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Abstract A common approach to modelling extreme values is to consider the
excesses above a high threshold as realisations of a non-homogeneous Poisson pro-
cess. While this method offers the advantage of modelling using threshold-invariant
extreme value parameters, the dependence between these parameters makes esti-
mation more difficult. We present a novel approach for Bayesian estimation of the
Poisson process model parameters by reparameterising in terms of a tuning param-
eter m. This paper presents a method for choosing the optimal value of m that
near-orthogonalises the parameters, which is achieved by minimising the correla-
tion between the asymptotic posterior distribution of the parameters. This choice of
m ensures more rapid convergence and efficient sampling from the joint posterior
distribution using Markov Chain Monte Carlo methods. Samples from the parame-
terisation of interest are then obtained by a simple transform. Results are presented
in the cases of identically and non-identically distributed models for extreme rainfall
in Cumbria, UK.
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1 A Poisson process model for extremes

The aim of extreme value analysis is to model rare occurrences of an observed
process to extrapolate to give estimates of the probabilities of unobserved levels.
In this way, one can make predictions of future extreme behaviour by estimat-
ing the behaviour of the process using an asymptotically justified limit model. Let
X1, X2, . . . , Xn be a series of independent and identically distributed (iid) ran-
dom variables with common distribution function F . Defining Mn = max{X1, X2,

. . . , Xn}, if there exists sequences of normalising constants an > 0 and bn such that:

Pr

{
Mn − bn

an

≤ x

}
→ G(x) as n → ∞, (1)

where G is non-degenerate, then G follows a generalised extreme value (GEV)
distribution, with distribution function

G(x) = exp

{
−
[
1 + ξ

(
x − μ

σ

)]−1/ξ

+

}
, (2)

where x+ = max(x, 0), σ > 0 and μ, ξ ∈ R. Here, μ, σ and ξ are location, scale
and shape parameters respectively.

Using a series of block maxima from X1, . . . , Xn, typically with blocks corre-
sponding to years, the standard inference approach to give estimates of (μ, σ, ξ)

is the maximum likelihood technique, which requires numerical optimisation meth-
ods. In these problems, particularly when covariates are involved, such methods may
converge to local optima, with the consequence that parameter estimates are largely
influenced by the choice of starting values. The standard asymptotic properties of the
maximum likelihood estimators are subject to certain regularity conditions outlined
in Smith (1985), but can give a poor representation of true uncertainty. In addition,
flat likelihood surfaces can cause identifiability issues (Smith 1987a). For these rea-
sons, we choose to work in a Bayesian setting. Bayesian approaches have been used
to make inferences about θ = (μ, σ, ξ) using standard Markov Chain Monte Carlo
(MCMC) techniques. They have the advantage of being able to incorporate prior
information when little is known about the extremes of interest, while also better
accounting for parameter uncertainty when estimating functions of θ , such as return
levels (Coles and Tawn 1996). For a recent review, see Stephenson (2016).

An approach to inference that is considered to be more efficient than using block
maxima is to consider a model for threshold excesses, which is superior in the
sense that it reduces uncertainty due to utilising more extreme data (Smith 1987b).
Given a high threshold u, the conditional distribution of excesses above u can be
approximated by a generalised Pareto (GP) distribution (Pickands 1975) such that

Pr(X − u > x|X > u) =
(
1 + ξx

ψu

)−1/ξ

+
, x > 0,

where ψu > 0 and ξ ∈ R denote the scale and shape parameters respectively, with
ψu dependent on the threshold u, while ξ is identical to the shape parameter of the
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GEV distribution. This model conditions on an exceedance, but a third parameter λu,
denoting the rate of exceedance of X above the threshold u, must also be estimated.

Both of these extreme value approaches are special cases of a unifying limiting
Poisson process characterisation of extremes (Smith 1989; Coles 2001). Let Pn be a
sequence of point processes such that

Pn =
{(

i

n + 1
,
Xi − bn

an

)
: i = 1, . . . , n

}
,

where an > 0 and bn are the normalising constants in limit (1). The limit process is
non-degenerate since the limit distribution of (Mn −bn)/an is non-degenerate. Small
points are normalised to the same value bL = limn→∞(xL − bn)/an, where xL is the
lower endpoint of the distribution F . Large points are retained in the limit process.
It follows that Pn converges to a non-homogeneous Poisson process P on regions of
the form Ay = (0, 1) × [y,∞), for y > bL. The limit process P has an intensity
measure on Ay given by

�(Ay) =
[
1 + ξ

(
y − μ

σ

)]−1/ξ

+
. (3)

It is typical to assume that the limit process is a reasonable approximation to the
behaviour of Pn, without normalisation of the {Xi}, on Au = (0, 1) × [u,∞), where
u is a sufficiently high threshold and an, bn are absorbed into the location and scale
parameters of the intensity (3). It is often convenient to rescale the intensity by a fac-
tor m, where m > 0 is free, so that the n observations consist of m blocks of size n/m

with the maximum Mm of each block following a GEV(μm, σm, ξ) distribution, with
ξ invariant to the choice ofm. The Poisson process likelihood can be expressed as

L(θm) = exp

{
−m

[
1 + ξ

(
u − μm

σm

)]−1/ξ

+

}
r∏

j=1

1

σm

[
1 + ξ

(
xj − μm

σm

)]−1/ξ−1

+
,

(4)
where θm = (μm, σm, ξ) denotes the rescaled parameters, r denotes the number of
excesses above the threshold u and xj > u, j = 1, . . . , r , denote the exceedances.
It is possible to move between parameterisations associated with different numbers
of blocks. If for k blocks the block maximum is denoted by Mk and follows a GEV
distribution with the parameters θk = (μk, σk, ξ), then for all x

Pr(Mk < x) = Pr (Mm < x)k/m.

As Mk is GEV(μk, σk, ξ) and Mm is GEV(μm, σm, ξ) it follows that

μk = μm − σm

ξ

(
1 −

(
k

m

)−ξ
)

σk = σm

(
k

m

)−ξ

. (5)

In this paper, we present a method to improve inference for θk , the parameterisation
of interest. For an ‘optimal’ choice of m we first undertake inference for θm before
transforming our results to give inference for θk using the mapping in expression (5).
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In many practical problems, k is taken to be ny , the number of years of obser-
vation, so that the annual maximum has a GEV distribution with parameters θny =
(μny , σny , ξ). Although inference is for the annual maximum distribution parameters
θny , the Poisson process model makes use of all data that are extreme, so inferences
are more precise than estimates based on a direct fit of the GEV distribution to the
annual maximum data as noted above.

To help see how the choice of m affects inference, consider the case when
m = r , the number of excesses above the threshold u. If a likelihood inference was
being used with this choice of m, the maximum likelihood estimators (μ̂r , σ̂r , ξ̂ ) =
(u, ψ̂u, ξ̂ ), see Appendix A for more details. Therefore, Bayesian inference for the
parameterisation of the Poisson process model when m = r is equivalent to Bayesian
inference for the GP model.

Although inference for the Poisson process and GP models is essentially the same
approach when m = r , they differ in parameterisation, and hence inference, when
m �= r . The GP model is advantageous in that λu is globally orthogonal to ψu and
ξ . Chavez-Demoulin and Davison (2005) achieved local orthogonalisation of the GP
model at the maximum likelihood estimates by reparameterising the scale parameter
as νu = ψu(1 + ξ). This ensures all the GP tail model parameters are orthogonal
locally at the likelihood mode. However, the scale parameter is still dependent on the
choice of threshold. Unlike the GP, the parameters of the Poisson process model are
invariant to choice of threshold, which makes it more suitable for covariate modelling
and hence suggests that it may be the better parameterisation to use. In contrast, it
has been found that the parameters are highly dependent, making estimation more
difficult.

As we are working in the Bayesian framework, strongly dependent parameters
lead to poor mixing in our MCMC procedure (Hills and Smith 1992). A common
way of overcoming this is to explore the parameter space using a dependent proposal
random walk Metropolis-Hastings algorithm, though this requires a knowledge of the
parameter dependence structure a priori. Even in this case, the dependence structure
potentially varies in different regions of the parameter space, which may require dif-
ferent parameterisations of the proposal to be applied. The alternative approach is to
consider a reparameterisation to give orthogonal parameters. However, Cox and Reid
(1987) show that global orthogonalisation cannot be achieved in general.

This paper illustrates an approach to improving Bayesian inference and efficiency
for the Poisson process model. Our method exploits the scaling factorm as a means of
creating a near-orthogonal representation of the parameter space. While it is not pos-
sible in our case to find a value of m that diagonalises the Fisher information matrix,
we focus on minimising the off-diagonal components of the covariance matrix. We
present a method for choosing the ‘best’ value of m such that near-orthogonality of
the model parameters is achieved, and thus improves the convergence of MCMC and
sampling from the joint posterior distribution. Our focus is on Bayesian inference but
the reparameterisations we find can be used to improve likelihood inference as well,
simply by ignoring the prior term.

The structure of the paper is as follows. Section 2 examines the idea of repa-
rameterising in terms of the scaling factor m and how this can be implemented in a
Bayesian framework. Section 3 discusses the choice of m to optimise the sampling
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from the joint posterior distribution in the case where X1, . . . , Xn are iid. Section 4
explores this choice when allowing for non-identically distributed variables through
covariates in the model parameters. Section 5 describes an application of our method-
ology to extreme rainfall in Cumbria, UK, which experienced major flooding events
in November 2009 and December 2015.

2 Bayesian inference

Bayesian estimation of the Poisson process model parameters involves the spec-
ification of a prior distribution π(θm). Then using Bayes Theorem, the posterior
distribution of θm can be expressed as

π(θm|x) ∝ π(θm)L(θm),

where L(θm) is the likelihood as defined in (4) and x denotes the excesses of
the threshold u. We sample from the posterior distribution using a random walk
Metropolis-Hastings scheme. Proposal values of each parameter are drawn sequen-
tially from a univariate Normal distribution and accepted with a probability defined
as the posterior ratio of the proposed state relative to the current state of the Markov
chain. In all cases throughout the paper, each individual parameter chain is tuned to
give the acceptance rate in the range of 20 % − 25 % to satisfy the optimality crite-
rion of Roberts et al. (2001). For illustration purposes, results in Sections 2 and 3 are
from the analysis of simulated iid data. A total of 300 exceedances above a thresh-
old u = 30 are simulated from a Poisson process model with θ1 = (80, 15, 0.05).
Figure 1 shows individual parameter chains for θk from a random walk Metropolis
scheme run for 50,000 iterations with a burn-in of 5,000 removed, where k = 1 and
a chosen m = 1. This figure shows the clear poor mixing of each component of θ1,
indicating non-convergence and strong dependence in the posterior sampling.
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Fig. 1 Random-walk Metropolis chains run for each component of θ1
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We explore how reparameterising the model in terms of m can improve sampling
performance. For a general prior on the parameterisation of interest θk , denoted by
π(θk), Appendix B derives that the prior on the transformed parameter space θm is

π(θm) =
(m

k

)−ξ

π(θk). (6)

In this example, independent Uniform priors are placed on μ1, log σ1 and ξ , which
gives

π(θ1) ∝ 1

σ1
; μ1 ∈ R, σ1 > 0, ξ ∈ R. (7)

This choice of prior results in a proper posterior distribution, provided there are at
least 4 threshold excesses (Northrop and Attalides 2016). By finding a value ofm that
near-orthogonalises the parameters of the posterior distribution π(θm|x), we can run
an efficient MCMC scheme on θm before transforming the samples to θk . It is noted
in Wadsworth et al. (2010) that setting m to be the number of exceedances above the
threshold, i.e. m = r , improves the mixing properties of the chain, as is illustrated in
Fig. 2. This is approximately equivalent to inference using a GP model, as discussed
in Section 1.

Given this choice of m, the MCMC scheme is run for θm before transforming
to estimate the posterior of θ1 using the mapping in (5), where k = 1 in this case.
Figure 3 shows contour plots of estimated joint posterior densities of θ1 based on
5,000 and 50,000 run lengths, with burn-in periods of 1,000 and 5,000 respectively.
It compares the samples from directly estimating the posterior of θ1 with that from
transforming from the MCMC samples of the posterior of θm to give a posterior sam-
ple for θ1. Figure 3 indicates that θ1 are highly correlated, with the result that we only
sample from a small proportion of the parameter space when exploring using inde-
pendent random walks for each parameter. This explains the poor mixing if we were
to run the MCMC without a transformation. In particular, very different estimates
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Fig. 2 Random-walk Metropolis chains run for parameters θ r , where r = 300 is the number of
exceedances in the simulated data
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Fig. 3 Contour plots of the estimated joint posterior of θ1 for 4,000 iterations (top) and 45,000 iterations
(bottom) created from the transformed samples drawn from the MCMC procedure for θm (in black) and
samples of θ1 drawn directly (in red)

of the joint posterior are achieved for the 5,000 and 50,000 run lengths. Even with
50,000 iterations the estimated density contours are very rough, indicating consider-
able Monte Carlo noise as a result of poor mixing. In contrast, it is clear that, after
back-transforming to θ1, the reparameterisation enables a more thorough exploration
of the parameter space, with almost identical estimated joint density contours based
on both 5,000 and 50,000 iterations. This shows a very rapid mixing of the associ-
ated MCMC. In fact, we found that the reparameterisation yielded smoother density
contours for 5,000 iterations than for 5 million iterations without the transformation.
However, while this transformation is a useful tool in enabling an efficient Bayesian
inference procedure, further investigation is necessary in the choice of m to achieve
near-orthogonality of the parameter space and thus maximising the efficiency of the
MCMC procedure.

3 Choosing m optimally

As illustrated in Section 2, the choice of m in the Poisson process likelihood can
improve the performance of the MCMC required to estimate the posterior density of
model parameters θk . We desire a value of m such that near-orthogonality of θm is
achieved, before using the expressions in (5) to transform to the parameterisation of
interest, e.g. θ1 or θny . As a measure of dependence, we use the asymptotic expected
correlation matrix of the posterior distribution of θm|x. In particular, we explore how
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the off-diagonal components of the matrix, that is, the correlation between param-
eters, changes with m. The covariance matrix associated with θm|x can be derived
analytically by inverting the Fisher information matrix of the Poisson process log-
likelihood (see Appendix C). The correlation matrix is then obtained by normalising
so that the matrix has a unit diagonal.

Other choices for the measure of the dependence of the posterior could have been
used, such as the inverse of the Hessian matrix (or the expected Hessian matrix) of
the log-posterior, evaluated at the posterior mode. For inference problems with strong
information from the data relative to the prior there will be limited differences in
the approach and similar values for the optimal m will be found. In contrast, if the
prior is strongly informative and the number of threshold exceedances is small then
the choice of m from using our approach could be far from optimal. Also the use of
the observed, rather than expected, Hessian may better represent the actual posterior
distribution of θm and deliver a choice of m that better achieves orthogonalisation,
see Efron and Hinkley (1978) and Tawn (1987) respectively.

We prefer our choice of measure of dependence as for iid problems it gives closed
form results for m which can be used without the computational work required for
other approaches, and this gives valuable insight into the choice of m to guide future
implementation without the need for detailed computation of an optimal m. Further-
more, informative priors rarely arise in extreme value problems, and so information
in the data typically dominates information in the prior, particularly around the pos-
terior mode. It should be pointed out however, that the prior is used in the MCMC
so there is no loss of prior information in our approach. Also standard MCMC diag-
nostics should be used even after the selection of an optimal m, so if the asymptotic
posterior correlations differ much from the posterior correlations, making our choice
of m poor, this will be obvious and a more complete but computationally burdensome
analysis can be conducted using the methods described above.

In this section, we use the data introduced in Section 2. For all integers m ∈
[1, 500], maximum posterior mode estimates θ̂m are computed and pairwise asymp-
totic posterior correlations calculated by substituting θ̂m into the expressions for
the Fisher information matrix, in Appendix C, and taking the inverse. Figure 4
shows how parameter correlations change with the choice of m, illustrating that the
asymptotic posterior distributions of μm and ξ are orthogonal when m = r , the num-
ber of excesses above a threshold, which explains the findings of Wadsworth et al.
(2010).

It is proposed that MCMCmixing can be further improved by minimising the over-
all correlation in the asymptotic posterior distribution of θm. Therefore, we would
like to find the value of m such that ρ(θm) is minimised, where ρ(θm) is defined as

ρ(θm) = |ρμm,σm | + |ρμm,ξ | + |ρσm,ξ |, (8)

where ρμm,σm denotes the asymptotic posterior correlation between μm and σm for
example. We also look at the sum of the asymptotic posterior correlation terms
involving each individual parameter estimate. For example, we define ρμm , the
asymptotic posterior correlation associated with the estimate of μm, to be:

ρμm = |ρμm,σm | + |ρμm,ξ |. (9)
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Fig. 4 Left: Estimated parameter correlations changing with m: ρμm,σm (black), ρμm,ξ (red), ρσm,ξ (blue).
Right: Expanded region of the graph showing ρμm,ξ = 0 for m close to r where r = 300 is the number of
excesses above the threshold, while ρμm,σm = 0 when m ≈ 310

Figure 5 shows how the asymptotic posterior correlation associated with each param-
eter varies with m. From Fig. 5 we see that while ρμm is minimised at the value of
m for which ρμm,σm = 0 (see Fig. 4), ρσm and ρξ have minima at the value of m for
which ρσm,ξ = 0. We denote the latter minimum by m1 and the former by m2. In
terms of the covariance function, this can be written as:

ACov(σm1 , ξ |x) = ACov(μm2 , σm2 |x) = 0, (10)

where ACov denotes the asymptotic covariance. Figure 5 shows that m2 also
minimises the total asymptotic posterior correlation in the model.

One would expect that the values of m for which ρ(θm) is minimised would cor-
respond to the MCMC chain of θm with good mixing properties. We examine the
effective sample size (ESS) as a way of evaluating this objectively. ESS is a measure
of the equivalent number of independent iterations that the chain represents (Robert
and Casella 2009). MCMC samples are often positively autocorrelated, and thus are
less precise in representing the posterior than if the chain was independent. The ESS
of a parameter chain φ is defined as

ESSφ = n

1 + 2
∑∞

i=1 νi

, (11)

where n is the length of the chain and νi denotes the autocorrelation in the sampled
chain of φ at lag i. In practice, the sum of the autocorrelations is truncated when νi

drops beneath a certain level. Figure 6 shows how ESS varies with m for each param-
eter in θm. For these data the ESS follow a pattern we found to typically occur. We
see that ESSμm is maximised at m = m2 due to the near-orthogonality of μm2 with
σm2 and ξ . We find that ESSσm is maximised for m1 < m < m2, as σm1 remains
substantially positively correlated with μm1 and σm2 is negatively correlated with ξ .
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Similarly, ESSξ is maximised at a value of m close to m1, but ξ is negatively corre-
lated with μm1 , which explains the slight distortion. From these results, we postulate
that a selection of m in the interval (m1, m2) = (118, 310) would ensure the most
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m = m2 (right) in the simulated data example for 45,000 iterations of the MCMC, where m1 and m2
are defined by property (10). In the calculations, the sum of the autocorrelations were truncated when the
autocorrelations in the chain drop below 0.05
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rapid convergence of the MCMC chain of θm, thus enabling an effective sampling
procedure from the joint posterior. Figure 6 shows clearly the benefits of the pro-
posed approach. For example, ESSμ310 = 7459 and ESSμ1 = 24, illustrating that the
former parameterisation is over 300 times more efficient than the latter. In addition,
by introducing the interval (m1, m2), this approach gives a degree of flexibility to the
choice of m and giving a balance of mixing quality across the model parameters.

The quantities m1 and m2 can be found by numerical solution of the equations
ACov(σm, ξ |x) = 0 and ACov(μm, σm|x) = 0 respectively, using the asymptotic
covariance matrix of the posterior of θm, which is given by the inverse of the Fisher
information (see Appendix C). Approximate analytical expressions for m1 and m2
can be derived using Halley’s method for root-finding (Gander 1985) applied to
Eq. (10). This method yields the following approximations of m1 and m2:

m̂1 = r
(2ξ + 1)

(
1 + 2ξ + (ξ + 1) log

[
2ξ+3
2ξ+1

])

(2ξ + 1)
(
3 + 2ξ − (ξ + 1) log

[
2ξ+3
2ξ+1

]) (12)

m̂2 = r
2ξ2 + 13ξ + 8

2ξ2 + 9ξ + 8
. (13)

In practice, the values of m̂1 and m̂2 are estimated by using an estimate of ξ , such as
the maximum likelihood or probability weighted moments estimates. Figure 7 shows
how m̂1 and m̂2 change relative to r for a range of ξ . This illustrates that for negative
estimates of the shape parameter, r is not a suitable candidate to be the ‘optimal’
value of m as it is not in the range (m1, m2). In the simulated data used in this section,
although a selection of m = r is reasonable, Fig. 6 shows that this may not be wise if
one was primarily concerned about sampling well from ξ , for example. In this case,
m̂2 is relatively close to r , but Fig. 7 shows that this is not the case for models with a
larger positive estimate of ξ .

A simulation study was carried out to assess the suitability of expressions m̂1 and
m̂2 as approximations to m1 and m2 respectively. A total of 1000 Poisson processes
were simulated with different values of θm. The approximations were calculated
and compared with the true values of m1 and m2, which were obtained exactly by
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numerical methods. It was found that |m̂i − mi | < 0.1 for i = 1, 2 always, while
|m̂i − mi | < 0.01 for 78 % and 88.2 % of the time for i = 1, 2 respectively. Both
quantities were compared to the performance of other approximations derived using
Newton’s method, which unlike Halley’s method does not account for the curvature
in a function. Simulations show that the root mean square errors are significantly
smaller for estimates of mi using Halley’s method (0.2 % and 5 % smaller than New-
ton’s method for i = 1, 2 respectively). A summary of the reparameterisation method
is given in Algorithm 1.

4 Choosing m in the presence of non-stationarity

In many practical applications, processes exhibit trends or seasonal effects caused
by underlying mechanisms. The standard methods for modelling extremes of non-
identically distributed random variables were introduced by Davison and Smith
(1990) and Smith (1989), using a Poisson process and Generalised Pareto distribu-
tion respectively. Both approaches involve setting a constant threshold and modelling
the parameters as functions of covariates. In this way, we model the non-stationarity
through the conditional distribution of the process on the covariates. We follow the
Poisson process model of Smith (1989) as the parameters are invariant to the choice
of threshold if the model is appropriate. We define the covariate-dependent param-
eters θm(z) = (μm(z), σm(z), ξ(z)), for covariates z. Often in practice, the shape
parameter ξ is assumed to be constant. A log-link is typically used to ensure positivity
of σm(z).

The process of choosing m is complicated when modelling in the presence of
covariates. This is partially caused by a modification of the integrated intensity
measure, which becomes

�(A) = m

∫
z

[
1 + ξ(z)

(
u − μm(z)

σm(z)

)]−1/ξ(z)

g(z)dz, (14)
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Fig. 8 Contour plots of estimated posterior densities of θ1(z) having sampled from the joint posterior
directly (red) and having transformed using (15) after reparameterising from θ85(z) (black). Both contours
are constructed from 50,000 MCMC iterations with a burn-in of 5,000

where g denotes the probability density function of the covariates, which is unknown
and with covariate space z. The density term g is required as the covariates associated
with exceedances of the threshold u are random. In addition, the extra parameters
introduced by modelling covariates increases the overall correlation in the model
parameters.

For simplicity, we restrict our attention to the case of modelling when the location
parameter is a linear function of a covariate, that is,

μm(z) = μ(0)
m + μ(1)

m z, σm(z) = σm, ξ(z) = ξ,

where we centre the covariate z, as this leads to parameters μ
(0)
m and μ

(1)
m being

orthogonal. Note that the regression parameter μ
(1)
m is invariant to the choice of m.

A total of 233 excesses above a threshold of u = 15 are simulated from a Poisson
process model with μ

(0)
1 = 75, μ

(1)
1 = 30, σ1 = 15, ξ = −0.05. We choose g to

follow an Exp(2) distribution, noting that one could also choose g to be the density
of a covariate that is used in practice. We impose an improper Uniform prior on the
regression parameter μ

(1)
1 and set up the MCMC scheme in the same manner as in

Section 3.
The objective remains to identify the value of m that achieves near-orthogonality

of the parameters of the posterior distribution. Like before, we run anMCMC sampler
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Fig. 9 Effective sample size of each parameter chain of the MCMC procedure

on θm(z) and transform the samples back to the parameterisation of interest θk(z),
which can be obtained as in (5) using the relations

μ
(0)
k = μ(0)

m − σm

ξ

(
1 −

(
k

m

)−ξ
)

μ
(1)
k = μ(1)

m (15)

σk = σm

(
k

m

)−ξ

.

The complication of the integral term in the likelihood for non-identically dis-
tributed variables means that it is no longer feasible to gain an analytical approxima-
tion for the optimal value of m. A referee has suggested a possible route to obtaining
such expressions for m in the non-stationary case, is by building on results in
Attalides (2015) and using a non-constant threshold as in Northrop and Jonathan
(2011), but as this moves away from our constant threshold case we do not pursue
this. We therefore choose a value of m that minimises the asymptotic posterior corre-
lation in the model. The asymptotic posterior correlation matrix is found by inversion
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of the Fisher information matrix of the log-likelihood with modified integrated inten-
sity measure (14) and normalising so that the matrix has a unit diagonal. Because
of the integral term (14) in the log-likelihood, the Fisher information contains var-
ious integrals that require numerical evaluation. We compute these using adaptive
quadrature methods. Empirical evidence suggests that the optimal m coincides with
the value of m such that ρ

μ
(0)
m ,σm

= 0, which is similar to how m1 is defined in
Section 3. Using numerical methods, we identify that this corresponds to a value of
m = 85 for the simulated data example. Figure 8 shows contour plots of estimated
posterior densities of θ1(z), comparing the sampling from directly estimating the
posterior θ1(z) with that from transforming the samples from the estimated posterior
of θm(z) to give a sample from the posterior of θ1(z). From this figure, we see that
the reparameterisation improves the sampling from the posterior θ1(z).

We again inspect the effective sample size for each parameter as a way of compar-
ing the efficiency of the MCMC under different parameterisations. Figure 9 shows
how the effective sample size varies with m for each parameter. This figure shows
how the quality of mixing is approximately maximised in μ

(0)
m for the value of m that

minimises the asymptotic posterior correlation. Mixing for μ
(1)
m is consistent across

all values of m. Interestingly, mixing in ξ increases as the value of m increases. With-
out a formal measure for the quality of mixing across the parameters, it is found that,
when averaging the effective sample size over the number of parameters, the ESS
is stable with respect to m in the interval spanning from the value of m such that
ρ

μ
(0)
m ,σm

= 0 and the value of m such that ρσm,ξ = 0, like in Section 3. For a summary
of how the reparameterisation method can be used in the presence of non-stationarity,
see Algorithm 1.

5 Case study: Cumbria rainfall

In this section, we present a study as an example of how this reparameterisation
method can be used in practice. In particular, we analyse data taken from the Met
Office UKCP09 project, which contains daily baseline averages of surface rain-
fall observations, measured in millimetres, in 25km × 25km grid cells across the
United Kingdom in the period 1958-2012. In this analysis, we focus on a grid cell
in Cumbria, which has been affected by numerous flood events in recent years, most
notably in 2007, 2009 and 2015. In particular, the December 2015 event resulted
in an estimated £5 billion worth of damage, with rain gauges reaching unprece-
dented levels. Many explanations have been postulated for the seemingly increased
rate of flooding in the North West of England, including climate change, natural cli-
mate variability or a combination of both. The baseline average data for the flood
events in December 2015 are not yet available, but this event is widely regarded
as being more extreme than the event in November 2009, the levels of which were
reported at the time to correspond to return periods of greater than 100 years. We
focus our analysis on the 2009 event, looking in particular at how a phase of cli-
mate variability, in the form of the North Atlantic Oscillation (NAO) index, can have
a significant impact on the probability of an extreme event occurring in any given
year.
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Rainfall datasets on a daily scale are commonly known to exhibit a degree of serial
correlation. Analysis of autocorrelation and partial autocorrelation plots indicates that
rainfall on a day is dependent on the rainfall of the previous five days. In addition,
the data may exhibit seasonal effects. However, while serial dependence affects the
effective sample size of a dataset, it does not affect correlations between parameters,
and is thus unlikely to influence the choice of m. For the purposes of illustrating our
method, we initially make the assumption that the rainfall observations are iid and
proceed with the method outlined in Section 3. We wish to obtain information about
the parameters corresponding to the distribution of annual maxima, i.e. θ55. Standard
threshold diagnostics (Coles 2001) indicate a threshold of u = 15 is appropriate,
which corresponds to the 95.6 % quantile of the data. There are r = 880 excesses
above u (see Fig. 10). We obtain bounds m1 and m2, then choose a value of m,
with m1 < m < m2, that will achieve near-orthogonality of the Poisson process
model parameters to improve MCMC sampling from the joint posterior distribution.
We obtain ξ̂ = 0.087 using maximum likelihood when m = r , which we use to
obtain approximations for m1 and m2 as in (12) and (13). From this, we obtain m̂1 ≈
351 and m̂2 ≈ 915. We checked that m̂1 and m̂2 represent good approximations
by solving Eq. (10) to obtain m1 = 350.82 and m2 = 914.96. Since r = 880 is
contained in the interval (m1, m2), we choose m = r . We run an MCMC chain for
θ880 for 50,000 iterations, discarding the first 1,000 samples as burn-in. We transform
the remaining samples using the mapping in (5), where k = 55, to obtain samples
from the joint posterior of θ55. The estimated posterior density for each parameter is
shown in Fig. 11.

To estimate probabilities of events beyond the range of the data, we can use
the estimated parameters to estimate extreme quantiles of the annual maximum
distribution. The quantity yN , satisfying:

1/N = 1 − G(yN), (16)
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Fig. 10 (Left) Daily rainfall observations in the Cumbria grid cell in the period 1958-2012. The red
line represents the extreme value threshold of u = 15. (Right) Boxplots of rainfall above u against the
corresponding monthly NAO index
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Fig. 11 Estimated posterior densities of μ55, σ55, ξ and the 100-year return level

is termed the N-year return level, where G is defined as in expression (2). The level
yN is expected to be exceeded on average once everyN years. By inverting (16)weget:

yN =
{

μ55 − σ55
ξ

[1 − {− log(1 − 1/N)}−ξ ] for ξ �= 0
μ55 − σ55 log{− log(1 − 1/N)} for ξ = 0.

(17)

The posterior density of the 100-year return level in Fig. 11 is estimated by
inputting the MCMC samples of the model parameters into expression (17).

We use the same methodology to explore the effect of the monthly NAO index
on the probability of extreme rainfall levels in Cumbria. The NAO index describes
the surface sea-level pressure difference between the Azores High and the Icelandic
Low. The low frequency variability of the monthly scale is chosen to represent the
large scale atmospheric processes affecting the distribution of wind and rain. In the
UK, a positive NAO index is associated with cool summers and wet winters, while a
negative NAO index typically corresponds to cold winters, pushing the North Atlantic
storm track further south to the Mediterranean region (Hurrell et al. 2003). In this
analysis, we incorporated the effect of NAO by introducing it as a covariate in the
location parameter. The threshold of u = 15 was retained for this analysis.
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To obtain the value of m that minimises the overall correlation in the model, we
solve numerically the equation ρ

μ
(0)
m ,σm

= 0, following the reasoning in Section 4. We
obtain a kernel density estimate of the NAO covariate, which represents g as defined
in expression (14). We use this to obtain maximum posterior mode estimates θ̂ r .
These quantities are substituted into the Fisher information matrix. The matrix is then
inverted numerically to estimate m = 920. This represents a slight deviation from
m̂2 estimated during the iid analysis. We would expect this as the covariate effect is
small, as shown in Fig. 12. This example illustrates the benefit of numerically solving
for m when modelling non-stationarity, as the range (m1, m2) estimated analytically
during the iid analysis no longer contain the optimal value of m.

We run an MCMC chain for θ920 for 50,000 iterations before discarding the
first 5,000 samples as burn-in. We transform the remaining MCMC samples to the
annual maximum scale using the mapping in (15) where k = 55. Figure 12 indicates
that NAO has a significantly positive effect on the location parameter, as almost all
posterior mass is distributed with μ

(1)
55 > 0.

We wish to estimate return levels relating to the November 2009 flood event,
which is represented by a value of 51.6mm in the dataset. Return levels correspond-
ing to the distribution of November maxima are shown in Fig. 13. We can also use the
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predictive distribution in order to account for both parameter uncertainty and random-
ness in future observations (Coles and Tawn 1996). On the basis of threshold excesses
x = (x1, . . . , xn), the predictive distribution of a future November maximum M is:

Pr{M ≤ y|x} =
∫

θ55

Pr{M ≤ y|θ55}π(θ55|x)dθ55, (18)

where Pr{M ≤ y|θ55} =
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

exp

{
− 1
12

[
1 + ξ

(
y−(μ

(0)
55 +μ

(1)
55 z)

σ55

)]−1/ξ

+

}
where z is known

exp

⎧⎨
⎩− 1

12

∫
z

[
1 + ξ

(
y − (μ

(0)
55 + μ

(1)
55 z)

σ55

)]−1/ξ

+
gN(z)dz

⎫⎬
⎭ where z is unknown,

where gN is the density of NAO in November and the integral is evaluated numer-
ically using adaptive quadrature methods. The integral in (18) can be approximated
using a Monte Carlo summation over the samples from the joint posterior of θ55.
From this, we estimate the predictive probability of an event exceeding 51.6 in
a typical November is 0.0112, with a 95 % credible interval of (0.0063, 0.0185),
which corresponds to an 89-year event, (54, 158). For November 2009, when an
NAO index of −0.02 was measured, the probability of such an event was 0.0111,
(0.0062, 0.0184), corresponding to a 90-year event, (54, 161). For the maximum
observed value of NAO in November, with NAO = 3.04, the predictive probabil-
ity of such an event is 0.0132, (0.0073, 0.0214), which corresponds to a 75-year
flood event, (47, 136). This illustrates that the impact that different phases of climate
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Fig. 13 Return levels corresponding to November maxima. The full line represents the posterior mean
and the two dashed lines representing 95 % credible intervals
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variability can have on the probabilities of extreme events is slight but potentially
important.
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Appendix A: Proof: μ̂r = u when m = r

We can write the full likelihood for parameters θ r given a series of excesses {xi}
above a threshold u as:

L(θ r ) = L1 × L2,

where L1 is the Poisson probability of r exceedances of u and L2 is the joint density
of these r exceedances, so that:

L1 = 1

r!

{
r

[
1 + ξ

(
u − μr

σr

)]−1/ξ

+

}r

exp

{
−r

[
1 + ξ

(
u − μr

σr

)]−1/ξ

+

}
,

L2 =
r∏

i−1

1

σr

[
1 + ξ

(
xi − μr

σr

)]−1/ξ−1

+

[
1 + ξ

(
u − μr

σr

)]1/ξ
+

.

By defining � =
[
1 + ξ

(
u−μr

σr

)]−1/ξ

+ and ψu = σr + ξ(u − μr) we can

reparameterise the likelihood in terms of θ∗ = (�, ψu, ξ) to give:

L(θ∗) ∝ �r exp {−r�}
r∏

i=1

1

ψu−ξ(u−μr)

[
ψu+ξ(xi −u)

ψu−ξ(u−μr)

]−1/ξ−1

+

×
[

ψu

ψu−ξ(u−μr)

]1/ξ
+

=�r exp {−r�}
r∏

i=1

1

ψu

[
1+ξ

(
xi − u

ψu

)]−1/ξ−1

+
.

Taking the log-likelihood and maximising with respect to �, we get:

l(θ∗) := logL(θ∗)=r log �̂−r�̂−r logψu−
(
1

ξ
+1

) r∑
i=1

log

[
1+ξ

(
xi −u

ψu

)]
+

∂l

∂�
= r

�̂
− r = 0,

which gives �̂ = 1. Then, by the invariance property of maximum likelihood estima-
tors, μ̂r = u, and using the identity forψu, we get σ̂r = ψ̂u. Because the ξ -dependent
term in the log-likelihood is identical to that in a GP log-likelihood, the maximum
likelihood estimators of the two models coincide.

http://creativecommons.org/licenses/by/4.0/
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Appendix B: Derivation of prior for inference on θm

We define a joint prior on the parameterisation of interest θk . However, as we are
making inference for the ‘optimal’ parameterisation θm, we must derive the prior
for θm. We can calculate the prior density of θm by using the density method for
one-to-one bivariate transformations. Inverting (5) to get expressions for μm and σm,
i.e.

μm = μk − σk

ξ

(
1 −

(m

k

)−ξ
)

= g1(μk, σk)

σm = σk

(m

k

)−ξ = g2(μk, σk),

we can use this transformation to calculate the prior for θm.

π(θm) = π(μm, σm, ξ)

= π(μk, σk, ξ)| det J |
μk=g−1

1 (μm,σm),σk=g−1
2 (μm,σm),ξ=ξ

,

where

det J =

∣∣∣∣∣∣∣

∂μm

∂μk

∂μm

∂σk

∂μm

∂ξ
∂σm

∂μk

∂σm

∂σk

∂σm

∂ξ
∂ξ
∂μk

∂ξ
∂σk

∂ξ
∂ξ

∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣

∂μm

∂μk

∂μm

∂σk

∂μm

∂ξ

0 ∂σm

∂σk

∂σm

∂ξ

0 0 ∂ξ
∂ξ

∣∣∣∣∣∣∣
= ∂σm

∂σk

∂ξ

∂ξ

=
(m

k

)−ξ

.

Therefore, π(θm) = (
m
k

)−ξ
π(θk).

Appendix C: Fisher information matrix calculations for iid random
variables

The log-likelihood of the Poisson process model with parameterisation θm =
(μm, σm, ξ) can be expressed as

l(θm) = −m

[
1 + ξ

(
u − μm

σm

)]−1/ξ

+
− r log σm

−
(
1

ξ
+ 1

) r∑
j=1

log

[
1 + ξ

(
xj − μm

σm

)]
+
,

where r is the number of exceedances of X above the threshold u. For simplicity,
we drop the [·]+ subscript in subsequent calculations. In order to produce analytic
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expressions for the asymptotic covariance matrix, we must evaluate the observed
information matrix Î (θm). For simplicity, we define vm = u−μm

σm
and zj,m = xj −μm

σm
.

∂2l

∂μ2
m

= −m(ξ + 1)

σ 2
m

[1 + ξvm]
−1/ξ−2 + ξ(ξ + 1)

σ 2
m

r∑
j=1

[
1 + ξzj,m

]−2
,

∂2l

∂σ 2
m

= 2m

σ 2
m

[1 + ξvm]
−1/ξ−1vm − m(ξ + 1)

σ 2
m

[1 + ξvm]
−1/ξ−2v2m

+ r

σ 2
m

− 2(ξ + 1)

σ 2
m

r∑
j=1

[
1 + ξzj,m

]−1
zj,m

+ξ(ξ + 1)

σ 2
m

r∑
j=1

z2j,m
[
1 + ξzj,m

]−2
,

∂2l

∂ξ2
= −m[1 + ξvm]

−1/ξ
[
1

ξ
v2m[1 + ξvm]

−2 − 2

ξ3
log [1 + ξvm]

+ 2

ξ2
[1 + ξvm]

−1vm +
(

1

ξ2
log [1 + ξvm] − 1

ξ
[1 + ξvm]

−1vm

)2
]

− 2

ξ3

r∑
j=1

log
[
1 + ξzj,m

] + 2

ξ2

r∑
j=1

[
1 + ξzj,m

]−1
zj,m

+ξ + 1

ξ

r∑
j=1

[
1 + ξzj,m

]−2
z2j,m,

∂2l

∂μm∂σm

= m

σ 2
m

[1 + ξvm]
−1/ξ−1 − m(ξ + 1)

σ 2
m
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∂σm∂ξ
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σm
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[1 + ξvm]

−1/ξ−2vm
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To obtain the Fisher information matrix, we take the expected value of each term
in the observed information with respect to the probability density of points of a
Poisson process. Let Z = X−μm

σm
, and R be a random variable denoting the number

of excesses of X above u. The density of points in the set Au can de defined by

f (x) = λ(x)

�(Au)
= [1 + ξz]−1/ξ−1

[1 + ξvm]−1/ξ
,

where λ is a function denoting the rate of exceedance. Then, for example,

EZ,R

⎧⎨
⎩

R∑
j=1

[
1 + ξzj,m

]−2

⎫⎬
⎭ = EREZ|R

⎧⎨
⎩

R∑
j=1

[
1 + ξzj,m

]−2

⎫⎬
⎭

= ER

{
REZ

{
[1 + ξZ]−2

}}

= ER

{
R[1 + ξvm]

1/ξ
∫ ∞

vm

[1 + ξz]−1/ξ−3 dz

}

= m

2ξ + 1
[1 + ξvm]

−1/ξ−2

Following this process, we can write the Fisher information matrix I (θm) as:

E

{
− ∂2l

∂μ2
m

}
= m(ξ + 1)

σ 2
m

[1 + ξvm]
−1/ξ−2 − mξ(ξ + 1)

(2ξ + 1)σ 2
m

[1 + ξvm]
−1/ξ−2,

E
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− ∂2l

∂σ 2
m

}
= −2m

σ 2
m
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−1/ξ−1vm + m(ξ + 1)

σ 2
m
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−1/ξ−2v2m − r

σ 2
m

+2m

σ 2
m

[1 + ξvm]
−1/ξ−1 [1 + (ξ + 1)vm]

− mξ

(2ξ + 1)σ 2
m

[1 + ξvm]
−1/ξ−2

×
[
(2ξ2 + 3ξ + 1)v2m + (4ξ + 2)vm + 2

]
,

E

{
− ∂2l

∂ξ2

}
= m[1 + ξvm]

−1/ξ
[
1

ξ
v2m[1 + ξvm]

−2 − 2

ξ3
log [1 + ξvm]

+ 2

ξ2
[1 + ξvm]

−1vm +
(

1

ξ2
log [1 + ξvm] − 1

ξ
[1 + ξvm]

−1
)2

]

+ 2

ξ3
[1 + ξvm]

−1/ξ [
ξ + log [1 + ξvm]

]

− 2m

(ξ + 1)ξ2
[1 + ξvm]

−1/ξ−1 [1 + (ξ + 1)vm]

− m

ξ(2ξ + 1)
[1 + ξvm]

−1/ξ−2
[
(2ξ2+3ξ+1)v2m + (4ξ + 2)vm + 2

]
,
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E

{
− ∂2l

∂μm∂σm

}
= m(ξ + 1)

σ 2
m

[1 + ξvm]
−1/ξ−2vm

− mξ

(2ξ + 1)σ 2
m

[1 + ξvm]
−1/ξ−2 [1 + (2ξ + 1)vm] ,

E

{
− ∂2l

∂μm∂ξ

}
= m

σm

[
1

ξ2
[1 + ξvm]

−1/ξ−1 log [1 + ξvm]

−ξ + 1

ξ
[1 + ξvm]

−1/ξ−2vm

]

− m

σm(ξ + 1)
[1 + ξvm]

−1/ξ−1

+ m

σm(2ξ + 1)
[1 + ξvm]

−1/ξ−2 [1 + (2ξ + 1)vm] ,

E

{
− ∂2l

∂σm∂ξ

}
= m

σm

vm

[
1

ξ2
[1 + ξvm]

−1/ξ−1 log [1 + ξvm]

+ξ + 1

ξ
[1 + ξvm]

−1/ξ−2vm

]

− m

σm(ξ + 1)
[1 + ξvm]

−1/ξ−1 [1 + (ξ + 1)vm]

+ m

σm(2ξ + 1)
[1 + ξvm]

−1/ξ−2

×
[
(2ξ2 + 3ξ + 1)v2m + (4ξ + 2)vm + 2

]
.

By inverting the Fisher information matrix using a technical computing tool like
Wolfram Mathematica, making the substitution r = m[1 + ξvm]−1/ξ , the expected
number of exceedances, and using the mapping in (5), we can get expressions for
asymptotic posterior covariances.

ACov(μm, ξ) 1 = 1

ξ2r
(ξ + 1)σm

( r

m

)−ξ

×
(

ξ(ξ + 1)
( r

m

)ξ

log
( r

m

)
− (2ξ + 1)

(( r

m

)ξ − 1

))

ACov(μm, σm) = 1

ξ2r
σ 2

m

( r

m

)−ξ
(( r

m

)ξ (
(ξ + 1) log

( r

m

)

×
(
(ξ + 1)ξ log

( r

m

)
− 3ξ − 1

)
+ ξ(ξ(ξ + 2) + 3) + 1

)

+(ξ + 1)(2ξ + 1)
(
log

( r

m

)
− 1

))

ACov(σm, ξ) = 1

r
(ξ + 1)σm

(
(ξ + 1) log

( r

m

)
− 1

)

When m = r , ACov(μm, ξ) = 0. In addition, the m for which ACov(μm, σm) = 0
coincides with the value of m that minimises ρθm

as defined in (8). This root can
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easily be found numerically, but an analytical approximation can be calculated using
a one-step Halley’s method. By usingm = r as the initial seed, and using the formula:

xn+1 = xn − f (xn)

f ′(xn) − f (xn)f ′′(xn)
2f ′(xn)

we get the expression (13) for m̂2 after one step. The quantity for m̂1, given by
expression (12) requires two iterations of this method.
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