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Abstract The notion of a phantom distribution function (phdf) was introduced by
O’Brien (Ann. Probab. 15, 281–292 (1987)). We show that the existence of a phdf
is a quite common phenomenon for stationary weakly dependent sequences. It is
proved that any α-mixing stationary sequence with continuous marginals admits a
continuous phdf. Sufficient conditions are given for stationary sequences exhibiting
weak dependence, what allows the use of attractive models beyond mixing. The case
of discontinuous marginals is also discussed for α-mixing. Special attention is paid to
examples of processes which admit a continuous phantom distribution function while
their extremal index is zero. We show that Asmussen (Ann. Appl. Probab. 8, 354–
374 1998) and Roberts et al. (Extremes. 9, 213–229 2006) provide natural examples
of such processes. We also construct a non-ergodic stationary process of this type.
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1 Phantom distribution functions

The notion of a phantom distribution function was introduced in (O’Brien 1987). Let
{Xj } be a stationary sequence with partial maxima

Mn = max
1≤j≤n

Xj

and the marginal distribution function F(x) = P(X1 ≤ x).
A stationary sequence {Xn} is said to admit a phantom distribution function G if

P(Mn ≤ un) − Gn(un) → 0, as n → ∞,

for every sequence {un} ⊂ R. Since un is arbitrary, the above can be written as

sup
u∈R

∣
∣P(Mn ≤ u) − Gn(u)

∣
∣ → 0, as n → ∞. (1)

It is obvious that G is not uniquely determined for only the behavior of G at its
right end G∗ = sup{x ; G(x) < 1} is of importance. On the other hand, any two
phantom distribution functions cannot be too different - we show in Theorem 1 below
that they must be tail equivalent.

When Eq. 1 is satisfied with G(x) = Fθ(x), for some θ ∈ (0, 1], then we
say that {Xj } has the extremal index θ in the sense of (Leadbetter 1983) (see also
(Leadbetter et al. 1983)). The notion of the extremal index is well-understood and
had been intensively investigated in 1980s and 1990s.

Another well-known area where phantom distribution functions naturally occur is
when {Xj } has a regenerative structure (see e.g. Asmussen 2003). For such processes
Theorem 3.1 of (Rootzén 1988) provides sufficient conditions for a suitable power
of the distribution function of the maximum over the regeneration cycle to be a phan-
tom distribution function of the original sequence. Using this result (Asmussen 1998)
exhibited an example of a Markov chain (in fact: the Lindley process with subex-
ponential step distribution) which admits a non-trivial phantom distribution function
and has the extremal index θ = 0 in the sense of Leadbetter (1983), that is

P
(

Mn ≤ un(τ)
) → 1 (2)

whenever {un(τ)} is such that
n(1 − F(un(τ)) → τ ∈ (0, +∞). (3)

Intuitively this means that partial maxima Mn increase much slower comparing with
the independent case and that information on F cannot determine the limit behavior
of laws of Mn.
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It follows fromAsmussen (1998) that the existence of a phantom distribution func-
tion can remain informative while the extremal index does not contribute anything.
In the present paper we develop the theory of phantom distribution functions by
showing that their existence is a quite common phenomenon among weakly depen-
dent sequences and that in practically all cases of interest we can find a continuous
phantom distribution function. We also find two further examples of sequences with
extremal index θ = 0 and a continuous phantom distribution function.

In Section 2 we provide convenient necessary and sufficient conditions for the
existence of a continuous phantom distribution function. This is done in Theorem
2, which is an improvement of O’Brien (1987), Jakubowski (1991) and Jakubowski
(1993). According to this theorem we need only to find a single sequence {vn} of
levels such that P

(

Mn ≤ vn

) → γ , for some γ ∈ (0, 1), and Condition B∞(vn)

holds (see Eq. 10), which is a form of “mixing” specific for maxima. We demonstrate
how weak are these requirements by showing in Theorem 4 that there exists a non-
ergodic stationary sequence (in fact: exchangeable) with the extremal index θ = 0
and admitting a continuous phantom distribution function.

Section 3 contains a result built upon the extra information we are given when
the process has a regenerative structure (Theorem 5), which is essentially a version
of the mentioned Theorem 3.1. in (Rootzén 1988). We then discuss the motivating
Assmussen’s example and derive the existence of a continuous phantom distribution
function for it.

In Section 4 we list all our results on existence of phantom distribution functions
obtained from information on mixing and properties of marginal distributions only.
Such conditions are usually not difficult to verify (as showed in Example 2) and
therefore widely applicable.

In Theorem 6 we prove a remarkable fact that every strongly (or α-) mix-
ing stationary sequence with continuous marginals admits a continuous phantom
distribution function. Applying this result we are able to show that the process con-
structed in Section 3 of Roberts et al. (2006) (random walk Metropolis algorithm
for distributions with heavy tails), which has the extremal index zero, also admits
a continuous phantom distribution function. Since Metropolis Markov chains are
easy in simulation, they can be considered as a class of reference processes for the
extremal index zero processes in the sense of the relative extremal index defined in
Jakubowski (1991).

Since the paper by Andrews (1984) it is known that some of time series considered
in econometric modeling are non-strong mixing (see also Dedecker et al. (2007),
Section 1.5). Taking this into account, the notion of “weak dependence coefficients”
has been developed during the last twenty years and the resulting theory is reach
enough to cover the most interesting cases. We refer to Dedecker et al. (2007) for a
comprehensive presentation of this trend in the analysis of time series.

In the present paper we show that the approach through “weak dependence coef-
ficients” is applicable to our problem, as well. The reasoning is not automatic, since
verification of Condition B∞(vn) requires approximation of indicator functions by
functions exhibiting more “smoothness”. Therefore to cope efficiently with θ -, η-
, κ- and λ-weakly dependent sequences we need a bit more regularity than just
the continuity of F (see Eq. 36). Moreover, in Theorems 7–9 we have to assume
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that the corresponding weak dependence coefficient converges to zero at some rate.
This complies with the general philosophy of weak dependence coefficients, since
“weak dependence’ is preserved under sufficiently regular transformations of pro-
cesses, with possible change in the rate of decay of the corresponding coefficient (see
Dedecker et al. (2007), Propositions 2.1 and 2.2).

We conclude our considerations by proposing in Theorem 10 how to deal with
a discontinuous distribution function F , for the time being only for α-mixing
sequences. We show that m-dependent sequences admit a continuous phantom distri-
bution function if the marginal distribution function F satisfies only Eq. 4 (as in the
i.i.d. case), while the non-trivial α-mixing seems to require more regularity than (4),
even for exponential rate of α-mixing.

Section 5 contains proofs of all results involving mixing or weak dependence.
The proofs consist in using our basic Proposition 3 in order to deduce the rate of
convergence P(X1 > vn) → 0, and then checking Condition B∞(vn).

2 Existence of continuous phantom distribution functions

It is an observation made long time ago by (O’Brien 1974) (Theorem 2), that for a
given distribution function G there exists γ ∈ (0, 1) and a sequence {vn = vn(γ )}
such that

Gn(vn) → γ,

if, and only if, G satisfies the relations

G(G∗−) = 1 and lim
x→G∗−

1 − G(x−)

1 − G(x)
= 1. (4)

We will say that G is regular (in the sense of O’Brien) if Eq. 4 holds. Notice that
if G is regular then the sequence {vn(γ )} exists for every γ ∈ (0, 1) and that {vn} can
always be chosen non-decreasing.

The tail equivalence is another very old notion, introduced by Resnick (1971) and
usually considered in the context of domains of attraction of extreme value distribu-
tions. We will modify it slightly, by saying that the tails of two distribution functions
G and H with right ends G∗ and H∗ are strictly tail-equivalent if

G∗ = H∗ and
1 − H(x)

1 − G(x)
→ 1, as x → G∗−. (5)

We have a nice characterization of strict tail-equivalence in terms of being mutual
phantom distribution function.

Proposition 1 Let G be a regular distribution function. Then for any distribution
function H the following conditions are equivalent:

(i) H is regular and strictly tail-equivalent to G.
(ii) There exist γ ∈ (0, 1) and a non-decreasing sequence {vn} such that

Gn(vn) → γ, Hn(vn) → γ. (6)
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(iii)
sup
x∈R

∣
∣Gn(x) − Hn(x)

∣
∣ → 0, as n → ∞. (7)

Proof We shall prove (i) ⇐⇒ (ii) first and then (iii) ⇐⇒ (i).
So assume (i). Since G is regular, there are γ ∈ (0, 1) and a non-decreasing

sequence {vn} such that Gn(vn) → γ . By the strict tail-equivalence

Gn(vn) = exp
( − n(1 − G(vn))

) + o(1)

= exp
( − n(1 − H(vn)

)(1−G(vn))/(1−H(vn)) + o(1) (8)

= exp
( − n(1 − H(vn))

) + o(1)

= Hn(vn) + o(1).

Hence Hn(vn) → γ and (ii) follows.
To prove that (ii) implies (i), take suitable γ and {vn} and consider a sequence

xn ↗ G∗. Define numbers mn by

vmn ≤ xn < vmn+1.

Clearly, mn → ∞ and we have

1 − G(vmn+1) ≤ 1 − G(xn) ≤ 1 − G(vmn).

Consequently,

mn

(

1 − G(vmn+1)
) ≤ mn

(

1 − G(xn)
) ≤ mn

(

1 − G(vmn)
)

and the first and the third terms go to − log γ , hence also mn

(

1−G(xn)
) → − log γ .

The same sandwiching holds for expressions involving H and so

lim
n→∞

1 − G(xn)

1 − H(xn)
= lim

n→∞
mn

(

1 − G(xn)
)

mn

(

1 − H(xn)
) = − log γ

− log γ
= 1.

Since xn ↗ G∗ was arbitrary, the strict tail equivalence follows.
Now assume that Eq. 7 holds. By the regularity of G there exist a number γ ∈

(0, 1) and a sequence of levels {vn(γ )} such that Gn(vn(γ )) → γ ∈ (0, 1). Hence
also Hn(vn(γ )) → γ ∈ (0, 1) and the regularity of H follows.

Next suppose that G∗ < H∗. Then there exists x0 ∈ R such that G(x0) = 1, while
H(x0) < 1 and

Gn(x0) − Hn(x0) → 1,

what contradicts (7). Hence G∗ ≥ H∗ and by the symmetry G∗ = H∗.
Now let us take any sequence xn → G∗−, some τ > 0 and define

mn = min{m ; m(1 − G(xn)) ≥ τ }.
Since 1 − G(xn) → 0, we have mn(1 − G(xn)) → τ , hence also Gmn(xn) →
exp(−τ). By Eq. 7 Hmn(xn) → exp(−τ) and so mn(1 − H(xn)) → τ . Finally we
have

1 − G(xn)

1 − H(xn)
= mn

(

1 − G(xn)
)

mn

(

1 − H(xn)
) → τ

τ
= 1, as n → ∞.
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To prove (i) =⇒ (iii), let us assume that H is regular and strictly tail-equivalent to
G, but Eq. 7 does not hold, i.e. there is a subsequence {nk} ⊂ N, a sequence {xk} ⊂ R
and η > 0 such that

∣
∣Gnk (xk) − Hnk (xk)

∣
∣ > η, k ∈ N.

Suppose that along some further subsequence {nkl
} we have G(xkl

) ≤ 1 − δ, for
some δ > 0. Then Gnkl (xkl

) → 0 and Hnkl (xkl
) ≥ η for l large enough. This gives

supl nkl

(

1 − H(xkl
)
)

< +∞, hence H(xkl
) → 1 and xkl

→ H∗− = G∗−. This in
contradiction with G(xkl

) ≤ 1 − δ.
So we may and do assume that xk → G∗−. Then by the strict tail-equivalence

Gnk (xk) = exp
( − nk(1 − G(xk))

) + o(1)

= exp
( − nk(1 − H(xk)

)(1−G(xk))/(1−H(xk)) + o(1)

= exp
( − nk(1 − H(xk))

) + o(1)

= Hnk (xk) + o(1).

We have once again arrived to a contradiction, this time with the choice of {nk} and
{xk}.

The above proposition yields immediately the following useful fact.

Theorem 1 Suppose that a stationary sequence {Xj } admits a regular phantom
distribution function G.

Let H be any other phantom distribution function for {Xj }. Then H is also regular
and G and H are strictly tail-equivalent.

Conversely, if H is regular and strictly tail-equivalent to G, then it is also a
phantom distribution function for {Xj }.

Somewhat surprisingly, it is possible to provide a complete description of station-
ary sequences admitting a phantom distribution function and the description is in
terms of natural and verifiable conditions. The following theorem slightly improves
the results of O’Brien (1987) and Jakubowski (1991, 1993), since we construct a
continuous phantom distribution function.

Theorem 2 Let {Xj } be stationary. The following are equivalent:
(i) The sequence {Xj } admits a continuous phantom distribution function.
(ii) The sequence {Xj } admits a regular phantom distribution function.
(iii) There exists a sequence {vn} and γ ∈ (0, 1) such that

P(Mn ≤ vn) → γ, (9)

and the following Condition B∞(vn) holds:

sup
p,q∈N

∣
∣P

(

Mp+q ≤ vn

) − P
(

Mp ≤ vn

)

P
(

Mq ≤ vn

)∣
∣ → 0, as n → ∞. (10)
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(iv) There exists a sequence {vn} and γ ∈ (0, 1) such that Eq. 9 holds and for each
T > 0 the following Condition BT (vn) is fulfilled:

sup
p,q∈N,
p+q≤T ·n

∣
∣P

(

Mp+q ≤ vn

) − P
(

Mp ≤ vn

)

P
(

Mq ≤ vn

)∣
∣ → 0, as n → ∞.

(11)
(v) There exists a sequence {vn} and γ ∈ (0, 1) such that for some dense subset

Q ⊂ R+

P
(

M[nt] ≤ vn

) → γ t , t ∈ Q. (12)

If {vn} is strictly increasing, then a continuous phantom distribution function G can
be defined by

G(x) = γ g(x),

where

g(x) =

⎧

⎪⎪⎨

⎪⎪⎩

v1 − x + 1, if x < v1,−x + (n + 1)vn+1 − nvn

n(n + 1)(vn+1 − vn)
, if vn ≤ x < vn+1,

0, if x ≥ sup{vn : n ∈ N}
(13)

If {vn} is not strictly increasing but non-decreasing only, than a slightly more
complicated formula for G is given in Eq. 15 below.

Proof Theorem 1.3 of Jakubowski (1991) establishes the equivalence of (ii) and
(iii). Proposition 2.5 of Jakubowski (1991) gives the equivalence of (iii) and (iv).
Finally, Theorem 2 and Corollary 5 of Jakubowski (1993) prove the equivalence
of (ii) an (v). In particular, Theorem 1.3 of Jakubowski (1991) or Corollary 5
of Jakubowski (1993) lead to a formula for a discontinuous phantom distribution
function

G̃(x) =
⎧

⎨

⎩

0, if x < v1,
γ 1/n, if vn ≤ x < vn+1,
1, if x ≥ sup{vn : n ∈ N},

(14)

where vn is a non-decreasing sequence obtained in a simple way from the original
one (see Lemma 1 in Jakubowski (1993)). For non-decreasing {vn} we can have that

v1 = v2 = · · · = vp1 < vp1+1 = vp1+2 = · · · = vp2

< vp2+1 = vp2+2 = · · · = vp3

...

< vpk+1 = vpk+2 = · · · = vpk+1 < vpk+1+1 . . . ,

for some sequence p1 < p2 < . . .. Notice that G̃ jumps only at points vpk
, k =

1, 2, . . . and the other elements of the sequence {vn} are not used in the construc-
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tion of G̃. We then construct a continuous phantom distribution function by setting
G(x) = γ g(x), where

g(x) =

⎧

⎪⎪⎨

⎪⎪⎩

vp1 − x + 1/p1, if x < vp1 ,
1/pk, if x = vpk

,
linearly between vpk

and vpk+1 , k = 1, 2, . . .
0, if x ≥ sup{vn : n ∈ N}

(15)

By the very definition we have

G̃(x) = 0 < G(x) ≤ G̃(vp1), if x < vp1 ,

G̃(vpk
) = G̃(x) ≤ G(x) < G̃(vpk+1), if vpk

≤ x < vpk+1 ,

G̃(x) = 1 = G(x), if x ≥ sup{vn ; n ∈ N}.
We have to prove that

Gn(un) − G̃n(un) → 0, (16)

for every sequence un ∈ R, such that un < sup{vn ; n ∈ N}.
Set vp0 = −∞ and let kn ∈ N be such that

vpkn−1 ≤ un < vpkn
, n ∈ N.

If kn′ = 1 along a subsequence n′, then
∣
∣Gn′

(un′) − G̃n′
(un′)

∣
∣ = Gn′

(un′) < γ n′/p1 → 0.

Hence we can assume that kn > 1, n ∈ N. Then
∣
∣Gn(un) − G̃n(un)

∣
∣ ≤ G̃n(vpkn

) − G̃n(vpkn−1) =: R(n).

Suppose that along some subsequence n′ we have n′(1 − G̃(vpk
n′ )

) → ∞. Then

R(n′) ≤ G̃n′ (
vpk

n′

)

→ 0.

If, on the contrary, n
(

1 − G̃(vpkn
)
) ≤ K < ∞, then

R(n) ≤ n
(

G̃(vpkn
) − G̃(vpkn−1)

) = n
G̃(vpkn
)

= 
G̃(vpkn
)

1 − G̃(vpkn
)
n
(

1 − G̃(vpkn
)
) ≤ K


G̃(vpkn
)

1 − G̃(vpkn
)

→ 0,

for G̃ is regular and therefore Eq. 4 holds. Hence Eq. 16 is always satisfied.
When {vn} is strictly increasing, Eq. 15 simplifies to Eq. 13. The theorem has been

proved.

Remark 1 The above theorem states that an i.i.d. sequence {Xj } with regular
marginal distribution function F admits a continuous phantom distribution function
G. Thus from the point of view of limit theorems for maxima of i.i.d. sequences we
can assume that the marginal distributions are continuous. We do not know whether
such a reduction is always possible for weakly dependent stationary sequences.

The other consequence is that in every class of strict tail-equivalence of a regular
distribution function F one can find a continuous representative G.
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Remark 2 It is important that F does not need to belong to the domain of attraction
of any extreme value distribution, while the corresponding sequence {vn} can have a
quite regular form and be suitable for estimation. To see this, let us consider an i.i.d.
sequence {Xj } with a super-heavy tail, e.g.

1 − F(x) = x−1/
√

log x, x > 1.

Since for any c > 0 we have x−c/1−F(x) → 0 as x → ∞, there are no normalizing
sequences an and bn such that

P

(

max
1≤j≤n

Xj ≤ anx + bn

)

→ Gρ(x), x ∈ R,

where Gρ is the standardized extreme value distribution with the extreme value index
ρ ∈ R (see (de Haan and Ferreira 2006), Theorem 1.1.3). On the other hand, if we
set vn = nlog n, then Fn(vn) → e−1.

Remark 3 It follows from (iii) or (iv) in the above theorem that the asymptotics of
maxima of weakly dependent stationary sequences is fully determined by the behav-
ior of P

(

Mn ≤ vn

)

along a single sequence of levels {vn}. In particular, if Eqs. 9 and
10 hold and

Fn(vn) = exp
( − n(1 − F(vn))

) + o(1) → γ ′ ∈ (0, 1), (17)

then {Xj } admits a phantom distribution function G(x) = Fθ(x), where

θ = log γ

log γ ′

is the extremal index. Notice the simplified (a single sequence!) form of our approach
to the extremal index.

In the next result we shall cover also the case θ = 0 and obtain the final general-
ization of formula (4.2), p. 380 in Rootzén (1988), which was originally derived for
Markov chains with regenerative structure.

Theorem 3 Suppose that a stationary sequence {Xj } with a regular marginal distri-
bution function F admits a regular phantom distribution function G. The following
are equivalent:

(i) The sequence {Xj } has the extremal index θ ∈ [0, 1].
(ii) There exists the limit

lim
x→F∗−

1 − G(x)

1 − F(x)
(= θ). (18)

(iii) There exist: a sequence {vn}, vn ↗ F∗, and numbers γ ∈ (0, 1), γ ′ ∈ [0, 1)
such that

lim
n→∞ Gn(vn) → γ, lim

n→∞ Fn(vn) = γ ′. (19)

If the limits in (iii) do exist, then θ = log γ
log γ ′ if γ ′ > 0 and θ = 0 if γ ′ = 0.
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Proof First suppose that the extremal index exists and is equal θ ∈ (0, 1]. This means
that Fθ is another phantom distribution function for {Xj }. By Theorem 1 Fθ and G

are strictly tail-equivalent. Hence

lim
x→F∗−

1 − G(x)

1 − F(x)
= lim

x→F∗−
1 − G(x)

1 − Fθ(x)

1 − Fθ(x)

1 − F(x)
= θ.

Conversely, if the above limit is θ , then G and Fθ are strictly tail-equivalent. More-
over, by (ii) in Proposition 1 this is equivalent to the existence of γ ∈ (0, 1) and
a non-decreasing sequence {vn} such that Gn(vn) → γ and (F θ )n(vn) → γ , or
equivalently Fn(vn) → γ 1/θ = γ ′. This proves the theorem in the case θ ∈ (0, 1].

Now suppose that the extremal index of {Xj } is 0. Since we assume that F is
regular, there is a nondecreasing sequence {un} such that n

(

1 − F(un)
) → τ > 0.

By the definition of the extremal index θ = 0 this implies Gn(un) → 1 or n
(

1 −
G(un)

) → 0. Now we follow the proof of Proposition 1. Take xn ↗ F∗ and define
numbers mn by

umn ≤ xn < umn+1.

Then mn

(

1 − F(xn)
) → τ while mn

(

1 − G(un)
) → 0 and so

lim
n→∞

1 − G(xn)

1 − F(xn)
= lim

n→∞
mn

(

1 − G(xn)
)

mn

(

1 − F(xn)
) = 0.

Since xn ↗ F∗ was arbitrary, Eq. 18 follows.
Now assume Eq. 18 and suppose that Gn(vn) → γ ∈ (0, 1) for some sequence

vn. If along some subsequence {nk}
sup
k

nk

(

1 − F(vnk
)
) ≤ M < +∞,

then for 1 > δ > γ and large k

1 > δ ≥ Gnk (vnk
) = exp

( − nk(1 − G(vnk
))

) + o(1)

= exp
( − nk(1 − F(vnk

))
)
(

1−G(vnk
)
)

/(1−F(vnk
)) + o(1)

≥ exp
(

−M(1−G(vnk
))/(1−F(vnk

)))
)

+ o(1) → 1.

This is a contradiction and so n(1 − F(vn)) → ∞ and Eq. 19 follows with γ ′ = 0.
It remains to show that Eq. 19 with given {vn}, γ ∈ (0, 1) and γ ′ = 0 implies that

the extremal index is 0. First notice that for each t ≥ 0 and as n → ∞
G[nt](vn) = (

Gn(vn)
)t + o(1) = γ t + o(1). (20)

Then observe that γ ′ = 0 gives

n
(

1 − F(vn)) → ∞. (21)

Now suppose that for some τ ∈ (0, +∞)

n(1 − F(un)) → τ, (22)

and along a subsequence {nk}
lim

k→∞ Gnk (unk
) = β < 1. (23)
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Take t > 0 so small that γ t > β. By Eqs. 23 and 20

lim
k→∞ Gnk (unk

) = β < γ t = lim
k→∞ Gnk

(

v[nk/t]
)

.

It follows that eventually unk
< v[nk/t], hence by Eqs. 21 and 22

+∞ > τ = lim
k→∞ nk

(

1 − F(unk
)
) ≥ lim sup

k→∞
nk

(

1 − F(v[nk/t])
)

≥ lim sup
k→∞

(1/t)[nk/t](1 − F(v[nk/t])
) = +∞.

We thus obtained a contradiction and so limn→∞ P
(

Mn ≤ un

) = Gn(un)+o(1) = 1
for any sequence satisfying Eq. 22.

Remark 4 Condition B∞(vn) is considered here for its elegance and concise form.
Theorem 2 shows that it is a synonym for the statement “Condition BT (vn) holds
for each T > 0”. And it is the latter that is checkable in most models, as shown in
Section 5.

Remark 5 O’Brien (1987) introduced Condition AIM(vn)which was the direct inspi-
ration for our Conditions B∞(vn) and BT (vn). A stationary sequence {Xj } is said to
have asymptotic independence of maxima (AIM) relative to a sequence {vn} of real
numbers if there exists a sequence rn of positive integers with rn = o(n) such that

max
p,q,r≥rn,
p+r+q≤n

∣
∣P

(

Mp ≤ vn, Mp+r,p+r+q ≤ vn,
) − P

(

Mp ≤ vn

)

P
(

Mq ≤ vn

)∣
∣ → 0,

as n → ∞, where Mm,n = maxm≤j≤n Xj .
We prefer conditions like B∞(vn) and BT (vn) for three reasons. First, as we could

see above, they are necessary and being independent of any separating sequence rn
are much more convenient in theoretical considerations. Second, finding the proper
length of the separating gap rn does not need to be easy, as the proofs given in Section
5 show. And finally - the name AIM is misleading, for there might be no asymptotic
independence at all, as it is demonstrated by the following theorem.

Theorem 4 There exists a stationary sequence {Xj } which admits a continuous
phantom distribution function, has the extremal index θ = 0 and is non-ergodic.

Proof We shall construct {Xj } as a mixture of i.i.d. sequences. Let Ω = N × R∞
and let Π((k, x1, x2, . . .)) = k, Xj((k, x1, x2, . . .)) = xj , for j = 1, 2, . . .. Choose a
strictly increasing sequence {vn} ∈ R and for k ∈ N define a purely jump distribution
function Fk by

Fk(x) =
{

0 if x < vk2,

1 − 1/n if vn ≤ x < vn+1, n ≥ k2.

Now set

P(Π = k) = 1

k(k + 1)
, k = 1, 2, . . . ,
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and define the conditional distribution of (X1, X2, . . .) given Π = k as a product
μk ×μk ×μk ×· · · , where the probability measure μk corresponds to the distribution
function Fk .

We have

P
(

Mn ≤ vn

) =
∞
∑

k=1

P(Π = k)Fn
k (vn)

and for each k

Fn
k (vn) = exp(−n(1 − Fk(vn))) + o(1).

But

n(1 − Fk(vn)) = n
(

I (k >
√

n) + (1/n)I (k ≤ √
n)

)

= 1 if n is large enough,

and so
P
(

Mn ≤ vn

) → exp(−1).
Similarly, for each t ≥ 0

P
(

M[nt] ≤ vn

) =
∞
∑

k=1

P(Π = k)F
[nt]
k (vn)

=
∞
∑

k=1

P(Π = k) exp(−[nt](1 − Fk(vn))) + o(1) (24)

→ exp(−t).

Hence it follows from Theorem 2 (v) that {Xj } admits a continuous phantom distri-
bution function G given by Eq. 13 with γ = e−1. In particular Gn(vn) → γ ∈ (0, 1).
In view of (iii) in Theorem 3, {Xj } has the extremal index θ = 0 provided nP

(

X1 >

vn

) → ∞. This is so, indeed.

nP
(

X1 > vn

) =
∞
∑

k=1

P(Π = k)n(1 − Fk(vn))

= n

∞
∑

k=1

1

k(k + 1)

(

1I (k >
√

n) + (1/n)I (k ≤ √
n)

)

= n

∞
∑

k=[√n]+1

1

k(k + 1)
+

[√n]
∑

k=1

1

k(k + 1)

≥ n

[√n] + 1
→ ∞. (25)

To complete the proof let us notice that any set {Π = k} is invariant for our
stationary sequence and so {Xj } is non-ergodic.

3 Phantom distributions for regenerative processes

Stochastic processes with regenerative structure provide a natural framework for
comparison with some i.i.d. sequence. We refer to Chapters VI and VII in
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Asmussen (2003) for a general theory of regenerative processes. Here we shall adopt
a minimal formalism, corresponding to limit theorems for maxima. Suppose that
there exist integer-valued random variables 0 < S0 < S1 < S2 < · · · , representing
“regeneration times”. Denote by

W0 = S0, W1 = S1 − S0, W2 = S2 − S1, . . . ,

the length of the consecutive regeneration cycle and by

Y0 = max
0≤j<S0

Xj , Y1 = max
S0≤j<S1

Xj , Y2 = max
S1≤j<S2

Xj , . . .

the maxima over the regeneration cycles. We assume that
(

W0, Y0
)

,
(

W1, Y1
)

,
(

W2, Y2
)

, . . . , are independent,
(

W1, Y1
)

,
(

W2, Y2
)

, . . . , are identically distributed.
(26)

With this notation we have the following variant of Theorem 3.1 in Rootzén (1988).

Theorem 5 If μ = EW1 < +∞ and

P

(

Y0 > max
1≤j≤n

Yj

)

→ 0, as n → ∞, (27)

then {Xj } admits a continuous phantom distribution function if, and only if, the
distribution function of Y1 is regular.

In such a case G(x) = P
1/μ

(

Y1 ≤ x
)

is a regular phantom distribution function
for {Xj }.

Proof Rootzén (1988), p. 375, proves that

sup
x∈R

∣
∣P

(

Mn ≤ x
) − Gn(x)

∣
∣ → 0, as n → ∞.

If P
(

Y1 ≤ x
)

is regular, so is G(x) = P
1/μ

(

Y1 ≤ x
)

, hence {Xj } admits a regular
phantom distribution function and by Theorem 2 also a continuous phantom distribu-
tion function. Conversely, if {Xj } admits a continuous phantom distribution G′(x),
then by Theorem 1 G(x) is regular and so P

(

Y1 ≤ x
) = Gμ(x) is also regular.

It follows from the above theorem that even if we are given a regenerative struc-
ture and are able to check both Eq. 27 and EW1 < +∞, we still need additional
information in order to obtain the regularity of the distribution of the maximum over
the cycle. In formulas Eqs. 28 and 29 below we show how to do that for Lindley’s
processes with subexponential steps.

Example 1 (Lindley process)
In general we follow (Asmussen 1998), but we have changed the notation to

comply with the rest of our paper. Let

Xj+1 = (

Xj + Zj

)+
, j = 1, 2, . . . ,
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where Z1, Z2, . . . are i.i.d. with a distribution function H and mean −m < 0 and X0
is independent of {Zj } and distributed according to the unique stationary distribu-
tion F . Suppose that H is subexponential, i.e. strictly tail-equivalent to a distribution
function B(x) concentrated on (0, ∞) and such that

1 − B∗2(x)

1 − B(x)
→ 2, as x → ∞.

Then {Xj } is a stationary process with regenerative structure {(Wj , Yj )} satisfying
Eq. 26 and μ = EW1 < ∞. In particular, Theorem 5 applies to {Xj }.

Moreover, Theorem 2.1 of Asmussen (1998) shows that

P
(

Y1 > x
)

μ
(

1 − H(x)
) → 1, as x → ∞.

It follows, that G(x) = P
1/μ

(

Y1 ≤ x
)

is strictly tail-equivalent with H(x). The
regularity of H is implied by the subexponentiality. Indeed, it is well-known (see e.g.
Lemma 1.3.5 in Embrechts et al. (1997)) that for each y > 0

1 − H(x − y)

1 − H(x)
→ 1, as x → ∞. (28)

Hence we have for any y > 0

1 ≤ 1 − H(x−)

1 − H(x)
≤ 1 − H(x − y)

1 − H(x)
→ 1, as x → ∞. (29)

So far we have established that H is a regular phantom distribution function for
{Xj }. Notice that this means

sup
x∈R

∣
∣
∣
∣
P

(

max
1≤j≤n

Xj ≤ x

)

− P

(

max
1≤j≤n

Zj ≤ x

)∣
∣
∣
∣
→ 0, as n → ∞.

In order to prove that {Xj } has the extremal index 0, we can apply our Theorem 3
(ii). Following (Asmussen 1998) let us invoke the known asymptotics of the tail of
the stationary distribution F . By Embrechts and Veraverbeke (1982) we have

1 − F(x) ∼ 1

m

∫ ∞

x

(

1 − H(u)
)

du, as x → ∞,

what is heavier than 1 − H(x) for subexponential H :

1 − H(x)

1 − F(x)
→ 0, as x → ∞.

Remark 6 Lindley’s process is a simple model which allows (almost) explicit calcu-
lations of basic characteristics. In general such situation is very seldom. Therefore the
indirect methods of construction of a phantom distribution function, presented in the
next section and based on mixing Condition B∞(vn) and properties of the marginals,
seem to be more applicable.
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4 Phantom distribution functions for weakly dependent sequences

4.1 Coefficients of weak dependence

The unified contemporary approach to the weak dependence, developed in
Dedecker et al. (2007), consists in establishing specific bounds on covariances
between classes of functions. The general framework is as follows.

For s ∈ N, letMs be the family of all bounded measurable non-constant functions
f on Rs satisfying

sup
(x1,x2,...,xs )∈Rs

|f (x1, x2, . . . , xs)| ≤ 1.

Define also the Lipschitz coefficient Ms � f �→ Lip f ∈ R+ ∪ {+∞} as
Lip f = sup

(y1,...,ys )�=(x1,...,xs )

|f (y1, . . . , ys) − f (x1, . . . , xs)|
‖y1 − x1‖ + · · · + ‖ys − xs‖ .

Finally, set M = ∪s∈NMs .
In general we will say that a time series {Xj } is ε-weakly dependent, if there exists

a mapping
Ψε : M × M → R+

such that

ε(r) = sup

∣
∣Cov

(

f (Xi1 , . . . , Xis ), g(Xj1 , . . . , Xjt )
)∣
∣

Ψε(f, g)
−→ 0, as r → ∞, (30)

where the supremum is taken over all pairs of functions f ∈ Ms , g ∈ Mt and sets
of indices

i1 ≤ i2 ≤ · · · ≤ is ≤ j1 ≤ j2 ≤ · · · ≤ jt

with a gap of size r:
j1 − is ≥ r.

By selecting a mapping Ψε we obtain various coefficients of dependence.

Ψα(f, g) = 4, ε(r) = α(r) (α − mixing).

Ψθ (f, g) = t Lip g, ε(r) = θ(r) (θ − dependence).

Ψη(f, g) = s Lip f + t Lip g, ε(r) = η(r)(η − dependence).

Ψκ(f, g) = st Lip f · Lip g, ε(r) = κ(r)(κ − dependence).

Ψλ(f, g) = s Lip f + t Lip g + st Lip f · Lip g, ε(r) = λ(r)(λ − dependence).

Notice that α-mixing (often called also strong mixing) and θ -dependence
are causal, in the sense that they provide a bound for covariances with arbi-
trary measurable function f of the past, while η, κ or λ−dependencies are
non-causal.

4.2 Stationary α-mixing sequences with a continuous marginal distribution

Theorem 6 If {Xj } is a stationary α-mixing sequence with continuous marginals,
then it admits a continuous phantom distribution function.
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Proof is given in Section 5.3.

Example 2 (Random walk Metropolis algorithm with heavy-tailed marginals)
Let {Zj } is an i.i.d. sequence with the marginal distribution function H given

by the proposal density h, which is symmetric about 0, and let {Uj } be an i.i.d.
sequence distributed uniformly on [0, 1], independent of {Zj }. Choose and fix the
target probability density f (x).

Let us consider a Markov chain given by the recursive equation

Xj+1 = Xj + Zj+11
{

Uj+1 ≤ ψ
(

Xj , Xj + Zj+1
)}

, (31)

where ψ(x, y) is defined as

ψ(x, y) =
{

min
{

f (y)/f (x), 1
}

if f (x) > 0,
1 if f (x) = 0.

(32)

Standard arguments based on the detailed balance equation f (x)ψ(x, y) =
f (y)ψ(y, x) and the assumed symmetry of h show that f is the density of the
stationary distribution function F for {Xj }. We refer to Roberts et al. (2006)
for discussion, references and a background relating such Markov chains to the
well-known random walk Metropolis algorithm and Markov Chain Monte Carlo
methods.

Here we focus on the problem of existence of a phantom distribution func-
tion for {Xj }. Since the marginal distribution function F is continuous (when we
run the process under the initial stationary distribution F ) we can apply The-
orem 6 provided we can verify α-mixing of {Xj }. In the literature on Markov
chains it is customary to assume that the chain is “ψ-irreducible and aperi-
odic” (see e.g. Jarner and Roberts (2007)). But this is almost like assuming
α-mixing itself. Since the transition function for the random walk Metropolis algo-
rithm is relatively simple we decided to provide a particular and suitable for
simulations set of sufficient conditions imposed on h and f , in order to con-
vince the reader that any target density exhibiting minimum regularity leads to
α-mixing.

Proposition 2 Suppose the proposal density h and the target density f satisfy the
following conditions.

(i) The set S = {x ∈ R ; f (x) > 0} is connected.
(ii) In some interval [a, b], a < b, a, b ∈ S, f is monotone and without intervals

of constancy of length greater than (b − a)/4.
(iii) h is symmetric around 0 and for some kh > 0

h(x) ≥ kh, if |x| ≤ (b − a)/3. (33)

Then {Xj } is Harris recurrent and aperiodic, and, in particular, α-mixing.
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Proof First we will prove that (ii) implies strong aperiodicity. Indeed,

P
(

Xj = Xj+1
) = P

(

Uj+1 > ψ
(

Xj , Xj + Zj+1
))

= E
(

1 − ψ
(

Xj , Xj + Zj+1
))

= E

(

1 − f (Xj + Zj )

f (Xj )

)

1{f (Xj + Zj ) < f (Xj )}1{f (Xj ) > 0}.

This expression will be positive if we are able to show that f (Xj + Zj ) < f (Xj )

with positive probability. Assume that f is non-increasing on [a, b] (the other case
is completely analogous). Then f (a) ≥ f (x) ≥ f (b) > 0, x ∈ [a, b], hence

ψ(x, y) ≥ f (b)/f (a) > 0, x, y ∈ [a, b]. (34)

Set for notational convenience η = (b − a)/3 and observe that we have

P
(

f (Xj + Zj ) < f (Xj )
) =

∫

dx f (x)

∫

dz h(z) 1{f (x + z) < f (x)}

≥
∫ b−η

a

dx f (x)

∫ η

0
dz h(z) 1{f (x + z) < f (x)}

≥ f (b)
2

3
(b − a)kh

1

12
(b − a) = 1

18
f (b)kh(b − a)2 > 0.

Next we shall choose a “small” set. Set C = [a +η, b −η]. Notice that x ∈ C and
z ∈ [−η, η] imply x + z ∈ [a, b] and by Eq. 34

ψ(x, x + z) ≥ f (b)/f (a).

Denote by P(x, B) a regular version of the conditional distribution P
(

Xn+1 ∈
B

∣
∣Xn = x

)

. We have for B ⊂ C and x ∈ C

P(x, B) = δB(x)

∫

dz h(z)
(

1 − ψ(x, x + z)
) +

∫

dz h(z) 1B−x(z)ψ(x, x + z)

≥
∫

dz h(z) 1B−x(z)ψ(x, x + z) ≥ kh

∫ η

−η

dz 1B−x(z)ψ(x, x + z)

≥ kh

(

f (b)/f (a)
)
∫ η

−η

dz 1B−x(z) = kC�(B − x) = kc�(B),

where � is the Lebesgue measure and the next-to-last equality holds because B −x ⊂
C − C = [−η, η].

It is then a routine (although not straight-forward) application of Theorem 13.3.4
(ii) from Meyn and Tweedie (2009) (with d = 1) or Theorems 21.5 and 21.6 from
Bradley (2007) that gives us α-mixing of {Xj }.

We have proved that any random walk Metropolis algorithm built upon functions
h and f satisfying conditions (i)-(iii) of Proposition 2 admits a continuous phantom
distribution function.

It is interesting that in a wide class of target densities the extremal index of the
corresponding Metropolis Markov chain is zero. Theorem 3.1 of Roberts et al. (2006)
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asserts that this is the case when the target distribution function has the property that
for some m > 0

lim
u→∞

1 − F(u + m)

1 − F(u)
= 1. (35)

Remark 7 Random walk Metropolis algorithms are easy for simulation. Therefore
their partial maxima can be used as a natural reference for processes which admit
phantom distribution functions, but their extremal index is zero. To be more precise,
with each random walk Metropolis algorithm {Xj } we can associate all stationary
processes {X′

j } such that for some θ ∈ (0, ∞)

sup
x∈R

∣
∣P

(

max
1≤j≤n

X′
j ≤ x

)

− P
θ

(

max
1≤j≤n

Xj ≤ x

)
∣
∣ → 0, as n → ∞.

Following Jakubowski (1991) we can say that
{

X′
j

}

has the relative extremal index

θ with respect to {Xj } and we can investigate asymptotic properties of
{

M ′
n

}

through
those of {Mn}.

Remark 8 Our random walk Metropolis algorithms admit regenerative structures,
similarly to the Lindley process. The difference is that it is rather hopeless task to
provide a detailed description for the tail probabilities of the cycle maximum {Yj }.
We know, however, by Theorem 5 and Theorem 1 that P1/μ

(

Y1 ≤ x) must be strictly
tail equivalent to the phantom distribution function obtained through our Theorem 6.
This distribution function can in turn be recovered form the driving sequence {vn}
(such that limn→∞ P

(

Mn ≤ vn

) = γ , see Eq. 13). Thus if we are able to estimate
the shape of the sequence {vn} we are also given some information on the tails of the
cycle maximum. Moreover, this relation brings some insight into the interpretation
of the phantom distribution function when the extremal index is zero.

4.3 Concentration assumption and weak dependence

The cases of other dependencies are not as simple as α-mixing and require an
additional assumption on the marginal distribution function F .

Concentration assumption There exist constants b > 0 and B > 0 such that

P
(

X1 ∈ (x, x + u]) = F(x + u) − F(x) ≤ Bub, x ∈ R, u > 0. (36)

Remark 9 The concentration assumption is not very restrictive in the class of abso-
lutely continuous distributions. For example, if F has a bounded density p, then Eq.
36 holds with b = 1 and B = supx p(x). Another example is provided by the Beta
density

p(x) = xc−1(1 − x)d−1

B(c, d)
, x ∈ (0, 1),

with 0 < c, d < 1. In this case b = c ∧ d. Notice that only b ≤ 1 is possible.

The following theorems are proved in Sections 5.4 – 5.6, respectively.
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Theorem 7 If {Xj } is a stationary sequence with continuous marginals satisfying
Eq. 36, which is θ -weakly dependent and fulfills

θ(r) = O
(

r−β
)

, for some β >
1 + √

5

2

(

1 + 1

b

)

,

then it admits a continuous phantom distribution function.

Theorem 8 If {Xj } is a stationary sequence with continuous marginals satisfying
Eq. 36, which is η-weakly dependent and fulfills

η(r) = O(r−β), for some β > 2
(

1 + 1

b

)

,

then it admits a continuous phantom distribution function.

Theorem 9 If {Xj } is a stationary sequence with continuous marginals satisfying
Eq. 36, which is κ-weakly dependent and fulfills

κ(r) = O(r−β), for some β >
(

1 + √
5
)(

1 + 2

b

)

,

then it admits a continuous phantom distribution function.

Remark 10 An inspection of the proof of the above theorem shows that it remains
true if we replace κ- with λ-weak dependence.

4.4 Discontinuous marginals

Let us rewrite first a part of the regularity condition Eq. 4 in the form of
Condition 
0

lim
x→F∗−


F(x)

1 − F(x)
= 0, (37)

where 
F(x) = F(x) − F(x−). We will also need a stronger version, defined for
ξ > 0.
Condition 
ξ

sup
x<F∗−


F(x)

(1 − F(x))1+ξ
≤ MF,ξ < +∞. (38)

Theorem 10 Let {Xj } be a stationary, α-mixing sequence with marginal distribu-
tion function F , which is continuous at F∗. Then it admits a continuous phantom
distribution function provided:

(i) {Xj } is m-dependent (i.e. α(m + 1) = 0) and F satisfies 
0;
(ii) For some constants C > 0 and ρ ∈ [0, 1) we have α(n) ≤ Cρn and F satisfies


ξ for some ξ > 0;
(iii) For some constants C > 0 and β > 0 we have α(n) ≤ Cn−β and F satisfies


ξ for some ξ > 1/β.
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Remark 11 See Jarner and Roberts (2007) for conditions giving the polynomial rate
of α-mixing in random walk Metropolis algorithms.

5 Proofs of Theorems 6 – 10

5.1 Basic computations involving covariances

Let {Xj } be a stationary sequence of real valued random variables with a marginal
distribution function F . Take γ ∈ (0, 1) and define

vn = inf{x ; P(Mn ≤ x) ≥ γ }. (39)

Clearly, {vn} is a non-decreasing sequence and we have

P(Mn ≤ vn) ≥ γ. (40)

Lemma 1 Set

Zk(m) = max{Xm, X2m, . . . , Xkm}, k, m ∈ N. (41)

If k · m ≤ n then

γ ≤ P
(

Mn ≤ vn

) ≤ P
(

X1 ≤ vn

)k + kCn(m; k), (42)

where

Cn(m; k) = max
2≤j≤k

∣
∣P

(

Zj (m) ≤ vn

) − P
(

X1 ≤ vn

)

P
(

Zj−1(m) ≤ vn

)∣
∣ .

Proof If k · m ≤ n, then

γ ≤ P
(

Mn ≤ vn

) ≤ P
(

Mkm ≤ vn

) ≤ P
(

Zk(m) ≤ vn

)

≤ P
(

Xkm ≤ vn

)

P
(

Zk−1(m) ≤ vn

)

+ ∣
∣P

(

Zk(m) ≤ vn

) − P
(

Xkm ≤ vn

)

P
(

Zk−1(m) ≤ vn

)∣
∣

≤ P
(

X1 ≤ vn

)2
P
(

Zk−2(m) ≤ vn

) + Cn(m; k)

+P
(

X1 ≤ vn

) ∣
∣P

(

Zk−1(m) ≤ vn

) − P
(

X(k−1)m ≤ vn

)

P
(

Zk−2(m) ≤ vn

)∣
∣

≤ P
(

X1 ≤ vn

)2
P
(

Zk−2(m) ≤ vn

) + 2Cn(m; k)

≤ · · · ≤ P
(

X1 ≤ vn

)k + kCn(m; k).

This concludes the proof.

Proposition 3 If kn → ∞ and mn ∈ N is such that kn · mn ≤ n and

knCn(mn; kn) → 0, as n → ∞, (43)

then
sup
n

knP
(

X1 > vn

)

< +∞. (44)
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Proof For sufficiently large n we have knCn(mn; kn) ≤ γ /2. For such n relation Eq.
42 gives

γ /2 ≤ P
(

X1 ≤ vn

)kn .

Since {vn} is a non-decreasing sequence, c = limn→∞ P
(

X1 ≤ vn

)

exists, and
γ /2 ≤ ckn, n ∈ N. It follows that c = 1 and for sufficiently large n

knP
(

X1 > vn

) ∼ −kn ln
(

P
(

X1 ≤ vn

)) ≤ ln 3 − ln γ.

5.2 Checking Condition BT (vn)

Proposition 4 Let {Xj } be a stationary sequence and {vn} be a sequence of levels.
Suppose {rn} is such that

rnP
(

X1 > vn

) −→ 0. (45)

Then Condition BT (vn) holds iff for all sequences pn > rn and qn, pn + qn ≤ T · n,
Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
) −→ 0, (46)

where hn(x) = 1(x ≤ vn) and Mp:q = maxp<j≤q Xj .

Proof Condition BT (vn) is equivalent to the statement that for arbitrary sequences
{pn}, {qn} ⊂ N satisfying pn + qn ≤ T · n we have

P
(

Mpn+qn ≤ vn

) = P
(

Mpn ≤ vn

)

P
(

Mqn ≤ vn

) + o(1). (47)

Let {rn} satisfies Eq. 45. First let us prove that Eq. 46 implies Condition BT (vn).
Take any {pn} and {qn} satisfying pn + qn ≤ T · n. Suppose that pn′ ≤ rn′ along

a subsequence {n′}. Then we have P(

Mpn′ ≤ vn′
) ≥ P

(

Mrn′ ≤ vn′
) → 1 as well as

0 ≤ P
(

Mqn′ ≤ vn′
) − P

(

Mpn′+qn′ ≤ vn′
) ≤ P

(

Mpn′ > vn′
)

≤ P
(

Mrn′ > vn′
) ≤ rn′P

(

X1 > vn′
) → 0,

And so

P
(

Mpn′+qn′ ≤ vn′
) = P

(

Mqn′ ≤ vn′
) + o(1)

= P
(

Mpn′ ≤ vn′
)

P
(

Mqn′ ≤ vn′
) + o(1).

Hence along the subsequence {n′} Eq. 47 holds. So we may and do assume that
pn > rn, n ∈ N. Similarly as above we obtain

P
(

Mpn ≤ vn

) = P
(

Mpn−rn ≤ vn

) + o(1). (48)

P
(

Mpn+qn ≤ vn

) = P
(

Mpn−rn ≤ vn, Mpn:pn+qn ≤ vn

) + o(1). (49)

We have

P
(

Mpn+qn ≤ vn

) − P
(

Mpn ≤ vn

)

P
(

Mqn ≤ vn

)

= P
(

Mpn−rn ≤ vn, Mpn:pn+qn ≤ vn

) − P
(

Mpn−rn ≤ vn

)

P
(

Mqn ≤ vn

) + o(1)

= Cov
(

hn(Mpn−rn), hn(Mpn:pn+qn)
) −→ 0. by Eq. 46
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Thus under Eq. 45 Condition BT (vn) is implied by Eq. 46.
To prove the converse implication take any pn > rn and qn such that pn + qn ≤

T · n and observe that by Eqs. (48) and (49)

Cov
(

hn(Mpn−rn), hn(Mpn:pn+qn)
)

= Cov
(

hn(Mpn), hn(Mpn:pn+qn)
) + o(1) −→ 0. by (47)

Corollary 1 If {Xj } is stationary and α-mixing and {vn} is such that P
(

X1 > vn

) →
0, then Condition B∞(vn) holds.

Proof Take any {rn} ⊂ N, rn → ∞ such that rnP
(

X1 > vn

) → 0. Then
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)∣
∣ ≤ α(rn) −→ 0,

Remark 12 Throughout this section the levels {vn} are given by formula (39). For
such sequences {vn} there is no a priori reason for P

(

X1 > vn

) → 0. Moreover,
it is also important to know how fast P

(

X1 > vn

) → 0. Proposition 3 shows
how to answer both questions if we are given estimates for covariances of suitable
functionals of {Xj }.

The next result demonstrates how Proposition 3 works in the simplest case of
α-mixing.

Proposition 5 If {Xj } is stationary and α-mixing and {vn} are defined by Eq. 39,
then knα(mn) → 0 implies

sup
n

knP
(

X1 > vn

)

< +∞.

In particular, if α(r) = O(r−β), for some β > 0, then for every δ < β/(1 + β) we
have

lim
n→∞ nδ

P
(

X1 > vn

) = 0. (50)

Proof By stationarity, the very definition of α-mixing and with Zj (m) defined by
Eq. 41

∣
∣
∣P

(

Zj (m) ≤ vn

) − P
(

X1 ≤ vn

)

P
(

Zj−1(m) ≤ vn

)
∣
∣
∣ =

=
∣
∣
∣P

(

Zj−1(m) ≤ vn, Xjm ≤ vn

) − P
(

Xjm ≤ vn

)

P
(

Zj−1(m) ≤ vn

)
∣
∣
∣

≤ α(m).

It follows that Cn(m; k) ≤ α(m) and by Proposition 3 knα(mn) → 0 implies the
boundedness of knP

(

X1 > vn

)

.
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Now suppose that 0 < δ < β/(1 + β). Choose δ′ satisfying δ < δ′ < β/(1 + β).
Set kn = [nδ′ ] ∼ nδ′

and mn = [n/kn] ∼ n1−δ′
. Then

knα(mn) = O
(

nδ′
(n1−δ′

)−β
) = O

(

nδ′(1+β)−β
) −→ 0.

Hence supn nδ′
P
(

X1 > vn

)

< +∞ and so Eq. 50 holds.

Remark 13 α-mixing gives direct estimates for both the covariances in Eq. 46 and
the quantities Cn(m, k) in Proposition 3. The other coefficients of weak depen-
dence defined in Section 4.1 provide estimates for smooth (Lipschitz) functionals of
{Xj }. Therefore, similarly as in the proof in Lemma 4.1 page 68 in Dedecker et al.
(2007), we will consider a natural 1/u−Lipschitz approximation hn,u of the function
hn(x) = 1{x≤vn}, which is given by

hn,u(x) =
⎧

⎨

⎩

1 if x ≤ vn,

−(1/u)(x − vn) + 1 if vn < x ≤ vn + u,

0 if x > vn + u.

(51)

We have then two basic estimates for Cn(m, k).

Lemma 2 Let {Xj } be stationary and F satisfies Eq. 36 with some constants B, b >

0. Set Yn,j = hn(Xm) · · · hn(X(j−1)m) = 1
(

Zj−1(m) ≤ vn

)

, where Zj (m) is defined
by Eq. 41. Then

Cn(m, k) ≤ max
2≤j≤k

∣
∣
∣Cov

(

Yn,j , hn,u(Xjm)
)
∣
∣
∣ + Bub.

Proof We have
∣
∣
∣P

(

Zj (m) ≤ vn

) − P
(

Xjm ≤ vn

)

P
(

Zj−1(m) ≤ vn

)
∣
∣
∣ =

∣
∣
∣Cov

(

Yn,j , hn(Xjm)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

Yn,j , hn,u(Xjm)
)
∣
∣
∣ +

∣
∣
∣Cov

(

Yn,j , hn(Xjm) − hn,u(Xjm)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

Yn,j , hn,u(Xjm)
)
∣
∣
∣ + E

∣
∣hn(Xjm) − hn,u(Xjm)

)
∣
∣
∣

≤
∣
∣
∣Cov

(

Yn,j , hn,u(Xjm)
)
∣
∣
∣ + (

F(vn + u) − F(vn)
)

≤
∣
∣
∣Cov

(

Yn,j , hn,u(Xjm)
)
∣
∣
∣ + Bub.

Lemma 3 Let {Xj } be stationary and F satisfies Eq. 36 with some constants B, b >

0. Then
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + Bqnu

b.
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Proof Similarly as before
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣ ≤

∣
∣
∣Cov

(

hn(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣

+
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn) − hn,u(Mpn:pn+qn)
))

∣
∣
∣

≤
∣
∣
∣Cov

(

hn(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + P

(

vn < Mpn:pn+qn ≤ vn + u
)

≤
∣
∣
∣Cov

(

hn(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + qnBub.

Lemma 4 In assumptions and notations of Lemma 2 we have

Cn(m, k) ≤ max
2≤j≤k

∣
∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)
∣
∣
∣ + Bkub.

Proof
∣
∣Cov

(

Yn,j , hn(Xjm)
)∣
∣

≤ ∣
∣Cov

(

Yn,j , hn,u(Xjm)
)∣
∣ + ∣

∣Cov
(

Yn,j , hn(Xjm) − hn,u(Xjm)
)∣
∣

≤ ∣
∣Cov

(

Yn,j − hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣

+ ∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣ + E

∣
∣hn(Xjm) − hn,u(Xjm)

)
∣
∣
∣

≤ E
∣
∣Yn,j − hn,u(Zj−1(m))

∣
∣ + ∣

∣Cov
(

hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣ + Bub

≤ P
(

vn < Zj−1(m) ≤ vn + u
)

+ ∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣ + Bub

≤ (j − 1)P
(

vn < X1 ≤ vn + u
)

+ ∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣ + Bub

≤ ∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)∣
∣ + jBub.

Lemma 5 Let {Xj } be stationary and F satisfies Eq. 36 with some constants B, b >

0. Then
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + B(qn + pn)u

b.
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Proof
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn) − hn,u(Mpn:pn+qn)
))

∣
∣
∣

+
∣
∣
∣Cov

(

hn(Mpn−rn) − hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣

+
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣

≤ P
(

vn < Mpn:pn+qn ≤ vn + u
) + P

(

vn < Mpn−rn ≤ vn + u
)

+
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣

≤ (pn + qn)Bub +
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣.

5.3 Proof of Theorem 6

Suppose that {Xj } has a continuous marginal distribution function F . Let us define,
as in Eq. 39, vn = inf{x ; P(

Mn ≤ x
) ≥ γ }, for some γ ∈ (0, 1). Since F(x) is

continuous, so is the distribution function of Mn, for each n ∈ N. Hence

P
(

Mn ≤ vn

) = γ, n ∈ N, (52)

and relation Eq. 9 holds. Thus in view of Theorem 2 (iii) or (iv), if we want to find
a phantom distribution function for {Xj } we have to verify either Condition B∞(vn)

or Condition BT (vn), for each T > 0.
Suppose that α(r) → 0, as r → ∞, and let kn → ∞ be such that kn ≤ √

n

and knα(
√

n) → 0. Then by Proposition 5 supn knP
(

X1 > vn

)

< +∞, and so
P
(

X1 > vn

) → 0. Hence to check Condition B∞(vn) we can apply Corollary 1.

5.4 Proof of Theorem 7

Since F is continuous by the concentration assumption (36), we can define vn by Eq.
39 and then Eq. 52 holds. So it remains to verify Condition BT (vn) for any T > 0 or
by Proposition 4 to check Eq. 46 with {rn} such that rnP

(

X1 > vn

) → 0.
The coefficient θ is causal, so Lemmas 2 and 3 are applicable. By the latter and

the very definition of θ we have
∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + Bqnu

b

≤ qn

(
1

u
θ(rn) + Bub

)

≤ T · n

(
1

u
θ(rn) + Bub

)

= T (1 + B) · n · θb/(1+b)(rn),
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where in the last equality we substituted u = θ1/(1+b)(rn).
We look for rn of the form [nτ ] ∼ nτ , for some 0 < τ < 1. From the above

estimate we need n · θb/(1+b)(rn) = O(n1−τ ·βb/(1+b)) → 0 or

(1 + b)/(bβ) < τ.

We have to check whether for some τ satisfying the above bound nτ
P
(

X1 > vn

) →
0. By Proposition 3 it is enough to check whether for some 1 − τ > δ > 0

nτ+δCn

(

[n1−τ−δ]; [nτ+δ]
)

→ 0.

By Lemma 2 and the trick with substitution u = θ1/(1+b)(m) we have

Cn(m; k) ≤ 1

u
θ(m) + Bub = (1 + B)θb/(1+b)(m).

So in this case we need nτ+δ
(

n1−τ−δ
)−β(b/(1+b)) = n

(

(τ+δ)(1+b+βb)−βb
)

/(1+b) → 0
or

τ + δ <
βb

1 + b + βb
.

For b fixed, τ > 0 satisfying both required bounds does exist iff β > (1+ 1
b
)ϕ, where

ϕ = 1 + √
5

2
≈ 1.618 . . .

is the Golden Ratio.

5.5 Proof of Theorem 8

First let us observe that hn,u(x1 ∨ x2 ∨ · · · ∨ xj ) is a 1/u-Lipschitz approximation of
hn(x1 ∨ x2 ∨ · · · ∨ xj ) = 1

(

x1 ≤ vn, x2 ≤ vn, . . . , xj ≤ vn

)

. Indeed, for each j ≥ 1
the function mj : (x1, . . . , xj ) �→ x1 ∨ x2 ∨ · · · ∨ xj is 1−Lipschitz in the sense that
|mj(x)−mj(y)| ≤ |x1 − y1| + · · · + |xj − yj |. Hence we have Lip (hn,u ◦mj) = 1

u
.

Next we follow the proof of Theorem 7, using Lemmas 4 and 5 due to the non-
causality of the coefficient η. We have by Lemma 5, the definition of η(r) and the
trick with substitution u = η1/(1+b)(rn)

∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + B(qn + pn)u

b

≤ pn + qn

u
η(rn) + B(qn + pn)u

b

≤ T · n
(η(rn)

u
+ Bub

) = T (1 + B) · n · ηb/(1+b)(rn).

Setting rn = [nτ ] ∼ nτ , for some 0 < τ < 1, we need, as for θ -dependence,
(1 + b)/(bβ) < τ .
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By Lemma 4 and substituting u = η1/(1+b)(m) we have

Cn(m, k) ≤ max
2≤j≤k

∣
∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)
∣
∣
∣ + Bkub

≤ max
2≤j≤k

(j − 1) + 1

u
η(m) + Bkub

= k

(
η(m)

u
+ Bub

)

= (1 + B)kηb/(1+b)(m).

By Proposition 3 we need for some 1 − τ > δ > 0

nτ+δnτ+δ
(

n1−τ−δ
)−βb/(1+b) → 0

or τ + δ < βb/(2 + 2b + βb). For b fixed, τ > 0 satisfying both required bounds

does exist iff β > 2
(

1 + 1
b

)

.

5.6 Proof of Theorem 9

We follow the proof of Theorem 8. By Lemma 5, the definition of κ(r) and the
substitution u = η1/(2+b)(rn) we have

∣
∣
∣Cov

(

hn(Mpn−rn), hn(Mpn:pn+qn)
)
∣
∣
∣

≤
∣
∣
∣Cov

(

hn,u(Mpn−rn), hn,u(Mpn:pn+qn)
)
∣
∣
∣ + B(qn + pn)u

b

≤ pn · qn

u2
κ(rn) + B(qn + pn)u

b

≤ T 2 · n2
(

κ(rn)

u2
+ Bub

)

= T 2(1 + B) · n2 · κb/(2+b)(rn).

Setting rn = [nτ ] ∼ nτ , for some 0 < τ < 1, we need n2 · κb/(2+b)(rn) =
O(n2−τ ·βb/(2+b)) → 0 or 2(2 + b)/(bβ) < τ .

By Lemma 4 and substituting u = κ1/(2+b)(m) we have

Cn(m, k) ≤ max
2≤j≤k

∣
∣
∣Cov

(

hn,u(Zj−1(m)), hn,u(Xjm)
)
∣
∣
∣ + Bkub

≤ max
2≤j≤k

(j − 1) · 1
u2

κ(m) + Bkub

= k

(
κ(m)

u2
+ Bub

)

= (1 + B)kκb/(2+b)(m).

By Proposition 3 we need for some 1 − τ > δ > 0

nτ+δnτ+δ
(

n1−τ−δ
)−βb/(2+b) → 0

or τ + δ < βb/(4+ 2b +βb). For b fixed required τ > 0 exists iff β > 2ϕ
(

1 + 2
b

)

.
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5.7 Proof of Theorem 10

Let us assume that the marginal distribution function F allows jumps. Then the dis-
tribution of Mn is also discontinuous. Hence defining {vn} through Eq. 39 we have
only

P
(

Mn ≤ vn

) ≥ γ, (53)

and we cannot directly conclude that P
(

Mn ≤ vn

) → γ .
On the other hand, Eq. 53 is enough for all results of Sections 5.1 and 5.2 to hold.

In particular, following the proof of Theorem 6, we obtain from Proposition 5 and
Corollary 1 that for α-mixing sequences Condition B∞(vn) is satisfied.

To guarantee that P
(

Mn ≤ vn

) → γ (equivalently: P
(

Mn = vn

) → 0), we need
additional assumptions.

By Proposition 5 we have that

knP
(

X1 > vn

)

< +∞,

whenever knα(mn) → 0 and kn → ∞, knmn ≤ n. In particular, if α(m + 1) = 0,
then

sup
n

[n/(m + 1)]P(

X1 > vn) = L1 < +∞.

If F satisfies 
0, then

P
(

Mn = vn

) ≤ nP
(

X1 = vn

) = nP
(

X1 > vn

)P
(

X1 = vn

)

P
(

X1 > vn

)

≤ (m + 1)L1
P
(

X1 = vn

)

P
(

X1 > vn

) → 0.

Next let us notice that (ii) is implied by (iii), for if ξ is fixed, then the exponential
rate of mixing implies a polynomial rate with arbitrary β > 1/ξ .

So suppose that α(n) ≤ Cn−β , F satisfies 
ξ and 1 < ξβ. Then 1 + ξ < ξβ + ξ

and so 1
1+β

<
ξ

1+ξ
. Let us choose δ such that

1

1 + β
< δ <

ξ

1 + ξ
. (54)

Let mn = [nδ] and let kn = [n/mn]. Then we check that due to δ > 1/(1 + β) that

knα(mn) ≤ Cknmn
−β ∼ Cn(1−δ)n−δβ → 0.

Hence by Proposition 5

sup
n

n1−δ
P
(

X1 > vn

) ≤ L2 < +∞.

Since δ < ξ/(1 + ξ) is equivalent to δ/ξ < (1 − δ), we obtain

P
(

Mn = vn

) ≤ nP
(

X1 = vn

) = P
(

X1 = vn

)

P
(

X1 > vn

)1+ξ
nP

(

X1 > vn

)1+ξ

≤ MF,ξn
1−δ

P
(

X1 > vn

)

nδ
P
(

X1 > vn

)ξ

≤ MF,ξL2

(

nδ/ξ
P
(

X1 > vn

))ξ → 0, since nδ/ξ = o(n1−δ).
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