lee [9] demonstrated the use of a sequential inverse
method to determine the size and location of a compartment fire. In that study,
the HRR in a compartment was calculated sequentially by using a discretized
form of Alpert’s correlation [10] for gas temperatures in ceiling jet flows. The
results exhibit a large amount of noise (£100% error in the resulting HRR solu-
tion), and the correlations apply only to a limited scope of physical scenarios.
However, these types of correlations can still be useful in the predictor step of an
inverse HRR methodology, which was implemented in the inverse method in this
paper and is described in the following section.

An inverse recovery methodology is presented that uses a fire model to search
for a HRR that satisfies sampled temperature data in an enclosure. The Consoli-
dated Model of Fire and Smoke Transport (CFAST) zone model [11], which is
maintained by the National Institute of Standards and Technology, was used to
reconstruct a time-varying inverse HRR solution.

First, a simple case with step increments in the HRR and cases with various
complex HRR curves are used to demonstrate the inverse solution method. Then,
temperatures from experimental enclosure fire tests are used to determine an
inverse HRR solution. Finally, a case with an experimentally measured HRR are
used to demonstrate the robustness and accuracy of the method for the calcula-
tion of transient HRR solutions.

2. Inverse Heat Release Rate Solution Methodology

For a given HGL time-temperature curve, numerous inverse solutions exist that
can satisfy the input conditions. One approximation for a HRR solution that
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satisfies the time-temperature curve can be expressed by parameterizing the HRR
using a piecewise linear function, as shown in Equation 1.

0(r) = Qi(" f) O (i) (1)
li — tiv1 tiy1 — 1

where Q(t) is the HRR (kW), and Q; are the calculated HRR values at each time
7; that the temperature data are sampled. Mathematically, the problem can be cast

as a least squares problem in which the relative error S(Q) between the measured
and predicted temperatures is minimized, as shown in Equation 2.

S (Y — T(Q))?
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where Y; are the measured temperatures at time 7, n is the number of time sam-
ples, and 7;(Q) are the estimated temperatures found from the direct solution of
the problem using some proposed time evolution of Q.

With gradient information (i.e., a sensitivity or Jacobian matrix) on the effects
of the transient heat release rate Q on the estimated temperatures, various solu-
tion techniques are available. In this optimization problem, the vector of a single
variable (HRR) is sought. Note that the vector of the HRR contains the transient
HRR over times in which temperature data are available. A predictor-corrector
method was used with a set of specified input times and corresponding HGL tem-
peratures. Figure 1 shows a flow diagram of this iterative HRR search procedure.
A simple iterative procedure, as described by Ozisik and Oranlde [12], was used to
obtain the vector of unknown parameters, as shown in Equation 3.

N 2s Y “k

Q =Q +J(Y-TQ)), (3)
where (Y—T(Qk)) = AT is the difference between the measured and predicted
temperatures.
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Figure 1. Flowchart illustrating the inverse HRR search procedure.
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The inverse of the sensitivity coefficient (J~' in Equation 3) in these types of
problems is typically not known. The temperature sensitivity to HRR is generally
a complex relationship that depends on the full vector of HRRs. However, a lin-
ear inverse problem that is easily invertible is available by using an analytical cor-
relation by McCaffrey, Quintiere, and Harkleroad (MQH) [13, 14], which is
shown in Equation 4. This physical correlation was used to compute the required
change in the HRR (AQ) based on the difference between the measured and pre-
dicted temperatures (AT).

1/3

_ 0’
AT, = 6.85 (W) , (4)

where AT, is the change in the HGL temperature (°C), Q is the HRR (kW), 4, is
the ventilation area (m?), H, is the ventilation height (m), 4 is the effective heat
transfer coefficient of the boundaries (W/m*K), and A is the boundary surface
area (m°). The ventilation conditions and material properties of the boundary
conditions were specified for each case and are described in more detail in the
following sections.

The inverse HRR search procedure is summarized in the following steps:

— Step I: For a temperature difference (Y — T) between the measured and pre-
dicted temperatures, the predictor step computes AQ for all times 7; by using
the sensitivity, J, (i.e., dT/qg found from the MQH correlation in Equation 4.
An intermediate value of Q  based on the MQH correlation is then computed
using Equation 3.

— Step 2: For th.ekflorrector step, the CFAST model is run with the MQH-derived
HRR values Q' to generate temperatures T* "' at the next iteration.

— Step 3: If the error is less than a specified tolerance (S(Q) < 1 x 107%), then the
resulting Q is returned. Otherwise, Steps 1 and 2 are repeated as the predictor-
corrector procedure iterates. The result of the inverse HRR method is a piece-
wise linear function of HRR versus time, as shown in Equation 1.

The Python programming language, which is a high-level scripting language,
was used to generate CFAST input files, run CFAST multiple times while search-
ing for a HRR solution, parse the output from CFAST, and repeat this process to
create an inverse HRR solution. This method is demonstrated with various exam-
ples in the following sections.

3. Zone Model Setup

The zone model, CFAST version 6.2.0, was used in this study. The source code
for version 6.2.0 of CFAST was used to compile the CFAST program for the
Mac OS X operating system, and the command line binary was controlled by an
automatic script rather than using the graphical interface. This approach allowed
for the inverse search method to perform efficiently and autonomously.
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Table 1

Thermal Properties Used for Various Material Boundary Conditions
Material k (W/m-K) ¢, (J/kg-K) p (kg/m?) J (cm) e(—)
Gypsum 0.16 900 790 1.6 0.9
Type X gypsum 0.14 900 770 1.3 0.9
Aluminum 231 1,033 2,702 0.3 0.9
Glass fiberboard 0.04 720 105 8.8 0.9

In the CFAST zone model, all of the input parameters (e.g., combustion, solid
phase, geometry) were fixed to simplify the search process, and the HRR was the
only parameter that was varied. The CFAST zone model was configured as fol-
lows: methane was used as the fuel with a heat of combustion of 50 kJ/g, and the
boundary conditions, ambient temperature, ventilation conditions, and compart-
ment geometry were configured for each of the specific cases, which are described
in the following sections. The material properties of the boundaries were varied
and are shown in Table 1. These boundary conditions were also used in the MQH
correlation for the predictor step of the inverse method.

4. Multiple Step Function Increments in the Heat
Release Rate

First, a simple case is considered in which a fire is simulated with piecewise con-
stant HRRs of 100 kW, 200 kW, and 300 kW at times of 100 s, 200 s, and 400 s,
respectively. The resulting HGL temperatures from this fire were used as inputs to
verify the accuracy of the inverse methodology. The sample resolution of the
input temperatures was 10 s. The actual HRR curve is shown as a solid line in
Figure 2b, and the resulting temperatures (which were inputs to the inverse
method) are shown in Figure 2a as points.

Following the procedure described in the previous section, beginning at time
zero, the predictor step computes a HRR that satisfies the first input temperature
point at the first sample time (i.e., 10 s). Next, the predictor step computes a
HRR that satisfies the temperature condition at 20 s. This process continues
until all of the time-temperature points have associated HRRs. Then, the correc-
tor step involves running the CFAST model to compute the resulting HGL
temperatures, and the new error between the measured and the predicted temper-
atures is calculated. This process continues until a complete inverse HRR solu-
tion curve is determined, which is shown as a dashed line in Figure 2b.
Note that the method overpredicts the HRR near sudden step changes in the
HRR. In actual experiments, the HRR is not likely to increase instantaneously,
as indicated by the experimentally measured temperatures shown in the following
sections. The relative error, as defined by Peacock et al. [15], of the resulting
inverse HRR solution is 0.08 in which the relative error is defined as shown in
Equation 5.
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Figure 2. Multiple step function HRR case: (a) HGL temperatures
from CFAST (points) and inverse method (dashed line); (b) Inverse
HRR curve (dashed line) compared to the actual HRR curve (solid line).
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where Q are the actual HRR values and Q are the inverse HRR values.

For comparison, the MQH correlation was also used with the same inputs and
boundary conditions as the inverse HRR method. Equation 4 was used to com-
pute the HRR at each time step, and the results are shown in Figure 2b as a
dash-dot line, which has a relative error of 0.25. Although the inverse method is a
better approximation to the actual HRR, the MQH correlation is still useful in
the predictor step of the inverse HRR method, as described in the previous sec-
tion. By using the predictor-corrector method, this inverse HRR method can be
extended to problems that exceed the limitations of the existing correlations by
using physics-based models such as CFAST or Fire Dynamics Simulator (FDS)
[16].

To demonstrate the sensitivity of the inverse HRR solution to different bound-
ary conditions, two additional cases were run to represent the upper and lower
limits for boundary conditions: one case with aluminum boundaries, and one case
with glass fiberboard boundaries. The thermal properties for these materials are
shown in Table 1. The resulting inverse HRR solutions (Figure 3) have a relative
error of 0.09 for aluminum and 0.23 for glass fiberboard compared to a relative
error of 0.08 for gypsum.

To demonstrate the sensitivity of the inverse HRR solution to noise in the input
temperature data, three cases were run with a 5%, 10%, and 15% level of noise in
the original input temperature data from CFAST. The noise was applied to the
input temperature data assuming a uniform density function centered between
T+ AT and T — AT (where AT /T,ean is specified for 5%, 10%, or 15%) using the
method shown in Equation 6.
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Figure 3. Sensitivity of inverse HRR solution to various material
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Figure 4. Sensitivity of inverse HRR solution to various levels of ran-
domly perturbed input temperature data: (a) Perturbed HGL tempera-
tures (points) for various levels of noise; (b) Inverse HRR curves for
various levels of noise.

Thse(0) = 10) + (F(1) = 3) (7). ©)
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where T(¢) is the original temperature, F(7) is the cumulative distribution func-
tion and is a random number between 0 and 1, and 7., is the mean value of the
input temperature data.

After the original temperature data were perturbed and a set of 7},,,:s(f) input
temperatures was obtained (Figure 4a), the inverse HRR method was used to
determine a HRR solution. The resulting three inverse solutions with different lev-
els of noise are shown in Figure 4b, where the solid line represents the original
inverse HRR solution, the dashed line represents 5% noise in the temperature
data (relative error of 0.13), the dash-dot line represents 10% noise (relative error
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Table 2
Maximum Change in Temperature and Inverse HRR for Various

Amounts of Noise

Amount of noise (%) Max. AT (°C) Max. AQ (kW)
5 6 42
10 13 129
15 18 228

of 0.22), and the dotted line represents 15% noise (relative error of 0.43). The
resulting maximum change in temperature and inverse HRR for the various

amounts of noise are summarized in Table 2.

5. Complex Heat Release Rate Curves

To evaluate the ability of the inverse method to determine a solution for complex
HRR curves, three example HRR curves from CFAST were used. The original
HRR was input into an initial CFAST run to generate synthetic temperature data,
and the resulting HGL temperatures were used as inputs for the inverse method
to recover the original CFAST HRR curve. The sample resolution of the input
HGL temperature data was 10 s for all of the cases.

For simplicity, the gas phase combustion parameters were the same as in the
previous section (i.e., methane with a heat of combustion of 50 MJ/kg); therefore,
the HRR curve was the only independent search parameter. The enclosure dimen-
sions were the same for all of the cases (6.1 m x 4.9 m x 2.4 m enclosure).

Figures 5a, 6a, and 7a show the synthetic HGL temperature versus time
(points) compared the final HGL temperature versus time (dashed line) from the

(3)160 (b)zso
® @ Input HGL Temp. = Actual HRR
== Inverse HGL Temp. == Inverse HRR
\ 200 /

=

g B
*toca,,
4
HRR (kW)
—

3
=]

H
!
5
—
4
.
.
.
.
|
.
.
.
.
.

o
=]

50

Temperature (°C)

el WP

IS
=)

0
200 400 600 800 1000 1200 1400 1600 1800 0 200 400 600 800 1000 1200 1400 1600 1800
Time (s) Time (s)

N
o
orvsae

Figure 5. Resulis from the simple burner HRR case: (a) HGL tempera-
tures from CFAST (poinis) and inverse method (dashed line);
(b) Inverse HRR curve (dashed line) compared to actual HRR curve

(solid line).
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Figure 7. Resulis from the television HRR case: (a) HGL temperatures
from CFAST (poinfs) and inverse method (dashed line); (b) Inverse
HRR curve (dashed line) compared to actual HRR curve (solid line).

inverse method for a simple burner case, a mattress and boxspring case, and a
television set case, respectively. In Figs. 5b, 6b, and 7b, the original HRR curve is
shown as a solid line, and the inverse HRR solution is shown as a dashed line.
For all of the cases, the inverse HRR curves are in good agreement with the
actual HRR curves. The relative error of the inverse HRR solutions for all three
cases is 0.04.

6. Experimentally Measured Compariment Temperature
Data

The inverse method was applied to various scenarios involving actual fire
conditions by using experimentally measured temperatures from enclosure fire
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experiments as inputs to the inverse method. The experimental setup, input values,
and resulting inverse HRR solutions are described in the following sections.

6.1. Steckler Compartment Data

The experimental steady-state compartment temperatures from 11 tests with vari-
ous ventilation areas from the Steckler compartment fire data [17] were used as
inputs to the inverse method.

For each Steckler compartment test, the ventilation area and ambient tempera-
ture were input into the CFAST simulations, and the average HGL temperatures
reported from the experiments were used as inputs to the inverse method. The
inverse method was then used to determine a steady-state HRR that would result
in the HGL temperatures for each test, and the results of the inverse HRR
method are shown in Table 3. The results are in good agreement with the experi-
mental compartment data from Steckler and are within 6% of the experimental
HRR value. For the tests considered in this study, Steckler reports a fire size of
62.9 kW for each test. Assuming a typical rotameter accuracy of 2% of full scale
with a maximum flow rate of 3.2 x 107> m®/s, which corresponds to the largest
HRR reported by Steckler (158 kW), this translates into a HRR uncertainty
of £6 kW in the case of methane, or an uncertainty of about 10% for the
62.9 kW case. Therefore, the results of the inverse HRR method can be consid-
ered to be close to or within the uncertainty bounds of the experimental data
from Steckler.

6.2. UT Austin Experimental Data

The inverse method was then used with transient temperature data from compart-
ment fire experiments that were performed at The University of Texas at Austin
ina6.l mx49m x 24 m enclosure [18]. The walls and ceiling of the enclosure
were lined with one layer of 1.6 cm (0.63 in) gypsum wallboard. A schematic of
the experimental setup is shown in Figure 8. The experiments used two propane

Table 3
Error in Inverse HRR Solution Versus Vent Width From the Steckler
Experiments

Vent width (m) Reported HRR (kW) Inverse HRR (kW) HRR error (%)
0.24 62.9 63.5 0.9
0.36 62.9 62.5 0.7
0.49 62.9 63.1 0.3
0.49 62.9 66.4 5.6
0.62 62.9 61.4 24
0.74 62.9 61.4 2.4
0.74 62.9 60.4 3.9
0.74 62.9 61.1 2.9
0.74 62.9 65.8 4.7
0.86 62.9 61.2 2.7

0.99 62.9 59.5 5.4
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burners with total nominal HRRs of 300 kW and 400 kW, and all doors and
vents were closed during the time period shown. The burn structure was instru-
mented with 32 thermocouples (eight thermocouple trees with four thermocouples
each at various heights). The time at which the burners were activated can be con-
sidered to be a step function change in the HRR, and the inverse solution is then
compared to this step change.

Figure 9a shows the experimentally measured compartment temperature versus
time (points) compared to the final HGL temperature versus time (dashed line)
from the inverse method. The experimentally measured HGL temperatures
(points) shown in Figure 9a represent a spatially averaged temperature over six
thermocouple trees using the highest thermocouples (2.08 m) in the local fire area
(the other two thermocouple trees were located behind a wall near the door). This
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Figure 11. Experimental HRR case with one 300 kW step: (a) HGL
temperatures from CFAST (poinis) and inverse method (dashed line);

({b) HRR curve from inverse search.

spatially averaged temperature was used as an approximation to the HGL temper-
ature calculated by CFAST. For the inverse HRR method, the sample resolution
for the temperature inputs was 10 s. The ambient temperature in the CFAST
model was matched to that of the experiments. Figure 9b shows the inverse HRR
solution (dashed line) compared to the nominal experimental HRR (solid line)
based on the fuel mass flow rate to the gas burners.

Figures 10a, 11a, and 12a show the experimentally measured HGL temperature
versus time (points) for three additional fire tests compared to the final HGL tem-
perature versus time (dashed line) from the inverse method. Figures 10b, 11b, and
12b show the inverse HRR solution (dashed line) compared to the nominal exper-
imental HRR (solid line) based on the fuel mass flow rate to the gas burners. The
tests shown in Figs. 9, 10, and 11 had a nominal HRR of 300 kW, whereas the
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Figure 12. Experimental HRR case with one 400 kW step: (a) HGL
temperatures from CFAST (poinis) and inverse method (dashed line);

(b) HRR curve from inverse search.

test shown in Figure 12 had a nominal HRR of 400 kW. Overall, the uncertainty
of QO is approximated as 5% by considering the uncertainty in the rotameter set-
tings. The relative errors between the nominal HRR and inverse HRR solutions

are between 7% and 19%.

7. Experimentally Measured Heat Release Rate Data

To compare the inverse HRR solution to an experimentally measured HRR, the
inverse method was used with transient temperature data from compartment fire
experiments that were conducted at Southwest Research Institute (SwRI)'. The
experiments were performed in a 4.65 m x 3.43 m x 2.43 m enclosure with a 2
m x 0.74 m doorway opening. The walls and ceiling of the enclosure were lined
with two layers of 1.3 cm (0.5 in) type X gypsum wallboard. Figure 13 shows a
diagram of the experimental setup. The compartment was instrumented with 35
thermocouples (5 ceiling thermocouples, 16 doorway thermocouples, and 14 ther-
mocouples located in thermocouple trees).

A representative test from the full set of furniture experiments was selected for
this paper in which a mockup furniture specimen was burned in the enclosure. In
that test, the furniture item was a three-seat sofa with cotton fabric and low den-
sity polyurethane foam padding placed on a steel frame. The specimen was ignited
on the front using a CAL TB 133 gas burner (19 kW). The combustion products
from the enclosure were collected in a furniture calorimeter hood, and the HRR
was measured using oxygen consumption calorimetry. For the inverse HRR
method, the sample resolution for the temperature inputs was 10 s. Additionally,

'This section summarizes partial results from SwRI Project No. 15998. This project was supported by
Award No. 2010DN-UX-K?221, awarded by the National Institute of Justice, Office of Justice Programs,
U.S. Department of Justice. The opinions, findings, and conclusions or recommendations expressed in this
paper are those of the author and do not necessarily reflect those of the Department of Justice.
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Figure 13. Experimental setup of the furniture testing enclosure at
SwRI.
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Figure 14. Experimentally measured HRR case: (a) HGL tempera-
tures from CFAST (points) and inverse method (dashed line); (b)

Inverse HRR curve (dashed line) compared to the actual HRR curve
(solid line).

the ambient temperature in the CFAST model was matched to that of the experi-
ment.

Figure 14a shows the experimentally measured compartment temperatures ver-
sus time (points) compared to the final HGL temperature versus time (dashed
line) from the inverse method. The input HGL temperatures (points) shown in
Figure 14a represent a spatially averaged temperature over the five ceiling thermo-
couples. This spatially averaged temperature was used as an approximation to the
HGL temperature calculated by CFAST. Figure 9b shows the experimentally
measured HRR (solid line) compared to the inverse HRR solution (dashed line),
which has a relative error of 0.24.
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8. Future Extensions of Inverse Fire Modeling Techniques

As faster computing resources become more readily available, these methods will
become more important in the application of inverse fire modeling problems
(IFMP). Additionally, this method can be used to quickly determine a unique
HRR curve that corresponds to an observed fire timeline (e.g., time-temperature
history, heat flux measurements, fire service events, ventilation events), which
describes a complex IFMP scenario. Fire Dynamics Simulator and CFAST mod-
els can be used with various time dependent observations such as the time of win-
dow breakages, time of ventilation events, amount of smoke from ventilation
openings, and time to flashover to better determine an inverse solution by using
physical changes in the environment as bounding conditions. Additional measure-
ments from experiments or fire incidents, such as heat fluxes and smoke layer
heights, can be used to improve the inverse solution by imposing physical bounds
on the inverse solution.

While the CFAST zone model is relatively inexpensive for this inverse HRR
method, the results are based upon assumptions and simplifications of the under-
lying physics. In principle, this inverse method could be used with more complex
fire models such as FDS to determine the resulting enclosure conditions (e.g., tem-
peratures, heat fluxes) and further improve the inverse solution. Automated
CFAST runs could be used to vary the fire size and location in the enclosure, and
the resulting scenario and HRR could then be simulated in FDS to verify the
physics with more fidelity. Previous related work has been performed by Hostikka
et al. [19] regarding the probabilistic simulation of CFAST using the Monte Carlo
method. That study utilized rank order correlations to identify model parameters
that significantly affect the results. Because CFAST is computationally inexpensive
compared to FDS, the predictor step of the inverse solution could quickly be
computed using CFAST, and the results from CFAST could be used to steer sub-
sequent FDS simulations in the corrector step.

9. Conclusion

A method for recovering transient HRR based upon measured transient compart-
ment fire temperatures was presented. The inverse method required about 5 to
10 s of total run time on an Apple Macbook Pro computer with a 2.2 GHz pro-
cessor to calculate a transient inverse HRR solution for each case; each case
required between 10 and 30 CFAST runs for each case. For all of the cases descri-
bed in this paper, the inverse HRR solution had a relative error between 0.04 and
0.24 compared to the actual HRR. The implementation of the low-order MQH
correlation for the predictor step allows for a quick calculation of the update (pre-
dictor) step because it has the advantage of being directly invertible for the HRR.
Use of the predictor step reduced the total number of computational (CFAST)
iterations required to generate an inverse HRR solution that meets the specified
convergence criterion.

For the multiple step function increment cases, the inverse solution adequately
detected changes in the HRR steps. For the experimental enclosure temperature
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case, the inverse method effectively captured the activation of the gas burners.
However, because the HRR was not measured directly, it is difficult to quantify
the amount of error in the inverse solution. Qualitatively, this method captured a
change in the HRR and exhibits potential for obtaining an inverse solution from
these types of scenarios in which the measured HRR is unknown and only tem-
perature data are available. For the complex HRR cases and the experimentally
measured HRR case, the inverse method performed well and the inverse HRR
solution was in good agreement with the actual HRR, which demonstrates the
versatility and accuracy of the inverse HRR method.

One limitation of this methodology is that the material properties of the bound-
ary conditions must be prespecified, and the inverse HRR solution is sensitive to
the selection of boundary conditions, as shown in Figure 3. However, in the Uni-
ted States, most of the compartment configurations in which this method can
potentially be applied (e.g., residential and commercial occupancies, fire experi-
ments, fire investigations) are limited to certain types of boundary conditions such
as gypsum wallboard or similar types of insulating building materials. Thus, it is
believed that a computationally inexpensive methodology for the transient HRR
solution for such cases is a valid contribution of this study.
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