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Abstract
Heavy tailed phenomena are naturally analyzed by extreme value statistics. A crucial
step in such an analysis is the estimation of the extreme value index, which describes
the tail heaviness of the underlying probability distribution. We consider the situation
where we have next to the n observations of interest another n+m observations of one
or more related variables, like, e.g., financial losses due to earthquakes and the related
amounts of energy released, for a longer period than that of the losses. Based on such
a data set, we present an adapted version of the Hill estimator. For this adaptation the
tail dependence between the variable of interest and the related variable(s) plays an
important role. We establish the asymptotic normality of this new estimator. It shows
greatly improved behavior relative to the Hill estimator, in particular the asymptotic
variance is substantially reduced, whereas we can keep the asymptotic bias the same.
A simulation study confirms the substantially improved performance of our adapted
estimator. We also present an application to the aforementioned earthquake losses.

Keywords Asymptotic normality · Heavy tail · Hill estimator · Tail dependence ·
Variance reduction

AMS 2000 Subject Classifications Primary—62G32 · 62G05 · 62G20 · 62P05;
Secondary—60F05 · 60G70

1 Introduction

Consider univariate extreme value theory for heavy tails, that is, the case where the
extreme value index γ is positive. This index describes the tail heaviness of the
underlying probability distribution, the larger γ , the heavier the tail. See de Haan

� John H. J. Einmahl
J.H.J.Einmahl@uvt.nl

1 Department of Econometrics & OR and CentER, Tilburg University, Tilburg, Netherlands

Extremes (2019) 22:553–569

Published online: 1 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10687-019-00358-y&domain=pdf
http://orcid.org/0000-0001-9009-6891
mailto: J.H.J.Einmahl@uvt.nl


H. Ahmed, J.H.J. Einmahl

and Ferreira (2006) or Beirlant et al. (2004) for a comprehensive introduction to uni-
variate and multivariate extreme value theory and Gomes and Guillou (2015) for a
more recent review of the univariate case. Given a random sample, we often esti-
mate γ with the well-known (Hill 1975) estimator. Such an estimate of γ is the
crucial ingredient for estimating important tail functionals of the distribution, like
very high quantiles, very small tail probabilities, but also the expected shortfall or an
excess-of-loss reinsurance premium.

In this paper we consider the situation where we have a bivariate (or multivariate)
data set, where the first component is the variable of interest with extreme value index
γ1 and the second component is a heavy-tailed related variable, with extreme value
index γ2, that should help to improve the estimation of γ1. We assume that we have
a random sample of size n of these pairs and in addition another m observations of
the second component; these m observations are independent of the pairs and mutu-
ally independent. Hence we have a larger sample of the related variable than that of
the variable of interest. Such a situation occurs in, e.g., an insurance setting when
we have recorded both variables for a certain period of time (2008-2017, say), but in
addition have data for the second variable only, for an earlier period (1980-2007, say).
We can think of financial losses as the variable of interest and some physical quan-
tity (like wind speed, air pressure, earthquake magnitude, water height) as the related
variable (see Section 5). The independence assumption between the n pairs and m

earlier observations is then naturally fulfilled. Specifically, the situation with hurri-
cane losses as variable of interest and (transformed) air pressures as related variable
was brought to our attention by a reinsurance company. A related situation where our
setup can occur is when in a certain period the related variable is measured more fre-
quently than the variable of interest. Also in a cross-sectional context our setup can
be relevant. E.g., in a medical setting it often happens that for a group of n patients a
specific variable is measured together with one (or more) other variable(s), whereas
for a (larger) group of m patients, due to cost constraints, the specific variable is
not measured, only the related variable(s), see Chakrabortty and Cai (2018). We will
also, as suggested in the medical setting, consider the situation where there is more
than one related variable, the multivariate case, but in this introductory section we
will focus on the bivariate case.

We can estimate γ1 with the Hill estimator γ̂1 and γ2 with the Hill estimators γ̂2,
based on the n data, and γ̂2+, based on all n + m data. The latter estimator is better
than γ̂2, “hence” their difference can be used to update and improve γ̂1. For this
updating the strength of the tail dependence between both variables is important and
should be estimated. A detailed derivation of our adapted Hill estimator is presented
in the next section. We will show that our estimator improves greatly on the Hill
estimator, in particular the asymptotic variance is substantially reduced, whereas we
can keep the asymptotic bias the same. To the best of our knowledge this approach is
novel and there are no results of this type in the literature.

The remainder of this paper is organized as follows. In Section 2, for the clearness
of the exposition, the bivariate case is treated as indicated above and the asymptotic
normality of the adapted estimator is established and in Section 3 the correspond-
ing results for the multivariate case are presented. In Section 4, the finite sample
performance of our estimator is studied through a simulation study, which confirms
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the improved performance of the adapted Hill estimator. In Section 5, we present
an application to earthquake damage amounts with the “amount of energy released”
as related variable. The proofs of the results in Section 3 are deferred to Section 6.
Since Section 3 generalizes Section 2, the proofs of Section 2 can be obtained by
specializing those of Section 3, and are hence omitted.

2 Main results: the bivariate case

Let F be a bivariate distribution function with marginals F1 and F2. Assume that
F is in the bivariate max-domain of attraction (i.e., F ∈ D(G)) with both extreme
value indices γ1 and γ2 positive, see Chapter 6 in de Haan and Ferreira (2006). Let
Uj (·) = F−1

j (1 − 1/·) be the tail quantile corresponding to Fj , j = 1, 2. Then
F ∈ D(G) with positive extreme value indices implies that Uj is regularly varying
with index γj , j = 1, 2, i.e., limt→∞ Uj (tx)/Uj (t) = xγj , x > 0. Let (X1, Y1) have
distribution function F . Then F ∈ D(G) also implies the existence of the tail copula
R defined by

R(x, y) = lim
t↓0

1

t
P (1 − F1 (X1) ≤ tx, 1 − F2 (Y1) ≤ ty) , (x, y) ∈ [0, ∞]2 \ {(∞, ∞)}. (1)

Let (X1, Y1), . . . , (Xn, Yn) be a bivariate random sample from F , and let
Yn+1, . . . , Yn+m be a univariate random sample from F2, independent from the n

pairs. Denote the order statistics of the Xi, i = 1, . . . , n, with X1,n ≤ . . . ≤ Xn,n

and use similar notation for the order statistics of the Yi, i = 1, . . . , n, and also for
the order statistics of all the Yi, i = 1, . . . , n + m. For k ∈ {1, . . . , n − 1} define the
(Hill 1975) estimator of γ1 by

γ̂1 = 1

k

k−1∑

i=0

log Xn−i,n − log Xn−k,n. (2)

Define, using the same k, similarly the Hill estimator γ̂2 based on the Yi, i =
1, . . . , n:

γ̂2 = 1

k

k−1∑

i=0

log Yn−i,n − log Yn−k,n. (3)

Also, let γ̂2+ be the Hill estimator of all Yi, i = 1, . . . , n + m, with k replaced by
k+ ∈ {k + 1, . . . , n + m − 1}:

γ̂2+ = 1

k+

k+−1∑

i=0

log Yn+m−i,n+m − log Yn+m−k+,n+m. (4)

Throughout for the asymptotical theory we will assume that m = m(n) and that

k → ∞,
k

n
→ 0,

√
k

k+
→ ν ∈ (0, 1),

n

n + m

k+
k

→ β ∈ (0, 1], as n → ∞.

(5)

555



H. Ahmed, J.H.J. Einmahl

Observe that we now also have k+ → ∞, m → ∞, and k+/(n + m) → 0; actually
n/(n + m) → βν2 ∈ (0, 1).

First we consider the joint asymptotic normality of the three Hill estimators γ̂1 =
γ̂1(k), γ̂2 = γ̂2(k), and γ̂2+ = γ̂2+(k+). For this, we need the usual second order
conditions, on F1 and F2: there exist positive or negative functions Aj , j = 1, 2,

with limt→∞ Aj(t) = 0, such that for x > 0

lim
t→∞

Uj (tx)

Uj (t)
− xγj

Aj (t)
= xγj

xρj − 1

ρj

, for some ρj ≤ 0, j = 1, 2. (6)

Proposition 2.1 If F ∈ D(G), conditions Eqs. 5 and 6 hold, and
√

kAj (
n
k
) → λj ∈

R, j = 1, 2, as n → ∞, then
(√

k(γ̂1 − γ1),
√

k(γ̂2 − γ2),
√

k+(γ̂2+ − γ2)
)

d−→ N

((
λ1

1 − ρ1
,

λ2

1 − ρ2
,

λ2β
−ρ2

ν(1 − ρ2)

)
, �̆

)
,

(7)
with, see Eq. 1,

�̆ =

⎡

⎢⎢⎢⎢⎣

γ 2
1 R(1, 1)γ1γ2 νR(1, β)γ1γ2

R(1, 1)γ1γ2 γ 2
2 νβγ 2

2

νR(1, β)γ1γ2 νβγ 2
2 γ 2

2

⎤

⎥⎥⎥⎥⎦
.

Corollary 2.1 Under the conditions of Proposition 2.1, as n → ∞,
(√

k(γ̂1 − γ1),
√

k(γ̂2+ − γ̂2)
)

d−→ N

((
λ1

1 − ρ1
,
λ2(β

−ρ2 − 1)

1 − ρ2

)
,

[
γ 2

1

(
ν2R(1, β) − R(1, 1)

)
γ1γ2(

ν2R(1, β) − R(1, 1)
)
γ1γ2

(
1 + ν2 − 2ν2β

)
γ 2

2

])
.

Corollary 2.1 is the basis for deriving our adapted Hill estimator. For this deriva-
tion only, take λ1 = λ2 = 0. The tail copula R is estimated as usual, cf. Drees and
Huang (1998), by

R̂(x, y) = 1

k

n∑

i=1

1[Xi≥Xn−[kx]+1,n,Yi≥Yn−[ky]+1,n], x, y ≥ 0. (8)

Now consider (γ̂1, γ̂2+ − γ̂2) and its approximate bivariate normal distribution
according to Corollary 2.1, with estimated covariance matrix:

N

(
(γ1, 0),

1

k

[
γ̂ 2

1 ( k
k+ R̂(1,

k+
k

n
n+m

) − R̂(1, 1))γ̂1γ̂2+
( k

k+ R̂(1,
k+
k

n
n+m

) − R̂(1, 1))γ̂1γ̂2+
(

1 + k
k+ − 2 n

n+m

)
γ̂ 2

2+

])
.

(9)
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Maximizing this approximate likelihood of the single observation (γ̂1, γ̂2+ − γ̂2)

with respect to γ1, we obtain our adapted estimator for γ1:

γ̂1,2 = γ̂1 + γ̂1

γ̂2+

⎛

⎝
R̂(1, 1) − k

k+ R̂(1,
k+
k

n
n+m

)

1 + k
k+ − 2 n

n+m

⎞

⎠ (γ̂2+ − γ̂ 2). (10)

The main result of this section, the asymptotic normality of this estimator, shows that
it improves substantially on the Hill estimator.

Theorem 2.1 Under the conditions of Proposition 2.1, as n → ∞,

√
k(γ̂1,2 − γ1)

d−→ N

(
λ1

1 − ρ1
+ γ1

γ2
· R(1, 1) − ν2R(1, β)

1 + ν2 − 2ν2β
· λ2(β

−ρ2 − 1)

1 − ρ2
,

γ 2
1

[
1 −

(
R(1, 1) − ν2R(1, β)

)2

1 + ν2 − 2ν2β

])
.

Remark 1 Note that in case ρ1 	= ρ2, we have, since |Aj | is regularly varying at ∞
with index ρj , j = 1, 2, that λ1 = 0 or λ2 = 0. Hence in this case the expression
for the asymptotic bias is simplified. In case λ2 = 0 (which is implied by ρ1 > ρ2)
or β = 1 or ρ2 = 0, the Hill estimator and the adapted estimator have the same
asymptotic bias λ1/(1 − ρ1).

We highlight the natural choice β = 1 in the following corollary.

Corollary 2.2 Under the conditions of Proposition 2.1 with β = 1, as n → ∞,

√
k(γ̂1,2 − γ1)

d−→ N

(
λ1

1 − ρ1
, γ 2

1

[
1 − (1 − ν2)R2(1, 1)

])
.

Remark 2 Since the asymptotic biases of both estimators are the same now, we can
in the comparison focus on the asymptotic variances. Clearly the asymptotic variance
of the adapted Hill estimator never exceeds the γ 2

1 of the classical Hill estimator. The
(relative) variance reduction is equal to (1 − ν2)R2(1, 1), which is positive in case
of tail dependence, i.e., R(1, 1) > 0. When, e.g., m = n and k+ = 2k, this becomes
1
2R2(1, 1). Then, depending on the value of R(1, 1) ∈ [0, 1], the variance reduction
can be as large as 50%. In case of tail independence (R(1, 1) = 0), the estimators
have the same asymptotic variances. In such a case a “better” related variable should
be looked for.

Remark 3 It is well-known that choosing a good k is a difficult problem in extreme
value theory. We will not address this problem here, but compare for many values
of k our adapted estimator and the Hill estimator, see Remark 2, Remark 4, and the
simulation section. On the other hand, there are many methods for choosing the k of
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the Hill estimator, see, e.g., Caeiro and Gomes (2015). If one of these methods for
the Hill estimator itself is used, we can choose the same k for our adapted estimator
and obtain the discussed improvements.

3 Main results: themultivariate case

Now we consider a d-variate distribution function F , with marginals F1, . . . , Fd and
corresponding tail quantile functions Uj , j = 1, . . . d; write F− for the distribution
function of the last d−1 components of a random vector with distribution function F .
We assume that F is in the multivariate max-domain of attraction, that is F ∈ D(G),
with all extreme value indices γ1, . . . , γd positive. Let Rij be the tail copula of the
i-th and the j -th component, 1 ≤ i, j ≤ d, i 	= j , see Eq. 1.

Let (X1, Y1,2, . . . , Y1,d ), . . . , (Xn, Yn,2, . . . , Yn,d), be a d-variate random sample
from F and let (Yn+1,2, . . . , Yn+1,d ), . . . , (Yn+m,2, . . . , Yn+m,d) be a (d − 1)-variate
random sample from F−, independent of the d-variate random sample of size n.
Let γ̂1, γ̂j , and γ̂j+ be the Hill estimators based on X1, . . . , Xn, Y1,j , . . . , Yn,j , and
Y1,j , . . . , Yn+m,j , j = 2, . . . , d , respectively, cf. Eqs. 2, 3, and 4; here again we
replace k with k+ for γ̂j+, j = 2, . . . , d . First we consider the joint asymptotic
normality of all the 2d − 1 Hill estimators.

Proposition 3.1 If F ∈ D(G), condition Eq. 5 holds, condition Eq. 6 holds for
j = 1, . . . , d , and

√
kAj (

n
k
) → λj ∈ R, j = 1, . . . , d , as n → ∞, then

(√
k(γ̂1 − γ1),

√
k(γ̂2 − γ2),

√
k+(γ̂2+ − γ2), . . . ,

√
k(γ̂d − γd),

√
k+(γ̂d+ − γd)

)
d−→ N(μ̆d , �̆d ),

(11)

where

μ̆d =
(

λ1

1 − ρ1
,

λ2

1 − ρ2
,

λ2β
−ρ2

ν(1 − ρ2)
, . . . ,

λd

1 − ρd

,
λdβ−ρd

ν(1 − ρd)

)
,

�̆d =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ 2
1 R12(1, 1)γ1γ2 νR12(1, β)γ1γ2 . . . R1d (1, 1)γ1γd νR1d (1, β)γ1γd

R12(1, 1)γ1γ2 γ 2
2 νβγ 2

2 . . . R2d (1, 1)γ2γd νR2d (1, β)γ2γd

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .
R1d (1, 1)γ1γd R2d (1, 1)γ2γd νR2d (1, β)γ2γd . . . γ 2

d νβγ 2
d

νR1d (1, β)γ1γd νR2d (1, β)γ2γd R2d (1, 1)γ2γd . . . νβγ 2
d γ 2

d

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Corollary 3.1 Under the conditions of Proposition 3.1, as n → ∞,

(√
k(γ̂1 − γ1),

√
k(γ̂2+ − γ̂2), . . . ,

√
k(γ̂d+ − γ̂d )

)
d−→ N (μd, �d) , (12)
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where μd =
(

λ1
1−ρ1

,
λ2(β

−ρ2 −1)
1−ρ2

, . . . ,
λd (β−ρd −1)

1−ρd

)
, �d = ��T ◦ H (“ ◦” denotes the

Hadamard or entrywise product), with

H =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 h12 . . . h1d

h12 h . . . h2d

. . .

. . .

. . .

. . .

. .
h1d h2d . . . h

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡

⎢⎢⎢⎢⎢⎢⎣

γ1
γ2
.
.
.
γd

⎤

⎥⎥⎥⎥⎥⎥⎦
,

h = 1 + ν2 − 2ν2β, h1i = ν2R1i (1, β) − R1i (1, 1), and hij = (1 + ν2)Rij (1, 1) −
ν2

(
Rij (1, β) + Rij (β, 1)

)
, i = 2, . . . , d, j = i + 1, . . . , d .

Very similar to the the bivariate case we approximate, for λj = 0, j = 1, . . . , d ,
the d-variate normal limiting distribution of (γ̂1, γ̂2+ − γ̂2, . . . , γ̂d+ − γ̂d ), with mean
vector (γ1, 0, . . . , 0), and estimate the approximated 1

k
�d , where for the estimation

of Rij , R̂ij is defined similarly as R̂ in Eq. 8. The thus obtained approximated and
estimated version of 1

k
�d is denoted by 1

k
�̂d . In this normal distribution the only

unknown parameter is the first component of the mean: γ1, cf. Eq. 9. Maximizing
this approximate likelihood of the single observation (γ̂1, γ̂2+ − γ̂2, . . . , γ̂d+ − γ̂d )

with respect to γ1, we obtain our adapted estimator for γ1:

γ̂1,d = γ̂1 +
d∑

j=2

�̂−1
1j

�̂−1
11

(γ̂j+ − γ̂ j ),

where A−1
ij denotes the entry in the ith row and j th column of the inverse of the

matrix A. Using, in the obvious notation, �̂d = �̂�̂T ◦ Ĥ (see above), we can rewrite
our adapted estimator as

γ̂1,d = γ̂1 +
d∑

j=2

γ̂1

γ̂j+
Ĥ−1

1j

Ĥ−1
11

(γ̂j+ − γ̂ j ). (13)

Theorem 3.1 Assume H is invertible. Then under the conditions of Proposition 3.1,
as n → ∞,

√
k(γ̂1,d − γ1)

d−→ N

⎛

⎝ λ1

1 − ρ1
+

d∑

j=2

γ1

γj

H−1
1j

H−1
11

λj (β
−ρj − 1)

1 − ρj

, σ 2

⎞

⎠ , (14)
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where

σ 2 = γ 2
1

⎛

⎝1 − 1

(H−1
11 )2

⎡

⎣2H−1
11

d∑

j=2

[R1j (1, 1) − ν2R1j (1, β)]H−1
1j − [1 + ν2 − 2ν2β]

d∑

j=2

(H−1
1j )2

−2
d∑

i=2

d∑

j>i

[
(1 + ν2)Rij (1, 1) − ν2 (Rij (1, β) + Rij (β, 1)

)]
H−1

1i H−1
1j

⎤

⎦

⎞

⎠ .

Corollary 3.2 Under the conditions of Theorem 3.1 with β = 1, as n → ∞,

√
k(γ̂1,d − γ1)

d−→ N

(
λ1

1 − ρ1
, σ 2

)
,

where the asymptotic variance now simplifies to

σ 2 = γ 2
1

⎛

⎝1 − 1 − ν2

(H−1
11 )2

⎡

⎣2H−1
11

d∑

j=2

R1j (1, 1)H−1
1j −

d∑

j=2

(H−1
1j )2 − 2

d∑

i=2

d∑

j>i

Rij (1, 1)H−1
1i H−1

1j

⎤

⎦

⎞

⎠ ,

where β = 1 also yields simplified entries for the matrix H .

Remark 4 We have seen that in the bivariate case for β = 1 and ν2 = 1
2 the reduc-

tion in asymptotic variance is equal to 1
2R2(1, 1). For, e.g., R(1, 1) = 0.8, this

becomes 0.320. Now consider the trivariate case with the same values for β and ν2

and with (also) R12(1, 1) = R13(1, 1) = 0.8, but R23(1, 1) = 0.4. Then the reduction
in asymptotic variance, see the next section, becomes much larger: 0.457. In other
words, adding a third variable that has the same (as the second variable) tail copula
value at (1,1) with the variable of interest and does not have a high tail dependence
with the second variable reduces the asymptotic variance much more than when using
only one related variable.

4 Simulation study

In this section we will perform a simulation study in order to compare the finite
sample behavior of the adapted estimator and the Hill estimator. We will consider 6
bivariate distributions and 8 trivariate distributions and 3 different pairs (n, m). Every
setting is replicated 10,000 times.

To be precise, we consider the Cauchy distribution restricted to the first quad-
rant/octant in dimensions d = 2 and d = 3. This Cauchy density is proportional
to

(1 + xS−1xT )−(1+d)/2,

where the 2 × 2 or 3 × 3 scale matrix S has 1 as diagonal elements and s as off-
diagonal elements, but when d = 3 we take S23 = S32 = r . For s we take the values
0, 0.5, and 0.8, respectively. When d = 3 we take r = s, but for s = 0.5 and s = 0.8

560



Improved estimation of the extreme value index using related variables

Table 1 R(1, 1)-values for the Cauchy distribution

d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

0.59 0.67 0.76 0.59 0.68 0.69 0.77 0.81

0.59 0.63

we also take r = 0 and r = 0.3, respectively. Approximated R(1, 1)-values are given
in Table 1. In the case r < s, two values are given; the lower one is R23(1, 1).

We will also consider the bi- and trivariate logistic distribution function with
standard Fréchet marginals:

F(x1, . . . , xd ) = exp

{
−
(
x

−1/θ

1 + . . . + x
−1/θ
d

)θ
}

, x1 > 0, . . . , xd > 0; d = 2 or d = 3.

For θ we take the values 0.1, 0.3, and 0.5, respectively. The corresponding R(1, 1)-
values are 0.93, 0.77, and 0.59. All γ -values in the simulations are equal to 1.

We use the following values for n, m, and k:

• n = 1000, m = 500, and k = 100,
• n = 1000, m = 1000, and k = 100,
• n = 500, m = 1000, and k = 50.

Then we choose k+ according to

k

k+
= n

n + m
. (15)

In case d = 2, using Eq. 15, our adapted estimator in Eq. 10 specializes to

γ̂1,2 = γ̂1 + γ̂1

γ̂2+
R̂(1, 1)(γ̂2+ − γ̂ 2),

Table 2 Empirical variance reduction for the Cauchy distribution

d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500 10.5% 12.4% 17.3% 12.4% 17.9% 18.9% 21.2% 26.5%

n = 1000,m = 1000 15.5% 20.1% 28.9% 21.0% 27.3% 30.5% 31.8% 40.3%

n = 500,m = 1000 20.6% 27.7% 38.3% 27.6% 36.4% 38.9% 41.3% 51.4%
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Table 3 Empirical variance reduction for the logistic distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500 26.8% 17.4% 8.8% 28.8% 20.7% 13.4%

n = 1000,m = 1000 41.1% 27.3% 14.4% 42.0% 31.4% 20.6%

n = 500,m = 1000 54.5% 37.4% 21.4% 58.9% 43.1% 27.8%

and the asymptotic variance in Theorem 2.1 becomes γ 2
1

(
1 − (1 − ν2)R2(1, 1)

)
.

When d = 3, using Eq. 15, our adapted estimator in Eq. 13 can be rewritten as

γ̂1,3 = γ̂1 + γ̂1

γ̂2+
R̂12(1, 1) − R̂13(1, 1)R̂23(1, 1)

1 − R̂2
23(1, 1)

(γ̂2+ − γ̂ 2)

+ γ̂1

γ̂3+
R̂13(1, 1) − R̂12(1, 1)R̂23(1, 1)

1 − R̂2
23(1, 1)

(γ̂3+ − γ̂ 3),

and the asymptotic variance in Theorem 3.1 specializes to

σ 2 = γ 2
1

(
1 − (1 − ν2)

(
R2

12(1, 1) + R2
13(1, 1) − 2R12(1, 1)R13(1, 1)R23(1, 1)

1 − R2
23(1, 1)

))
.

Tables 2 and 3 show the (empirical percentages of) variance reduction as dis-
cussed below Theorems 2.1 and 3.1, and above, based on the 10,000 estimates. We
see that the variance reduction ranges from about 10% to more than 50%, that is,
our adapted estimator yields much better results than the Hill estimator. A stronger
tail dependence between the variable of interest and the related variable(s) yields a
larger variance reduction. In case d = 3, due to the exchangeability of the compo-
nents of the logistic distribution, a stronger tail dependence between the variable of
interest and the related variables, yields also a stronger tail dependence between the
two related variables and hence increasing the dimension from 2 to 3 does not help
that much, but in case of the Cauchy distribution with r < s we see a large improve-
ment when adding the third variable. Comparing the numbers in the table with the

Table 4 Empirical MSE reduction for the Cauchy distribution

d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500 10.6% 12.5% 17.3% 12.5% 18.1% 19.0% 21.3% 26.6%

n = 1000,m = 1000 15.7% 20.2% 28.9% 21.1% 27.6% 30.6% 31.9% 40.3%

n = 500,m = 1000 20.6% 27.8% 38.3% 27.8% 36.4% 38.9% 41.3% 51.3%
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Table 5 Empirical MSE reduction for the logistic distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500 26.3% 17.5% 9.1% 28.4% 20.6% 13.4%

n = 1000,m = 1000 40.7% 27.0% 14.7% 41.3% 31.0% 20.6%

n = 500,m = 1000 55.1% 38.0% 22.6% 59.4% 43.9% 28.7%

(not presented) theoretical asymptotic reductions shows that the empirical numbers
are about the same but slightly smaller, partly due to the variability of the tail copula
estimators, which does not show up in the asymptotic variance.

Although the asymptotic biases are the same (see Corollaries 2.2 and 3.2), we
also present, in order to show the full behavior of the estimator, similar tables for the
reduction in mean squared error (MSE). We see in Tables 4 and 5 that considering
the MSE instead of the variance yields approximately the same reduction percent-
ages. This shows that indeed our adapted estimator substantially outperforms the Hill
estimator.

For every simulation setting we have only taken one value of k. It is of interest to
investigate the sensitivity to the choice of k of the variance reduction in Tables 2 and
3. For the two tables below we doubled the value of k compared to the initial settings
in Tables 2 and 3. For the choice of k+ the formula in Eq. 15 is still used, i.e., k+ is
also doubled. Tables 6 and 7 show that this large change in k leads to about the same
percentages of variance reduction, in other words, when comparing the adapted Hill
estimator and the Hill estimator the choice of k is not so important.

5 Application

We consider financial losses (in US$) due to earthquakes as variable of interest with
the corresponding energy released as related variable. The aim of this application is
to assess the tail heaviness of the loss distribution and also to estimate a very high
quantile of the losses. We make use of the adapted Hill estimator, since the losses are

Table 6 Empirical variance reduction for the Cauchy distribution

d = 2 d = 3

s = 0 s = 0.5 s = 0.8 s = 0 s = 0.5 s = 0.5 s = 0.8 s = 0.8

r = 0 r = 0.5 r = 0 r = 0.8 r = 0.3

n = 1000,m = 500, k = 200 10.1% 12.4% 17.6% 13.5% 17.3% 18.4% 21.4% 25.0%

n = 1000,m = 1000, k = 200 15.2% 20.2% 26.0% 19.4% 25.7% 28.1% 33.5% 38.4%

n = 500,m = 1000, k = 100 19.9% 27.3% 36.1% 27.6% 35.4% 36.0% 44.1% 52.7%
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Table 7 Empirical variance reduction for the logistic distribution

d = 2 d = 3

θ = 0.1 θ = 0.3 θ = 0.5 θ = 0.1 θ = 0.3 θ = 0.5

n = 1000,m = 500, k = 200 27.2% 19.4% 10.1% 28.5% 21.0% 14.6%

n = 1000,m = 1000, k = 200 39.6% 27.5% 14.5% 44.6% 30.8% 20.3%

n = 500,m = 1000, k = 100 55.3% 38.0% 21.8% 57.1% 43.6% 26.0%

influenced by the amounts of energy and hence these variables are expected to be tail
dependent.

The earthquakes concern 29 countries.1 The data are provided by the National
Oceanic and Atmospheric Administration (NOAA). Ignoring tsunami losses, we con-
sider the financial losses of categories at least “moderate” for the time period from
1993 through 2017. We used linear regression analysis per country for imputation of
missing loss values, with “number of deaths due to the earthquake” and “severity of
the financial loss” (a categorical variable) as independent variables. We also corrected
the financial losses for inflation. The highest loss in the data set is US$ 36×109.
We obtained the related Richter scale magnitude M of the earthquakes for the much
longer period 1940 through 2017. (Note that also for the earlier period 1940-1992
the financial loss categories are available and again we used only magnitudes with
losses at least “moderate”, as for the period 1993-2017.) The energy E released by
earthquakes (in megajoules) is given by E = 2×101.5(M−1); Lay and Wallace (1995).

We have n = 330 and m = 512. Figure 1 shows a plot of the adapted Hill esti-
mator and the Hill estimator against k, with k+ based on Eq. 15. We take the average
values over the region k = 40, . . . , 60 of both estimators, respectively. This yields
the average Hill estimate γ̂1 = 1.504 and the final average adapted Hill estimate of
γ1, which is somewhat lower than the average Hill estimate:

γ̂1,2 = 1.465.

Both estimates indicate that the loss distribution has a very heavy right tail.
We also estimate the high quantile F−1

1 (1 − p) of the loss distribution for p =
1
n

= 1
330 . This high quantile is estimated as usual (see, e.g., page 138 of de Haan and

Ferreira 2006) with

Xn−k,n

(
k

np

)γ̂

,

where γ̂ is the Hill estimator or the adapted Hill estimator (and k = 40, . . . , 60). This
yields for the average high quantile estimate US$ 130×109 when we use the Hill
estimates and US$ 113×109 when we use our estimates of γ1, which is a reduction
of 17 billion dollars. This shows that, from an insurer’s perspective, improved (that

1Algeria, Burma, Chile, China, Ecuador, El Salvador, Germany, Greece, Haiti, Iceland, India, Indone-
sia, Iran, Italy, Japan, Mexico, Morocco, Nepal, New Zealand, Nicaragua, Pakistan, Philippines, Russia,
Taiwan, Tajikistan, Tanzania, Thailand, Turkey, United States.
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Fig. 1 Adapted Hill estimator (solid line) and Hill estimator (dashed line) of the financial losses of the
earthquakes

is, less variable) estimation of the extreme value index can lead to huge changes in
high quantiles, here the 25 year return level. The lower estimate we obtain indicates
less risk for (re)insurers.

6 Proofs

Proof of Proposition 3.1 Let C be a copula corresponding to the distribution
function of (−X1, −Y1,2, . . . , −Y1,d ) and let C− be the distribution function
of the last d − 1 components of a random vector with distribution function
C. Let (V1,1, V1,2, . . . , V1,d ), . . . , (Vn,1, Vn,2, . . . , Vn,d) be a random sam-
ple of size n from C and let (Vn+1,2, . . . , Vn+1,d ), . . . , (Vn+m,2, . . . , Vn+m,d)

be a random sample of size m from C−, independent of the random sam-
ple from C. Clearly all the Vi,j have a uniform-(0,1) distribution. Write
Xi = F−1

1 (1 − Vi,1), i = 1, . . . , n, and Yl,j = F−1
j (1 − Vl,j ), l = 1, . . . , n + m,

j = 2, . . . , d . Then (X1, Y1,2, . . . , Y1,d ), . . . , (Xn, Yn,2, . . . , Yn,d), and
(Yn+1,2, . . . , Yn+1,d ), . . . , (Yn+m,2, . . . , Yn+m,d) have the distributions as specified
in the beginning of Section 3.
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Consider the univariate empirical distribution functions �n,j (s)= 1
n

∑n
i=1 1[0,s](Vi,j ),

0≤s≤1, j=1, 2, . . . , d, and �n+m,j (t)= 1
n+m

∑n+m
l=1 1[0,t](Vl,j ), 0 ≤ t ≤ 1, j =

2, . . . , d, and the corresponding uniform tail empirical processes

wn,j (s) = n√
k

[
�n,j

(
k

n
s

)
− k

n
s

]
, 0 ≤ s ≤ 1,

wn+m,j (t) = n + m√
k+

[
�n+m,j

(
k+

n + m
t

)
− k+

n + m
t

]
, 0 ≤ t ≤ 1.

Now define the Gaussian vector of processes (W1, . . . , W2d−1), where Wj, j =
1, . . . , 2d − 1, is a standard Wiener process on [0, 1], and the covariances are as
follows:

Cov(Wi(s), Wj (t)) = Rij (s, t), 0 ≤ s, t ≤ 1, 1 ≤ i < j ≤ d,

Cov(Wi(s), Wj (t)) = νRi,j−d+1(s, βt), 0 ≤ s, t ≤ 1, 1 ≤ i ≤ d, d + 1 ≤ j

≤ 2d − 1, j 	= i + d − 1,

Cov(Wi(s), Wi+d−1(t)) = ν(s ∧ βt), 0 ≤ s, t ≤ 1, 2 ≤ i ≤ d .

Cov(Wi(s), Wj (t)) = Ri−d+1,j−d+1(s, t), 0 ≤ s, t ≤ 1, d + 1 ≤ i < j ≤ 2d − 1.(16)

Let I denote the identity function on [0, 1]. Then we have on (D[0, 1])2d−1, for
0 ≤ δ < 1

2 , as n → ∞,

(wn,1

I δ
, . . . ,

wn,d

I δ
,
wn+m,2

I δ
, . . . ,

wn+m,d

I δ

)
d−→

(
W1

I δ
, . . . ,

Wd

I δ
,
Wd+1

I δ
, . . . ,

W2d−1

I δ

)
. (17)

For the proof of this statement, note that the convergence and tightness of every
component is well-known, see Corollary 4.2.1 in Csörgő et al. (1986) or Theorem
3 in Einmahl (1992). This also yields the tightness of the entire vector on the left-
hand side. It remains to prove the convergence of the finite-dimensional distributions
(without the I δ), which follows from the (general) multivariate central limit theorem.
It suffices to compute the limits of the covariances: we perform this computation for
the second formula in Eq. 16; the other three formulas there are essentially special
cases of that one. We have

Cov(wn,i (s), wn+m,j−d+1(t)) = Cov

(
1√
k

n∑

l=1

1[0, k
n
s](Vl,i ),

1√
k+

n+m∑

l=1

1[0,
k+

n+m
t](Vl,j−d+1)

)

= Cov

(
1√
k

n∑

l=1

1[0, k
n
s](Vl,i ),

1√
k+

n∑

l=1

1[0,
k+

n+m
t](Vl,j−d+1)

)

= n√
kk+

Cov(1[0, k
n
s](V1,i ), 1[0,

k+
n+m

t](V1,j−d+1))

= n√
kk+

[
P

(
V1,i ≤ k

n
s, V1,j−d+1 ≤ k+

n + m
t

)
− kk+

n(n + m)
st

]

=
√

k

k+

[
n

k
P

(
V1,i ≤ k

n
s, V1,j−d+1 ≤ k

n

n

k

k+
n + m

t

)
− k+

n + m
st

]

→ νRi,j−d+1(s, βt) = Cov(Wi(s), Wj (t)).

Hence Eq. 17 is established.
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According to de Haan and Ferreira (2006), Chapter 5 and Theorem 2.3.9, we have,
as n → ∞,

√
k(γ̂j −γj ) = −γj

(
wn,j (1) −

∫ 1

0

wn,j (u)

u
du

)
+ λj

1 − ρj

+op(1), j = 1, . . . , d .

Using that |Aj | is regularly varying at ∞ with index ρj , we get similarly

√
k+(γ̂j+ − γj ) = −γj

(
wn+m,j (1) −

∫ 1

0

wn+m,j (u)

u
du

)
+ λjβ

−ρj

ν(1 − ρj )
+ op(1), j = 2, . . . , d .

Combining all these with Eq. 17 we obtain

(√
k(γ̂1 − γ1), . . . ,

√
k(γ̂d − γd),

√
k+(γ̂2+ − γ2), . . . ,

√
k+(γ̂d+ − γd)

)

d−→
⎛

⎝−γ1

⎛

⎝W1(1) −
1∫

0

W1(u)

u
du

⎞

⎠ + λ1

1 − ρ1
, . . . , −γd

⎛

⎝Wd(1) −
1∫

0

Wd(u)

u
du

⎞

⎠ + λd

1 − ρd

,

−γ2

⎛

⎝Wd+1(1) −
1∫

0

Wd+1(u)

u
du

⎞

⎠ + λ2β
−ρ2

ν(1 − ρ2)
, . . . , −γd

⎛

⎝W2d−1(1) −
1∫

0

W2d−1(u)

u
du

⎞

⎠

+ λdβ−ρd

ν(1 − ρd)

)
.

It is immediate and well-known that this yields the mean vector and the variances as
in the proposition. (Note that the components of the left-hand side there are listed in
a different order.) It remains to derive the covariances. Again we only consider the
case where 1 ≤ i ≤ d, d + 1 ≤ j ≤ 2d − 1, j 	= i + d − 1. The other cases are
easier and essentially special cases of this one. We have

Cov

⎛

⎝−γi

⎛

⎝Wi(1) −
1∫

0

Wi(u)

u
du

⎞

⎠ + λi

1 − ρi

, −γj−d+1

⎛

⎝Wj(1) −
1∫

0

Wj(v)

v
dv

⎞

⎠

+λj−d+1β
−ρj−d+1

ν(1 − ρj−d+1)

)
= γiγj−d+1

⎡

⎣E(Wi(1)Wj (1)) +
1∫

0

1∫

0

E
(
Wi(u)Wj (v)

)

uv
dudv

−
1∫

0

E
(
Wi(u)Wj (1)

)

u
du −

1∫

0

E
(
Wi(1)Wj (v)

)

v
dv

⎤

⎦ = νγiγj−d+1
[
Ri,j−d+1(1, β)

+
1∫

0

1∫

0

Ri,j−d+1(u, βv)

uv
dudv −

1∫

0

Ri,j−d+1(u, β)

u
du −

1∫

0

Ri,j−d+1(1, βv)

v
dv

⎤

⎦ .
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Observe that by two changes of variables and the homogeneity of order 1 of
Ri,j−d+1:

1∫

0

1∫

0

Ri,j−d+1(u, βv)

uv
dudv =

1∫

0

v∫

0

Ri,j−d+1(u, βv)

uv
dudv +

1∫

0

u∫

0

Ri,j−d+1(u, βv)

uv
dvdu

=
1∫

0

1∫

0

Ri,j−d+1(vu, βv)

uv
dudv +

1∫

0

1∫

0

Ri,j−d+1(u, βvu)

uv
dvdu

=
1∫

0

Ri,j−d+1(u, β)

u
du +

1∫

0

Ri,j−d+1(1, βv)

v
dv.

Hence the covariance is equal to νγiγj−d+1Ri,j−d+1(1, β).

Proof of Theorem 3.1 From the uniform consistency of the tail copula estimators and

the continuity of the tail copulas we have Ĥ−1
1j

P−→ H−1
1j , j = 1, . . . , d . This in

combination with Eq. 13 and Corollary 3.1 yields

√
k(γ̂1,d − γ1) = √

k(γ̂1 − γ1) +
d∑

j=2

γ1

γj

H−1
1j

H−1
11

√
k(γ̂j+ − γ̂j ) + op(1). (18)

Now Corollary 3.1 and the continuous mapping theorem yield Eq. 14.

Remark 5 In the bivariate case in Section 2, the determinant of the matrix H is always
positive and hence the additional invertibility assumption on H is not needed there.
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