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Abstract
There are many ways of measuring and modeling tail-dependence in random vec-
tors: from the general framework of multivariate regular variation and the flexible 
class of max-stable vectors down to simple and concise summary measures like the 
matrix of bivariate tail-dependence coefficients. This paper starts by providing a 
review of existing results from a unifying perspective, which highlights connections 
between extreme value theory and the theory of cuts and metrics. Our approach 
leads to some new findings in both areas with some applications to current topics in 
risk management.
We begin by using the framework of multivariate regular variation to show that 
extremal coefficients, or equivalently, the higher-order tail-dependence coefficients 
of a random vector can simply be understood in terms of random exceedance sets, 
which allows us to extend the notion of Bernoulli compatibility. In the special but 
important case of bivariate tail-dependence, we establish a correspondence between 
tail-dependence matrices and L1 - and �

1
-embeddable finite metric spaces via the 

spectral distance, which is a metric on the space of jointly 1-Fréchet random vari-
ables. Namely, the coefficients of the cut-decomposition of the spectral distance 
and of the Tawn-Molchanov max-stable model realizing the corresponding bivari-
ate extremal dependence coincide. We show that line metrics are rigid and if the 
spectral distance corresponds to a line metric, the higher order tail-dependence is 
determined by the bivariate tail-dependence matrix.
Finally, the correspondence between �

1
-embeddable metric spaces and tail-dependence 

matrices allows us to revisit the realizability problem, i.e. checking whether a given 
matrix is a valid tail-dependence matrix. We confirm a conjecture of Shyamalkumar 
and Tao (2020) that this problem is NP-complete.
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1 Introduction

Extreme events such as large portfolio losses in insurance and finance, spatial and 
environmental extremes such as heat-waves, floods, electric grid outages, and 
many other complex system failures are associated with tail-events. That is, the 
simultaneous occurrence of extreme values in the components of a possibly very 
high-dimensional vector X = (Xi)1≤i≤p of covariates. Such simultaneous extremes 
occur due to dependence among the extremes of the Xi’s. This has motivated a large 
body of literature on modeling and quantifying tail-dependence, see, e.g. (Coles 2001; 
Finkenstädt and Rootzén 2003; Rachev 2003; Beirlant et  al. 2004; Castillo 1988; 
Resnick 2007; de Haan and Ferreira 2007). One basic and popular measure is the 
bivariate (upper) tail-dependence coefficient

where F−1
i
(u) ∶= inf{x ∶ ℙ[Xi ≤ x] ≥ u} is the generalized inverse of the cumula-

tive distribution function Fi of Xi . Under weak conditions the above limit exists and 
is independent of the choice of the (continuous) marginal distributions of (Xi,Xj) . 
The matrix Λ ∶= (�X(i, j))p×p of bivariate tail-dependence coefficients is necessarily 
positive (semi)definite and in fact, since �X(i, i) = 1 , it is a correlation matrix of a 
random vector, see Schlather and Tawn (2003). We call Λ as defined in (1.1) a tail-
dependence matrix or TD matrix for short.

The general theme of our paper is that we review and contribute to the unified treat-
ment of tail-dependence using the powerful framework of multivariate regular varia-
tion. This leads to deep connections to existing results in the theory of cut (semi)met-
rics and �1-embeddable metrics (Deza and Laurent 1997), as well as to extensions to 
the Bernoulli compatibility characterization of tail-dependence matrices established in 
Embrechts et al. (2016) and Krause et al. (2018). What follows is an overview of our 
key ideas and contributions.

Since the marginal distributions of X are not important in quantifying tail-
dependence, one may transform its marginals to be heavy-tailed. In fact, we make 
the additional and often very mild assumption that the vector X is regularly varying, 
i.e., that there exists a Radon measure � on ℝp ⧵ {0} and a suitable positive sequence 
an ↑ ∞ such that

(1.1)𝜆X(i, j) ∶= lim
u↑1

ℙ[Xi > F−1
i
(u)|Xj > F−1

j
(u)],

nℙ[X ∈ anA] → �(A), as n → ∞,
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for all Borel sets A ⊂ ℝ
p that are bounded away from 0 and such that �(�A) = 0 

(see Definition 2.1). This allows us to conclude that nℙ[h(X) > an] → 𝜇{h > 1} for 
continuous and 1-homogeneous functions h ∶ ℝ

p → [0,∞) (Proposition 2.5). There-
fore, if h is such a risk functional, we readily obtain an asymptotic approximation of 
the probability of an extreme loss ℙ[h(X) > an] ≈ n−1𝜇{h > 1} . By varying the risk 
functional h, one obtains different measures of tail-dependence, which may be of par-
ticular interest to practitioners. For example, if L = {i1,⋯ , ik} ⊂ [p] ∶= {1,⋯ , p} 
and taking hL(X) = (mini∈L Xi)+ ∶= max{0,mini∈L Xi} , the risk functional quanti-
fies the joint exceedance probability

that all components of X with index in the set L are simultaneously extreme – an 
event with potentially devastating consequences. In practice, due to the limited hori-
zon of historical data such extreme events especially for large sets L are rarely (if 
ever) observed. Thus, quantifying their probabilities is very challenging. Yet, as 
Emil Gumbel had eloquently put it “It is not possible that the improbable will never 
occur.” This underscores the importance of the theoretical understanding, modeling, 
and inference of such functionals. Namely, one naturally arrives at the higher order 
tail-dependence coefficients

It can be seen that if the marginals of the Xi ’s are identical and an is such that 
n−1 ∼ ℙ[Xi > an] (i.e. limn→∞ nℙ[Xi > an] = 1 ), then 𝜆X({i, j}) = limn→∞ ℙ[Xi > an
∣ Xj > an] recovers the classic bivariate tail-dependence coefficients �X(i, j) in (1.1). 
Using the functionals h(X) ∶= maxj∈K Xj for some K ⊂ [p] , one arrives at the popular 
extremal coefficients arising in the study of max-stable processes:

Starting from the seminal works of Schlather and Tawn (2002, 2003), the struc-
ture of the extremal coefficients {𝜃X(K), K ⊂ [p]} has been studied extensively, 
see Strokorb and Schlather (2015); Strokorb et al. (2015); Molchanov and Strokorb 
(2016); Fiebig et  al. (2017), which address fundamental theoretical problems and 
develop stochastic process extensions. Our goal here is more modest. We want to 
study both the tail-dependence and extremal coefficients as risk functionals from 
the unifying perspective of regular variation. Interestingly, they can be succinctly 
understood in terms of exceedance sets. Namely, defining the random set

we show (Proposition 3.1)

where the limit Θ is a non-empty random subset of [p] such that

ℙ[hL(X) > an] = ℙ[min
i∈L

Xi > an]

𝜆X(L) ∶= lim
n→∞

nℙ[min
i∈L

Xi > an].

𝜃X(K) ∶= lim
n→∞

nℙ[max
j∈K

Xj > an].

Θn ∶= {i ∈ [p] ∶ Xi > an}

Θn|{Θn ≠ �}
d

⟶Θ, as n → ∞,
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where a = �X([p]) . Thus, �X and �X (up to rescaling by a) are precisely the inclusion 
and hitting functionals characterizing the distribution of Θ (Molchanov 2017). Inter-
estingly, the probability mass function of the random set Θ recovers (up to rescaling) 
the coefficients in a (generalized) Tawn-Molchanov max-stable model associated 
with X (see (3.6)).

The above probabilistic representation in (1.2) of the tail-dependence function-
als leads to transparent proofs of seminal results from Embrechts et al. (2016) and 
Krause et  al. (2018) on the characterization of TD matrices in terms of so-called 
Bernoulli-compatible matrices. In fact, we readily obtain a more general result on 
the characterization of higher-order tail-dependence coefficients via Bernoulli-com-
patible tensors (Proposition 3.4).

Associated to the bivariate tail-dependence coefficients �X({i, j}) we introduce 
and discuss the so called spectral distance dX given by

This spectral distance defines a metric on the space of 1-Fréchet random vari-
ables (i.e. random variables with distribution function F(x) = exp{−c∕x}, x ≥ 0, for 
some non-negative scale coefficient c, where we speak of a standard 1-Fréchet dis-
tribution if c = 1 ) living on a joint probability space, which metricizes convergence 
in probability and was considered in Davis and Resnick (1993); Stoev and Taqqu 
(2005); Fiebig et al. (2017). In Section 4 we will establish the L1-embeddability of 
this metric, which allows us to apply the rich theory about metric embeddings in the 
context of analyzing the tail-dependence coefficients.

In Section  4.2, utilizing the exceedence set representation of the bivariate tail-
dependence coefficients and the L1-embeddability of the spectral distance, we recover 
the equivalence of the L1 and �1-embeddability as well as a probabilistic proof of the 
so-called cut-decomposition of �1-embeddable finite metric spaces. In this case, this 
decomposition turns out to be closely related to the Tawn-Molchanov model of an 
associated max-stable vector X (Proposition 4.5). When a given �1-embeddable met-
ric has a unique cut-decomposition, it is called rigid (Deza and Laurent 1997). Rigid-
ity of the spectral distance basically means that the bivariate tail-dependence coef-
ficients Λ determine all higher order tail-dependence coefficients. In Theorem 4.11, 
we show that line metrics are rigid, which to the best of our knowledge is a new 
finding. In particular, we obtain that the bivariate tail-dependence coefficient matri-
ces corresponding to line metrics determine the complete set of tail-dependence or, 
equivalently, extremal coefficients of X. Interestingly, the random set Θ correspond-
ing to such line-metric tail-dependence is (after a suitable reordering of marginals) 
a random segment, more precisely a random set of the form {i, i + 1,… , j − 1, j} for 
1 ≤ i ≤ j ≤ p with i = 1 or j = p . In general, the characterization of rigidity is com-
putationally hard as it is equivalent to the characterization of the simplex faces of the 
cone of cut metrics (Deza and Laurent 1997).

The bivariate TD matrix Λ is a correlation matrix of a random vector. It is well-
known, however, that not every correlation matrix with non-negative entries is a 

(1.2)𝜆X(L) = a ⋅ ℙ[L ⊂ Θ] and 𝜃X(K) = a ⋅ ℙ[K ∩ Θ ≠ �],

dX(i, j) ∶= �X({i}) + �X({j}) − 2�X({i, j}).
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matrix of tail-dependence coefficients. The recent works of Fiebig et al. (2017), 
Embrechts et al. (2016), Krause et al. (2018), and Shyamalkumar and Tao (2020) 
among others have studied extensively various aspects of the class of TD matri-
ces. One surprisingly difficult problem, referred to as the realizability problem, 
is checking whether a given matrix Λ is a valid TD matrix. The extensive study 
of Shyamalkumar and Tao (2020) proposed several practical and efficient algo-
rithms for realizability. Moreover, Shyamalkumar and Tao (2020) conjectured 
that the realizability problem is NP-complete. In Section 5, we confirm their con-
jecture. We do so by exploiting the established connection to �1-embeddability,  
which allows us to utilize the rich theory on cuts and metrics outlined in the mon-
ograph of Deza and Laurent (1997). It is known that checking whether any given 
p-point metric space is �1-embeddable is a computationally hard problem in the 
NP-complete class.

The paper is structured as follows: In Section 2 we give an overview over several 
ways of modeling and measuring tail-dependence of a random vector, presented in 
a hierarchic fashion: First of all, multivariate regular variation allows for the most 
complete asymptotic description of the tail-behavior of (heavy-tailed) random vec-
tors in terms of the tail measure, with a direct correspondence to the class of max-
stable models as the natural representatives for each given tail measure. A more 
condensed description of tail-dependence is given by the values of special extre-
mal dependence functionals like the extremal coefficients and tail-dependence coef-
ficients. Finally, a rather coarse but popular description of the tail-dependence is 
given in form of those functions evaluated only at bivariate marginals, where the 
bivariate tail-dependence coefficients form the most prominent example.

In Section 3 we first discuss exceedance sets, as introduced above, and Bernoulli 
compatibility. Based on this interpretation we give a short introduction into general-
ized Tawn-Molchanov models.

In Section 4 we explore the relationship between bivariate tail-dependence coef-
ficients and the spectral distance on the space of 1-Fréchet random variables. After 
a brief introduction into the concepts of metric embeddings of finite metric spaces 
we will show that the spectral distance is both L1 - and �1-embeddable, some conse-
quences of which will be explored in Sections 4.2 and 5. In Section 4.2 we introduce 
the concept of rigid metrics and prove that the building blocks of �1-embeddability, 
i.e. the line metrics, correspond to Tawn-Molchanov models with a special structure 
which is completely determined by this line metric.

Finally, in Section 5 we use known results about the computational complexity 
of embedding problems to show that the realization problem of a tail-dependence 
matrix is NP-complete. Some proofs are deferred to the Appendix A.

2  Regular variation, max‑stability, and extremal dependence

In this section, we provide a concise overview of fundamental notions on multi-
variate regular variation and max-stable distributions, which underpin the study of 
tail-dependence.
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2.1  Multivariate regular variation

The concept of multivariate regular variation is key to the unified treatment of the vari-
ous tail-dependence notions we will consider. Much of this material is classic but we 
provide here a self-contained review tailored to our purposes. Many more details and 
insights can be found in Resnick (1987, 2007); Hult and Lindskog (2006); Basrak and 
Planinić (2019); Kulik and Soulier (2020) among other sources.

We start with a few notations. A set A ⊂ ℝ
p is said to be bounded away from 0 

if 0 ∉ Acl , i.e., A ∩ B(0, �) = � , for some 𝜀 > 0 . Here Acl is the closure of A and 
B(x, r) ∶= {y ∈ ℝ

p ∶ ‖x − y‖ < r} is the ball of radius r centered at x in a given fixed 
norm ‖ ⋅ ‖ . Furthermore, denote the Borel �-Algebra on ℝp by B(ℝp).

Consider the class M0(ℝ
p) of all Borel measures � on B(ℝp) that are finite on sets 

bounded away from 0, i.e., such that 𝜇(B(0, 𝜀)c) < ∞ , for all 𝜀 > 0 . Such measures will 
be referred to as boundedly finite. For �n,� ∈ M0(ℝ

p), we write

if ∫
ℝp f (x)�n(dx) → ∫

ℝp f (x)�(dx), as n → ∞, for all bounded and continuous f van-
ishing in a neighborhood of 0. The latter is equivalent to having

for all �-continuity Borel sets A that are bounded away from 0 (Hult and Lindskog 
2006, Theorems 2.1 and 2.4).

Definition 2.1 A random vector X in ℝp is said to be regularly varying if there is a 
positive sequence an ↑ ∞ and a non-zero � ∈ M0(ℝ

p) such that

In this case, we write X ∈ RV({an},�) and call � the tail measure of X.

If X ∈ RV({an},�) , then it necessarily follows that there is an index 𝛼 > 0 such that

and, moreover, an ∼ n1∕��(n) , for some slowly varying function � , see, e.g., Kulik 
and Soulier (2020), Section 2.1. We shall denote by index(X) the index of regular 
variation � and sometimes write X ∈ RV�({an},�) to specify that index(X) = �.

The measure � is unique up to a multiplicative constant and the scaling property (2.2) 
implies that � factors into a radial and an angular component. Namely, fix any norm 
‖ ⋅ ‖ in ℝp ⧵ {0} and define the polar coordinates r ∶= ‖x‖ and u ∶= x∕‖x‖, x ≠ 0 . 
Then,

�n

M0

⟹�, as n → ∞,

(2.1)�n(A) → �(A), as n → ∞,

nℙ[X ∈ an⋅]
M0

⟹�(⋅), as n → ∞.

(2.2)𝜇(cA) = c−𝛼𝜇(A), for all c > 0 and A ∈ B(ℝp),

(2.3)�(A) = ∫S ∫
∞

0

1A(ru)�r
−�−1dr�(du),
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where S ∶= {x ∶ ‖x‖ = 1} is the unit sphere and � is a finite Borel measure on S 
referred to as the angular or spectral measure associated with � , see, e.g., Kulik and 
Soulier (2020), Section 2.2. Given the norm ‖ ⋅ ‖ , the measure � is uniquely deter-
mined as

where B(A) for A ⊂ ℝ
p denotes the p-dimensional Borel sets which are also subsets 

of A. The following is a useful characterization of regular variation sometimes taken 
as an equivalent definition, see again, e.g., Kulik and Soulier (2020), Section 2.2.

Proposition 2.2 We have X ∈ RV�({an},�) if and only if for all x > 0

where ⇒ denotes the weak convergence of probability distributions.

Proposition 2.2  characterizes regularly varying random vectors in terms of 
exceedances over a threshold. An equivalent charaterization is also possible in terms 
of maxima, see, e.g., Kulik and Soulier (2020), Section 2.1.

Proposition 2.3 For a random vector Y ∈ [0,∞)p we have Y ∈ RV�({an},�) if and 
only if there exists a non-degenerate random vector X such that for all x ∈ [0,∞)p

where [0, x]c ∶= ℝ
p

+ ⧵ [0, x] = ℝ
p

+ ⧵ ([0, x1] ×… × [0, xp]) and Y (t), t = 1,… , n are 
independent copies of Y and the operation ∨ denotes taking the component-wise 
maximum. The random vector X is said to have a (multivariate) Fréchet-distribution 
with exponent measure �.

Multivariate regular variation provides an asymptotic framework and for 
given �, {an} and � there exist several distributions of random vectors Y such that 
Y ∈ RV�({an},�) , but according to Proposition 2.3 their maxima are all attracted 
to the same random vector X whose distribution depends only on � . The class of 
limiting random variables in Proposition 2.3 will be inspected more closely in the 
next section.

2.2  Max‑stable vectors

The homogeneity property (2.2) of � implies that the limiting random vector in 
Proposition 2.3 has a certain stability property, namely that

(2.4)𝜎(B) = 𝜇({x ∶ ‖x‖ > 1, x∕‖x‖ ∈ B}), B ∈ B(S),

nℙ[‖X‖ > anx] → x−𝛼 , as n → ∞, and ℙ

�
X

‖X‖ ∈ ⋅ � ‖X‖ > r
�
⟹ 𝜎(⋅), as r → ∞,

ℙ

[
a−1
n

n⋁
t=1

Y (t) ≤ x
]
→ ℙ[X ≤ x] = exp{−�([0, x]c)}, as n → ∞,
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with the same notation as in Proposition 2.3 and where d= stands for equality in distri-
bution, see Kulik and Soulier (2020), Section 2.1. We call such a random vector X max-
stable and we call X non-degenerate max-stable if in addition ℙ[X = (0,… , 0)] < 1 . 
For � = 1 this simplifies to

and we speak of a simple max-stable random vector X, which we will further ana-
lyze in the following.

The marginal distributions of simple max-stable distributions are necessarily 
1-Fréchet, that is,

for some non-negative scale coefficient �i . We shall write ‖Xi‖1 ∶= �i for the scale 
coefficient of the 1-Fréchet variable Xi . The next result characterizes all multivariate 
simple max-stable distributions. Here, we recall the so-called de Haan construction 
of a simple max-stable vector.

Proposition 2.4 Let (E, E, �) be a measure space and let L1
+
(E, �) denote the set of all 

non-negative �-integrable functions on E. For every collection fi ∈ L1
+
(E, �), 1 ≤ i ≤ p , 

there is a random vector X = (Xi)1≤i≤p , such that for all xi > 0, 1 ≤ i ≤ p,

The random vector X is simple max-stable. Conversely, for every simple max-stable 
vector X, Equation (2.6) holds and (E, E, �) can be chosen as ([0, 1],B[0, 1], Leb) . In 
fact, we have the stochastic representation

where {(Γj,Uj)} is a Poisson point process on (0,∞) × [0, 1] with mean measure 
dx × �(du).

For a proof and more details, see e.g. de Haan (1984); Stoev and Taqqu (2005). 
The functions fi in (2.6) and (2.7) are referred to as spectral functions associated 
with the vector X. From (2.6) and (2.7), one can readily see that for all f ∈ L1

+
(E, �) , 

the so-called extremal integral I(f) in (2.7) is a well-defined 1-Fréchet random vari-
able. More precisely, its cumulative distribution function is:

n⋁
t=1

X(t) d=n1∕�X for all n ∈ ℕ,

(2.5)
n⋁
t=1

X(t) d=nX for all n ∈ ℕ,

ℙ[Xi ≤ x] = e−𝜎i∕x, x > 0,

(2.6)ℙ[Xi ≤ xi, 1 ≤ i ≤ p] = exp
{
− �E

max
1≤i≤p

fi(u)

xi
�(du)

}
.

(2.7)(Xi)1≤i≤p
d
=(I(fi))1≤i≤p, with I(f ) ∶=

∞⋁
j=1

f (Uj)

Γj

, f ∈ L1
+
([0, 1], �),
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Moreover, the extremal integral functional I(⋅) is max-linear in the sense that 
for all ai ≥ 0 and fi ∈ L1

+
(E, �), 1 ≤ i ≤ n , we have

Thus, every max-linear combination ∨n
i=1

aiXi of X as above with coefficients 
ai ≥ 0 is a 1-Fréchet random variable with scale coefficient:

We will further explore the asymptotic properties of simple max-stable ran-
dom vectors and how they fit into the framework of multivariate regular variation 
in the following section.

2.3  Extremal dependence functionals and tail‑dependence coefficients

The tail measure � and the normalizing sequence {an} from Section 2.1 provide a 
comprehensive description of the asymptotic behavior of a random vector X and 
allow to approximate probabilities of the form ℙ[X ∈ anA] for all sets A bounded 
away from 0. Sometimes, however, one may be interested in those probabilities 
for certain simple sets A only and describe the asymptotic behavior of X by cer-
tain extremal dependence functions instead. In this section, we first derive a gen-
eral result for such extremal dependence functions and then introduce two par-
ticularly popular families of them.

Proposition 2.5 Let X ∈ RV�({an},�) in ℝp . Let also h ∶ ℝ
p → [0,∞) be a non-

negative, continuous and 1-homogeneous function, i.e., h(cx) = ch(x), c > 0, x ∈ ℝ
p . 

Then,

where Y has probability distribution �(⋅)∕�(S) with � is as in (2.4) and S = {x ∶ ‖x‖ = 1}.

Though this result is similar to Yuen et  al. (2020),  Lemma A.7, and also a 
special case to Dyszewski and Mikosch (2020), Theorem 2.1, its proof is given 
Section A.

We will apply the formula in (2.8) for homogeneous functionals of the form 
h(x) = (mini∈K xi)+ and h(x) = (maxi∈K xi)+ for some subset K ⊂ [p] = {1,… , p}.

ℙ[I(f ) ≤ x] = exp{−‖I(f )‖1∕x}, x > 0, where ‖I(f )‖1 = ‖f‖L1 = �E

f (u)𝜈(du).

I

( n⋁
t=1

at ft

)
=

n⋁
t=1

atI(ft).

‖‖‖
n⋁
i=1

aiXi

‖‖‖1 = ∫
E

( n⋁
i=1

ai fi(u)

)
�(du) =

‖‖‖
n⋁
i=1

ai fi
‖‖‖L1 .

(2.8)lim
n→∞

nℙ[h(X) > an] = ∫S

h(u)𝛼𝜎(du) = 𝔼[h(Y)𝛼]𝜎(S),
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The next result shows that simple max-stable vectors are regularly varying and 
provides means to express their extremal dependence functionals both in terms of 
spectral functions and tail measures.

Proposition 2.6 Let X = (Xi)1≤i≤p be a non-degenerate simple max-stable vec-
tor as in (2.6). Then, X ∈ RV1({n},�) , where � is supported on [0,∞)p and for all 
x = (xi)1≤i≤p ∈ ℝ

p

+ ⧵ {0}

Moreover, for every non-negative, continuous 1-homogeneous function h ∶ ℝ
p

→ [0,∞) , we have

where f(z) = (f1(z),⋯ , fp(z)) . In particular, the spectral measure � has the 
representation

Again, this result is standard but we sketch its proof for the sake of complete-
ness in Appendix A. The classic representation of the simple max-stable cumula-
tive distribution functions is a simple corollary from Proposition 2.6.

Corollary 2.7 In the situation of Proposition 2.6, by taking h(u) ∶= hx(u) ∶= (maxi∈[p]

ui∕xi)+ for x ∈ (0,∞)p in (2.9), we obtain 𝜇({h > 1}) = 𝜇([0, x]c) and

For more details on the characterization of the max-domain of attraction of 
multivariate max-stable laws in terms of multivariate regular variation, see e.g., 
Proposition 5.17 in Resnick (1987).

We are now ready to recall the general definitions of the extremal and tail-
dependence coefficients of a regularly varying random vector, which have briefly 
been introduced in Section  1, now with additional notation for the normalizing 
sequence {an}.

Definition 2.8 Let X = (Xi)1≤i≤p ∈ RV({an},�) . Then, for non-empty sets K, L ⊂ [p] , 
we let

The �X(K;{an}) ’s and �X(L;{an}) ’s are referred to as the extremal and tail-
dependence coefficients relative to {an} of the vector X, respectively.

ℙ[X ≤ x] = exp{−�([0, x]c)}, text �([0, x]c) = �E

max
1≤i≤p

fi(u)

xi
�(du).

(2.9)lim
n→∞

nℙ[h(X) > n] = 𝜇({h > 1}) = ∫S

h(u)𝜎(du) = ∫E

h(f(z))𝜈(dz),

(2.10)�(B) = ∫E

1B

�
f(z)

‖f(z)‖
�
‖f(z)‖�(dz), B ∈ B(S).

(2.11)ℙ[X ≤ x] = exp{−�([0, x]c)} = exp
{
− �S

(
max
i∈[p]

ui

xi

)
�(du)

}
.

𝜃X(K;{an}) ∶= lim
n→∞

nℙ
[
max
i∈K

Xi > an

]
and 𝜆X(L;{an}) ∶= lim

n→∞
nℙ

[
min
i∈L

Xi > an

]
.
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If it is clear to which random vector we refer to or it does not matter for the 
argument, we may drop the index X and just write �(K;{an}) and �(K;{an}) . 
Sometimes we will view � and � as functions of k-tuples and write for example

(where some of the arguments i1,… , ik may repeat) which corresponds to �X(L, {an}) 
where L is the set of all distinct values in {i1,… , ik}.

Remark 2.9 Note that the definitions of �X(K, {an}) and �X(L, {an}) depend on the 
choice of the sequence {an} . They are unique, however, up to a multiplicative con-
stant. More precisely, if index(X) = � and an ∼ a�

n
, c > 0 , then

Remark 2.10 In the following we will focus on extremal and tail-dependence coeffi-
cients of max-stable random vectors, which exist by Definition 2.8 in combination with 
Proposition 2.6 as long as X is non-degenerate. Observe that if X is non-degenerate sim-
ple max-stable, then

Thus, if all marginals of X are standard 1−Fréchet, i.e., ‖Xi‖1 = 1 , then setting 
an = n ensures that limn→∞ nℙ[Xi > an] = 1 and one recovers the upper tail-depend-
ence coefficient �X(i, j) from (1.1), i, j ∈ [p] . More generally, if X is non-degenerate 
simple max-stable, then we can choose an = n as a normalizing sequence and in this 
case (or if the sequence {an} does not matter for the argument), we will also write

In the case that ℙ[X = (0,… , 0)] = 1 , we set �X(K) = �X(L) = 0 for all K, L ⊂ [p].

The following result expresses these functionals in terms of both the tail meas-
ure � and the spectral functions of the vector X. Again, the proof is given in 
Appendix A.

Corollary 2.11 Let X = (Xi)1≤i≤p be a simple max-stable vector as in (2.6). Then,

where Ai ∶= {x ∈ ℝ
p ∶ xi > 1} and

�X(i1,⋯ , ik;{an}), 1 ≤ i1,… , ik ≤ p,

�X(K;{can}) = c−��X(K;{a
�
n
}) as well as �X(L;{can}) = c−��X(L;{a

�
n
}).

𝜆(i;{n}) = 𝜃(i;{n}) = lim
n→∞

nℙ[Xi > n] = lim
n→∞

n(1 − e−𝜎i∕n) = 𝜎i = ‖Xi‖1, 1 ≤ i ≤ p.

𝜃(K) = 𝜃X(K) = 𝜃X(K;{an}), 𝜆(L) = 𝜆X(L) = 𝜆X(L;{an}), K, L ⊂ [p].

(2.12)�X(K) = �
(⋃

i∈K

Ai

)
and �X(L) = �

(⋂
i∈L

Ai

)
,

(2.13)�X(K) = ∫E

max
i∈K

fi(x)�(dx) and �X(L) = ∫E

min
i∈L

fi(x)�(dx).
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2.4  Bivariate tail‑dependence measures and spectral distance

In Definition 2.8 we introduced general extremal and tail-dependence coefficients 
for arbitrary non-empty subsets K, L ⊂ [p] , i.e. for 2p − 1 different sets. Often these 
are too many coefficients for a handy description of the dependence structure. 
Therefore, one may consider only the pairwise dependence in a simple max-stable 
vector X which corresponds to the consideration of sets K and L with at most two 
entries. The set of tail-dependence coefficients with sets containing at most two 
elements can be written in the so called matrix of bivariate tail-dependence coef-
ficients, which we denote by

For the bivariate tail-dependence we have the alternative representation

For standardized marginals ‖Xi‖1 = 1 this implies �X(i, j) = 2 − ‖Xi ∨ Xj‖1 . The 
1-Fréchet marginals of X imply

as n → ∞ , where ‖Xi ∨ Xj‖1 denotes the scale coefficient of the 1-Fréchet distribu-
tion of Xi ∨ Xj . Thus, for standardized marginals ‖Xi‖1 = 1 , 1 ≤ i ≤ p , the bivariate 
tail-dependence coefficients also have the following representation for all 1 ≤ i, j ≤ p:

In this form, the bivariate tail-dependence matrix is a popular measure for the 
extremal dependence in the random vector X. First appearing around the 60’s (e.g. 
de Oliveira (1962)), the bivariate tail-dependence coefficients are frequently consid-
ered in the literature, see e.g. Coles et al. (1999); Beirlant et al. (2004); Frahm et al.  
(2005); Fiebig et al. (2017); Shyamalkumar and Tao (2020) for different considera-
tions (sometimes other names as coefficient of (upper) tail-dependence or �-measure  
are used). In the context of finance and insurance but also in an environmental  
context this measure is used to describe the extremal risk in the random vector X. 
Moreover, the characterization of whether Xi and Xj are extremally dependent is usu-
ally formulated by these bivariate tail-dependence coefficents: If �X(i, j) = 0 , then Xi 
and Xj are extremally independent, otherwise the two random variables are extrem-
ally dependent.

Note that for standardized marginals the relation �X(i, j) = 2 − �X(i, j) holds. The 
extremal dependence coefficient in this form has often been used in the literature as a 
measure for extremal dependence, see e.g. Smith (1990); Schlather and Tawn (2003); 
Strokorb and Schlather (2015).

ΛX = Λ = (�X(i, j))1≤i,j≤p = (�X(i, j;{n}))1≤i,j≤p.

(2.14)

𝜆X(i, j) = lim
n→∞

nℙ[Xi > n,Xj > n] = lim
n→∞

n(ℙ[Xi > n] + ℙ[Xj > n] − ℙ[Xi ∨ Xj > n])

= ‖Xi‖1 + ‖Xj‖1 − ‖Xi ∨ Xj‖1.

ℙ[Xi > n] ∼
‖Xi‖1
n

and ℙ[Xi ∨ Xj > n] ∼
‖Xi ∨ Xj‖1

n

(2.15)𝜆X(i, j) = lim
u→∞

ℙ[Xi > u,Xj > u]∕ℙ[Xi > u] = lim
n→∞

ℙ[Xj > n ∣ Xi > n].
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In all these references, the tail-dependence coefficient was defined as in (2.15) and 
standardized (or at least identically distributed) marginal distributions were assumed, as 
it is common for the analysis of dependence. However, we allow for unequal scales and 
therefore use the more general form (2.14).

Remark 2.12 The matrix of bivariate tail-dependence coefficients Λ of a simple 
max-stable vector is necessarily positive semi-definite. Indeed, this follows from the 
observation that by Corollary 2.11

where B = {B(t), t ≥ 0} is a standard Brownian motion and since non-negative mix-
tures of covariance matrices are again covariance matrices. Another way to see this 
is from the observation that for each n, we have nℙ[Xi > n,Xj > n] = n𝔼[I(Xi > n)

I(Xj > n)] is a positive semi-definite function of i, j ∈ [p] , which is related to the fact 
that (i, j) ↦ �(i, j) is, up to a multiplicative constant, the covariance function of a 
certain random exceedance set (see Remark 3.6, below).

The matrix Λ is thus positive semi-definite, has non-negative entries and for stand-
ardized marginals of X it holds �({i}) = 1 , i.e. Λ is a correlation matrix. However, not 
every correlation matrix with non-negative entries is necessarily a matrix of bivariate 
tail-dependence coefficients. The realization problem (i.e. the question whether a given 
matrix is the tail-dependence matrix of some random vector) is a recent topic in the lit-
erature (Fiebig et al. 2017; Krause et al. 2018; Shyamalkumar and Tao 2020). We will 
further discuss this problem in Section 5.

Related to the bivariate dependence coefficients we define an associated function, 
which will turn out to be a semi-metric on [p].

Definition 2.13 Let X = (Xi)1≤i≤p be a simple max-stable vector. Then, for i, j ∈ [p] , 
the spectral distance dX is defined by

By (2.14)

If the scales of the marginals of the simple max-stable vector (Xi)1≤i≤p are the same, 
i.e. ‖Xi‖ = c for some c > 0 and all 1 ≤ i ≤ p , then (2.17) simplifies to

For standard 1-Fréchet marginals this further reduces to d(i, j) = 2(1 − �X(i, j)).
The spectral distance for max-stable vectors was already considered in Stoev and 

Taqqu (2005), equation (2.11). There it was shown that this distance is indeed a semi-
metric on [p] (Stoev and Taqqu 2005, Proposition 2.6) and that it metricizes conver-
gence in probability in 1-Fréchet spaces (Stoev and Taqqu 2005, Proposition 2.4). In 

�(i, j) = ∫ fi(x) ∧ fj(x)�(dx) = ∫ Cov(B(fi(x)),B(fj(x)))�(dx),

(2.16)dX(i, j) ∶= d(Xi,Xj) ∶= 2‖Xi ∨ Xj‖1 − ‖Xi‖1 − ‖Xj‖1.

(2.17)dX(i, j) = ‖Xi‖1 + ‖Xj‖1 − 2�X(i, j) = �X(i) + �X(j) − 2�X(i, j).

d(i, j) = 2(c − �X(i, j)).
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the form of (2.17), the spectral distance also appears in Fiebig et  al. (2017), where 
it was defined in two steps in (Fiebig et al. 2017, Proposition 34 and 37). There, the 
use of the spectral distance is based on the fundamental work of (Deza and Laurent 
1997, Section 5.2), where it is used in a different context.

In Section 4 we will prove that the spectral distance of a simple max-linear vector 
X is L1-embeddable, with representation dX(i, j) = ‖fi − fj‖L1 , where fi, fj are the spec-
tral functions of X. In this form, the spectral distance was already used in Davis and 
Resnick (1989, 1993), where it was mainly applied for a projection method for pre-
diction of max-stable processes. Davis and Resnick (1993) also gave a connection to 
the bivariate tail-dependence coefficients �(i, j) as considered in de Oliveira (1962), but 
only in the case of equally scaled marginals.

3  Tail‑dependence via exceedance sets

In this section we develop a unified approach to representing tail-dependence via ran-
dom exceedence sets, which explains and extends the notion of Bernoulli compatibility 
discovered in Embrechts et al. (2016) to higher order tail-dependence. Moreover, we 
introduce a slight extension of the so-called Tawn-Molchanov models and explore their 
connections to extremal and tail-dependence coefficients.

3.1  Bernoulli compatibility

We will first demonstrate that tail-dependence can be succinctly characterized via a 
random set obtained as the limit of exceedance sets. Let X ∈ RV�({an},�) and con-
sider the exceedance set:

The asymptotic distribution of this random set, conditioned on it being non-empty 
can be directly characterized in terms of the extremal or tail-dependence coefficients 
of X. Specifically, these dependence coefficients can be seen as the hitting and inclu-
sion functionals of a limiting random set Θ , respectively. For the precise definitions and 
related notions from the theory of random sets, we will always refer to the monograph 
of Molchanov (2017).

Before proceeding with the analysis of Θ we will introduce some appropriate coef-
ficients. Let

where again Ai ∶= {x ∈ ℝ
p ∶ xi > 1}, i ∈ [p] . Then, in view of (2.12), since the 

BJ ’s are all pairwise disjoint in J,

Θn ∶= {i ∶ Xi > an}.

(3.1)𝛽(J) ∶= 𝜇(BJ) ∶= 𝜇
(⋂

j∈J

Aj ∩
⋂
k∈Jc

Ac
k

)
, � ≠ J ⊂ [p],

(3.2)𝜃X(K) =
∑

J ∶ J∩K≠�
𝛽(J) and 𝜆X(L) =

∑
J ∶L⊂J

𝛽(J).
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This, in view of the so-called Möbius inversion formula, see, e.g., Molchanov 
(2017), Theorem 1.1.61, yields the inversion formulae:

which is Equation (7) in Schlather and Tawn (2003), Theorem 1. We also have

Finally, the usual inclusion–exclusion type relationships hold between � and �:

Although some of the Relations (3.3), (3.4), and (3.5) are available in the litera-
ture, we prove them in Appendix A independently with elementary arguments in 
Lemma A.2.

Observe that the event {Θn ∩ K ≠ �} is {maxi∈K Xi > an} and note that

due to (2.2) and � being non-zero. This implies that

The functionals Tn(⋅) are known as the hitting functionals of the conditional dis-
tribution of the random set Θn . They are completely alternating capacities and their 
limit yields hitting functionals T(K) ∶= �X(K)∕�X([p]) of a non-empty random set 
Θ ⊂ [p] . This random set Θ may be viewed as the “typical” exceedance set for a 
regularly varying vector as the threshold an approaches infinity. It is immediate from 
(3.3) and Molchanov (2017), Corollary 1.1.31, that

Observing that 𝜃X([p]) =
∑

�≠K⊂[p] 𝛽(K), we have thus established the following 
result.

Proposition 3.1 Let X ∈ RV({an},�) and define the random exceedance set 
Θn ∶= {i ∶ Xi > an} . Then, as n → ∞ , we have

where the probability mass function of Θ is as in (3.6) and the �(J) ’s are as in (3.1). 
We have moreover that

(3.3)𝛽(J) =
∑

K ∶ �≠K, Jc⊂K
(−1)|J∩K|+1𝜃X(K),

(3.4)𝛽(J) =
∑

L ∶ J⊂L⊂[p]

(−1)|L⧵J|𝜆X(L).

(3.5)𝜃X(K) =
∑

L ∶ �≠L⊂K
(−1)|L|−1𝜆X(L) and 𝜆X(L) =

∑
K ∶ �≠K⊂L

(−1)|K|−1𝜃X(K).

𝜃X([p]) =
∑
J∶J≠�

𝛽(J) = 𝜇(∪i∈[p]Ai) = lim
n→∞

ℙ[max
i∈[p]

Xi > an] > 0,

Tn(K) ∶= ℙ[Θn ∩ K ≠ � | Θn ≠ �] =
ℙ[maxi∈K Xi > an]

ℙ[maxi∈[p] Xi > an]
⟶

𝜃X(K)

𝜃X([p])
, as n → ∞.

(3.6)ℙ[Θ = J] =
𝛽(J)∑

�≠K⊂[p] 𝛽(K)
, � ≠ J ⊂ [p].

ℙ[Θn ∈ ⋅|{Θn ≠ �}] ⇒ ℙ[Θ ∈ ⋅],
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Remark 3.2 Molchanov and Strokorb (2016) introduced the important class of Cho-
quet random sup-measures whose distribution is characterized by the extremal coef-
ficient functional �(⋅) . This is closely related but not identical to our perspective 
here, which emphasizes threshold-exceedance rather than max-stability.

The above result shows that all tail-dependence coefficients can be succinctly 
represented (up to a constant) via the random set Θ . This finding allows us to con-
nect the tail-dependence coefficients to so-called Bernoulli-compatible tensors.

Definition 3.3 A k-tensor T = (T(i1,⋯ , ik))1≤i1,⋯,ik≤p is said to be Bernoulli-compatible, if

where �(1),⋯ , �(p) are (possibly dependent) Bernoulli 0 or 1-valued random vari-
ables, i.e. ℙ[�(i) = 1] = pi = 1 − ℙ[�(i) = 0] for some pi ∈ [0, 1], i ∈ [p] . If not all 
�(i) ’s are identically zero, the tensor T is said to be non-degenerate.

In the case k = 2 , this definition recovers the notion of Bernoulli compatibility 
in Embrechts et al. (2016). Proposition 3.1 implies the following result.

Proposition 3.4 

 (i) For every Bernoulli-compatible k-tensor T = (T(i1,⋯ , ik))[p]k , there exists a 
simple max-stable random vector X such that 

 for all i1,⋯ , ik ∈ [p].
 (ii) Conversely, for every simple max-stable random vector X = (Xi)1≤i≤p , and 

every c ≥ �X([p]) (or every c > 0 if �X([p]) = 0 ) 

 is a Bernoulli-compatible k-tensor.

Proof (i)  : Assume (3.8) holds and introduce the random (possibly empty) set 
Θ ∶= {i ∶ �(i) = 1} . Let �(J) ∶= ℙ[Θ = J] and define the simple max-stable vector

(3.7)ℙ[Θ ∩ K ≠ �] =
𝜃X(K)

𝜃X([p])
and ℙ[L ⊂ Θ] =

𝜆X(L)

𝜃X([p])
.

(3.8)T(i1,⋯ , ik) = �

[
�(i1)⋯ �(ik)

]
,

T(i1,⋯ , ik) = �X(i1,⋯ , ik),

(3.9)(T(i1,⋯ , ik))[p]k ∶=
1

c
⋅

(
�X(i1,⋯ , ik)

)
[p]k

(3.10)X ∶=
⋁

J ∶ �≠J⊂[p]
𝛽(J)1JZJ ,
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where 1J = (1J(i))1≤i≤p contains 1 in the coordinates in J and 0 otherwise and 
the ZJ ’s are iid standard 1-Fréchet. If T is degenerate, then ℙ[Θ = �] = 1 and 
ℙ[X = (0,… , 0)] = 1 , so by our previous convention we have �X(L) = 0 for all 
L ⊂ [p] and the statement follows. Otherwise, X is non-degenerate. Then, in view 
of Lemma A.1 and since �1JZJ (L) = 1 for L ⊂ J and �1JZJ (L) = 0 for L ⊄ J , we have

Since for L = {i1,⋯ , ik} we have 1{L⊂Θ} =
∏k

j=1
𝜉(ij) , we obtain

This completes the proof of (i).
(ii) : If ℙ[X = (0,… , 0)] = 1 , then �X([p]) = 0 and the statement follows by set-

ting all �(ik) identically to 0, so assume ℙ[X = (0,… , 0)] < 1 in the following, which 
implies 𝜃X([p]) > 0 . Let Θ ⊂ [p] be a random set such that (3.7) holds, i.e.,

Define �(i) ∶= B ⋅ 1Θ(i) , where B is a Bernoulli random variable, independent of 
Θ , such that ℙ[B = 1] = 1 − ℙ[B = 0] = q ∈ (0, 1] for all i ∈ [p] . Then, we have that

This shows that (3.9) holds with potentially any c ≥ �X([p]) .   ◻

Remark 3.5 As it can be seen from the proof the lower bound on the constant c in 
Proposition 3.4  (ii) cannot be improved. Observe that �([p]) ≤ ∑

i∈[p] �X(i) , where 
the inequality is strict unless all Xi ’s are independent. Thus, the above result even in 
the case k = 2 improves upon Theorem 3 in Krause et al. (2018) where the range for 
the constant c is c ≥ ∑

i∈[p] �X(i).

Remark 3.6 In the case of two-point sets, we have that the bivariate tail-dependence 
coefficient

is proportional to the so-called covariance function (i, j) ↦ ℙ[i, j ∈ Θ] = 𝔼[1Θ
(i)1Θ(j)] of the random set Θ . This shows again that the bivariate tail-dependence 
function (i, j) ↦ �(i, j) is positive semidefinite.

Remark 3.7 Relation (3.11) recovers a simple proof of the Bernoulli compatibility 
of TD matrices established in Theorem 3.3 of Embrechts et al. (2016). Namely, their 
result states that Λ = (�i,j)p×p is a matrix of bivariate tail-dependence coefficients, if 
and only if Λ = c�[𝜉𝜉⊤] for some c > 0 and a random vector � = (�i)1≤i≤p with Ber-
noulli entries taking values in {0, 1} . Clearly, there is a one-to-one correspondence 

𝜆X(L) =
∑

J ∶ L⊂J

𝛽(J) = ℙ[L ⊂ Θ].

T(i1,⋯ , ik) = 𝔼[𝜉(i1)⋯ 𝜉(ik)] = ℙ[L ⊂ Θ] = 𝜆X(L).

𝜆X(L) = 𝜃X([p]) ⋅ ℙ[L ⊂ Θ], L ⊂ [p].

�[𝜉(i1)⋯ 𝜉(ik)] = q�[1{i1,⋯,ik}⊂Θ
] =

q

𝜃X([p])
⋅ 𝜆X(i1,⋯ , ik).

(3.11)�(i, j) = �([p]) × ℙ[i, j ∈ Θ] = �([p])𝔼[1Θ(i)1Θ(j)], i, j ∈ [p],
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between a random set Θ ⊂ [p] and a Bernoulli random vector: Θ ∶= {i ∶ �i = 1} 
and � = (1Θ(i))1≤i≤p . The characterization result then follows from (3.11).

3.2  Generalized Tawn‑Molchanov models

In the previous section we defined in (3.1) coefficients �(J) to characterize the dis-
tribution of the limiting exceedance set Θ . These coefficients were then used in 
(3.10) to construct a max-stable random vector in order to prove Proposition 3.4. 
This special random vector is in fact nothing else than a generalized version of the 
so-called Tawn-Molchanov model which we will introduce formally in this section.

The following result is a slight extension and re-formulation of existing results 
in the literature, which have first appeared in Schlather and Tawn (2002, 2003) (see 
also Strokorb and Schlather (2015); Molchanov and Strokorb (2016) for extensions) 
in the context of finding necessary and sufficient conditions for a set of 2p − 1 num-
bers {𝜃(K) ∣ � ≠ K ⊂ [p]} to be the extremal coefficients of a max-stable vector X. 
The novelty here is that we consider max-stable vectors with possibly non-identical 
marginals and treat simultaneously the cases of extremal as well as tail-dependence 
coefficients.

Theorem 3.8 The function {𝜃(K), K ⊂ [p]} ( {𝜆(L), L ⊂ [p]} , respectively) yields the 
extremal (tail-dependence, respectively) coefficients of a simple max-stable vector 
X = (Xi)1≤i≤p if and only if the �(J) ’s in (3.3) ((3.4), respectively) are non-negative 
for all � ≠ J ⊂ [p] . In this case, let ZJ , J ⊂ [p] , be iid standard 1-Fréchet random 
variables and define

where 1J = (1J(i))1≤i≤p contains 1 in the coordinates in J and 0 otherwise. Then, 
X∗ is a max-stable random vector whose extremal (tail-dependence) coefficients are 
precisely the �(K) ’s ( �(L)’s, respectively).

The proof is given in Appendix A. The vector X∗ defined in (3.12) is referred 
to as the Tawn-Molchanov or simply TM-model associated with the extremal (tail-
dependence) coefficients {�(K)} ( {�(L)}, respectively).

Remark 3.9 The distribution of the random set Θ introduced in Section 3.1 can be 
understood in terms of the Tawn-Molchanov model (3.12) using the single large 
jump heuristic: Given that Θn = {i ∶ X∗

i
> n} ≠ � , for large n, only one of the ZJ ’s 

is extreme enough to contribute to the exceedance set. Thus, with high probabil-
ity, Θn equals the corresponding J in (3.12). The probability of the set J to occur is 
asymptotically proportional to the weight �(J) , which explains the formula (3.6).

We have seen in Section  2.4 that extremal dependence can also be measured 
in terms of spectral distance. In the following section we will explore further the 

(3.12)X∗ = (X∗
i
)1≤i≤p ∶=

⋁
�≠J⊂[p]

𝛽(J)1JZJ ,
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connections between spectral distance and the just introduced Tawn-Molchanov 
models and see how the latter naturally lead to a decomposition of the former which 
is equivalent to �1-embeddability.

4  Embeddability and rigidity of the spectral distance

So far, we have mainly considered the overall tail-dependence of X or the tail-
dependence function �(L) for arbitrary L ⊂ [p] . In this section we will focus on the 
bivariate dependence as in Section 2.4. Specifically, we look at the spectral distance 
and prove that it is both L1 - and, equivalently, �1-embeddable. For special spectral 
distances, namely those corresponding to line metrics, we prove that they are rigid 
and completely determine the tail-dependence of a TM-model.

4.1  L1‑embeddability of the spectral distance

Recall that a function d ∶ T × T → [0,∞) on a non-empty set T is called a semi-
metric on T if (i) d(u, u) = 0 , u ∈ T  (ii) d(u, v) = d(v, u), u, v ∈ T  and (iii) 
d(u,w) ≤ d(u, v) + d(v,w), u, v,w ∈ T  . The semi-metric is a metric if d(u, v) = 0 
only if u = v.

Definition 4.1 A semi-metric d on a set T is said to be L1(E, �)-embeddable (or short 
L1-embeddable, when the measure space is understood) if there exists a collection of 
functions ft ∈ L1(E, �) , t ∈ T  , such that

The concept of L1-embeddability is extensively discussed in Deza and Laurent 
(1997). An overview can also be found in Matoušek (2013). Our first theorem in 
this section shows that the spectral distance matrix dX of a max-stable vector X as 
defined in (2.16) is L1-embeddable.

Theorem 4.2 

 (i) For a simple max-stable vector X with bivariate tail-dependence coefficients 
�i,j = �X(i, j) , the spectral distance 

 (see Definition 2.13 and (2.17)) is an L1-embeddable semi-metric.
 (ii) Conversely, for every L1-embeddable semi-metric d on [p], there exists a sim-

ple max-stable vector X such that (4.1) holds with �i,j ∶= �X(i, j), 1 ≤ i, j ≤ p . 
Moreover, there exists a c ≥ 0 such that X may be chosen to have equal mar-
ginal distributions with ‖Xi‖1 = c, i ∈ [p].

d(s, t) = ‖fs − ft‖L1 = ∫E

�fs(u) − ft(u)��(du), s, t ∈ T .

(4.1)d(i, j) ∶= �i,i + �j,j − 2�i,j
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 (iii) The semi-metric d in parts (i) and (ii) is a metric if and only if ℙ[Xi ≠ Xj] > 0 
for all i ≠ j.

Proof Part (i): Suppose that X = (Xi)1≤i≤p is simple max-stable and let fi ∈ L1
+
([0, 1]) 

be as in (2.6), where for simplicity and without loss of generality we choose � =Leb. 
In view of Relation (2.13), we obtain

Now the identity |a − b| = a + b − 2(a ∧ b) implies

This shows that the semi-metric in (4.1) is L1-embeddable. Note that d is a met-
ric if and only if fi(⋅) ≠ fj(⋅) , almost everywhere, or equivalently Xi ≠ Xj a.s., for all 
i ≠ j.

Part (ii): Suppose now that d(i, j) = ‖gi − gj‖L1 for some gi ∈ L1(E, �), i ∈ [p] . 
For simplicity and without loss of generality, we can assume that (E, E, �) = ([0, 1],B

[0, 1], Leb) . Define the function g∗(x) ∶= maxi∈[p] |gi(x)| and let

This way, we clearly have that the fi ’s are non-negative elements of L1([0, 1]) and

Letting Xi ∶= I(fi) be the extremal integrals defined in (2.7), we obtain as in (4.2) 
that

This proves the first claim in part (ii). It remains to argue that (with this particular 
choice of fi’s) the scales of the Xi ’s are all equal. Note that ‖Xi‖1 = ‖fi‖L1 and since

we obtain ‖Xi‖1 = ‖fi‖L1 = ∫ 1

0
g∗(u)du, for all i ∈ [p], which completes the proof of 

part (ii).
Part (iii): The claim follows from the observation that Xi ∶= I(fi) = I(fj) =∶ Xj 

almost surely if and only if fi = fj a.e., or equivalently, ‖fi − fj‖L1 = 0.  ◻

�X(i, j) = ∫[0,1]

fi(x) ∧ fj(x)dx, i, j ∈ [p].

(4.2)

d(i, j) ∶= ∫[0,1]

|fi(x) − fj(x)|dx = ∫[0,1]

fi(x)dx + ∫[0,1]

fj(x)dx − 2∫[0,1]

fi(x) ∧ fj(x)dx

= �X(i, i) + �X(j, j) − 2�X(i, j).

fi(x) =

{
g∗(2x) − gi(2x) , x ∈ [0, 1∕2]

g∗(2x − 1) + gi(2x − 1) , x ∈ (1∕2, 1].

‖fi − fj‖L1 = ‖gi − gj‖L1 = d(i, j), i, j ∈ [p].

d(i, j) = ‖fi − fj‖L1 = �X(i, i) + �X(j, j) − 2�X(i, j), i, j ∈ [p].

∫
1∕2

0

g∗(2x) − gi(2x)dx =
1

2 ∫
1

0

g∗(u) − gi(u)du

∫
1

1∕2

g∗(2x − 1) + gi(2x − 1)dx =
1

2 ∫
1

0

g∗(u) + gi(u)du,
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Remark 4.3 The construction in the proof of part (ii) of Theorem 4.2 still works for 
fi replaced by f̃i = fi + c̃ for any c̃ > 0 . Thus, the constant c can be chosen equal to 
or larger than ∫ 1

0
g∗(u)du , where g∗(x) ∶= maxi∈[p] |gi(x)| and gi ∈ L1(E, �), i ∈ [p] 

such that d(i, j) = ‖gi − gj‖L1 . In particular, for ∫ 1

0
g∗(u)du ≤ 1 , one may choose X 

with standardized marginals, i.e. ‖Xi‖1 = 1, i ∈ [p].

4.2  �
1
‑embeddability of the spectral distance

In Theorem 4.2 we have shown the equivalence between L1-embeddable metrics and 
spectral distances of simple max-stable vectors. In this section, we will additionally 
state an explicit formula for the �1-embedding of the spectral distance. Thereby we 
show that L1 - and �1-embeddability are equivalent and, in passing, we recover and 
provide novel probabilistic interpretations of the so-called cut-decomposition of �1

-embeddable metrics (Deza and Laurent 1997).

Definition 4.4 A semi-metric d on T is said to be �1-embeddable in (ℝm, ‖ ⋅ ‖
𝓁1
) (or 

short �1-embeddable) for some integer m ≥ 1 if there exist xt = (xt(k))1≤k≤m ∈ ℝ
m , 

t ∈ T  , such that

Proposition 4.5 A semi-metric d on the finite set [p] is embeddable in L1(E, E, �) if 
and only if

for some non-negative �(J)’s. This means that d is L1-embeddable if and only if it 
is �1-embeddable in ℝm , where m = |J| and J = {� ≠ J ⊂ [p] ∶ 𝛽(J) > 0} . Indeed, 
(4.3) is equivalent to d(i, j) = ‖xi − xj‖�1

 , with xi = (xi(J))J∈J ∶= (�(J)1J(i))J∈J ∈
ℝ

m
+
, i, j ∈ [p].

Proof By Theorem  4.2, d is L1-embeddable if and only if (4.1) holds, where 
�i,j = �X({i, j}) for some simple max-stable random vector X. If this X is degenerate, d 
is equal to 0 and (4.3) follows by setting all �(J) ’s to 0. Otherwise, X ∈ RV({an},�) . 
Then, in view of (3.7) for the special case of J = {i} , using that ℙ[J ⊂ Θ] = 𝔼[1{J⊂Θ}] , 
we have

Taking X∗ to be the (generalized) TM-model with matching extremal coefficients 
to those of X, by Relations (3.6) and (4.4) we obtain (4.3).  ◻

d(i, j) = ‖xi − xj‖�1
=

m�
k=1

�xi(k) − xj(k)� for all i, j ∈ T .

(4.3)d(i, j) =
∑

J ∶ �≠J⊂[p]
𝛽(J)|1J(i) − 1J(j)|, i, j ∈ [p],

(4.4)

1

𝜃[p]
⋅ d(i, j) = ℙ[i ∈ Θ] + ℙ[j ∈ Θ] − 2ℙ[{i, j} ⊂ Θ] = 𝔼[|1{i∈Θ} − 1{j∈Θ}|].
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Remark 4.6 Equation (4.4) shows that the spectral distance d is proportional to the 
probability that the limiting exceedance set Θ covers one and only one of the points 
i and j.

Remark 4.7 Proposition 4.5 recovers the well-known result that L1− and �1−embed-
dability are equivalent (see Theorem 4.2.6 in Deza and Laurent 1997).

Proposition 4.5 also provides a probabilistic interpretation of the so-called cut-
decomposition of �1-embeddable metrics. To connect to the rich literature on the 
subject, we will introduce some terminology following Chapter 4 of the mono-
graph of Deza and Laurent (1997).

Let J ⊂ [p] be a non-empty set and define the so-called cut semi-metric:

The positive cone CUT p ∶= {
∑

J⊂[p] cJ𝛿(J), cJ ≥ 0} is referred to as the cut 
cone of non-negative functions defined on [p]. Notice that CUT p consists of semi-
metrics. Therefore, Proposition 4.5 entails that the cut cone CUT p comprises all 
�1-embeddable metrics on p points (Proposition 4.2.2 in Deza and Laurent 1997. 
Relation (4.3), moreover, provides a decomposition of any such metric as a posi-
tive linear combination of cut semi-metrics. The coefficients of this decomposi-
tion are precisely the coefficients of some Tawn-Molchanov model. Finally, in 
view of (4.4), the random exceedance set Θ of this TM-model is such that

Remark 4.8 For a given spectral distance d, Proposition 4.5 provides a decomposi-
tion and thereby shows the �1-embeddability of d in ℝm , where m = |J| and 
J = {� ≠ J ⊂ [p] ∶ 𝛽(J) > 0} . Without further knowledge about the number of J 
such that 𝛽(J) > 0 we can always choose m = 2p − 2 , since we may set �([p]) = 0 as 
it does not affect d. However, by Caratheodory’s theorem each �1-embeddable met-
ric on [p] is in fact known to be �1-embeddable in 

ℝ
m
 , with m =

(
p

2

)
 see (Matoušek 

2013, Proposition 1.4.2). We would like to mention that finding the corresponding 
“minimal” TM-model (i.e. the one with minimal |J| ) and analyzing the properties of 
such representations could be an interesting topic for further research.

Observe that

where Jc = [p] ⧵ J , which implies that, in general, the decomposition of d in Propo-
sition 4.5 is not unique. Furthermore, �([p]) ≥ 0 does not affect d in (4.3), since 
|1[p](i) − 1[p](j)| = 0 . The next definition guarantees that, apart from those unavoid-
able ambiguities, the representation in (4.3) is essentially unique.

(4.5)�(J)(i, j) =

{
1 , if i ≠ j and |J ∩ {i, j}| = 1

0 , otherwise.

d(i, j) = �([p]) ⋅ �[|1Θ(i) − 1Θ(j)|].

�(J)(i, j) = |1J(i) − 1J(j)| = |1Jc(i) − 1Jc(j)| = �(Jc)(i, j), i, j ∈ [p],
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Definition 4.9 An �1-embeddable metric d is said to be rigid if for any two 
representations

and

with non-negative 𝛽(J), 𝛽(J), � ≠ J ⊂ [p], the equality

holds for all � ≠ J ⊊ [p].

Observe that each semimetric d on p points can be identified with a vector 
d = (d(i, j), 1 ≤ i < j ≤ p) in ℝN , where N ∶=

(
p

2

)
 . Thus, sets of such semimetrics 

can be treated as subsets of the Euclidean space ℝN . By Corollary 4.3.3 in Deza and 
Laurent (1997), the metric d is rigid, if and only if it lies on a simplex face of the cut-
cone CUTp . That is, if and only if the set {J1,⋯ , Jm} = {� ≠ J ⊂ [p] ∶ 𝛽(J) > 0} is 
such that the cut semimetrics �(Ji), i = 1,⋯ ,m (defined in (4.5)) lie on an affinely 
independent face of CUTp . Recall that the points �i ∈ ℝ

N , i = 1,⋯ ,m are affinely 
independent if and only if {�i − �1, i = 2,⋯ ,m} are linearly independent. In gen-
eral, the description of the faces of the cut-cone is challenging, but the next section 
deals with a special class of metrics which are always rigid.

4.3  Rigidity of line metrics

In this section we show that so-called line metrics are rigid (cf. Definition 4.9) and 
that for spectral distances corresponding to line metrics the bivariate tail-dependence 
coefficients, in combination with the marginal distribution, fully determine the higher 
order tail-dependence coefficients of the underlying random vector and thus the coef-
ficients of the corresponding Tawn-Molchanov model.

Definition 4.10 A metric d on [p] is said to be a line metric if there exist a permuta-
tion � = (�i)1≤i≤p of [p] and some weights wk ≥ 0 , 1 ≤ k ≤ p − 1 , such that

In other words, d is a line metric if all points of [p] can be ordered with different 
distances on some line and the distance between any two points equals the distance 
along that line.

d(i, j) =
∑

J ∶ �≠J⊂[p]
𝛽(J)|1J(i) − 1J(j)|, i, j ∈ [p],

d(i, j) =
∑

J ∶ �≠J⊂[p]
𝛽(J)|1J(i) − 1J(j)|, i, j ∈ [p],

𝛽(J) + 𝛽(Jc) = 𝛽(J) + 𝛽(Jc)

d(𝜋i,𝜋j) =

j−1∑
k=i

wk, 1 ≤ i < j ≤ p.
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Theorem 4.11 Let d be a line metric, where without loss of generality the indices are 
ordered in such a way that for all 1 ≤ i < j ≤ p and some wk ≥ 0

 (i) The line metric d is �1-embeddable and rigid.

Assume in addition that X follows a (generalized) TM-model as in (3.12) with given 
univariate �(i) = �i,i and bivariate tail-dependence coefficients �(i, j) = �i,j satisfy-
ing (4.1) with d as in (4.6). Then: 

 (ii) For every non-empty set J ⊂ [p] , we have 

 (iii) For the coefficients �(J) of the (generalized) TM-model, we have that for all 
1 ≤ k ≤ p − 1 , 

 where [i ∶ j] ∶= {i, i + 1,… , j − 1, j}, i < j ∈ [p],

 and �(J) = 0 for all other J ⊂ [p].

Proof Part (i): To see that d is �1-embeddable, set �([1 ∶ k]) = wk, k ∈ [p − 1], and 
�(J) = 0 for all other sets � ≠ J ⊂ [p] , which gives

Thus, d is �1-embeddable by Proposition 4.5.
Let now 𝛽(J), � ≠ J ⊂ [p] be the coefficients of a representation (4.3) of d. We 

will show that

To this end, note that (4.6) implies, for any i ≤ j ∈ [p] , that d(i, j) =
∑j−1

k=i
d(k,

k + 1) and thus

or, equivalently,

(4.6)d(i, j) =

j−1∑
k=i

wk.

�(J) = �(i, j), where i = min(J) and j = max(J).

(4.7)�([1 ∶ k]) = �(k) − �(k, k + 1), �([k + 1 ∶ p]) = �(k + 1) − �(k, k + 1),

(4.8)�([p]) = �(1, p),

d(i, j) =

j−1∑
k=i

wk =

j−1∑
k=i

𝛽([1 ∶ k]) =
∑

J ∶ �≠J⊂[p]
𝛽(J)|1J(i) − 1J(j)| =

∑
J ∶ �≠J⊂[p]

𝛽(J)𝛿(J)(i, j).

(4.9)𝛽(J) > 0 ⇒ J = [1 ∶ k] or J = [k ∶ p] for some k ∈ [p].

∑
J ∶ �≠J⊂[p]

𝛽(J)|1J(i) − 1J(j)| =
j−1∑
k=i

∑
J ∶ �≠J⊂[p]

𝛽(J)|1J(k) − 1J(k + 1)|,
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Since

and all �(J) are non-negative, (4.10) implies that

for those J with 𝛽(J) > 0 and all i ≤ j ∈ [p] . Note that this immediately excludes that 
1, p ∈ Jc as J was assumed to be nonempty. The three remaining cases are: 

 (i) If 1, p ∈ J , then J = [p].
 (ii) If 1 ∈ J, p ∈ Jc , then there exists one k ∈ [p] such that J = [1 ∶ k].
 (iii) If 1 ∈ Jc, p ∈ J , then there exists one k ∈ [p] such that J = [k ∶ p].

We have thus shown (4.9) and in order to show that d is rigid, we only need to consider 
sets of the form J = [1 ∶ k], Jc = [k + 1 ∶ p], k ∈ [p − 1] . For those sets we get

and thus the sum �(J) + �(Jc) = wk is invariant for all representations (4.3) of d and 
d is rigid.

Part (ii): Let � ≠ J ⊂ [p] and set i = min(J), j = max(J) . Then, from part (i) and 
(3.2),

where we used the fact that �(J) = 0 , for all J ⊂ [2 ∶ p − 1] established in the proof 
of part (i). This completes the proof of (ii).

Part (iii): We have from (4.11) that

(4.10)
∑

J ∶ �≠J⊂[p]
𝛽(J)

(
|1J(i) − 1J(j)| −

j−1∑
k=i

|1J(k) − 1J(k + 1)|
)

= 0.

j−1∑
k=i

|1J(k) − 1J(k + 1)| ≥ |1J(i) − 1J(j)|

|1J(i) − 1J(j)| =
j−1∑
k=i

|1J(k) − 1J(k + 1)|

(4.11)

𝛽([1 ∶ k]) + 𝛽([k + 1 ∶ p]) =
∑

J∶�≠J⊂[p]
𝛽(J)|1J(k) − 1J(k + 1)| = d(k, k + 1) = wk,

𝜆(J) =
∑

K∶J⊂K

𝛽(K) =
∑

k∈[p]∶J⊂[1∶k]

𝛽([1 ∶ k]) +
∑

k∈[2∶p]∶J⊂[k∶p]

𝛽([k ∶ p])

=

p∑
k=j

𝛽([1 ∶ k]) +

i∑
k=1

𝛽([k ∶ p])

=
∑

k∈[p]∶i,j∈[1∶k]

𝛽([1 ∶ k]) +
∑

k∈[2∶p]∶i,j∈[k∶p]

𝛽([k ∶ p]) = 𝜆({i, j}) = 𝜆(i, j),

�([1 ∶ k]) + �([k + 1 ∶ p]) = d(k, k + 1) = �(k) + �(k + 1) − 2�(k, k + 1),

771Tail-dependence, exceedance sets, and metric embeddings



1 3

and it follows for k ∈ [1 ∶ p − 1] by (i) and (3.2) that

Together, this gives (4.7). Furthermore, (4.8) follows from

That �(J) = 0 if J is not of the form [1  :  k] or [k ∶ p], k ∈ p, has already been 
shown in (i).  ◻

Remark 4.12 Consider a max-stable vector X with standard 1-Fréchet marginals, 
i.e., ‖Xi‖1 = �X(i) = 1, i ∈ [p] . Theorem  4.11  shows that if the spectral distance 
dX(i, j) = 2(1 − �X(i, j)), i, j ∈ [p] is a line metric on [p], then

and for all other � ≠ J ⊂ [p], 𝛽(J) = 0 . In particular, all higher order extremal coef-
ficients of X are then completely determined by the bivariate tail-dependence coef-
ficients and given from (3.2) by

Remark 4.13 The random set Θ corresponding to such line-metric tail-dependence is 
a random segment with one of its endpoints anchored at 1 or p. This is a direct con-
sequence of the characterisation of �(J) in from Theorem 4.11 (iii) and (3.6).

Remark 4.14 In practical applications, the non-parametric inference on higher-order 
tail-dependence coefficients can be very challenging or virtually impossible. Only, 
say, the bivariate tail-dependence coefficients Λ = (�X(i, j))p×p of the vector X may 
be estimated well. Given such constraints, one may be interested in providing upper 
and lower bounds on �X({1,⋯ , p}) , which provide the worst- and best-case scenar-
ios for the probability of simultaneous extremes.

If the spectral distance turns out to be a line metric and the marginal distributions 
are known, then Theorem 4.11 provides a way to precisely calculate �X({1,⋯ , p}) . 
However, in general this problem falls in the framework of computational risk man-
agement (see e.g. Embrechts and Puccetti 2010) as well as the distributionally robust 

�(k) − �(k + 1) =
∑
k∈J

�(J) −
∑
k+1∈J

�(J)

=

p∑
j=k

�([1 ∶ j]) +

k∑
j=1

�([j ∶ p]) −

p∑
j=k+1

�([1 ∶ j]) −

k+1∑
j=1

�([j ∶ p])

=�([1 ∶ k]) − �([k + 1 ∶ p]).

�(1, p) =
∑

J∶1,p∈J

�(J) = �([1 ∶ p]).

�([1 ∶ k]) = �([k + 1 ∶ p]) = 1 − �X(k, k + 1), 1 ≤ k ≤ p − 1, �([1 ∶ p]) = �X(1, p),

�X(K) =
∑

J∶J∩K≠�
�(J) =

p∑
j=minK

�([1 ∶ j]) +

maxK∑
j=1

�([j ∶ p]) − �([1 ∶ p])

=

p∑
j=minK

(1 − �X(j, j + 1)) +

maxK∑
j=1

(1 − �X(j, j + 1)) − �X(1, p).
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inference perspective (see, e.g. Yuen et  al. 2020, and the references therein). The 
problem can be stated as a linear optimization problem in dimension 2p − 1 , similar 
to the approach in Yuen et al. (2020). Unfortunately, the exponential growth of com-
plexity of the problem makes it computationally intractable for p ≥ 15 . In fact, the 
exact solution to such types of optimization problems may be NP-hard. This under-
scores the importance of the line of research initiated by Shyamalkumar and Tao 
(2020) where new approximate solutions or model-regularized approaches to distri-
butionally robust inference in high-dimensional extremes are of great interest.

5  Computational complexity of decision problems

In this section we will use known results about the algorithmic complexity of �1

-embeddings to derive that the so-called tail dependence realization problem is NP-
complete, thereby confirming a conjecture from Shyamalkumar and Tao (2020). 
While a formal introduction to the theory of algorithmic complexity is beyond the 
scope of this paper, we shall informally recall the basic notions needed in our con-
text following the treatment in (Deza and Laurent 1997, Section 2.3).

Consider a class of computational problems D, where each instance I  of D can 
be encoded with a finite number of bits |I| . D is said to be a decision problem, if for 
any input instance I  there is a correct answer, which is either “yes” or “no”. The 
goal is to determine this answer based on any input I  by using a computer (i.e., a 
deterministic Turing machine).

The decision problem D is said to belong to:

• The class P (for polynomial complexity), if there is an algorithm (i.e., a deter-
ministic Turing machine), that can produce the correct answer in polynomial 
time, i.e. its running time is of the order O(|I|k) for some k ∈ ℕ.

• The class NP (nondeterministic polynomial time) if the problem admits a poly-
nomially-verifiable positive certificate. More precisely, this means that for each 
instance I  of D with positive (“yes”) answer, there exists a finite-bit certificate 
C of size |C| that can be verified by an algorithm / deterministic Turing machine 
with running time O(|C|l) for some l ∈ ℕ . (The certificate needs not be con-
structed in polynomial time.)

• The class NP-hard if any problem in NP reduces to D in polynomial time. This 
means that for every problem D′ in NP, the correct answer to this decision prob-
lem for any instance I′ of D′ can be found by first applying an algorithm that 
runs in polynomial time of |I′| to transform I′ into an instance I  of D and then 
solve the decision problem D for this instance I  . Note that this definition does 
not require that D itself is in NP.

• The class NP-complete if D is both in NP and is NP-hard.
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A decision problem which has received some attention recently, see Fiebig et al. 
(2017), Embrechts et al. (2016), Krause et al. (2018), and Shyamalkumar and Tao 
(2020), is the realization problem of a TD matrix with standardized entries on the 
diagonal, namely finding an algorithm with the following input and output:

This problem may at a first glance look similar to deciding whether a given 
matrix is a valid covariance matrix. Indeed, as a strengthening of Remark 3.7, it can 
be shown that there exists a bijection between TD matrices as in the above problem 
and a subset of the so-called Bernoulli-compatible random matrices, i.e. expected 
outer products E(YYt) of random (column) vectors Y with Bernoulli margins, see 
Embrechts et  al. (2016) and Fiebig et  al. (2017). But while it is a simple task to 
check if a matrix is the covariance matrix of some random vector, for example by 
finding the eigenvalues of this matrix, it can become more difficult to check whether 
a matrix is the covariance matrix or outer product of a restricted space of random 
variables. Practical and numerical aspects of deciding whether a given matrix is a 
TD matrix have been studied in Krause et  al. (2018) and Shyamalkumar and Tao 
(2020), including a discussion on the computational complexity of the problem. 
Indeed, they point out that due to results by Pitowsky (1991), checking whether a 
matrix is Bernoulli-compatible is an NP-complete problem. However, some subtlety 
arises as in order to check whether a p × p-matrix L is a so-called tail coefficient 
matrix, i.e. a TD matrix with 1’s on the diagonal, it needs to be checked that p−1L is 
Bernoulli-compatible, see Shyamalkumar and Tao (2020) and our Proposition 3.4. 
Thus, the problem narrows down to checking Bernoulli compatibility of the sub-
class of matrices with 1/p on their diagonal and this may have a different complexity 
than the general membership problem. Due to the similarity in the above mentioned 
problems, Shyamalkumar and Tao (2020) conjecture that the TDR problem is NP-
complete as well.

We add to the discussion by using results about computational complexity of 
problems related to cut metrics and metric embeddings, see Section 4.4 in Deza and 
Laurent (1997) for a brief overview over some relevant results. To this end, let us 
first introduce a problem which is related to the TDR problem but easier to handle 
for the subsequent complexity analysis.
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With the help of our previous results and the known computational complexity of 
�1-embeddings it is simple to establish the computational complexity of the above 
problem.

Theorem 5.1 The SDR problem with unconstrained, identical margins is NP-complete.

Proof Due to Theorem 4.2  (i)-(ii), the spectral distance d(i, j) = 2(c − �X(i, j)) of a 
simple max-stable random vector with ‖Xi‖1 = c, i ∈ [p], is L1-embeddable and for 
each L1-embeddable semi-metric d there exists a simple max-stable vector X with 
‖Xi‖1 = c, i ∈ [p], for some c > 0 such that d is the spectral distance of X. Thus, the 
question is equivalent to checking that d is L1-embeddable and this is equivalent to 
checking that d is �1-embeddable, see Remark 4.7. The latter problem is NP-complete 
by Avis and Deza (1991), see also (P5) in Deza and Laurent (1997).  ◻

Remark 5.2 In the SDR problem one could add more assumptions about d in the first 
place under “Input”, for example that the entries on the diagonal of d are equal to 0 
or that d is a distance matrix. Alternatively, one could also just assume under “Input” 
that d is a p × p-matrix. Since a positive answer to the question would always ensure 
that d is a distance matrix and all mentioned properties (non-negativity, symmetry, 
triangle inequality) could be checked in a number of steps which is a polynomial in 
p these additional assumptions do not change the NP-completeness of the problem.

Unfortunately, the constant c in (5.1) is not part of the input in the algorithm 
and thus cannot be fixed a priori. If we could for example set c = 1 and thus ask 
if for a given d a simple max-stable vector X with standard 1-Fréchet-margins 
exists such that d(i, j) = 2(1 − �X(i, j)) , then this is equivalent to checking that 
�i,j ∶= 1 − d(i, j)∕2 is a TD matrix. But while such an arbitrary fixation of c may 
change the nature of the problem, the following statement points out an a poste-
riori feasible range for c.

Lemma 5.3 If the outcome of the SDR problem with unconstrained, identical mar-
gins is a positive answer to the question, then (5.1) holds for a suitable chosen max-
stable vector X and every c ≥ (2p − 2)maxi,j∈[p] d(i, j).
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The proof is given in Appendix A. From the previous lemma we see that the 
SDR problem with unconstrained, identical margins is equivalent to 

Finally, by changing from X to X̃ ∶= X∕((2p − 2)maxi,j∈[p] d(i, j)) the spectral 
distance dX̃ of X̃ and bivariate tail-dependence coefficients 𝜆X̃(i, j) scale accord-
ingly by Lemma A.1 and we see that the latter problem is actually equivalent to 

From the last line in the above problem we can see that our SDR problem with 
constrained, standard margins can be solved if we have an algorithm to check that 
� of the given form is a TD matrix. But since we know by the stated equivalence 
of all three SDR problems in combination with Theorem 5.1 that all of them are 
NP-complete, we know that this algorithm has to be NP-complete as well. This 
leads to the following result.

Theorem 5.4 The TDR problem is NP-complete.

Proof We need to show that the TDR problem is both in NP and NP-hard. That the 
TDR problem is in NP has been shown in (Shyamalkumar and Tao 2020, p. 255), 
with the help of Caratheodory’s theorem. We start with the first statement and fol-
low the typical way to prove this by reducing a known NP-complete problem to 
TDR. Indeed, any input matrix d(i, j) to any of the three equivalent, and by Theo-
rem 5.1 NP-complete, SDR problems can be transformed in polynomial time to the 
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matrix �(i, j) ∶= 1 − d(i, j)∕(2(2p − 2)maxi,j∈[p] d(i, j)) . By the statement of the third 
SDR problem, the question with input d can be answered by using � as an input to 
the TDR problem. Thus, an NP-complete problem reduces in polynomial time to the 
TDR problem and the TDR problem is NP-hard, thus NP-complete.  ◻

A. Proofs and auxiliary results

A.1 Proofs for Section 2

Proof of Proposition 2.5 Here, for brevity, we shall write {h ∈ A} for the pre-
image set h−1(A) = {x ∈ ℝ

p ∶ h(x) ∈ A} . By the continuity of h, it fol-
lows that for all a ≥ 0 , the set {h ≥ a} is closed and {h > a} is open. Hence 
{h = a} = {h ≥ a} ⧵ {h > a} ⊃ 𝜕{h > a} , where �A = Acl ⧵ Aint denotes the bound-
ary of the set A. Since h(0) = 0 (by continuity and homogeneity), we have that for 
all a > 0 , the closed set {h ≥ a} does not contain 0 and hence it is bounded away 
from 0. Thus, 𝜇({h ≥ a}) < ∞ . Since {h = t} = t ⋅ {h = 1}, t > 0 , the scaling 
property (2.2) of � implies that �({h = t}) = t−��({h = 1}) and if 𝜇({h = t}) > 0 
for some (any) t > 0 , then 𝜇({h = t}) > 0 , for all t > 0 . On the other hand, we have 
that {h ≥ a} = ∪t≥a{h = t} , where the latter union involves an uncountable collec-
tion of disjoint sets. Thus, �({h = t}) must vanish for all t > 0 . This means that 
𝜇(𝜕{𝜇 > a}) = 0 , or that {h > a} are �-continuity sets for all a > 0 . This allows us 
to apply the definition of regular variation (2.1) and obtain

Now, (2.3) entails

where in the last two displays we used the homogeneity of h and the change of vari-
ables x ∶= r−�.

This completes the proof of the first relation in (2.8). The second relation therein 
follows from the observation that �(⋅)∕�(S) is a probability distribution.  ◻

Proof of Proposition 2.6 Since X has non-negative components, to establish its regu-
lar variation, it is enough consider measures supported only on ℝp

+ and show that

where �[0, x]c = − log(ℙ[X ≤ x]) with [0, x]c ∶= ℝ
p

+ ⧵ [0, x].

nℙ[h(X) > an] = nℙ[X ∈ an ⋅ {h > 1}] → 𝜇({h > 1}), as n → ∞.

𝜇({h > 1}) = ∫S ∫
∞

0

1{h(ru)>1}𝛼r
−𝛼−1dr𝜎(du)

= ∫S ∫
∞

0

1{h(u)>1∕r}𝛼r
−𝛼−1dr𝜎(du)

= ∫S ∫
∞

0

1{h𝛼 (u)>x}dx𝜎(du) = ∫S

h𝛼(u)𝜎(du),

�n(⋅) ∶= nℙ[X ∈ n⋅]
M0

⟹�, as n → ∞,
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Fix an x ∈ [0,∞)p ⧵ {0} . The definition of simple max-stability (2.5) entails 
ℙ[X ≤ nx]n = ℙ[X ≤ x] . Thus, for all n ∈ ℕ,

Observe that ℙ[X ≤ x] is positive. Indeed, it is easy to see that since X is non-
degenerate � ∶= max1≤i≤p x−1i Xi is 1-Fréchet and thus ℙ[𝜉 ≤ 1] = ℙ[X ≤ x] > 0 , for 
all x ∈ ℝ

p

+ . This means that for the boundedly finite measures �n(⋅) = nℙ[X ∈ n⋅] , 
we have

The latter relation shows that the sequence of measures {�n} is relatively compact 
in M0(ℝ

p) , equipped with the M0-convergence topology. Indeed, by (Hult and Lind-
skog 2006, Theorem 2.7), it suffices to show that for all 𝜀 > 0 and 𝜂 > 0 , there exists 
an M = M(𝜀, 𝜂) > 0 , such that

The first condition follows from (6.2) and since ℙ[X ≤ x] > 0 . The second condi-
tion follows from the fact that − log(ℙ[X ≤ x]) ↓ 0 , as x ↑ ∞ , which is true since X 
has a valid probability distribution.

The relative compactness of the measures {�n} entails that �n�

M0

⟹� for some 
� ∈ M0 and a sub-sequence n� → ∞ . However, by (6.2) and Proposition 2.4 we have

for all x ∈ [0,∞)p ⧵ {0}, and the limit measure is uniquely determined by its val-
ues on all the complements of rectangles containing the origin. Furthermore, we see 
from (6.3) that for non-degenerate X, the limit measure � is non-degenerate as well. 
This proves that X ∈ RV1({n},�) where ℙ[X ≤ x] = exp{−�[0, x]c}.

Having established regular variation, the first equality in Relation (2.9) follows 
from the �-continuity of the set {h > 1} as argued in the proof of Proposition 2.5. 
The rest of Relation (2.9) follows from (6.3).

Finally, the representation in (2.10) follows from the fact that � is determined by 
∫
S
g(u)�(du) , for all continuous functions g ∶ S → ℝ+ . Indeed, for every such g, the 

function h(x) ∶= g(x∕‖x‖)‖x‖1{x≠0} is continuous, non-negative and 1-homogeneous 
and hence by (2.9)

(6.1)

ℙ[X ≤ nx]n =
(
1 −

nℙ[X ∈ n ⋅ [0, x]c]

n

)n

=
(
1 −

�n[0, x]
c

n

)n

= ℙ[X ≤ x].

(6.2)lim
n→∞

�n([0, x]
c) = − logℙ[X ≤ x].

sup
n

𝜇n(B(0, 𝜀)
c) < ∞ and sup

n

𝜇n

(
ℝ

p

+⧵[0,M]p
)
< 𝜂.

(6.3)

�[0, x]c = − logℙ[X ≤ x]

= �E

max
1≤i≤p

fi(u)

xi
�(du)

= �E �
∞

0

1[0,x]c (rf(u))r
−2dr�(du)

∫S

g(u)�(du) = ∫S

g
�

f(z)

‖f(z)‖
�
‖f(z)‖�(dz).
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This, since g is arbitrary, proves (2.10).  ◻

Proof of Corollary 2.11 Relation (2.12) follows by applying (2.9) to h replaced 
by the continuous and homogeneous functions hmax,L(x) ∶= (maxi∈L xi)+ and 
hmin,L(x) ∶= (mini∈L xi)+ , respectively. Indeed, observe that

On the other hand, {x ∶ hmin,L(x) > 1} =
⋂

i∈L Ai.
The formula for �(L) in Relation (2.13) follows from the above and Equation (2.9) 

since hmin,L(f) = mini∈L fi(x). The derivations of the formulae for �(K) are similar.

We conclude this section with the auxiliary result, that the spectral distance and the 
tail-dependence coefficients are linear under max-linear combinations, in the sense 
of the following lemma.

Lemma A.1 Let X(t) = (X
(t)

i
)1≤i≤p , 1 ≤ t ≤ n , be independent simple max-stable vec-

tors with tail measures �(t) , 1 ≤ t ≤ n , and let �t ≥ 0 , 1 ≤ t ≤ n , be some non-negative 
weights. Define X̄ =

⋁n

t=1
𝛾tX

(t) . Then,

and

Proof of Lemma A.1 By the independence of X(t) , 1 ≤ t ≤ n , and Proposition 2.6  it 
applies

for all x ∈ ℝ
p

+ ⧵ {0} , where in the last step the homogeneity of �(t) was applied. 
Thus, X̄ has the tail measure 𝜇X̄ =

∑n

t=1
𝛾t𝜇

(t) , i.e. the tail measure of the max-
linear combination X̄ is the corresponding linear combination of the tail measures 
of the components. In particular, X̄ has 1-Fréchet marginals with scale coefficient 
‖⋁n

t=1
�tX

(t)

i
‖1 = ∑n

t=1
�t‖X(t)

i
‖1.

Hence, by the definition of the spectral distance dX̄ in Definition 2.13 we obtain

nℙ
[
min
i∈L

Xi > n
]
= nℙ

[
hmin,L(X) > n

]
→ 𝜇({hmin,L > 1}) = 𝜆(L), as n → ∞.

dX̄(i, j) =

n∑
t=1

𝛾tdX(t) (i, j) for all i, j ∈ [p]

𝜆X̄(L) =

n∑
t=1

𝛾t𝜆X(t) (L) for all L ⊂ [p].

ℙ
[
X̄ ≤ x

]
=

n∏
t=1

ℙ

[
X(t) ≤ 1

𝛾t
x
]
=

n∏
t=1

exp
{
− 𝜇(t)

[
0,

1

𝛾t
x
]c}

= exp
{
−

n∑
t=1

𝛾t𝜇
(t)[0, x]c

}

dX̄(i, j) = 2
���

n�
t=1

𝛾tX
(t)

i
∨

n�
t=1

𝛾tX
(t)

j

���1 −
���

n�
t=1

𝛾tX
(t)

i

���1 −
���

n�
t=1

𝛾tX
(t)

j

���1

= 2

n�
t=1

𝛾t‖X(t)

i
∨ X

(t)

j
‖1 −

n�
t=1

𝛾t‖X(t)

i
‖1 −

n�
t=1

𝛾t‖X(t)

j
‖1 =

n�
t=1

𝛾tdX(t) (i, j).
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By the linear representation of 𝜇X̄ and (2.12) it follows for the tail-dependence 
coefficients

A.2 Proofs for Section 3

Lemma A.2 For � and � in (3.2) and � in (3.1), we have the inversion formulae (3.3), 
(3.4) as well as (3.5). Namely, the following formulae hold:

Proof For simplicity, introduce the indicator functions Ii ∶= 1Ai
 , where Ai = {x ∈

ℝ
p ∶ xi > 1} . In view of (3.1) and (2.12), we have

as well as

This immediately entails

which proves (3.4).
The inclusion–exclusion formula for � in terms of the � ’s is immediate from (6.4) 

and the observation that

Now, using (6.4) we obtain

𝜆X̄(L) = 𝜇X̄

(⋂
i∈L

Ai

)
=

n∑
t=1

𝛾t𝜇
(t)
(⋂

i∈L

Ai

)
=

n∑
t=1

𝛾t𝜆X(t) (L)

𝛽(J) =
∑

K ∶ �≠K, Jc⊂K
(−1)|J∩K|+1𝜃(K), 𝛽(J) =

∑
L ∶ J⊂L⊂[p]

(−1)|L⧵J|𝜆(L)

𝜃(K) =
∑

L ∶ �≠L⊂K
(−1)|L|−1𝜆(L), 𝜆(L) =

∑
K ∶ �≠K⊂L

(−1)|K|−1𝜃(K).

�(J) = ∫
(∏

i∈J

Ii ×
∏
j∈Jc

(1 − Ij)
)
d�

(6.4)�(L) = ∫
(∏

i∈L

Ii

)
d�.

𝛽(J) = ∫
( ∑

J⊂L⊂[p]

(−1)|L⧵J|
∏
i∈L

Ii

)
d𝜇 =

∑
L ∶ J⊂L⊂[p]

(−1)|L⧵J|𝜆(L),

𝜃(K) = �
(
1 −

∏
i∈K

(1 − Ii)
)
d𝜇 =

∑
L ∶ �≠L⊂K

(−1)|L|−1 �
(∏

i∈L

Ii

)
d𝜇 =

∑
L ∶ �≠L⊂K

(−1)|L|−1𝜆(L).

(6.5)

𝜆(L) = �
(∏

i∈L

(1 − (1 − Ii))
)
d𝜇

= �
(
1 +

∑
K ∶ �≠K⊂L

(−1)|K|
∏
i∈K

(1 − Ii)
)
d𝜇.
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Observe that by Newton’s binomial formula:

and hence

Using the latter expression for the constant 1 in the right-hand side of (6.5), we 
obtain

completing the proof of the inclusion–exclusion formula for the � ’s via the � ’s in (3.5).
To complete the proof we need to establish the expression of �(J) ’s via the �(K) ’s 

in (3.3). We do so by passing through the �(L) ’s first. Namely, by the established 
(3.4) and (3.5), we have

Observe that C(K, J) ∶=
∑

L ∶ (J∪K)⊂L(−1)
�L�−�J∪K� = 0 if (J ∪ K)c ≠ �. Indeed, the 

latter sum is simply (1 + (−1))|[p]⧵(K∪L)| = 0 . On the other hand, if J ∪ K = [p] , we 
trivially have C(K, L) = 1 . This, since J ∪ K = [p] is equivalent to Jc ⊂ K , immedi-
ately implies

This proves (3.3).  ◻

Proof of Theorem 3.8 For this proof it is convenient to let ‖u‖ ∶= maxi∈[p] �ui� be the 
sup-norm.

(‘if’) Suppose that all �(J) ’s in (3.3) (or in (3.4)) are non-negative and define X∗ 
as in (3.12). Clearly, X∗ is max-stable and we shall determine its spectral measure �∗ 
in the sup-norm. Observe that for all x ∈ (0,∞)p we have �(J)ZJ1J ≤ x , if and only 
if ZJ ≤ mini∈J xi∕�(J) and since the ZJ ’s are iid standard 1-Fréchet:

0 = (1 + (−1))|L| =
∑
K⊂L

(−1)|K| = 1 +
∑

K ∶ �≠K⊂L
(−1)|K|,

1 =
∑

K ∶ �≠K⊂L
(−1)|K|−1.

𝜆(L) =
∑

K ∶ �≠K⊂L
(−1)|K|−1 �

(
1 −

∏
i∈K

(1 − Ii)
)
d𝜇 =

∑
K ∶ �≠K⊂L

(−1)|K|−1𝜃(K),

𝛽(J) =
∑

L ∶ J⊂L⊂[p]

(−1)|L⧵J|𝜆(L)

=
∑

L ∶ J⊂L⊂[p]

(−1)|L⧵J|
( ∑

K ∶ �≠K⊂L
(−1)|K|−1𝜃(K)

)

=
∑

K ∶ �≠K⊂[p]
𝜃(K)(−1)|J|+|K|−1−|J∪K| ×

( ∑
L ∶ (K∪J)⊂L

(−1)|L|−|J∪K|
)

=∶
∑

K ∶ �≠K⊂[p]
𝜃(K)(−1)|J∩K|+1 × C(K, J).

𝛽(J) =
∑

K ∶ �≠K, Jc⊂K
𝜃(K)(−1)|J∩K|+1.
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Letting 𝜎∗(du) ∶=
∑

�≠J⊂[p] 𝛽(J)𝛿1J (du), we obtain that

This shows that

which in view of (2.11) shows that �∗ is the spectral measure of X∗ , where �∗ denotes 
the tail measure of X∗.

Let now � ≠ J ⊂ [p] and define the set

We will argue that, with BJ ,Aj as in (3.1),

Indeed, by (2.4), we have

Note that if x ∈ C̃J , then xi = ‖x‖ > 1 for all i ∈ J , and xj = 0 < 1 , for all j ∈ Jc , 
so that x ∈ BJ . This means that �CJ ⊂ BJ , and hence �∗(CJ) ≤ �∗(BJ).

By the construction of �∗ , on the other hand, we have �∗(CJ) = �∗({1J}) = �(J) 
and since the BJ ’s partition the set {‖x‖ > 1} ∩ℝ

p

+ , we get

where the last relation follows from (6.6) by setting xi = 1, i ∈ [p] . Since  
𝜎∗(S) = 𝜇∗({‖x‖ > 1}) we obtain from the above inequality that �∗(BJ) = �∗(CJ) = �(J) ,  
for all J ⊂ [p].

We have thus shown that the functionals �(J) that we started with are indeed the 
ones which determine the extremal (tail dependence) coefficients of X∗ via (3.2). 
This completes the proof of the ‘if’ part.

(‘only if’) Conversely, let {𝜃(K), K ⊂ [p]} (or {𝜆(L), L ⊂ [p]} ) be the extremal 
coefficients (tail-dependence coefficients, respectively) of a max-stable vector 
X with tail measure � . Then, as already argued above (2.12) holds, and hence the 
�(J) ’s defined as in (3.1) are non-negative and satisfy Relations (3.3) (or (3.4)). This 
completes the proof.  ◻

ℙ[X∗ ≤ x] = exp
{
−

∑
�≠J⊂[p]

𝛽(J)

mini∈J xi

}
.

(6.6)�S

(
max
i∈[p]

ui

xi

)
𝜎∗(du) =

∑
�≠J⊂[p]

𝛽(J)

mini∈J xi
.

ℙ[X∗ ≤ x] = exp{−�∗[0, x]c} = exp
{
− �S

(
max
i∈[p]

ui

xi

)
�∗(du)

}
,

CJ ∶= {u ∈ S ∶ ui = 1 for all i ∈ J and uj = 0, for all j ∈ Jc}.

�∗(CJ) = �∗(BJ) ∶= �∗
(⋂

i∈J

Ai ∩
⋂
j∈Jc

Ac
j

)
.

𝜎∗(CJ) = 𝜇∗(�CJ) ∶= 𝜇∗{x ∈ ℝ
p

+ ∶ ‖x‖ > 1, x∕‖x‖ ∈ CJ}.

𝜇∗({‖x‖ > 1}) = 𝜇∗({‖x‖ > 1} ∩ℝ
p

+) =
�
J

𝜇∗(BJ) ≥
�
J

𝜎∗(CJ) =
�
J

𝛽(J) = 𝜎∗(S),
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A.3 Proofs for Section 5

Proof of Lemma 5.3 Assume that for an input matrix d for the SDR problem with 
unconstrained, identical margins the answer is positive, which is equivalent to d 
being L1-embeddable, see the proof of Theorem  5.1. According to Proposition 
4.5 and Lemma A.1 we can then choose the realizing max-stable vector X as a (gen-
eralized) TM-model with coefficients 𝛽(J), � ≠ J ⊂ [p] , such that

and

We note that the particular choice of �([p]) ≥ 0 does only affect the value of c 
and is not determined by (6.7) as |1[p](i) − 1[p](j)| = 0 . Thus, for each realizing max-
stable vector X with ‖Xi‖ = c we can for each c̃ > c find a realizing max-stable vec-
tor X with ‖Xi‖ = c̃ by increasing the value of �([p]) in the generalized TM-model.

Since all �(J)�s are non-negative, (6.7) implies furthermore that for all � ≠ J ⊊ [p] 
the inequality

holds. Thus we know that for all i ∈ [p]

As any choice of �([p]) ≥ 0 leads to a realizing (generalized) TM-model for given 
d we see that any value c ≥ (2p − 2)maxi,j∈[p] d(i, j) is possible for the marginal scale 
of this model.  ◻
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c =
∑
J∋i

�(J), i ∈ [p],
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∑
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𝛽(J)|1J(i) − 1J(j)|, i, j ∈ [p].

�(J) ≤ max
i,j∈[p]

d(i, j)

c =
∑
J∋i

�(J) ≤ �([p]) + (2p − 2) max
i,j∈[p]

d(i, j)
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