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Abstract In this paper, we study the asymptotic behavior of supremum distribu-

tion of some classes of iterated stochastic processes {X(Y(t)) : t ∈ [0, ∞)}, where

{X(t) : t ∈ R} is a centered Gaussian process and {Y (t) : t ∈ [0, ∞)} is an indepen-

dent of {X(t)} stochastic process with a.s. continuous sample paths. In particular, the

asymptotic behavior of P(sups∈[0,T ] X(Y (s)) > u) as u → ∞, where T > 0, as well

as limu→∞ P(sups∈[0,h(u)] X(Y (s)) > u), for some suitably chosen function h(u)

are analyzed. As an illustration, we study the asymptotic behavior of the supremum

distribution of iterated fractional Brownian motion process.

Keywords Exact asymptotics · Supremum distribution · Iterated process · Iterated

fractional brownian motion · Gaussian process
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1 Introduction

Let {X(t) : t ∈ R} and {Y (t) : t ∈ [0, ∞)} be two independent stochastic processes.

This contribution is devoted to the analysis of asymptotic behavior of supremum

distribution of iterated process {X(Y(t)) : t ∈ [0, ∞)}.
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Originated by Burdzy (1993; 1994) for the case of iterated Brownian motion, the

problem of analyzing the properties of iterated processes was intensively studied in

recent years. Motivation for the analysis of the process {X(Y(t))} in case of {X(t)}
and {Y (t)} being independent Brownian motions was delivered by its connections to

the 4th order PDE’s (see, e.g., Funki 1979; Allouba and Zheng 2001; Nourdin and

Peccati 2008). A vast literature is devoted to the analysis of many interesting proba-

bilistic properties of iterated Brownian motions (see, e.g., Burdzy and Khoshnevisan

1995; Hu et al. 1995; Shi 1995; Bertoin 1996; Khoshnevisan and Lewis 1996; Eisen-

baum and Shi 1999; Khoshnevisan and Lewis 1999). We also refer to (Curien and

Konstantopoulos 2014) where convergence of finite dimensional distributions of nth

iterated Brownian motion is studied and (Turban 2004) where infinite iterations of

i.i.d. random walks are analyzed.

Recent studies also focus on properties of {X(Y(t)) : t ∈ [0, ∞)} for the case

of more general Gaussian processes {X(t)}. One of interesting example of such pro-

cesses is fractional Laplace motion {BH (�(t)) : t ∈ [0, ∞)}, where {�(t) : t ∈
[0, ∞)} is a Gamma process. Motivation for analyzing fractional Laplace motions

stems from hydrodynamic models (see, e.g., Kozubowski et al. 2004). This kind

of processes were described in (Kozubowski et al. 2006), see also (Arendarczyk

and Dȩbicki 2011) where asymptotic behavior of exit-time distribution for the pro-

cess {BH (�(t))} was found. Another important class of iterated processes are the

so-called α-time fractional Brownian motions {BH (Y (t))}, where {Y (t)} is α-stable

subordinator independent of the process {BH (t)} (see, e.g., Linde and Shi 2004; Nane

2006; Linde and Zipfel 2008; Aurzada and Lifshits 2009). We also refer to (Michna

1998) and (Dȩbicki et al. 2014) where the process {BH (Y (t))} was analyzed in the

context of theoretical actuarial models.

The process {BH (Y (t))} in the case of {Y (t)} not being a subordinator was studied

in (Aurzada and Lifshits 2009). In this case, the small deviations asymptotics was

found for the so-called iterated fractional Brownian motion process {BH2(BH1(t))},
where {BH1(t)}, {BH2(t)} are independent fractional Brownian motions with Hurst

parameters H1, H2 ∈ (0, 1] respectively.

In this paper, we focus on the analysis of asymptotic behavior of supremum dis-

tribution of the process {X(Y(t)) : t ∈ [0, ∞)} for general classes of stochastic

processes {X(t)}, {Y (t)} with a.s. continuous sample paths.

Notation and organization of the paper:

In Section 2, we study the asymptotic behavior of

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
as u → ∞, (1)
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where T > 0 and {X(t) : t ∈ R}, {Y (t) : t ∈ [0, ∞)} are independent stochastic

processes. This problem is closely related to the analysis of asymptotic behavior of

the supremum distribution of the process {X(t)} over a random time interval (see,

e.g., Dȩbicki et al. 2004; Arendarczyk and Dȩbicki 2011; 2012; Tan and Hashorva

2013; Dȩbicki et al. 2014).

We start in Section 2.1 by giving general result for the case of {X(t)} being

Gaussian process with stationary increments and convex variance function (see

Section 2.1, assumptions A1 – A3). In this case, under some general conditions on

the process {Y (t)} (see Section 2.1, assumptions L1, L2), we show that (1) reduces to

P

(
sup

s∈[0,T ]
X(s) > u

)
as u → ∞, (2)

where T is a non-negative random variable independent of {X(t)} with asymptoti-

cally Weibullian tail distribution, that is,

P (T > u) = Cuγ exp(−βuα)(1 + o(1)) (3)

as u → ∞, where α, β, C > 0, γ ∈ R (see, e.g., Arendarczyk and Dȩbicki (2011)

for details). We write T ∈ W(α, β, γ, C) if T satisfies (3).

Section 2.2 is devoted to the special case of the process {BH (Y (t)) : t ∈ [0, ∞)},
where {BH (t) : t ∈ R} is a fractional Brownian motion (fBm) with Hurst parameter

H ∈ (0, 1], that is, a centered Gaussian process with stationary increments, a.s. con-

tinuous sample paths, BH (0) = 0, and covariance function Cov(BH (t), BH (s)) =
1
2

(|s|2H + |t |2H − |t − s|2H
)
. Due to self-similarity of the process {BH (t)}, we are

able to provide the exact asymptotics of (1) for the whole range of Hurst param-

eters H ∈ (0, 1]. As an illustration, in Proposition 2.4, we work out the exact

asymptotics of the supremum distribution of iterated fractional Brownian motion

{BH2(BH1(t)) : t ∈ [0, ∞)}, where {BH1(t)}, {BH2(t)} are independent fractional

Brownian motions with Hurst parameters H1, H2 respectively. Note that small devi-

ation counterpart of this problem was recently studied in (Aurzada and Lifshits

2009).

In Section 2.3, the case of {X(t)} being a stationary Gaussian process is analyzed

(see Section 2.3, assumptions D1, D2). In this case the exact asymptotics of (1) can

be achieved under a general condition of finite average span of the process {Y (t)}
(see Section 2.3, assumption S1). This problem is strongly related to the analysis of

(2) in case of T being a random variable with finite mean. In this case the asymptotics
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of (2) has the form (see Arendarczyk and Dȩbicki (2012), Theorem 3.1, and also

Pickands (1969) for the classical result of Pickands’ on deterministic time interval)

P

(
sup

s∈[0,T ]
X(s) > u

)
= ET C1/αHαu2/α�(u)(1 + o(1))

as u → ∞, where Hα is the Pickands’ constant defined by the limit

Hα = lim
T →∞

1

T
E exp

(
sup

t∈[0,T ]

√
2Bα

2
(t) − tα

)
,

and �(u) := P(N > u) with N denoting the standard normal random variable.

In the second part of the paper, we study

lim
u→∞P

(
sup

s∈[0,h(u)]
X(Y (s)) > u

)
, (4)

for some suitably chosen function h(u).

First, in Theorem 3.1 we investigate limiting behavior of (4) for the case of {X(t)}
and {Y (t)} being independent Gaussian processes with stationary increments that sat-

isfy some general regularity conditions (see Section 3, assumptions B1 – B3). Then,

in Theorem 3.2 and Proposition 3.3, the case of {X(t)} being stationary Gaussian

process is studied. We analyze {X(Y(t))} for both weakly and strongly dependent

stationary Gaussian processes {X(t)} (see Section 3, assumptions D1 – D3). In these

settings we provide (4) in the case of {Y (t)} being a centered Gaussian process with

stationary increments, as well as for self-similar process {Y (t)} that is not necessarily

Gaussian.

2 Short timescale case

In this section, we study the asymptotic behavior of

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
as u → ∞, (5)

where T > 0, for the case of {X(t) : t ∈ R} being a centered Gaussian process

with a.s. continuous sample paths. We focus on two important classes of Gaussian

processes. First, processes {X(t)} with stationary increments are studied. Then, we

analyze the case of stationary processes {X(t)}.
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2.1 The stationary increments case

Let {X(t) : t ∈ R} be a centered Gaussian process with stationary increments, a.s.

continuous sample paths, X(0) = 0 a.s., and variance function σ 2
X(t) := Var(X(t))

that satisfies the following assumptions

A1 σ 2
X(t) ∈ C1([0, ∞)) is convex;

A2 σ 2
X(t) is regularly varying at ∞ with parameter α∞ ∈ (1, 2);

A3 there exists D > 0 such that σ 2
X(t) ≤ Dtα∞ for each t ≥ 0.

To provide general result for (5) we assume that {Y (t) : t ∈ [0, ∞)} is a stochastic

process with a.s. continuous sample paths, which is independent of {X(t)} and its

extremal distributions belong to the Weibullian class of random variables, that is,

L1 M := sups∈[0,T ] Y (s) ∈ W(α1, β1, γ1, C1), with α1, β1, C1 > 0, γ1 ∈ R;

L2 K := − infs∈[0,T ] Y (s) ∈ W(α2, β2, γ2, C2), with α2, β2, C2 > 0, γ2 ∈ R.

Remark 2.1 Note that assumptions L1, L2 cover, e.g., a class of general Gaussian

processes.

In the following theorem we present structural form of the asymptotics. The explicit

asymptotic expansion is presented in Corollary 2.2.

Theorem 2.1 Let {X(t) : t ∈ R} be a centered Gaussian process with station-

ary increments and variance function σ 2
X(t) that satisfies assumptions A1 – A3

and {Y (t) : t ∈ [0, ∞)} be an independent of {X(t)} stochastic process with a.s.

continuous sample paths that satisfies L1, L2. If

(i) P(K > u) = o(P(M > u)) as u → ∞, then

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
= P (X(M) > u) (1 + o(1)) as u → ∞;

(ii) P(M > u) = o(P(K > u)) as u → ∞, then

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
= P (X(K) > u) (1 + o(1)) as u → ∞;
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(iii) P(K > u) = C2
C1
P(M > u)(1 + o(1)), as u → ∞, then

P

(
sup

s∈[0,T ]
X(Y (s))>u

)
=(P(X(M)>u)+P(X(K)>u)) (1+o(1)) as u→ ∞.

The proof of Theorem 2.1 is presented in Section 4.1.

If the variance function of {X(t)} is regular enough, then the straightforward appli-

cation of Corollary 3.2 in (Arendarczyk and Dȩbicki 2011) enables us to give the

exact form of the asymptotics.

Corollary 2.2 Let {X(t) : t ∈ R} be a centered Gaussian process with stationary

increments and variance function that satisfies A1 and {Y (t) : t ∈ [0, ∞)} be an

independent of {X(t)} stochastic process with a.s. continuous sample paths that satis-
fies L1, L2. Additionally, if σ 2

X(t) = Dtα∞ +o(tα∞−α), as t → ∞, with α∞ ∈ (1, 2),

D > 0, and α = min(α1, α2), then

sup
s∈[0,T ]

X(Y (s)) ∈ W (̃α, β̃, γ̃ , C̃),

where

α̃ = 2α

α + α∞
, β̃ = β

α∞
α+α∞

(
D

2

) α
α+α∞

((
α

α∞

) α∞
α+α∞ +

(α∞
α

) α
α+α∞

)
,

γ̃ = 2γ

α + α∞
, C̃ = CD−1/α∞

√
α∞

2(α + α∞)

(
α∞
2αβ

Dα∞/α

) γ
α+α∞

,

with

(β, γ, C)=

⎧⎪⎨
⎪⎩

(β1, γ1, C1) f or P(K > u) = o(P(M > u)) as u → ∞,

(β2, γ2, C2) f or P(M > u) = o(P(K > u)) as u → ∞,

(β1, γ1, C1+C2) f or P(K>u)= C2
C1
P(M>u)(1+o(1)) as u→ ∞.

2.2 The case of fBm

Let {BH (t) : t ∈ R} be a fractional Brownian motion with Hurst parameter H ∈
(0, 1]. In this section, we analyze the asymptotic behavior of

P

(
sup

s∈[0,T ]
BH (Y (s)) > u

)
as u → ∞, (6)

where T > 0 and {Y (t) : t ∈ [0, ∞)} is an independent of {BH (t)} stochastic

process with a.s. continuous sample paths that satisfies assumptions L1, L2. Due to

self-similarity of the process {BH (t)}, we are able to provide the exact asymptotics
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of (6) for the whole range of Hurst parameters H ∈ (0, 1], which includes cases of

both convex and concave variance functions.

Proposition 2.3 Let {BH (t) : t ∈ R} be a fractional Brownian motion with Hurst

parameter H ∈ (0, 1] and {Y (t) : t ∈ [0, ∞)} be an independent of {BH (t)}
stochastic process with a.s. continuous sample paths that satisfies L1, L2. If:

H ∈ (0, 1/2), then

sup
s∈[0,T ]

BH (Y (s)) ∈ W
(

2α

α + 2H
, β̃,

2α − 3αH + 2γ

α + 2H
, C̃1

)
,

H = 1/2, then

sup
s∈[0,T ]

BH (Y (s)) ∈ W
(

2α

α + 2H
, β̃,

2γ

α + 2H
, 2C̃2

)
,

H ∈ (1/2, 1], then

sup
s∈[0,T ]

BH (Y (s)) ∈ W
(

2α

α + 2H
, β̃,

2γ

α + 2H
, C̃2

)
,

where

α = min(α1, α2), β̃ = β
2H

α+2H

(
1

2

( α

H

) 2H
α+2H +

(
H

α

) α
α+2H

)
,

C̃1 = HH

(
1

2

) 1
2H C√

α + 2H
H

α+6H+2γ−2
2α+4H (αβ)

1−2H−γ
α+2H , C̃2 = C

√
H√

α + 2H

(
H

αβ

) γ
α+2H

,

with β, γ, C as in Corollary 2.2.

The proof of Proposition 2.3 is presented in Section 4.2.

We now apply Proposition 2.3 to calculate the exact asymptotics for the special

case of iterated fractional Brownian motion process {BH2(BH1(t))}.

Proposition 2.4 Let {BH1(t) : t ∈ R} and {BH2(t) : t ∈ [0, ∞)} be independent

fractional Brownian motions with Hurst parameters H1, H2 ∈ [0, 1) respectively.

Then

sup
s∈[0,T ]

BH2(BH1(s)) ∈ W (α, β, γ, C) ,

where

α = 2

H2 + 1
, β =

(
1

T

) 2H1H2
1+H2

(
1

2

) H2
1+H2

⎛
⎝1

2

(
2

H2

) H2
1+H2 +

(
H2

2

) 1
1+H2

⎞
⎠ ,



458 M. Arendarczyk

and

(γ, C) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(γ1, C1) f or H1 ∈ (0, 1/2), H2 ∈ (0, 1/2),

(γ2, 2C2) f or H1 ∈ (0, 1/2), H2 = 1/2,

(γ2, C2) f or H1 ∈ (0, 1/2), H2 ∈ (1/2, 1],
(γ3, 2C3) f or H1 = 1/2, H2 ∈ (0, 1/2),

(γ4, 4C4) f or H1 = 1/2, H2 = 1/2,

(γ4, 2C4) f or H1 = 1/2, H2 ∈ (1/2, 1],
(γ3, C3) f or H1 ∈ (1/2, 1], H2 ∈ (0, 1/2),

(γ4, 2C4) f or H1 ∈ (1/2, 1], H2 = 1/2,

(γ4, C4) f or H1 ∈ (1/2, 1], H2 ∈ (1/2, 1],
with

γ1 = 1 − H1 − 3H1H2

H1(1 + H2)
, γ2 = 1 − 3H1

H1(1 + H2)
, γ3 = 1 − 3H2

1 + H2
, γ4 = − 1

1 + H2
,

C1 =
(

1

T

)H2−3H1H2 HH1HH2

H1
√

π(1 + H2)

(
1

2

)H1+H2+2H1H2
2H1H2

H

1−3H1+3H1H2
2H1(1+H2)

2 ,

C2 =
(

1

T

)H2−3H1H2 HH1

H1
√

π(1 + H2)

(
1

2

) 1
2H1

+1

H

1−2H1+H1H2
2H1(1+H2)

2 ,

C3 = T H1H2
HH2√

π(1 + H2)

(
1

2

) 1
2H2

−1

H

3H2−1
2+2H2

2 ,

C4 = T H1H2
1

2
√

π(1 + H2)
H

H2
2(1+H2)

2 .

Proof Due to self-similarity of fBm

P

(
sup

s∈[0,T ]
BH2(BH1(s)) > u

)
= P

(
sup

s∈[0,1]
BH2(BH1(s)) >

u

T H1H2

)
.

Moreover, due to Lemma 4.2 in (Arendarczyk and Dȩbicki 2011) (see also Piterbarg

(1996), Theorem D3)

sup
s∈[0,1]

BH1(s) ∈ W
(

2,
1

2
,

1

H1
− 3,

HH1

H1
√

π
2
− H1+1

2H1

)
for H1 ∈ (0, 1/2);

sup
s∈[0,1]

BH1(s) ∈ W
(

2,
1

2
, −1,

2√
2π

)
for H1 = 1/2;

sup
s∈[0,1]

BH1(s) ∈ W
(

2,
1

2
, −1,

1√
2π

)
for H1 ∈ (1/2, 1].
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Additionally, by stationarity of the increments of fBm

− inf
s∈[0,1] BH1(s)

d= sup
s∈[0,1]

BH1(s).

Now, in order to complete the proof it suffices to apply Proposition 2.3.

2.3 The stationary case

In this section, we analyze the asymptotic behavior of (5) for the case of {X(t) : t ∈
[0, ∞)} being a centered stationary Gaussian process with a.s. continuous sample

paths and covariance function r(t) := Cov(X(s), X(s+t)). We impose the following

assumptions on r(t) (see, e.g., Piterbarg 1996):

D1 r(t) = 1 − C|t |α + o(|t |α) as t → 0, with α ∈ (0, 2] and C > 0;

D2 r(t) < 1 for all t > 0.

In this case, we are able to give the exact form of the asymptotics for general class

of stochastic processes {Y (t) : t ∈ [0, ∞)} that are independent of {X(t)}, have a.s.

continuous sample paths and finite average span over interval [0, T ]. Therefore, we

assume that

S1 E
[
sups∈[0,T ] Y (s) − infs∈[0,T ] Y (s)

]
< ∞.

Proposition 2.5 Let {X(t) : t ∈ R} be a centered stationary Gaussian process with

covariance function r(t) that satisfies D1, D2 and {Y (t) : t ∈ [0, ∞)} be an inde-

pendent of {X(t)} stochastic process with a.s. continuous sample paths that satisfies

S1. Then

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
= E(T )C

1
α Hαu

2
α �(u)(1 + o(1))

as u → ∞, where T = sups∈[0,T ] Y (s) − infs∈[0,T ] Y (s).

Proof Due to stationarity of the process {X(t)}, we have

P

(
sup

t∈[0,T ]
X(Y(t)) > u

)
= P

(
sup

t∈[infs∈[0,T ] Y(s), sups∈[0,T ] Y(s)]
X(t) > u

)

= P

(
sup

t∈[0,T ]
X(t) > u

)
.

Now, in order to complete the proof it suffices to apply Theorem 3.1 in (Arendarczyk

and Dȩbicki 2012).
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Remark 2.2 Equivalently, Proposition 2.5 states that

P

(
sup

t∈[0,T ]
X(Y(t)) > u

)
= E(T )P

(
sup

t∈[0,1]
X(t) > u

)
(1 + o(1))

as u → ∞, where T = sups∈[0,T ] Y (s) − infs∈[0,T ] Y (s).

3 Long timescale case

In this section, we investigate

lim
u→∞P

(
sup

s∈[0,h(u)]
X(Y (s)) > u

)
(7)

for a suitably chosen function h(u).

In order to formulate the results, it is convenient to introduce the notation

σ−1(t) := inf{y ∈ [0, ∞) : σ(y) > t}
for the generalized inverse of the function σ(t).

We start with the observation that (7) can be straightforwardly obtained for any

independent, self-similar processes {X(t)} and {Y (t)} with a.s. continuous sample

paths.

Remark 3.1 Let {X(t) : t ∈ R} and {Y (t) : t ∈ [0, ∞)} be independent, self-similar

stochastic processes with a.s. continuous sample paths and self-similarity indexes λX

and λY respectively. Then, for h(u) = u1/λXλY (1 + o(1)) as u → ∞, we have

lim
u→∞P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)
= P

(
sup

t∈[infs∈[0,1] Y(s), sups∈[0,1] Y(s)]
X(t) > 1

)
.

In the next theorem, we extend this observation to the case of {X(t) : t ∈ R}
and {Y (t) : t ∈ [0, ∞)} being two independent, centered Gaussian processes with

stationary increments, a.s. continuous sample paths, X(0) = 0 and Y (0) = 0 a.s.,

and variance functions σ 2
X(t) := Var(X(t)) and σ 2

Y (t) := Var(Y (t)) respectively. We

assume that variance functions of both processes satisfy the following assumptions

B1 σ 2(t) ∈ C([0, ∞)) is ultimately strictly increasing ;

B2 σ 2(t) is regularly varying at ∞ with parameter α ∈ (0, 2];

B3 σ 2(t) is regularly varying at 0 with parameter β ∈ (0, 2].
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In order to formulate the result, it is convenient to introduce the notation

L(αX, αY ) = P

(
sup

t∈[infs∈[0,1] BαY /2(s), sups∈[0,1] BαY /2(s)]
BαX/2(t) > 1

)
,

where
{
BαX/2(t)

}
,
{
BαY /2(t)

}
are independent fractional Brownian motions with

Hurst parameters αX/2 and αY /2 respectively.

Theorem 3.1 Let {X(t) : t ∈ R} and {Y (t) : t ∈ [0, ∞)} be independent, centered
Gaussian processes with stationary increments that satisfy B1 – B3 with parameters

αX, βX, αY , βY respectively. Then, for h(u) = σ−1
Y (σ−1

X (u))(1 + o(1)) as u → ∞,

we have

lim
u→∞P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)
= L(αX, αY ).

The proof of Theorem 3.1 is presented in Section 4.3.

The second part of this section focuses on the analysis of limiting behavior of (7)

in the case of {X(t) : t ∈ R} being a centered stationary Gaussian process with a.s.

continuous sample paths and covariance function r(t) := Cov(X(s), X(s + t)) that

satisfies

D1 r(t) = 1 − C|t |α + o(|t |α) as t → 0, with α ∈ (0, 2] and C > 0;

D2 r(t) < 1 for all t > 0;

D3 r(t) log(t) → r as t → ∞, with r ∈ [0, ∞).

We study (7) for both weakly and strongly dependent stationary Gaussian pro-

cesses, i.e., for r = 0 and r > 0 respectively. We refer to (Tan et al. 2012; Tan and

Hashorva 2013) for recent results on asymptotic behavior of supremas of strongly

dependent Gaussian processes.

In this settings, in Theorem 3.2, we provide (7) in the case of {Y (t) : t ∈ [0, ∞)}
being a centered Gaussian process with stationary increments and variance function

σ 2
Y (t) that satisfies conditions B1 – B3. Moreover, in Proposition 3.3, we analyze (7)

for self-similar process {Y (t)} that is not necessarily Gaussian.

Theorem 3.2 Let {X(t) : t ∈ R} be a centered stationary Gaussian process with

covariance function that satisfiesD1 – D3 and {Y (t) : t ∈ [0, ∞)} be an independent
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of {X(t)} Gaussian process with a.s. continuous sample paths, stationary increments,
and variance function σ 2

Y (t) that satisfies B1 – B3 with parameters αY , βY . Then, for

h(u) = σ−1
Y

((
C

1
α Hαu

2
α �(u)

)−1
)

(1 + o(1)) as u → ∞,

we have

lim
u→∞P

(
sup

s∈[0,h(u)]
X(Y (s)) > u

)
= 1 − E exp

(
−T exp(−r + √

2rN )
)

,

where T = sups∈[0,1] BαY /2(s) − infs∈[0,1] BαY /2(s) and N is a normal random

variable independent of T .

The proof of Theorem 3.2 is given in Section 4.4.

Proposition 3.3 Let {X(t) : t ∈ R} be a stationary Gaussian process with covari-

ance function that satisfies D1 – D3 and {Y (t) : t ∈ [0, ∞)} be a self-similar

stochastic process with parameter λY , independent of the process {X(t)}. Then, for
h(u) =

[
C

1
α Hαu

2
α �(u)

]−1/λY

(1 + o(1)) as u → ∞, we have

lim
u→∞P

(
sup

s∈[0,h(u)]
X(Y (s)) > u

)
= 1 − E exp

(
−T exp

(
−r + √

2rN
))

,

where T = sups∈[0,1] Y (s) − infs∈[0,1] Y (s) and N is a normal random variable

independent of T .

Proof Due to stationarity of the process {X(t)} and self-similarity of the process

{Y (t)}, we have

P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)
= P

(
sup

t∈[0,sups∈[0,h(u)] Y(s)−infs∈[0,h(u)] Y(s)]
X(t) > u

)

= P

(
sup

t∈[0,(h(u))λY T ]
X(t) > u

)

= 1 − E exp
(
−T exp

(
−r + √

2rN
))

, (8)

where (8) follows by the reasoning as in the proof of Theorem 3.2.

Remark 3.2 Note, that in the case of weakly dependent stationary Gaussian process

{X(t)}, that is, if r = 0 in D3, we obtain the following result

lim
u→∞P

(
sup

s∈[0,h(u)]
X(Y (s)) > u

)
= 1 − Ee−T ,
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where in the setting of Theorem 3.2, h(u) = σ−1
Y

((
C

1
α Hαu

2
α �(u)

)−1
)

(1 + o(1))

as u → ∞, and T = sups∈[0,1] BαY /2(s) − infs∈[0,1] BαY /2(s); and in the setting of

Proposition 3.3, h(u) =
[
C

1
α Hαu

2
α �(u)

]−1/λY

(1 + o(1)) as u → ∞, and T =
sups∈[0,1] Y (s) − infs∈[0,1] Y (s).

4 Proofs

In this section, we present detailed proofs of Theorem 2.1, Proposition 2.3, Theorem

3.1 and Theorem 3.2.

4.1 Proof of Theorem 2.1

In view of inclusion – exclusion principle

P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
= P1(u) + P2(u) − P3(u), (9)

where

P1(u) = P

(
sup

s∈[−K,0]
X(s) > u

)
, P2(u) = P

(
sup

s∈[0,M]
X(s) > u

)
,

P3(u) = P

(
sup

s∈[−K,0]
X(s) > u, sup

s∈[0,M]
X(s) > u

)
.

Observe that by definition of the process {X(t)},

P1(u) = P

(
sup

s∈[0,K]
X(s) > u

)
. (10)

The case (i) is a consequence of the fact that, by (10) and Theorem 3.1 in (Aren-

darczyk and Dȩbicki 2011), P(K > u) = o(P(M > u)) implies P1(u) = o(P2(u)).

Thus,

P2(u) ≤ P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
≤ P1(u) + P2(u) = P2(u)(1 + o(1))

as u → ∞, which in view of Theorem 3.1 in (Arendarczyk and Dȩbicki 2011),

completes the proof for the case (i). A similar reasoning implies that for the case (ii),

we have

P1(u) ≤ P

(
sup

s∈[0,T ]
X(Y (s)) > u

)
≤ P1(u) + P2(u) = P1(u)(1 + o(1))
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as u → ∞, which in view of Theorem 3.1 in (Arendarczyk and Dȩbicki 2011),

completes the proof for the case (ii).

In order to prove (iii), without loss of generality, we assume that

P(M > u) ≥ P(K > u)(1 + o(1)) (11)

as u → ∞. Due to (9) combined with (10) and Theorem 3.1 in (Arendarczyk and

Dȩbicki 2011), it suffices to show that P3(u) is negligible. We distinguish the case

K ≤ M and the case K > M and obtain

P3(u) = P

(
sup

s∈[−K,0]
X(s) > u, sup

s∈[0,M]
X(s) > u,K ≤ M

)

+ P

(
sup

s∈[−K,0]
X(s) > u, sup

s∈[0,M]
X(s) > u,K > M

)

≤ P

(
sup

s∈[−M,0]
X(s) > u, sup

s∈[0,M]
X(s) > u

)

+ P

(
sup

s∈[−K,0]
X(s) > u, sup

s∈[0,K]
X(s) > u

)

≤ 2P

(
sup

s∈[−M,0]
X(s) > u, sup

s∈[0,M]
X(s) > u

)
(1 + o(1)) (12)

as u → ∞, where (12) is due to the assumption (11).

To find an upper bound of (12) it is convenient to make the following decomposi-

tion

P

(
sup

s∈[−M,0]
X(s) > u, sup

s∈[0,M]
X(s) > u

)

=
(∫ a(u)

0
+
∫ A(u)

a(u)

+
∫ ∞

A(u)

)
P

(
sup

s∈[−w,0]
X(s) > u, sup

s∈[0,w]
X(s) > u

)
dFM(w)

= I1 + I2 + I3,

where

a(u) = u
2

α∞+2α1 , A(u) = u
4

2α∞+α1 . (13)
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Let ε > 0. We analyze each of the integrals I1, I2, I3 separately.

Integral I1:

I1 ≤
∫ a(u)

0
P

(
sup

s∈[0,w]
X(s) > u

)
dFM(w)

≤ P

(
sup

s∈[0,a(u)]
X(s) > u

)

≤ Const a(u)

(
u

σX(a(u))

) 2
α∞

�

(
u

σX(a(u))

)
(14)

≤ exp

(
−u

2α1
α1+α∞ +ε

)
(1 + o(1))

as u → ∞, where (14) is due to (16) in (Arendarczyk and Dȩbicki 2011) (see also

the proof of Lemma 6.3 in Arendarczyk and Dçbicki 2011).

Integral I3:

I3 ≤
∫ ∞

A(u)

P

(
sup

s∈[0,w]
X(s) > u

)
dFM(w)

≤ P(M > A(u))

= C1(A(u))γ1 exp
(−β1(A(u))α1

)
(1 + o(1))

≤ exp

(
−u

2α1
α1+α∞ +ε

)
(1 + o(1))

as u → ∞.

The above, combined with the observation that for each η > 0 and sufficiently large

u,

P(X(M) > u) = P (σX(M)N > u) ≥ P

(
σX(M) > u

α∞
α1+α∞

)
P

(
N > u

α1
α1+α∞

)

≥ exp

(
−u

2α1
α1+α∞ +η

)
,

leads to the conclusion that I1 and I3 are negligible.

Integral I2: Observe that, due to A1, σ 2
X(|t |) ≤ σ 2

X(|t−s|), for each (s, t) ∈ [−w, 0]×
[0, w]. Hence

Var(X(s) + X(t)) = 2σ 2
X(|s|) + 2σ 2

X(|t |) − σ 2
X(|t − s|) ≤ 3σ 2

X(w), (15)
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for (s, t) ∈ [−w, 0]×[0, w]. Thus, according to the Borell inequality (see, e.g., Adler

(1990), Theorem 2.1), combined with (15), I2 is bounded by∫ A(u)

a(u)

P

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s) + X(t)] > 2u

)
dFM(w)

≤ 2
∫ A(u)

a(u)

exp

⎛
⎝− 2u2

3σ 2
X(w)

(
1− 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s)+X(t)]

))2
⎞
⎠dFM(w). (16)

Moreover,

0 ≤ E

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s) + X(t)]

)
≤ 2E

(
sup

s∈[0,w]
X(t)

)
. (17)

To find the upper bound of E supt∈[0,w] X(t), we use metric entropy method (see,

e.g., Lifshits (2012), Chapter 10). At the beginning, for any T ⊆ R define the semi-

metric

d(s, t) :=
√
E|X(t) − X(s)|2 = σX(|t − s|).

The metric entropy Hd(T, ε) is defined as log Nd(T, ε), where Nd(T, ε) denotes the

minimal number of points in an ε-net in T with respect to the semimetric d.

Observe that for T = [0, w],
Nd(T, ε) ≤ 2w

σ−1
X (ε)

,

which, in view of Theorem 10.1 in (Lifshits 2012), implies that

E sup
t∈[0,w]

X(t) ≤ 4
√

2
∫ σX(w)

0

√
log

2w

σ−1
X (ε)

dε

≤ 4
√

2
∫ √

Dw
α∞

2

√√√√log 2D
1

α∞ w

ε
2

α∞
dε

0
(18)

= 4
√

2
∫ ∞

1/w

√
Dα∞
2

x− α∞
2 −1

√
log 2wx dx (19)

≤ 4α∞
√

Dw

∫ ∞

1/w

x− α∞+1
2 dx

≤ Bw
α∞

2 , (20)

where B = 8
√

Dα∞
α∞−1 , (18) is due to A3, and (19) is by substitution x := D1/α∞ε−2/α∞ .

Finally, due to (17) combined with (20) and (13)

0 ≤ 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s) + X(t)]

)
≤ B

w
α∞

2

u
≤ Bu

− α1
2α∞+α1 ,
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for each w ∈ [a(u), A(u)], which implies that(
1 − 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s) + X(t)]

))2

→ 1

as u → ∞, uniformly for w ∈ [a(u), A(u)], and hence

exp

⎛
⎝− 2u2

3σ 2
X(w)

(
1− 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[X(s)+X(t)]

))2
⎞
⎠=o

(
�

(
u

σX(w)

))
(21)

as u → ∞, uniformly for w ∈ [a(u), A(u)]. Thus, combining (16) with (21), we

obtain, for sufficiently large u, the following upper bound,

I2 ≤ 2ε

∫ A(u)

a(u)

�

(
u

σX(w)

)
dFM(w) ≤ 2εP

(
sup

s∈[0,M]
X(s) > u

)
,

which in view of Theorem 3.1 in (Arendarczyk and Dȩbicki 2011), implies that

lim sup
u→∞

I2

P (X(M) > u)
≤ 2ε.

In order to complete the proof it suffices to pass with ε → 0. �

4.2 Proof of Proposition 2.3

The idea of the proof is analogous to the proof of Theorem 2.1, thus we present only

main steps of the argumentation. In view of inclusion – exclusion principle

P

(
sup

s∈[0,T ]
BH (Y (s)) > u

)
= P1(u) + P2(u) − P3(u), (22)

where

P1(u) = P

(
sup

s∈[−K,0]
BH (s) > u

)
, P2(u) = P

(
sup

s∈[0,M]
BH (s) > u

)

and

P3(u) = P

(
sup

s∈[−K,0]
BH (s) > u, sup

s∈[0,M]
BH (s) > u

)
.

Moreover observe that

P1(u) = P

(
sup

s∈[0,K]
BH (s) > u

)
. (23)

Since the arguments for the cases P(K > u) = o(P(M > u)) as u → ∞, and

P(M > u) = o(P(K > u)) as u → ∞ are similar to those in the proof of Theorem

2.1, then we focus on the case P(K > u) = C2
C1
P(M > u)(1 + o(1)) as u → ∞.
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Without loss of generality, we assume that

P(M > u) ≥ P(K > u)(1 + o(1))

as u → ∞. Due to (22) combined with (23) and Theorem 4.1 in (Arendarczyk and

Dȩbicki 2011), it suffices to show that P3(u) is negligible. In an analogous way to

(12), we obtain the following upper bound

P3(u) ≤ 2P

(
sup

s∈[−M,0]
BH (s) > u, sup

s∈[0,M]
BH (s) > u

)
(1 + o(1))

as u → ∞. Then, we consider decomposition

P

(
sup

s∈[−M,0]
BH (s) > u, sup

s∈[0,M]
BH (s) > u

)

=
(∫ a(u)

0
+
∫ A(u)

a(u)

+
∫ ∞

A(u)

)
P

(
sup

s∈[−w,0]
BH (s) > u, sup

s∈[0,w]
BH (s) > u

)
dFM(w)

= I1 + I2 + I3,

where

a(u) = u
1

H+α1 , A(u) = u
4

4H+α1 . (24)

Let ε > 0. We investigate the asymptotic behavior of each of the integrals.

Integral I1: Due to self-similarity of {BH (t)} combined with Lemma 4.2 in (Aren-

darczyk and Dȩbicki 2011), we have, as u → ∞,

I1 ≤ P

(
sup

s∈[0,a(u)]
BH (s) > u

)
=P

(
sup

s∈[0,1]
BH (s) >

u

(a(u))H

)
≤ exp

(
−u

2α1
α1+H

+ε
)

(1+o(1)).

Integral I3: We have, as u → ∞,

I3 ≤ P(M > A(u)) ≤ exp

(
−u

2α1
α1+H

+ε
)

(1 + o(1)).

Observe that, due to Theorem 4.1 in (Arendarczyk and Dȩbicki 2011), for each η > 0

and sufficiently large u,

P

(
sup

s∈[0,M]
BH (s) > u

)
≥ exp

(
−u

2α1
α1+H

+η
)

(1 + o(1))

as u → ∞. Thus, we conclude that I1 and I3 are negligible.

Integral I2: Observe that |t |2H ≤ |t − s|2H , for each (s, t) ∈ [−w, 0]×[0, w]. Hence

Var(BH (s) + BH (t)) = 2|s|2H + 2|t |2H − |t − s|2H ≤ 3w2H (25)
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for (s, t) ∈ [−w, 0]×[0, w]. Thus, according to the Borell inequality (see, e.g., Adler

(1990), Theorem 2.1), combined with (25), I2 is bounded by∫ A(u)

a(u)

P

(
sup

(s,t)∈[−w,0]×[0,w]
[BH (s) + BH (t)] > 2u

)
dFM(w)

≤ 2
∫ A(u)

a(u)

exp

⎛
⎝− 2u2

3w2H

(
1− 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[BH (s)+BH (t)]

))2
⎞
⎠ dFM(w).(26)

Moreover, due to self-similarity of {BH (t)}

0 ≤ E

(
sup

(s,t)∈[−w,0]×[0,w]
[BH (s) + BH (t)]

)
≤ 2E

(
sup

s∈[0,w]
BH (s)

)
= BwH ,

where B = 2E sups∈[0,1] BH (s), which due to (24), implies that(
1 − 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[BH (s) + BH (t)]

))2

→ 1

as u → ∞, uniformly for w ∈ [a(u), A(u)], and hence

exp

⎛
⎝− 2u2

3w2H

(
1− 1

2u
E

(
sup

(s,t)∈[−w,0]×[0,w]
[BH (s)+BH (t)]

))2
⎞
⎠=o

(
�
( u

wH

))
(27)

as u → ∞, uniformly for w ∈ [a(u), A(u)]. Thus, combining (26) with (27), we

obtain, for sufficiently large u, the following upper bound,

I2 ≤ 2ε

∫ A(u)

a(u)

�

(
u

σX(w)

)
dFM(w) ≤ 2εP

(
sup

s∈[0,M]
X(s) > u

)
,

which in view of Theorem 4.1 in (Arendarczyk and Dȩbicki 2011), implies that

lim sup
u→∞

I2

P (X(M) > u)
≤ 2ε.

In order to complete the proof it suffices to pass with ε → 0. �

4.3 Proof of Theorem 3.1

In further analysis we use the following notation

XσY (h(u))(s) := X(σY (h(u))s)

σX(σY (h(u)))
and Yh(u)(s) := Y (h(u)s)

σY (h(u))
.

Moreover, we denote

Vu := inf
s∈[0,1] Yh(u)(s), Wu := sup

s∈[0,1]
Yh(u)(s),

V := inf
s∈[0,1] BαY /2(s) W := sup

s∈[0,1]
BαY /2(s).
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Let ε > 0 and 0 < A∞ < ∞. We start with the observation that limu→∞ h(u) =
∞, which also implies that limu→∞ σY (h(u)) = ∞. Hence, due to Lemma 5.2 in

(Dȩbicki et al. 2004)

(Vu,Wu) ⇒ (V,W) as u → ∞ (28)

and

sup
s∈[v,w]

XσY (h(u))(s) ⇒ sup
s∈[v,w]

BαX/2(s) as u → ∞, (29)

uniformly for (v, w) ∈ [−A∞, 0] × [0, A∞], where ⇒ denotes convergence in dis-

tribution.

By continuity of the sample paths of the processes {X(t)} and {Y (t)},

P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)

= P

(
sup

t∈[infs∈[0,h(u)] Y(s),sups∈[0,h(u)] Y(s)]
X(t) > u

)

= P

(
sup

t∈[Vu,Wu]
X(σY (h(u))t) > u

)

= P

(
sup

t∈[Vu,Wu]
XσY (h(u))(t) >

u

σX(σY (h(u)))

)
. (30)

To find an upper bound of (30) we consider the following decomposition

P

(
sup

t∈[Vu,Wu]
XσY (h(u))(t) >

u

σX(σY (h(u))

)

≤
(∫ −A∞

−∞

∫ ∞

0
+
∫ 0

−A∞

∫ A∞

0
+
∫ 0

−∞

∫ ∞

A∞

)
P

(
sup

t∈[v,w]
XσY (h(u))(t)>

u

σX(σY (h(u)))

)
d(Vu,Wu)(v, w)

= I1 + I2 + I3.

We analyze each of the integrals I1, I2, I3 separately.

Integral I1: Due to (28), for sufficiently large u,

I1 ≤ P (Vu ≤ −A∞) ≤ (1 + ε)P (V ≤ −A∞) .

Integral I3: Due to (28), for sufficiently large u,

I3 ≤ P (Wu > A∞) ≤ (1 + ε)P (W > A∞) .
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Integral I2: For u sufficiently large,

I2 =
∫ 0

−A∞

∫ A∞

0
P

(
sup

t∈[v,w]
XσY (h(u))(t) >

u

σX(σY (h(u)))

)
d(Vu,Wu)(v, w)

≤ (1 + ε)

∫ 0

−A∞

∫ A∞

0
P

(
sup

t∈[v,w]
BαX/2(t) > 1

)
d(Vu,Wu)(v, w) (31)

≤ (1 + ε)2
∫ 0

−A∞

∫ A∞

0
P

(
sup

t∈[v,w]
BαX/2(t) > 1

)
d(V,W)(v, w) (32)

≤ (1 + ε)2
P

(
sup

t∈[V,W]
BαX/2(t) > 1

)
,

where (31) is due to (29) and the fact that limu→∞ u
σX(σY (h(u)))

= 1, and (32)

is due to (28), and the observation that P
(
supt∈[v,w] BαX/2(t) > 1

)
is bounded and

continuous function with respect to (v, w). Thus, for each ε > 0, A∞ > 0,

lim sup
u→∞

P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)
≤ (1 + ε)2

P

(
sup

t∈[V,W]
BαX/2(t) > 1

)

+ (1 + ε)P(V ≤ −A∞) + (1 + ε)P(W > A∞).

Analogously,

lim inf
u→∞ P

(
sup

t∈[0,h(u)]
X(Y(t)) > u

)
≥ (1 − ε)2

P

(
sup

t∈[V,W]
BαX/2(t) > 1

)
.

In order to complete the proof it suffices to pass with A∞ → ∞, and ε → 0. �

4.4 Proof of Theorem 3.2

In further analysis we use the following notation

Tu := sup
s∈[0,1]

Yh(u)(s) − inf
s∈[0,1] Yh(u)(s), where Yh(u)(s) := Y (h(u)s)

σY (h(u))
.

Let ε > 0 and 0 < A0 < A∞ < ∞. Note that due to Lemma 5.2 in (Dȩbicki et al.

2004)

Tu ⇒ T as u → ∞, (33)
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where ⇒ denotes convergence in distribution.

It is convenient to consider the following decomposition

P

(
sup

s∈[0,h(u)]
X(Y(s)) > u

)
= P

(
sup

s∈[0,TuσY (h(u))]
X(s) > u

)

=
(∫ A0

0
+
∫ A∞

A0

+
∫ ∞

A∞

)
P

(
sup

s∈[0,tσY (h(u))]
X(s) > u

)
dFTu

(t)

= I1 + I2 + I3.

We analyze each of the integrals I1, I2, I3 separately.

Integral I1: Due to Lemma 3.3 in (Tan and Hashorva 2013), for sufficiently large u,

I1 ≤ P

(
sup

s∈[0,A0σY (h(u))]
X(s) > u

)

≤ (1 + ε)
[
1 − E exp

(
−A0 exp(−r + √

2rN )
)]

as u → ∞.

Integral I3: Due to (33), for sufficiently large u,

I3 ≤ P(Tu > A∞) ≤ (1 + ε)P (T > A∞) .

Integral I2:

I2 =
∫ A∞

A0

P

(
sup

s∈[0,tσY (h(u))]
X(s) > u

)
dFTu

(t)

≤ (1 + ε)

∫ A∞

A0

(
1 − E exp

(
−t exp

(
−r + √

2rN
)))

dFTu
(t) (34)

≤ (1 + ε)2
∫ A∞

A0

(
1 − E exp

(
−t exp

(
−r + √

2rN
)))

dFT (t), (35)

where (34) is by Lemma 3.3 in (Tan and Hashorva 2013) and (35) is due to (33), and

the observation that

1−E exp
(
−t exp

(
−r + √

2rN
))

is bounded and continuous function with respect

to t ∈ [A0, A∞]. Thus, for each ε > 0, A∞ > A0 > 0,

lim sup
u→∞

P

(
sup

s∈[0,h(u)]
X(Y (s))>u

)
v ≤ (1+ε)2

∫ A∞

A0

(
1−E exp

(
−t exp

(
−r+√

2rN
)))

dFT (t)

+ (1 + ε)
[
1 − E exp

(
−A0 exp(−r + √

2rN )
)]

+ (1 + ε)P (T > A∞) .
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Analogously,

lim inf
u→∞ P

(
sup

s∈[0,h(u)]
X(Y(s)) > u

)
≥(1−ε)2

∫ A∞

A0

(
1−E exp

(
−t exp

(
−r+√

2rN
)))

dFT (t).

In order to complete the proof it suffices to pass with A0 → 0, A∞ → ∞, and ε → 0.
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Dȩbicki, K., Hashorva, E., Ji, L.: Tail Asymptotics of Supremum of Certain Gaussian Processes over

Threshold Dependent Random Intervals. Extremes 17(3), 411–429 (2014)
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