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CORRECTION

Correction to: Onmaximum of Gaussian random
fields having unique maximum point of its variance
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Correction to: Extremes (2019) 22: 413–432
https://doi.org/10.1007/s10687-019-00346-2

In the proof of Proposition 3 below formula (31), it was stated that�(u) and�′(u)

are integral sums for the integral

I (u) =
∫

f (t)≤u−1γ1(u)

e−u2f (t)dt, (1)

where f (t) = (1 − σ 2(t))/2. In spite of the fact that �′(u) ≤ I (u) ≤ �(u), the
relation �(u)/�′(u) → 1, u → ∞, was not justified. To show this, we should
significantly change the proof of Proposition 3.

First, we modify Condition 5.
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Condition 5∗ For any t there exists the function h1(t) ∈ [0, ∞] such that
lim

u→∞ u2(1 − σ 2(q(u)t)) = h1(t). (2)

Moreover, if h1(e) = 0 for all e ∈ S
d−1, the unit sphere in Rd , then

lim
u→∞ u2

(
σ 2(s) − σ 2(s + q(u)t)

) = 0

uniformly in t from any closed set and s ∈ Bε.
Let the latter assumption hold. Then, using the argument similar to the one on the

regular variation property of 1 − r(t) (see page 416 in the original paper), we can
prove that h1(t) is continuous and that if h1(e) ∈ (0, ∞) for some vector e ∈ R

d then
h1(te) is regular varying at zero. Thus the condition “h1(e) = 0 for all e ∈ S

d−1”
implies that h1(t) = 0 for all t ∈ R

d and then the last condition may be replaced by
the condition “h1(e) = 0 for all e ∈ S

d−1” in the statement of Proposition 3.
Additionally, note that we need the second part of Condition 5∗ to justify that the

sets {Bk(u)}k≥0 appearing below satisfy the assumptions of Theorem 1 and to apply
the standard argument for evaluating the double sum (see the relation (9) below). It
might seem that we can replace the second part of Condition 5∗ with the following
weaker assumption in spirit of the condition E4, Piterbarg and Rodionov (2020),

Moreover, if h1(e) = 0 for all e ∈ S
d−1, then Eq. 2 holds uniformly in t from any

closed set and there exist c > 0 and K < ∞ such that for every x ∈ [0, c], t0 ∈ R
d

and e ∈ S
d−1, the number of roots of the equation 1 − σ 2(t0 + ye) = x with respect

to y does not exceed K .
The analogue of this assumption was used to examine the stationary-like case

in the proof of Theorem 1, Piterbarg and Rodionov (2020). The exact value of K

does not play a role, but its finiteness guarantees the existence of “large” subinter-
vals B ′

k(u) satisfying the assumptions of Theorem 1 of the original paper (see this
argument on p. 4868, Piterbarg and Rodionov, 2020), and uniformity allows one to
show asymptotic negligence of the double sum. Although this assumption is enough
to prove Proposition 3 in one-dimensional case, the distance between two nonneigh-
boring sets Bk(u) and Bl(u) can be arbitrarily small in multi-dimensional case even
if K = 2. Due to this fact it is not possible to show that the double sum is asymptot-
ically smaller than the single sum under the latter assumption (see the relations (8),
(9) below).

Recall that in the proof of Proposition 3 we deal with the simplified model X(t) =
X0(t)σ (t), t ∈ S, satisfying Conditions 1–4 and 5∗, where X0(t) is a homogeneous
Gaussian field with mean zero and covariance function satisfying Condition 4 and
σ(t) satisfies Condition 5∗.

Take small ε+ and ε− with ε+ > ε− > 0. For sufficiently large u0 and all u ≥ u0
there exists ε0 = ε0(u) ∈ (ε−, ε+)with uγ1(u)/ε0 ∈ N. We use this ε0 below. Denote

Bk(u) = {t : kε0 ≤ u2(1 − σ 2(t)) < (k + 1)ε0}, (3)

for all k ≥ 0 with Bk(u) ⊂ Bu.
Recall that for all t 
= 0

lim
u→∞

u2(1 − σ 2(q(u)t))
u2(1 − r(q(u)t))

= 0.
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Moreover, by the second part of Condition 5∗ we have for all t ∈ R
d and s ∈ Bε

lim
u→∞

u2
(
σ 2(s) − σ 2(s + q(u)t)

)
u2(1 − r(q(u)t))

= 0. (4)

Now let us prove that there exist functions Qi(u), i = 1, . . . , d, such that

Qi(u)/qi(u) → ∞, u → ∞, (5)

and
u2

(
σ 2(s) − σ 2(s + Q(u)t)

) → 0, u → ∞, (6)

uniformly in t ∈ Ed = [−1, 1]d and s ∈ Bε. Denote

R(u) := sup
t∈Ed,s∈Bε

σ 2(s) − σ 2(s + q(u)t)
1 − r(q(u)t)

.

Since qi(u) are monotone for every i, i = 1, . . . , d (see the corresponding argument
between the relations (5) and (6) of the original paper), R(u) is monotone as well and
tends to 0 due to uniform convergence in t ∈ Ed in (4).

We will look for Qi(u) in the form Qi(u) = qi(f (u)), i = 1, . . . , d, where
f (u) → ∞ and f (u)/u → 0 as u → ∞. In this case (5) follows by regular variation
property of qi(u) for all i. Assume that

u2

f 2(u)
R(f (u)) → 0, u → ∞.

From the latter and Condition 4 we have for some � > 0

sup
t∈Ed,s∈Bε

σ 2(s) − σ 2(s + Q(u)t)
1 − r(q(u)t)

≤ sup
t∈Ed,s∈Bε

σ 2(s) − σ 2(s + Q(u)t)

(1 − �)
f 2(u)

u2

(
1 − r(Q(u)t)

)

= (1 − �)−1 u2

f 2(u)
R(f (u)) → 0

as u → ∞. Thus, the latter and Condition 4 imply (6).
It immediately follows from Eq. 6 and the definition of Bk(u), that for every k ≥ 0

and sufficiently large u there exists tk = tk(u) ∈ Bk(u) (without loss of generality
we can select tk with u2(1 − σ 2(tk)) = (k + 1/2)ε0) such that

tk +
d⊗

i=1

[−Qi(u), Qi(u)] ⊂ Bk(u).

Thus for every k ≥ 0 the set Bk(u) satisfies the assumptions of Theorem 1. The last
condition in this theorem holds for all δ > 0 and k since |Bu| → 0 as u → ∞, where
| · | denotes the volume. Hence, for every k ≥ 0

P
(

max
t∈Bk(u)

X0(t) > u

)
= (1 + δ(u))Hq|Bk(u)|

d∏
i=1

q−1
i (u)�(u), (7)

where δ(u) → 0 as u → ∞.
The remaining part of the proof almost coincides with the corresponding part of

the proof of Theorem 1, Piterbarg and Rodionov (2020), see Section 3.5 there. We
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just indicate the differences. The main difference is that due to Condition 5∗ all sets
Bk(u), k ≥ 0, are “large”, namely, satisfy the assumptions of Theorem 1, and this
observation makes the proof much simpler.

Note, that the sets of indices L = {k : Bk(u) ∩ Bu 
= ∅} and L′ = {k : Bk(u) ⊂
Bu} coincide due to the choice of ε0. Thus by Bonferroni inequality

P(Bu, u) ≤
∑
k∈L

P
(

max
t∈Bk(u)

X(t) > u

)
(8)

and

P(Bu, u) ≥
∑
k∈L

P
(

max
t∈Bk(u)

X(t) > u

)

−
∑
k∈L

∑
l 
=k,l∈L

P
(

max
t∈Bk(u)

X(t) > u, max
s∈Bl(u)

X(s) > u

)
. (9)

Denote
σk =

√
1 − u−2kε0, uk = u/σk, k ≥ 0.

Probabilities under the single sum in Eqs. 8 and 9 are bounded from above and from
below by probabilities of events

Ak(u) =
{

max
t∈Bk(u)

X0(t) > uk

}
and A′

k(u) =
{

max
t∈Bk(u)

X0(t) > uk+1

}
,

respectively. We have by Eq. 7 for k ∈ L

P(Ak) = (1 + δ(uk))Hq|Bk(u)|
d∏

i=1

q−1
i (uk)�(uk),

and

P(A′
k) = (1 + δ(uk+1))Hq|Bk(u)|

d∏
i=1

q−1
i (uk+1)�(uk+1).

Denote

�(u) =
∑
k∈L

|Bk(u)|e−kε0/2, �′(u) =
∑
k∈L

|Bk(u)|e−(k+1)ε0/2.

Using the same argument as in the corresponding part of the proof of Theorem 1,
given in Section 3.5, Piterbarg and Rodionov (2020), we have

∑
k∈L

P(Ak) ≤ (1 + δ1(u))
Hq√

2πu
∏d

i=1 qi(u)
e−u2/2�(u), (10)

∑
k∈L

P(A′
k) ≥ (1 − δ1(u))

Hq√
2πu

∏d
i=1 qi(u)

e−u2/2�′(u), (11)

where δ1(u) → 0 as u → ∞. Clear, by Eq. 1, �′(u) ≤ I (u) ≤ �(u) and

�(u)/�′(u) = eε0/2 ≤ 1 + 2ε+
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for all sufficiently small ε+. Thus, we deduce that �(u) and �′(u) are the upper and
lower integral sums for the integral I (u), respectively. It remains to be noted that
Lf (u2) = I (u)(1 + o(1)) as u → ∞.

Since we use the sets {Bk(u)}k≥0 in our note instead of the boxes {�k}k∈Zd in the
original paper, we should revise the second part of the proof of Proposition 3 as well.
Let us estimate from above the double sum in Eq. 9. First we consider nonneighbor-
ing pairs of sets. Rewriting the relation (32) in the original paper for {Bk(u)}k≥0 and
following the steps below this relation, we have for k, l ≥ 0 with |k − l| > 1

P(Ak ∩ Al) ≤ P

(
max

(s,t)∈Bk(u)⊗Bl(u)

X0(s) + X0(t)√
2 + 2r(t − s)

≥ uk + ul√
2 + 2rk,l(u)

,

)
(12)

≤ C
|Bk(u)| · |Bl(u)|( ∏d

i=1 qi(u)
)2 �

(
uk + ul√
2 + 2rk,l(u)

)
,

where

rk,l(u) = max
(s,t)∈Bk(u)⊗Bl(u)

r(t − s)

and the constant C does not depend on k, l. Note, that

min
(s,t)∈Bk(u)⊗Bl(u)

|σ 2(t) − σ 2(s)| = u−2(|k − l| − 1) ε0

by Eq. 3 and continuity of σ 2(t), therefore Eq. 4 and Condition 4 implies that u2(1−
rk,l(u)) → ∞ as u → ∞ uniformly in k, l ≥ 0 with |k − l| > 1. It follows that there
exists an increasing κ(u) tending to infinity as u → ∞ such that for all k, l ≥ 0 with
|k − l| > 1

u2(1 − rk,l(u))/κ(u) → ∞, u → ∞.

Similarly to three first lines on page 425 of the original paper, we have

(uk + ul)
2

2 + 2rk,l(u)
≥ u2 + 1

2
κ(u) + 1

4
u2(1 − σ 2

k ) + 1

4
u2(1 − σ 2

l ) (13)

= u2 + κ(u)/2 + kε0/4 + lε0/4.

From Eqs. 12 and 13 we derive the following bound for the double sum in Eq. 9

∑
k∈L

∑
l 
=k,l∈L

P
(

max
t∈Bk(u)

X(t) > u, max
s∈Bl(u)

X(s) > u

)
≤

∑
k∈L

∑
|l−k|>1,l∈L

P(Ak ∩ Al)

≤ C1
1( ∏d

i=1 qi(u)
)2 exp(−κ(u))�(u)

(∑
k∈L

|Bk(u)|e−kε0/4

)2

(14)

for some C1 > 0, where the last term on the right-hand side can be estimated
from above by I (u)(1 + ε1) for any ε1 > 0 and sufficiently large u via Schwarz
inequality. Therefore, the term exp(−κ(u)) in Eq. 14 gives that the double sum over
nonneighboring intervals is infinitely smaller than both the single sums in Eqs. 10, 11.
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It remains to consider the asymptotic of the double sum over neighboring sets.
Denote

ϒ(u, t) := t +
d⊗

i=1

[−√
qi(u)Qi(u),

√
qi(u)Qi(u)]

and
∂Bk(u) = {t : u2(1 − σ 2(t)) = (k + 1)ε0}, k ≥ 0.

Let l − k = 1 and set

B ′
l (u) = Bl(u) ∩ {s : ∃t ∈ ∂Bk(u) such that s ∈ ϒ(u, t)},

the “small neighborhood” of ∂Bk(u) in Bl(u). We have

P(Ak ∩ Al) ≤ P

(
max

t∈B ′
l (u)

X0(t) > ul

)

+ P

(
max

(s,t)∈Bk(u)⊗(Bl(u)\B ′
l (u))

X0(s) + X0(t) > uk + ul

)
. (15)

The set B ′
l (u) satisfies the assumptions of Theorem 1 for every l ≥ 1, thus we can

use the same argument for estimating the sum of the first probabilities on the right-
hand side as we used for estimating the single sum in Eqs. 8 and 9 above. This sum
is infinitely smaller than the single sum above since we have |B ′

l (u)|/|Bl(u)| → 0 as
u → ∞ by Conditions 4 and 5∗. Next, from Eq. 4 it follows that u2(1−r ′

kl(u)) → ∞
as u → ∞ where

r ′
kl(u) = max

(s,t)∈Bk(u)⊗(Bl(u)\B ′
l (u))

r(t − s).

Thus the argument of the double sum estimation over nonneighboring sets can be
applied for the sum of the second probabilities on the right-hand side of Eq. 15.
Hence this sum is infinitely smaller than the single sum as well.

To end the proof we just repeat the argument given at the top of page 426 of the
original paper. The result follows.
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