Tail correlation functions of max-stable processes Construction principles, recovery and diversity of some mixing max-stable processes with identical TCF

Kirstin Strokorb • Felix Ballani • Martin Schlather

Received: 19 February 2014 / Revised: 21 November 2014 / Accepted: 1 December 2014 /
Published online: 25 January 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract

The tail correlation function (TCF) is a popular bivariate extremal dependence measure to summarize data in the domain of attraction of a max-stable process. For the class of TCFs, being largely unexplored so far, several aspects are contributed: (i) generalization of some mixing max-stable processes (ii) transfer of two geostatistical construction principles to max-stable processes, including the turning bands operator (iii) identification of subclasses of TCFs, including M3 processes based on radial monotone shapes (iv) recovery of subclasses of max-stable processes from TCFs (v) parametric classes (iv) diversity of max-stable processes sharing an identical TCF. We conclude that caution should be exercised when using TCFs for statistical inference.

Keywords Brown-Resnick • Extremal coefficient • Mixed moving maxima • Poisson storm • Stationary truncation • Tail dependence • Turning bands

AMS 2000 Subject Classification Primary-60G70; Secondary-60G60

[^0]
1 Introduction

The tail correlation function (TCF) χ of a stationary process X on \mathbb{R}^{d} is defined through the following limit provided that it exists

$$
\chi(t)=\lim _{\tau \uparrow \tau_{\text {up }}} \mathbb{P}\left(X_{t}>\tau \mid X_{o}>\tau\right), \quad t \in \mathbb{R}^{d}
$$

Here, $o \in \mathbb{R}^{d}$ denotes the origin and $\tau_{\text {up }}$ is the upper endpoint of X_{o}. If $\chi(t)=0$, the variables X_{t} and X_{o} are called asymptotically independent. Otherwise $\chi(t)$ expresses the strength of asymptotic dependence. Dating back to Geffroy (1958/1959), Sibuya (1960) and Tiago de Oliveira (1962/63) the bivariate summary statistic $\chi(t)$ is one of the most popular extremal dependence measures that has entered the literature under various names including (upper) tail dependence coefficient (Beirlant et al. 2004; Davis and Mikosch 2009; Falk 2005) or χ - measure (Coles et al. 1999). We chose the name "tail correlation function" in order to emphasize the spatial character of χ and that it is a symmetric positive definite function. Indeed, the TCF χ (or equivalently $\theta:=2-\chi$, see below) was proposed as an extreme value analogue to the usual correlation function (Schlather and Tawn 2003; Smith 1990).

If the process X is max-stable, the TCF χ is equivalent to the extremal coefficient function (ECF)

$$
\theta(t)=\log \mathbb{P}\left(X_{t} \leq \tau, X_{o} \leq \tau\right) / \log \mathbb{P}\left(X_{o} \leq \tau\right), \quad t \in \mathbb{R}^{d}
$$

since $\chi(t)=2-\theta(t)$, see also Eq. 3 below. Note that in the max-stable case the expression on the right-hand side is indeed independent of the threshold τ. Estimators for θ (and, thus, also for χ) can be found for instance in Smith (1990), Schlather and Tawn (2003), Cooley et al (2006) and Naveau et al (2009). Parametric subclasses of max-stable processes have been fitted to environmental spatial data and the ECF θ (that is equivalent to the TCF χ) is usually considered in order to assess the goodness of fit (Blanchet and Davison 2011; Engelke et al. 2012b; Davison and Gholamrezaee 2012; Davison et al. 2012; Schlather and Tawn 2003; Thibaud and Opitz 2014). All these references contain plots comparing non-parametric estimates of extremal coefficients to the theoretical ECFs.

While continuous correlation functions can be characterized by means of Bochner's theorem as Fourier transforms of probability measures, no such characterization is available for the subclass of (continuous) TCFs. At least, Fiebig et al. (2014) show that the set of TCFs on an arbitrary space T is closed under convex combinations, products and pointwise limits and provide necessary conditions for a function to be a tail correlation function. In particular, χ cannot be differentiable except when χ is constant, cf. Schlather and Tawn (2003). Some attempts to recover a max-stable random vector from a prescribed tail correlation matrix can be found in Falk (2005) and Ferreira (2012).

The text is structured as follows. Section 2 gives an overview over well-known classes of mixing max-stable processes and their TCFs. In Section 3 we transfer two construction principles from geostatistics to max-stable processes and their TCFs - a turning bands operator and a stationary truncation. In Section 4 some classes of radial
monotonous TCFs and their relations are identified. Sharp bounds for some parametric families of positive definite functions are derived as well. Subsequently, Section 5 deals with the recovery of some max-stable processes from a prescribed TCF. Additionally, we reassess the stationary truncation of variance-mixed Brown-Resnick processes as possibly useful models with tractable TCFs. Finally, Section 6 provides a concrete example for the non-uniqueness of a max-stable process with a prescribed TCF. Since Sections 4 and 5 depend heavily on results in Gneiting (1999c), for convenience, some of them are recalled in the notation of the present setup. Appendix B provides some background information on monotonicity properties of continuous functions. We close the text with some remarks (Section 7) indicating that our results may be relevant beyond the max-stable setting. All proofs are postponed to Appendix A.

Some notation Let ν_{d} be the Lebesgue measure on the Borel σ-algebra \mathcal{B}^{d} of \mathbb{R}^{d} and $\|\cdot\|$ the Euclidean norm. We denote $B_{r}^{d}:=\left\{h \in \mathbb{R}^{d}:\|h\| \leq r\right\}$ the d-dimensional ball of radius r centred at the origin $o \in \mathbb{R}^{d}$. The constant

$$
\kappa_{d}:=v_{d}\left(B_{1}^{d}\right)=\pi^{d / 2} / \Gamma(1+d / 2)
$$

is the volume of the d-dimensional unit ball. When a function on \mathbb{R}^{d} depends on the Euclidean norm only, we will usually treat it as a function on $[0, \infty)$. The expression cdf abbreviates "cumulative distribution function". When we consider a cdf G on $(0, \infty)$, it is always meant that $G(0+)=0$. The Laplace transform of a cdf G on $[0, \infty)$ is $\mathcal{L}(G)(x)=\int_{0}^{\infty} \exp (-x t) \mathrm{d} G(t)$. The function

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-y^{2}} \mathrm{~d} y
$$

is the complementary error function, while $\operatorname{erf}(x)=1-\operatorname{erfc}(x)$ is the error function and $\mathbf{1}_{A}$ is the indicator function of A. By $a \wedge b$ we denote the minimum between a and b, whereas $\bigvee_{i \in I} a_{i}$ is the supremum over the a_{i}. We set $a_{+}:=\max (a, 0)$. Finally, an integral of the form $\int f(x) \mathrm{d} F(x)$, where F is a monotone function, is always meant in the Riemann-Stieltjes sense.

2 Max-stable processes and their TCFs

A stochastic process $X=\left\{X_{t}\right\}_{t \in \mathbb{R}^{d}}$ is called max-stable if all its finite-dimensional distributions are max-stable, that is, for each $m, n \in \mathbb{N}, t_{1}, \ldots, t_{m} \in \mathbb{R}^{d}$ and n independent copies $\left(Y^{(i)}\right)_{i=1}^{n}$ of the random vector $Y=\left(X_{t_{1}}, \ldots, X_{t_{m}}\right)$ the componentwise maximum $\bigvee_{i=1}^{n} Y^{(i)}$ is distributed as the random vector $a_{n} Y+b_{n}$ for suitable norming vectors $a_{n} \in(0, \infty)^{m}$ and $b_{n} \in \mathbb{R}^{m}$. Henceforth, we will consider only stationary max-stable processes with standard Fréchet marginals, i.e. $\mathbb{P}\left(X_{t} \leq x\right)=e^{-1 / x}$ for $t \in \mathbb{R}^{d}$ and $x>0$. Note that the TCF χ is invariant under eventually continuous order-preserving marginal transformations.

Spectral representation Max-stable processes that are separable in probability allow for a spectral representation of the form (de Haan 1984; Kabluchko 2009; Stoev and Taqqu 2005)

$$
\begin{equation*}
\left\{X_{t}\right\}_{t \in \mathbb{R}^{d}} \stackrel{\mathcal{D}}{=}\left\{\bigvee_{n=1}^{\infty} U_{n} V_{t}\left(e_{n}\right)\right\}_{t \in \mathbb{R}^{d}} \tag{1}
\end{equation*}
$$

Here, $\stackrel{\mathcal{D}}{=}$ means equality in distribution and $\left\{\left(U_{n}, e_{n}\right)\right\}_{n}$ is a Poisson point process on $\mathbb{R}_{+} \times E$ with intensity $u^{-2} \mathrm{~d} u \times \mu(\mathrm{d} e)$ for some Polish measure space (E, \mathcal{E}, μ), and the functions $V_{t}: E \rightarrow \mathbb{R}_{+}$, called spectral functions, are measurable with $\int_{E} V_{t}(e) \mu(\mathrm{d} e)=1$ for each $t \in \mathbb{R}^{d}$. Of course, any process X of the form (1) is max-stable and has standard Fréchet marginals. In particular, the finite-dimensional distributions of X are given through

$$
\begin{equation*}
-\log \mathbb{P}\left(X\left(t_{k}\right) \leq x_{k} ; k=1, \ldots, m\right)=\int_{E} \bigvee_{k=1}^{m} \frac{V_{t_{k}}(e)}{x_{k}} \mu(\mathrm{~d} e) \tag{2}
\end{equation*}
$$

and the TCF χ of the max-stable process X may be expressed as

$$
\begin{align*}
\chi(t) & =2-\lim _{\tau \rightarrow \infty} \frac{1-\mathbb{P}\left(X_{t} \leq \tau, X_{o} \leq \tau\right)}{1-\mathbb{P}\left(X_{o} \leq \tau\right)}=2-\frac{\log \mathbb{P}\left(X_{t} \leq \tau, X_{o} \leq \tau\right)}{\log \mathbb{P}\left(X_{o} \leq \tau\right)} \\
& =2-\int_{E} V_{t}(e) \vee V_{o}(e) \mu(\mathrm{d} e)=\int_{E} V_{t}(e) \wedge V_{o}(e) \mu(\mathrm{d} e) \tag{3}
\end{align*}
$$

A max-stable process X with spectral representation (1) is mixing if and only if its TCF $\chi(t)$ converges to 0 as t tends to ∞ (Kabluchko and Schlather 2010; Stoev 2008), while it is ergodic if and only if its TCF $\chi(t)$ converges to 0 in a Cesàro sense as t tends to ∞ (Wang et al. 2013, Theorem 5.3).

If the measure space (E, \mathcal{E}, μ) is a probability space, the spectral functions $\left\{V_{t}\right\}_{t \in \mathbb{R}^{d}}$ themselves form a stochastic process on \mathbb{R}^{d}, which we call spectral process. Note that the stationarity of the spectral process V is a sufficient but not a necessary condition for X being stationary (Kabluchko et al. 2009; Molchanov and Stucki 2013).

2.1 Subclasses of mixing max-stable processes and their TCFs

(Mixed) Moving maxima and subclasses (M3r, M2r and M3b) Slightly different notions for M3 processes are given in the literature, cf. Kabluchko and Stoev (2012), Segers (2006), Smith (1990), Stoev (2008), Stoev and Taqqu (2005) and Zhang and Smith (2004), for example. We consider the following version: Let (Ω, \mathcal{A}, v) be a probability space and $f: \mathbb{R}^{d} \times \Omega \rightarrow[0, \infty]$ be measurable, such that

$$
\begin{equation*}
\int_{\Omega} \int_{\mathbb{R}^{d}} f(t, \omega) \mathrm{d} t v(\mathrm{~d} \omega)=1 \tag{4}
\end{equation*}
$$

We refer to the assignment $\omega \mapsto(t \mapsto f(t, \omega))$ which maps each element from the probability space to its sample path on \mathbb{R}^{d} as (random) shape function. A process X
with spectral representation on $(E, \mathcal{E}, \mu)=\left(\mathbb{R}^{d} \times \Omega, \mathcal{B}^{d} \otimes \mathcal{A}, v_{d} \times v\right)$ and spectral functions

$$
V_{t}((z, \omega)):=f(t-z, \omega), \quad(z, \omega) \in \mathbb{R}^{d} \times \Omega, \quad t \in \mathbb{R}^{d}
$$

will be called Mixed Moving Maxima process (M3 process), or Moving Maxima process (M2 process) if the random shape function is deterministic, i.e., if v charges only one point $\omega_{0} \in \Omega$. In this case, we simply treat f as a deterministic shape function on \mathbb{R}^{d} without a second argument $\omega \in \Omega$.

We put particular emphasis on such random shapes, where each realization $f(\cdot, \omega)$ is radially symmetric around the origin $o \in \mathbb{R}^{d}$ and non-increasing as the radius grows, and refer to this class as M3r processes, or M2r processes if the random shape is deterministic. Moreover, we will also consider the subclass of M3b processes that have as shape functions only normalized indicator functions of balls B_{R}^{d}, i.e.

$$
f(t, \omega)=v_{d}\left(B_{R(\omega)}^{d}\right)^{-1} \mathbf{1}_{B_{R(\omega)}^{d}}(t)=\kappa_{d}^{-1} R(\omega)^{-d} \mathbf{1}_{B_{R(\omega)}^{d}(t)},
$$

where $R:(\Omega, \mathcal{A}, v) \rightarrow\left((0, \infty), \mathcal{B}((0, \infty)), \mathbb{P}_{R}\right)$ is a random radius. Clearly, M3r, M2r and M3b processes are stationary and isotropic and both M2r processes and M3b processes each form a proper subclass of M3r processes.

Mixed poisson storm processes (MPS) We consider a mixed version of the Poisson storm process introduced in Lantuéjoul et al. (2011). The construction is similar to the construction of an M3b process, where the ball with random radius R is replaced by the typical cell of a Poisson hyperplane mosaic with random intensity β. To this end, let us consider some facts from stochastic geometry based on Schneider and Weil (2008). Any pair of polar coordinates $(S, r) \in S^{d-1} \times \mathbb{R}_{+}$ determines a hyperplane $H(S, r)=\left\{t \in \mathbb{R}^{d} \mid\langle t, S\rangle=r\right\}$ in \mathbb{R}^{d}. The hyperplanes that arise from a homogeneous Poisson point process $\left\{\left(S_{n}, r_{n}\right)\right\}_{n}$ on $S^{d-1} \times \mathbb{R}_{+}$ split \mathbb{R}^{d} into polytopes called cells. The collection of these cells forms a Poisson hyperplane mosaic and can be seen as a stationary process of convex particles, whose intensity measure uniquely determines an intensity $\beta>0$ and a grain distribution \mathbb{Q}_{β} (Schneider and Weil 2008, p. 101, Theorem 4.1.1). A random set that is distributed according to \mathbb{Q}_{β} is called typical cell. Now, if $C \sim \mathbb{Q}_{1}$ and $\beta>0$, then $\beta^{-1} C=\{x: \beta x \in C\} \sim \mathbb{Q}_{\beta}$ and $\beta^{-1} C$ has expected volume

$$
\mathbb{E}\left(v_{d}\left(\beta^{-1} C\right)\right)=d^{d} \kappa_{d-1}^{-d} \kappa_{d}^{d-1} \beta^{-d}=: \mu_{d}(\beta)
$$

(Schneider and Weil 2008, Eqs. 10.4 and 10.4.6). Now, let (β, C) be a random element on a probability space (Ω, \mathcal{A}, ν) where β is distributed according to a $\operatorname{cdf} G_{\beta}$ on $(0, \infty)$ with $G_{\beta}(0+)=0$ and, independently, $C \sim \mathbb{Q}_{1}$. Let

$$
f(t, \omega):=\mu_{d}(\beta(\omega))^{-1} \mathbf{1}_{\beta(\omega)^{-1} C(\omega)}(t), \quad t \in \mathbb{R}^{d}
$$

Conditioning on β, the function f satisfies (4) and, thus, defines an isotropic M3 process X. We call this process Mixed Poisson storm process (MPS process) with intensity mixing distribution G_{β}.

(Variance-mixed) Brown-Resnick processes (BR and VBR)

Let $\left\{W_{t}\right\}_{t \in \mathbb{R}^{d}}$ be a Gaussian process with stationary increments (meaning that the law of $\left\{W_{t+h}-W_{h}\right\}_{t \in \mathbb{R}^{d}}$ does not depend on $\left.h \in \mathbb{R}^{d}\right)$ and variance $\sigma^{2}(t)=\operatorname{Var}\left(W_{t}\right)$. Independently, let S be a random variable on $(0, \infty)$ with cdf G_{S}. Then we call the process X with spectral process

$$
V_{t}=\exp \left(S W_{t}-S^{2} \sigma^{2}(t) / 2\right), \quad t \in \mathbb{R}^{d}
$$

variance-mixed Brown-Resnick process (VBR process) with variance mixing distribution G_{S}. The law of X is stationary and depends on the variogram $\gamma(t)=\mathbb{E}$ $\left(W_{t}-W_{o}\right)^{2}$ and the cdf G_{S} only (Kabluchko et al. 2009, Theorem 2). If $S=1$ almost surely, V is the usual Brown-Resnick process (BR process). We shall assume throughout the text that the variogram $\gamma(t)$ tends to ∞ as $t \rightarrow \infty$, that is we treat only mixing VBR processes, cf. their TCFs in Table 1. If the variogram tends to ∞ fast enough, a BR process may even be representable as an M3 process (Kabluchko et al. 2009, Theorem 14).

Remark 1 A related construction as in the case of a VBR process can be found in Engelke et al. (2012a), where the BR process is mixed in its scale instead of its variance. This yields the same class of processes in the most prominent example when W_{t} is a fractional Brownian motion.

Subclasses of TCFs The TCFs of the above processes are listed in Table 1, the formulae therein being easily derived from the indicated references. In the sequel we will identify relations between the classes of TCFs arising from the processes above. To this end, we use the notation

$$
T_{\text {model }}^{d}=\left\{\begin{array}{l|l}
\chi: \mathbb{R}^{d} \rightarrow[0,1] & \begin{array}{l}
\chi \text { TCF of a process } X \text { on } \mathbb{R}^{d} \\
\text { from the process class model }
\end{array} \tag{5}
\end{array}\right\}
$$

when referring to the set of TCFs arising from processes on \mathbb{R}^{d} of the class model. For instance, $T_{\mathrm{M} 3}^{d}$ is the set of TCFs of M3 processes on \mathbb{R}^{d}. By

$$
T^{d}=\left\{\chi: \mathbb{R}^{d} \rightarrow[0,1] \mid \chi \mathrm{TCF} \text { on } \mathbb{R}^{d}\right\}
$$

we denote the set of all TCFs on \mathbb{R}^{d}.

3 Construction principles for stationary max-stable processes

Two well-known construction principles for correlation functions in a geostatistical context also yield valid operations on the set of TCFs. First, also inspired by the work of Kabluchko and Stoev (2012), the turning bands operator can be transferred as an operator from lower to higher dimensions in the context of isotropic max-stable processes. Second, the stationary truncation generalizes a construction described in Schlather (2002, p. 39) and corresponds to the multiplication of a given TCF with another TCF that has compact support. It can shorten the range of tail dependence, e.g. to a compact set, a feature which is of interest for modelling purposes, cf.

Table 1 Tail correlation functions χ of max-stable processes introduced in Section 2.1. Here erfc denotes the complementary error function and $\mathcal{L}(G)$ the Laplace transform of a cdf G

Section 5 for an example. In the geostatistics literature the multiplication with a compactly supported covariance function is known as tapering high-dimensional data, cf. Furrer et al (2006).

3.1 Turning bands

The turning bands operator Let $k, d \in \mathbb{N}$ with $1 \leq k \leq d$. The set of ordered tuples $\left(x_{1}, \ldots, x_{k}\right)$ of k orthonormal vectors in \mathbb{R}^{d} is known as the Stiefel manifold of orthonormal k-frames in \mathbb{R}^{d} (Nachbin 1976, p. 131), and is denoted by $\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$. Interpreting the vectors x_{1}, \ldots, x_{k} as columns of a matrix, we identify

$$
\begin{equation*}
\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)=\left\{A \in \mathbb{R}^{d \times k}: A^{\mathrm{T}} A=\mathbb{1}_{k \times k}\right\} \tag{6}
\end{equation*}
$$

where A^{T} denotes the transpose of A and $\mathbb{1}_{k \times k}$ the identity matrix in $\mathbb{R}^{k \times k}$. A matrix $A \in \mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ embeds \mathbb{R}^{k} linearly and isometrically into \mathbb{R}^{d}, whereas A^{T} applied to a vector $t \in \mathbb{R}^{d}$ is a vector in \mathbb{R}^{k} whose coordinates can be interpreted as the coordinates of the projection of t onto $A\left(\mathbb{R}^{k}\right)$ with respect to the orthonormal frame defined by the columns of A. For $k=1$ the Stiefel manifold is simply the sphere $\mathcal{V}_{1}\left(\mathbb{R}^{d}\right)=S^{d-1}$, and for $k=d$ the orthogonal group $\mathcal{V}_{d}\left(\mathbb{R}^{d}\right)=\mathrm{O}(d)$. In
view of Eq. 6 the Stiefel manifold $\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ is a compact submanifold of $\mathbb{R}^{d \times k}$. The action of the orthogononal group $\mathrm{O}(d)$ (from the left) exhibits $\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ as a locally compact homogeneous space on which a unique normalized left invariant Haar measure σ_{k}^{d} can be defined (Nachbin 1976, p. 142, Example 4), which we call uniform distribution (Jupp and Mardia 1979; Mardia and Khatri 1977).

By $C\left(\mathbb{R}^{d}\right)$ we denote the set of real-valued continuous functions on \mathbb{R}^{d}. Since $\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ is compact, the so-called turning bands operator

$$
\mathrm{TB}_{k}^{d}: C\left(\mathbb{R}^{k}\right) \rightarrow C\left(\mathbb{R}^{d}\right), \quad \mathrm{TB}_{k}^{d}(f)(t)=\int_{\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)} f\left(A^{\mathrm{T}}(t)\right) \sigma_{k}^{d}(\mathrm{~d} A)
$$

is well-defined. Moreover, it is compatible with compositions (see Lemma 18 in Appendix A)

$$
\begin{equation*}
\mathrm{TB}_{k_{2}}^{k_{3}} \circ \mathrm{~TB}_{k_{1}}^{k_{2}}=\mathrm{TB}_{k_{1}}^{k_{3}} \quad \text { for } k_{1} \leq k_{2} \leq k_{3} \tag{7}
\end{equation*}
$$

Turning bands in the Gaussian case The turning bands operator TB_{1}^{d} is a familiar operator on positive definite functions, see Gneiting (1999a), Gneiting (1999b), Gneiting and Z. Sasvári (1999), Lantuéjoul (2002), Matheron (1973), Schlather (2012) and zu Castell (2002), where explicit formulae and recurrence relations are provided. For convenience, we recall some of them here: Let

$$
\Phi_{d}=\left\{\rho_{d}:[0, \infty) \rightarrow[0,1] \mid \rho_{d}(\|\cdot\|) \text { continuous correlation function on } \mathbb{R}^{d}\right\}
$$

Schoenberg (1938) showed that a function ρ_{d} belongs to the class Φ_{d} if and only if there exists a cdf F on $[0, \infty)$ such that ρ_{d} can be represented as a scale mixture

$$
\begin{equation*}
\rho_{d}(t)=\int_{[0, \infty)} \Omega_{d}(t s) \mathrm{d} F(s), \quad t \geq 0 \tag{8}
\end{equation*}
$$

with $\Omega_{d}(t)=\Gamma(d / 2)(2 / t)^{(d-2) / 2} J_{(d-2) / 2}(t)$, where J denotes a Bessel function of the first kind. For instance, $\Omega_{1}(t)=\cos (t)$ and $\Omega_{3}(t)=\sin (t) / t$. This relation provides a bijection of Φ_{d} with the set of cdfs on $[0, \infty)$ and hence a bijection of Φ_{d} and Φ_{k} for any $k \geq 1$. In particular, the mapping of ρ_{1} to ρ_{d} may be expressed as (cf. Gneiting, 1999a, Eq. 6),

$$
\begin{equation*}
\rho_{d}(t)=\frac{2 \Gamma(d / 2)}{\sqrt{\pi} \Gamma((d-1) / 2)} \int_{0}^{1} \rho_{1}(t w)\left(1-w^{2}\right)^{(d-3) / 2} \mathrm{~d} w, \quad t \geq 0 \tag{9}
\end{equation*}
$$

and is known as turning bands operator (Gneiting 1999a; Matheron 1973). In our notation $\mathrm{TB}_{1}^{d}\left(\rho_{1}\right)=\rho_{d}(\|\cdot\|)$. In view of Eq. 7 this implies that TB_{k}^{d} is a bijection between Φ_{k} and Φ_{d}. In fact $\operatorname{TB}_{k}^{d}\left(\rho_{k}(\|\cdot\|)\right)=\rho_{d}(\|\cdot\|)$ (where the norms are taken in \mathbb{R}^{k} and \mathbb{R}^{d}, respectively). Recurrence relations between the basis functions Ω_{d} and Ω_{k} immediately lead to recurrence relations between ρ_{d} and ρ_{k} (zu Castell 2002). For instance, the recursive relation

$$
\rho_{d}(t)=\rho_{d+2}(t)+\frac{t}{d} \rho_{d+2}^{\prime}(t), \quad t \geq 0
$$

and its inverse

$$
\begin{equation*}
\mathrm{TB}_{d}^{d+2}\left(\rho_{d}(\|\cdot\|)\right)(t e)=\rho_{d+2}(t)=\frac{d}{t^{d}} \int_{0}^{t} u^{d-1} \rho_{d}(u) \mathrm{d} u, \quad t \geq 0, e \in S^{d+1} \tag{10}
\end{equation*}
$$

hold true. Because $\mathrm{TB}_{k}^{d}: \Phi_{k} \rightarrow \Phi_{d}$ is a bijection, the turning bands method is an important tool for simulating stationary isotropic Gaussian processes. Given a correlation function $\rho_{d} \in \Phi_{d}$ with $\rho_{d}=\operatorname{TB}_{1}^{d}\left(\rho_{1}\right)$, one may approximate a Gaussian random field on \mathbb{R}^{d} with correlation function ρ_{d} through

$$
Z(t)=n^{-1 / 2} \sum_{i=1}^{n} Y_{i}\left(\left\langle t, S_{i}\right\rangle\right), \quad t \in \mathbb{R}^{d}
$$

for sufficiently high $n \in \mathbb{N}$, an i.i.d. sequence $S_{i} \in S^{d-1}$ and independent copies Y_{i} of a random field Y on \mathbb{R} with correlation function ρ_{1} (Matheron 1973).

Turning bands in the max-stable case In the context of max-stable processes and their TCFs the situation transfers to the following extent. Let X be a stochastically continuous simple max-stable process on \mathbb{R}^{k}. Then the process X has a spectral representation as in Eq. 1

$$
\begin{equation*}
X_{t}=\bigvee_{n=1}^{\infty} U_{n} V_{t}\left(e_{n}\right), \quad t \in \mathbb{R}^{k} \tag{11}
\end{equation*}
$$

where $\left\{\left(U_{n}, e_{n}\right)\right\}_{n}$ denotes a Poisson point process on $\mathbb{R}_{+} \times E$ with intensity $u^{-2} \mathrm{~d} u \mu(\mathrm{~d} e)$ and the spectral function $V_{t}(e)$ is jointly measurable in the variables $t \in \mathbb{R}^{k}$ and $e \in E$ (Wang and Stoev 2010, Proposition 4.1). Based on this representation we define another simple max-stable process Y on \mathbb{R}^{d} with $d \geq k$ as follows. Let $\left\{\left(U_{n}, e_{n}, A_{n}\right)\right\}_{n}$ be a Poisson point process on $\mathbb{R}_{+} \times E \times \mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ of intensity $u^{-2} \mathrm{~d} u \mu(\mathrm{~d} e) \sigma_{k}^{d}(\mathrm{~d} A)$, where $\sigma_{k}^{d}(\mathrm{~d} A)$ is the uniform distribution on the Stiefel manifold $\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ and let

$$
\begin{equation*}
Y_{t}=\bigvee_{n=1}^{\infty} U_{n} V_{A_{n}^{\mathrm{T}}(t)}\left(e_{n}\right), \quad t \in \mathbb{R}^{d} \tag{12}
\end{equation*}
$$

Lemma 2 Let X and Y be max-stable processes as given by Eqs. 11 and 12, respectively.
a) If X is stationary, then Y is stationary.
b) For any $M \in O(d)$ the law of $\left\{Y_{M(t)}\right\}_{t \in \mathbb{R}^{d}}$ and the law of Y coincide, i.e., Y is isotropic.
c) Let X be stationary. The (radial) TCF $\chi^{(Y)}$ of the stationary isotropic process Y can be expressed in terms of the TCF $\chi^{(X)}$ of X by

$$
\chi^{(Y)}=T B_{k}^{d}\left(\chi^{(X)}\right)
$$

Proposition 3 If χ is a continuous $T C F$ on \mathbb{R}^{k} and $k \leq d$, then $T B_{k}^{d}(\chi)$ is a $T C F$ on \mathbb{R}^{d} (which is also continuous).

Remark 4 The function $\chi(t)=e^{-\|t\|}$ is an admissible radial TCF on \mathbb{R}^{d} for any $d \geq 1$, see e.g. Table 2 . Therefore, the radial function $\mathrm{TB}_{1}^{3}(\chi)(t)=\left(1-e^{-\|t\|}\right) /\|t\|$ is a radial TCF on \mathbb{R}^{3} by Eq. 10. However, contrary to correlation functions, not all radial continuous TCFs on \mathbb{R}^{d} arise as $\mathrm{TB}_{k}^{d}(\chi)$ for some TCF χ on \mathbb{R}^{k}. As a counterexample consider the identity

$$
e^{-\|t\|}=\mathrm{TB}_{1}^{3}(f)(t), \quad t \in \mathbb{R}^{3} \quad \text { with } \quad f(t)=(1-\|t\|) e^{-\|t\|}, \quad t \in \mathbb{R}^{1}
$$

While $e^{-\|t\|}$ is a valid radial TCF on \mathbb{R}^{3}, f cannot be a TCF on \mathbb{R}^{1} since f attains negative values.

Remark 5 The turning bands method is compatible with iterations in the following sense: Let $q \geq d$ and construct a process Z on \mathbb{R}^{q} from the spectral representation of Y on \mathbb{R}^{d} by

$$
Z_{t}=\bigvee_{n=1}^{\infty} U_{n} V_{B_{n}{ }^{\mathrm{T}} \circ A_{n}^{\mathrm{T}}(t)}\left(e_{n}\right)=\bigvee_{n=1}^{\infty} U_{n} V_{\left(A_{n} \circ B_{n}\right)} \mathrm{T}^{\mathrm{T}}(t)\left(e_{n}\right), \quad t \in \mathbb{R}^{q},
$$

where $\left\{\left(U_{n}, e_{n}, A_{n}, B_{n}\right)\right\}_{n}$ is a Poisson point process on $\mathbb{R}_{+} \times E \times \mathcal{V}_{k}\left(\mathbb{R}^{d}\right) \times \mathcal{V}_{d}\left(\mathbb{R}^{q}\right)$ with intensity $u^{-2} \mathrm{~d} u \mu(\mathrm{~d} e) \sigma_{k}^{d}(\mathrm{~d} A) \sigma_{d}^{q}(\mathrm{~d} B)$. Then Z has the same law as

$$
\widetilde{Z}_{t}=\bigvee_{n=1}^{\infty} U_{n} V_{C_{n}^{\mathrm{T}}(t)}\left(e_{n}\right), \quad t \in \mathbb{R}^{q}
$$

where $\left\{\left(U_{n}, e_{n}, C_{n}\right)\right\}_{n}$ is a Poisson point process of intensity $u^{-2} \mathrm{~d} u \mu(\mathrm{~d} e) \sigma_{k}^{q}(\mathrm{~d} C)$ (see Lemma 18 in Appendix A). Thus, Z can be constructed directly from the spectral representation of X without involving Y as an intermediate step.

Table 2 Parametric families of continuous radially symmetric functions on \mathbb{R}^{d} and their sharp parameter bounds for being a correlation function (CF) and for being a tail correlation function (TCF) on \mathbb{R}^{d}, respectively

Parametric family of cts. radial functions on \mathbb{R}^{d}	CF for	TCF for
powered exponential $\exp \left(-r^{\nu}\right)$	$0<v \leq 2$	$0<v \leq 1$
Whittle-Matérn $2^{1-v} \Gamma(v)^{-1} r^{\nu} K_{\nu}(r)$	$0<v$	$0<v \leq 0.5$
Cauchy $\left(1+r^{\nu}\right)^{-\beta} \quad \beta>0$	$0<v \leq 2$	$0<v \leq 1$
powered error function* $\operatorname{erfc}\left(r^{\nu}\right)$	$0<v \leq 1$	$0<v \leq 1$
truncated power function* $(1-r)_{+}^{v}$	$v \geq(d+1) / 2$	$v \geq\lfloor d / 2\rfloor+1$

[^1]
3.2 Stationary truncation

Let X be a stochastically continuous max-stable process on \mathbb{R}^{d} with spectral representation as in Eq. 11 with $k=d$ and let $\{B(t)\}_{t \in \mathbb{R}^{d}}$ be a measurable process on \mathbb{R}^{d} taking values in $\{0,1\}$. We denote the probability space corresponding to B by $\left(\Omega_{B}, \mathcal{A}_{B}, \mathbb{P}_{B}\right)$ and expectation w.r.t. \mathbb{P}_{B} by \mathbb{E}_{B}. Further, we require that $c_{B}:=\int_{\mathbb{R}^{d}} B(t) \mathrm{d} t \in(0, \infty)$ holds \mathbb{P}_{B}-almost surely. Based on these two processes X and B we define another max-stable process Y on \mathbb{R}^{d} by

$$
\begin{equation*}
Y_{t}=\bigvee_{n=1}^{\infty} U_{n} \frac{B_{n}\left(t-z_{n}\right)}{c_{B_{n}}} V_{t}\left(e_{n}\right), \quad t \in \mathbb{R}^{d} \tag{13}
\end{equation*}
$$

where $\left\{\left(U_{n}, e_{n}, z_{n}, B_{n}\right)\right\}_{n}$ is a Poisson point process on $\mathbb{R}_{+} \times E \times \mathbb{R}^{d} \times \Omega_{B}$ with intensity $u^{-2} \mathrm{~d} u \times \mu \times v_{d} \times \mathbb{P}_{B}$.

Lemma 6 Let X and Y be simple max-stable processes as given by Eq. 11 for $k=d$ and Eq. 13, respectively.
a) If X is stationary, then Y is stationary.
b) Let X be stationary. Then the TCF $\chi^{(Y)}$ of the stationary process Y is given by the product

$$
\chi^{(Y)}(t)=\chi^{(X)}(t) \cdot \chi^{(B)}(t), \quad t \in \mathbb{R}^{d}
$$

with $\chi^{(X)}$ being the TCF of X and

$$
\chi^{(B)}(t)=\mathbb{E}_{B}\left[\frac{\int_{\mathbb{R}^{d}} B(z) B(z-t) d z}{\int_{\mathbb{R}^{d}} B(z) d z}\right], \quad t \in \mathbb{R}^{d}
$$

Example 7 If the process B on \mathbb{R}^{d} is chosen to be the indicator function $B(t)=$ $\mathbf{1}_{\|t\| \leq R}$ of the ball B_{R}^{d} for a random radius $R \in(0, \infty)$, then

$$
\chi^{(B)}(t)=\mathbb{E}_{R} \int_{\mathbb{R}^{d}} \frac{\mathbf{1}_{\|z\| \leq R} \wedge \mathbf{1}_{\|z-t\| \leq R}}{\kappa_{d} R^{d}} \mathrm{~d} z, \quad t \in \mathbb{R}^{d}
$$

which means that the functions $\chi^{(B)}$ build the class $T_{\mathrm{M} 3 \mathrm{~b}}^{d}$, cf. Eq. 5 and the entry on M3b processes in Table 1.

4 Identification of classes of TCFs and their relations

Some relations between the subclasses of TCFs that arise from the subclasses of maxstable processes introduced in Section 2.1 follow immediately from their definition, e.g. $T_{\mathrm{M} 2 \mathrm{r}}^{d} \subset T_{\mathrm{M} 3 \mathrm{r}}^{d}$ and $T_{\mathrm{M} 3 \mathrm{~b}}^{d} \subset T_{\mathrm{M} 3 \mathrm{r}}^{d}$. The aim of this section is to identify more sophisticated relations between these subclasses and to provide necessary and sufficient conditions for a given function χ to belong to such a class. We conclude with some parametric families of TCFs and their affiliation to the respective subclasses.

The subsequent considerations rely on certain monotonicity properties of functions. We review the required notions α-times monotone and completely monotone in Appendix B and focus on a clear statement of the relations and conditions in this
section, while the proofs are postponed to Appendix A. We start with sharpening the inclusions $T_{\mathrm{M} 2 \mathrm{r}}^{d} \subset T_{\mathrm{M} 3 \mathrm{r}}^{d}$ and $T_{\mathrm{M} 3 \mathrm{~b}}^{d} \subset T_{\mathrm{M} 3 \mathrm{r}}^{d}$. Since elements of these classes are functions that depend on the Euclidean norm only, we will identify them with the respective functions on $[0, \infty)$ henceforth.

Proposition 8 For all $d \geq 1$ we have $T_{M 3 r}^{d}=T_{M 2 r}^{d}=T_{M 3 b}^{d}$.
In fact, the class $T_{\mathrm{M} 3 \mathrm{r}}^{d}=T_{\mathrm{M} 2 \mathrm{r}}^{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}$ is well-known in geostatistics and has been intensively studied in Gneiting (1999c), therein called H_{d}. Gneiting (1999c) defines H_{d} as the class of scale mixtures of the function $h_{d}(t)=\tilde{h}_{d}(t) / \tilde{h}_{d}(0)$ where \tilde{h}_{d} is the self-convolution of the ball indicator function $\mathbf{1}_{B_{0.5}^{d}}$ viewed as a radial function, i.e.

$$
\begin{align*}
H_{d}=\{\varphi(t) & \left.=\int_{(0, \infty)} h_{d}(s t) \mathrm{d} G(s) \mid \operatorname{Gcdfon}(0, \infty)\right\}, \quad \text { where } \\
h_{d}(t) & =\frac{d \Gamma(d / 2)}{\sqrt{\pi} \Gamma((d+1) / 2)} \int_{t}^{1}\left(1-v^{2}\right)_{+}^{(d-1) / 2} \mathrm{~d} v \tag{14}
\end{align*}
$$

For $d=1,2,3$ the function h_{d} is given by

$$
\begin{aligned}
& h_{1}(t)=7(1-t)_{+} \\
& h_{2}(t)=2 \pi^{-1}\left(\arccos (t)-t \sqrt{1-t^{2}}\right) \mathbf{1}_{t \leq 1} \\
& h_{3}(t)=(1-t)_{+}^{2}(2+t) / 2
\end{aligned}
$$

From the definition of H_{d} it is apparent that $H_{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}$, since the minimum in the following expression is in fact a multiplication. Indeed, we may rewrite the M3b entry in Table 1 as a scale mixture of h_{d}

$$
\begin{align*}
& \mathbb{E}_{R}\left[\left(\kappa_{d} R^{d}\right)^{-1} \int_{\mathbb{R}^{d}} \mathbf{1}_{\|z\| \leq R} \wedge \mathbf{1}_{\|z-t\| \leq R} \mathrm{~d} z\right] \\
& =\tilde{h}_{d}(0)^{-1} \mathbb{E}_{R}\left[\int_{\mathbb{R}^{d}} \mathbf{1}_{\|z\| \leq 0.5} \mathbf{1}_{\|z-t /(2 R)\| \leq 0.5} \mathrm{~d} z\right] \\
& =\mathbb{E}_{R}\left[\frac{\tilde{h}_{d}(\|t\| /(2 R))}{\tilde{h}_{d}(0)}\right]=\int_{(0, \infty)} h_{d}(s\|t\|) \mathrm{d} G_{1 /(2 R)}(s) \tag{15}
\end{align*}
$$

if $G_{1 /(2 R)}$ is the distribution function of $1 /(2 R) \in(0, \infty)$ and vice versa. Another way to perform the integration (one may think of full balls as foliated by spheres) leads to the coincidence of H_{d} with the Mittal-Berman class V_{d} (Gneiting (1999c, Eq. 40) and Mittal (1976)), which in turn is easily connected to $T_{\mathrm{M} 2 \mathrm{r}}^{d}$, see also Proof of Proposition 8 in Appendix A. A crucial observation in Gneiting (1999c) is that the first derivative of h_{d} applied to the square root is proportional to Askey's function with exponent $(d+1) / 2-1$, that is

$$
-h_{d}^{\prime}(\sqrt{t}) \sim(1-t)_{+}^{(d+1) / 2-1}
$$

Now, scale mixtures of this function are precisely $(d+1) / 2$-times monotone functions (cf. Appendix B), which entails the characterization

$$
H_{d}=\left\{\begin{array}{l|l}
\varphi:[0, \infty) \rightarrow[0,1] & \begin{array}{l}
\varphi \text { continuous, } \varphi(0)=1, \lim _{t \rightarrow \infty} \varphi(t)=0 \\
-\varphi^{\prime}(\sqrt{ }) \text { is }(d+1) / 2 \text {-times monotone on }(0, \infty)
\end{array}
\end{array}\right\}
$$

Gneiting (1999c, Proof on Theorem 3.1, Theorem 3.2, and Criterion 1.2. on p. 103). A simplified version of this statement, which is easier to handle, is that

$$
\begin{align*}
T_{\mathrm{M} 3 \mathrm{r}}^{1} & =T_{\mathrm{M} 2 \mathrm{r}}^{1}=T_{\mathrm{M} 3 \mathrm{~b}}^{1}=H_{1} \\
& =\left\{\begin{array}{l|l}
\varphi:[0, \infty) \rightarrow[0,1] & \begin{array}{l}
\varphi \text { continuous, convex } \\
\varphi(0)=1, \lim _{t \rightarrow \infty} \varphi(t)=0
\end{array}
\end{array}\right\}, \tag{16}
\end{align*}
$$

and for $d \geq 2$

$$
\begin{align*}
T_{\mathrm{M} 3 \mathrm{r}}^{d} & =T_{\mathrm{M} 2 \mathrm{r}}^{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}=H_{d} \\
& \supseteq\left\{\begin{array}{l|l}
\varphi:[0, \infty) \rightarrow[0,1] & \begin{array}{l}
\varphi \text { continuous, } \varphi(0)=1, \lim _{t \rightarrow \infty} \varphi(t)=0, \\
(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} k^{k}}\left[-\varphi^{\prime}(\sqrt{t})\right] \text { convex for } k=\lfloor(d-2) / 2\rfloor
\end{array}
\end{array}\right\} \tag{17}
\end{align*}
$$

where $\lfloor(d-2) / 2\rfloor$ denotes the greatest integer less than or equal to $(d-2) / 2$. The inclusion (17) is in fact an equality if and only if d is odd (Gneiting 1999c, Theorem 3.1., Theorem 3.3., Criterion 1.2). The classes H_{d} are all nested, i.e. $H_{1} \supset H_{2} \supset$ $H_{d} \supset \ldots$ Gneiting (1999c), Theorems 3.7 and 3.8, also characterizes the class

$$
\begin{equation*}
H_{\infty}=\bigcap_{d=1}^{\infty} H_{d} . \tag{18}
\end{equation*}
$$

as scale mixtures of the complementary error function

$$
\begin{align*}
H_{\infty} & =\left\{\varphi(t)=\int_{(0, \infty)} \operatorname{erfc}(s t) \mathrm{d} G(s) \mid G \operatorname{cdf} \text { on }(0, \infty)\right\} \tag{19}\\
& =\left\{\varphi:[0, \infty) \rightarrow[0,1] \left\lvert\, \begin{array}{l}
\varphi \text { continuous, } \varphi(0)=1, \lim _{t \rightarrow \infty} \varphi(t)=0 \\
-\varphi^{\prime}(\sqrt{ }) \text { completely monotone on }(0, \infty)
\end{array}\right.\right\}
\end{align*}
$$

This characterization of H_{∞} is not too surprising in view of the proportionality $-\operatorname{erfc}^{\prime}(\sqrt{t}) \sim e^{-t}$, which corresponds to Bernstein's Theorem that can be seen as the limiting case of Williamson's Theorem as $n \rightarrow \infty$ (cf. Appendix B). It is astonishing, however, that characterization (19) of H_{∞} provides a direct link between the TCFs of VBR processes and the TCFs of M3r processes: From the VBR entry in Table 1 and Eq. 19 (replacing $\gamma / 8$ by $\tilde{\gamma}$ and G corresponding to the variance mixing distribution G_{S}), we see that

$$
\begin{align*}
T_{\mathrm{VBR}}^{d} & =\left\{\int_{(0, \infty)} \operatorname{erfc}(s \sqrt{\tilde{\gamma}}) \mathrm{d} G(s) \mid \tilde{\gamma} \text { variogram on } \mathbb{R}^{d} \text { and } G \text { cdf on }(0, \infty)\right\} \\
& =\left\{\varphi(\sqrt{\tilde{\gamma}}) \mid \tilde{\gamma} \text { variogram on } \mathbb{R}^{d} \text { and } \varphi \in H_{\infty}\right\} \tag{20}
\end{align*}
$$

On the other hand the equalities in Proposition 8 carry over. For instance, a function belongs to the class H_{∞} if and only if it is a TCF of an M3r process on \mathbb{R}^{d} for any
dimension $d \geq 1$. In particular both classes, T_{VBR}^{d} and $T_{\mathrm{M} 3 \mathrm{r}}^{d}$, comprise the class H_{∞} in any dimension $d \geq 1$, see Proposition 9 below.

Finally, we observe from the MPS entry in Table 1 that in every dimension $d \geq 1$ the class of TCFs arising from MPS processes is given by Laplace transforms of cdfs on $(0, \infty)$ and, thus, coincides with

$$
\begin{align*}
T_{\mathrm{MPS}}^{d} & =\left\{\varphi(t)=\int_{(0, \infty)} e^{-s t} \mathrm{~d} G(s) \mid G \operatorname{cdf} \text { on }(0, \infty)\right\} \tag{21}\\
& =\left\{\varphi:[0, \infty) \rightarrow[0,1] \left\lvert\, \begin{array}{l}
\varphi \text { continuous, } \varphi(0)=1, \lim _{t \rightarrow \infty} \varphi(t)=0 \\
\varphi \text { completely monotone on }(0, \infty)
\end{array}\right.\right\}
\end{align*}
$$

Here the cdf G is related to the intensity mixing distribution G_{β} via $G(s)=$ $G_{\beta}\left(s / c_{d}\right)$ with $c_{d}=2 \kappa_{d-1} /\left(d \kappa_{d}\right)$, cf. Table 1. In particular, the class T_{MPS}^{d} does not depend on the specific dimension d, even though the involved factor c_{d} does. These observations lead to the following relations between the classes of TCFs arising from the considered mixing processes, which are also illustrated in Fig. 1.

Proposition 9 The following relations hold for all dimensions $d \geq 1$:
a) $T_{M P S}^{d} \subset H_{\infty} \subset H_{d}=T_{M 3 r}^{d}=T_{M 2 r}^{d}=T_{M 3 b}^{d}$.
b) $T_{B R}^{d} \cup H_{\infty} \subset T_{V B R}^{d}$.
c) $\operatorname{erfc}\left(t^{\alpha}\right) \in T_{B R}^{d} \Leftrightarrow \alpha \in(0,1]$ and $\operatorname{erfc}\left(t^{\alpha}\right) \in T_{M P S}^{d} \Leftrightarrow \alpha \in(0,0.5]$. In particular, $T_{B R}^{d} \backslash T_{M P S}^{d} \neq \emptyset$ and $T_{B R}^{d} \cap T_{M P S}^{d} \neq \emptyset$.
d) While H_{d} contains functions with compact support, the class $T_{V B R}^{d}$ does not contain such functions. In particular $H_{d} \backslash T_{V B R}^{d} \neq \emptyset$.
e) $\quad H_{\infty} \backslash T_{B R}^{d} \neq \emptyset$ for all $d \geq d_{0}$ and some fixed dimension $d_{0} \in \mathbb{N}$.

Fig. 1 Inclusions and intersection of sets of tail correlation functions arising from mixing max-stable processes, cf. Proposition 9. The expression "(Prop. ...)" provides the reference for the indicated region to be non-empty. See also Eqs. 14, 19, 20 and 21 for characterizations of these classes and scale mixture representations

One might assume the impression that any continuous radial TCF on \mathbb{R}^{d} that is non-increasing and convex on $[0, \infty)$ and that vanishes at ∞ belongs already to the class $T_{\mathrm{M} 3 \mathrm{r}}^{d}$ or at least appears already in Fig. 1. This is true for $d=1$. By means of the operations from Section 3, however, we may construct counterexamples in higher dimensions. Let us denote

$$
T_{r}^{d}:=\left\{\begin{array}{l|l}
\chi:[0, \infty) \rightarrow[0,1] & \begin{array}{l}
\chi \text { continuous radial TCF on } \mathbb{R}^{d} \\
\text { that is convex in the radius } \\
\text { and vanishes at } \infty
\end{array}
\end{array}\right\}=T^{d} \cap H_{1}
$$

First, we provide for each $d \geq 3$ an example of a TCF $\varphi_{d} \in T_{r}^{d} \backslash H_{d}$. To this end, we consider the tent function $h_{1}(t)=(1-t)_{+}$, which is the basis function of H_{1}, see Eq. 14. If we apply the turning bands operator, we obtain the radial TCF φ_{d} on \mathbb{R}^{d} (cf. Proposition 3)

$$
\begin{equation*}
\varphi_{d}(t):=\mathrm{TB}_{1}^{d}\left(h_{1}\right)(t), \quad t \geq 0 \tag{22}
\end{equation*}
$$

Proposition 10 a) For $d \geq 1$ we have $\varphi_{d} \in T_{r}^{d}=T^{d} \cap H_{1}$.
b) For $d \geq 1$ and $k \geq 3$ we have $\varphi_{d} \notin H_{k}$.
c) For $d=1$ and $d \geq 6$ we have $\varphi_{d} \notin H_{2}$.

Remark 11 The TCF φ_{d} from Eq. 22 decreases linearly on the interval [0, 1], cf. Eq. 32 in Appendix A.

$$
\begin{equation*}
\varphi_{d}(t)=1-\beta_{d} t, \quad t \in[0,1], \quad \text { where } \quad \beta_{d}=\frac{\Gamma(d / 2)}{\sqrt{\pi} \Gamma((d+1) / 2)} \tag{23}
\end{equation*}
$$

Therefore, the radial function $\chi_{\beta}(t):=1-\beta t$ is an admissible radial TCF on the d-dimensional ball B_{r}^{d} of radius r if $\beta \in\left[0, \beta_{d} / r\right]$. This complements results in Gneiting (1999a), where it is shown that $\varphi(t)=1-\alpha t$ is positive definite on B_{r}^{d} if and only if $\alpha \in\left[0,2 \beta_{d} / r\right]$. We assume that the bound β_{d} / r is sharp for $\chi_{\beta}(t)$ to be a TCF on B_{r}^{d}.

Secondly, combining the turning bands operator and the stationary truncation leads to an example of a TCF $\chi_{3} \in T_{r}^{3}$ that is not contained in any of the classes given in Fig. 1 for $d=3$, and we conjecture that our example χ_{d} satisfies this property also for any other dimension $d \geq 2$. With φ_{d} from Eq. 22 we consider the function

$$
\begin{equation*}
\chi_{d}(t):=\varphi_{d}(2 t) h_{d}(t), \quad t \geq 0 \tag{24}
\end{equation*}
$$

Proposition 12 a) For $d \geq 1$ we have $\chi_{d} \in T_{r}^{d} \backslash T_{V B R}^{d}$.
b) For $d=3$ we have $\chi_{d} \in T_{r}^{d} \backslash\left(T_{V B R}^{d} \cup H_{d}\right)$.

Parametric families The considerations above also lead to sharp bounds for some well-known parametric families of positive definite functions to be a TCF, see Table 2.

The first three families (powered exponential, Whittle-Matérn, Cauchy) are completely monotone for the parameters given in Table 2 (Miller and Samko 2001, Eqs. 1.2, 1.6 and 2.32 for example), and thus they can be realized by either an MPS process, an M3 process of non-increasing shapes (e.g. M2r or M3b) or by a VBR process (in all cases in any dimension). The powered error function is not completely monotone but a member of the class H_{∞}. That means it can be realized by an M3 process of non-increasing shapes or by a VBR process (both in any dimension), but not by an MPS process. In all of these cases, we may exclude bigger parameters v because the (right-hand) derivative at 0 vanishes for bigger v (which would entail the differentiability of the respective function when viewed as a function on \mathbb{R}^{d}).

The truncated power function is an example of a TCF with compact support. Hence, the valid model parameter depends on the dimension. The function belongs to H_{d} (Gneiting 1999c, Theorem 6.3), and thus can be realized by an M3 process of non-increasing shapes on \mathbb{R}^{d} (e.g. M2r or M3b). Because of its compact support the function cannot belong to any of the other classes presented in Fig. 1. The bound in Table 2 is valid in any dimension and sharp in odd dimensions, cf. (Golubov 1981, Theorem 1 and p. 165). For even dimensions v has to satisfy at least $v \geq(d+1) / 2$ in order to ensure positive definiteness.

Remark 13 Davison and Gholamrezaee (2012), p. 590, provide some examples of $\chi^{(B)}$ from Lemma 6 when $d=2$, e.g., the function h_{2} (from below Eq. 14) corresponding to a deterministic radius in Eq. 15 is computed and the approximation $\alpha(t)=(1-\|t\|)_{+}$proposed. However, note that $\alpha(t)$ is not admissible for $d=2$, since $v \geq 1.5$ is needed for $\alpha_{v}(t)=(1-\|t\|)_{+}^{v}$ to be at least positive definite.

5 Recovery of some subclasses of max-stable processes from TCFs

For some subclasses of max-stable processes the recovery of the process from its TCF is mathematically trivial. Indeed the formulae in Table 1 give one-to-one relations between the underlying variogram γ of a BR process and its TCF χ and the underlying intensity mixing distribution G_{β} of an MPS process and its TCF χ. Up to the dimension specific scaling constant $c_{d}=2 \kappa_{d-1} /\left(d \kappa_{d}\right)$ the $\operatorname{cdf} G_{\beta}$ is the inverse

Table 3 Recovery expressions for the defining quantities of an M2r and an M3b process from a prescribed TCF $\chi \in T_{\mathrm{M} 2 \mathrm{r}}^{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}=H_{d}$ in dimensions $d=1,2,3$ (cf. Proposition 14): (i) the deterministic shape function f of an M2r process and (ii) the density $g_{2 R}$ of $2 R$, where R is the random radius that defines an M3b process (if the density $g_{2 R}$ exists)

	$\mathrm{d}=1$	$\mathrm{~d}=2$	$\mathrm{~d}=3$
$\mathrm{f}(\mathrm{u})$	$-\chi^{\prime}(2 \mathrm{u})$	$\frac{4 u}{\pi} \int_{0}^{1 /(2 u)}\left((2 u t)^{-2}-1\right)^{1 / 2} \mathrm{~d} \lambda_{\chi}(t)$	$\chi^{\prime \prime}(2 u) /(\pi \mathrm{u})$
$g_{2 R}(s)$	$\mathrm{s} \chi^{\prime \prime}(s)$	$\frac{s^{2}}{2} \int_{0}^{1 / s}\left((s / t)^{2}-1\right)^{-1 / 2} \mathrm{~d} \lambda_{\chi}(t)$	$\frac{s}{3}\left(\chi^{\prime \prime}(s)-s \chi^{\prime \prime \prime}(s)\right)$

The function f may have a pole at 0 and $g_{2 R}$ may have other poles as well. We abbreviate $\lambda_{\chi}(t):=t$ $\chi^{\prime \prime}(1 / t)$

Laplace transform of χ, i.e. $G_{\beta}(s)=\mathcal{L}^{-1}(\chi)\left(c_{d} s\right)$. We address the remaining processes of type M2r, M3b and VBR in this section and close with connections to the stationary truncation of a VBR process (cf. Section 3).

Recovery of M2r and M3b processes We know already that the set of TCFs arising from M2r or M3b processes coincides with the Gneiting class H_{d}, cf. Proposition 8 . For a prescibed TCF $\chi \in H_{d}$, the following proposition essentially restates recovery results from Gneiting (1999c). Explicit expressions in dimensions $d=1,2,3$ are given in Table 3.

Proposition 14 Let $\chi \in T_{M 2 r}^{d}=T_{M 3 b}^{d}=H_{d}$. For odd $d \geq 1$ set $k=(d-1) / 2$ and define the (right-hand) derivative

$$
\lambda(t)=(-1)^{k} \frac{d^{k}}{d t^{k}}\left[-\chi^{\prime}(\sqrt{t})\right] .
$$

For even $d \geq 2$ set $k=d / 2$ and define the (right-hand) derivative

$$
\mu(t)=\frac{d^{k}}{d t^{k}}\left[-\int_{0}^{t} \frac{v^{(d-1) / 2} \chi^{\prime}(1 / \sqrt{v})}{\sqrt{\pi}(t-v)^{1 / 2}} d v\right]
$$

a) The monotone shape function f of an M2r process with $T C F \chi$ is given by

$$
f(u)= \begin{cases}(2 / \sqrt{\pi})^{d-1} \lambda\left(4 u^{2}\right) & d \geq 1 \text { odd } \\ \int_{0}^{1 /(2 u)}(2 s / \sqrt{\pi})^{d-1} d \mu\left(s^{2}\right) & d \geq 2 \text { even }\end{cases}
$$

b) The cdf $G_{1 /(2 R)}$ of $1 /(2 R)$, where R is the random radius of an M3b process with TCF χ, is given by

$$
G_{1 /(2 R)}(s)= \begin{cases}\sqrt{\pi}(d \Gamma(d / 2))^{-1} \int_{0}^{s} t^{-d} d \lambda\left(t^{-2}\right) & d \geq 1 \text { odd } \\ \sqrt{\pi}(d \Gamma(d / 2))^{-1} \int_{0}^{s} t^{-1} d \mu\left(t^{2}\right) & d \geq 2 \text { even } .\end{cases}
$$

c) The monotone shape function f and the $c d f G_{1 /(2 R)}$ can be recovered from each other by

$$
\begin{equation*}
f(u)=\int_{0}^{1 /(2 u)} \frac{(2 s)^{d}}{\kappa_{d}} d G_{1 /(2 R)}(s) \text { and } G_{1 /(2 R)}(s)=\int_{0}^{s} \frac{\kappa_{d}}{(2 u)^{d}} d\left[f\left(\frac{1}{2 u}\right)\right] . \tag{25}
\end{equation*}
$$

Recovery of VBR processes The TCF of a VBR processes is given by $\chi=$ $\varphi(\sqrt{\tilde{\gamma}})$, where $\tilde{\gamma}$ is a variogram and φ is a scale mixture of the complementary error function, that is $\varphi \in H_{\infty}$, cf. (20). If the variance mixing distribution G_{S} that determines φ is fixed, the TCF of a VBR process uniquely determines the law of the VBR process, since the variogram $\gamma=8 \tilde{\gamma}$ can be recovered from χ. The following lemma can be useful in order to detect pairs φ and G, such that indeed $\varphi(t)=\int_{(0, \infty)} \operatorname{erfc}(s t) \mathrm{d} G(s)$ holds. In Table 4 we give some examples of corresponding pairs φ and cdfs G. They include the Whittle-Matérn family (ii), the arctan model (iii) and the Dagum model (iv), cf. Berg et al (2008).

Table 4 Members φ of the class H_{∞} as scale mixtures of the complementary error function

	Distribution function $G(s) \operatorname{org}(s)=G^{\prime}(s)$	$\varphi(t)=\int_{0}^{\infty} \operatorname{erfc}(s t) \mathrm{d} G(s)$	
(i)	$G(s)=e^{-1 /(a s)^{2}}$	$e^{-2 t / a}$	$a>0$
(ii)	$g(s)=\frac{\sqrt{\pi}}{\Gamma(\nu) \Gamma\left(\frac{1}{2}-v\right)} \int_{0}^{s} \frac{x^{2 v-3} e^{-1 /\left(4 x^{2}\right)}}{\left(s^{2}-x^{2}\right)^{v+1 / 2}} \mathrm{~d} x$	$\frac{2^{1-v}}{\Gamma(v)} t^{\nu} K_{\nu}(t)$	$v \in(0,1 / 2)$
(iii)	$G(s)=\operatorname{erf}(a s)$	$1-\frac{2}{\pi} \arctan (t / a)$	$a>0$
(iv)	$G(s)=1-e^{-(a s)^{2}}$	$1-\left(1+(t / a)^{-2}\right)^{-1 / 2}$	$a>0$

Lemma 15 Let $g(s)=\sqrt{\pi} f\left(s^{2}\right)$ be a probability density on $(0, \infty)$ and let $\varphi:[0, \infty) \rightarrow[0,1]$ with $\varphi(0)=1$ be such that $-\varphi^{\prime}(\sqrt{\cdot})$ is the Laplace transform of f in the sense that $-\varphi^{\prime}(\sqrt{t})=\int_{0}^{\infty} e^{-r t} f(r) d r$. Then

$$
\varphi(t)=\int_{0}^{\infty} \operatorname{erfc}(s t) g(s) d s
$$

Stationary truncated VBR processes It is well-known that BR processes do not allow for a restricted range of asymptotic dependence, i.e., their TCF cannot have compact support, which also holds true for their generalized version of VBR processes (cf. Proposition 9d)). However, this feature may be incorporated by stationary truncation, i.e.

$$
\begin{equation*}
X_{t}:=\bigvee_{n=1}^{\infty} \frac{U_{n} \mathbf{1}_{\left\|t-z_{n}\right\| \leq R_{n}}}{\kappa_{d}\left(R_{n}\right)^{d}} \exp \left(S_{n} W_{t}^{(n)}-\frac{\left(S_{n}\right)^{2} \sigma^{2}(t)}{2}\right), \quad t \in \mathbb{R}^{d} \tag{26}
\end{equation*}
$$

where $\left(U_{n}, z_{n}\right)$ is a Poisson process on $\mathbb{R}_{+} \times \mathbb{R}^{d}$ with intensity $u^{-2} \mathrm{~d} u \times v_{d}$ and, independently, $R_{n}, S_{n}, W^{(n)}$ are mutually independent i.i.d. random elements, such that

- $1 /\left(2 R_{n}\right)$ is drawn from a cdf $G_{1 /(2 R)}$ on $(0, \infty)$,
- S_{n} is drawn from a $\operatorname{cdf} G_{S}$ on $(0, \infty)$,
- $W^{(n)}$ is a realization of a Gaussian process on \mathbb{R}^{d} with stationary increments with variogram $\gamma(t)=\mathbb{E}\left(W_{t}-W_{o}\right)^{2}$ and variance $\sigma^{2}(t)=\operatorname{Var}\left(W_{t}\right)$.

We call X a stationary truncated VBR processes. Any stationary truncated process X might be still attractive for statistical inference of high-dimensional data, even though in many cases full or partial likelihoods cannot be computed anymore, as the TCF X is still tractable, cf. Lemma 6. Here, we have

$$
\chi(t)=\varphi(\sqrt{\gamma(t) / 8}) \psi(\|t\|)
$$

where $\varphi \in H_{\infty}$ and $\psi \in H_{d}$ with

$$
\varphi(t)=\int_{(0, \infty)} \operatorname{erfc}(s t) \mathrm{d} G_{S}(s) \quad \text { and } \quad \psi(t)=\int_{(0, \infty)} h_{d}(s t) \mathrm{d} G_{1 /(2 R)}(s)
$$

Example 16 If both $G_{S}(s)=\mathbf{1}_{[1, \infty)}(a s)$ and $G_{1 /(2 R)}(s)=\mathbf{1}_{[1, \infty)}(b s)$ are cdfs of a deterministic distribution with total mass at $1 / a>0$ and $1 / b>0$, respectively, then we obtain the TCF of a stationary truncated BR process as

$$
\chi(t)=\operatorname{erfc}\left(\sqrt{\gamma(t) /\left(8 a^{2}\right)}\right) h_{d}(\|t\| / b), \quad t \in \mathbb{R}^{d}
$$

which is compactly supported on the ball of radius b in \mathbb{R}^{d}, see Eq. 14 for h_{d}.

6 Example of max-stable processes with an identical TCF

Although it has been a commonplace that the TCF of a max-stable process (with standardized margins) does not uniquely determine the process, the diversity of the processes that share an identical TCF seems to be remarkably large. Here, we illustrate this diversity with a concrete example. Since the recovery in odd dimensions is computationally easier to handle (cf. Proposition 14 and Table 3), we consider only the two-dimensional sections of M2r and M3b processes on \mathbb{R}^{3} instead of

Fig. 2 Simulations of different mixing max-stable processes on $[0,5]^{2} \subset \mathbb{R}^{2}$ with identical tail correlation function $\chi(t)=\operatorname{erfc}(\sqrt{\|t\|})$ (see Proposition 17): Brown-Resnick process (BR), Mixed Poisson Storm process (MPS), two-dimensional section of an M2r process with deterministic shape (M2r), twodimensional section of an M3b process of normalized ball indicator functions (M3b). The plots were transformed to standard Gumbel marginals
two-dimensional M2r and M3b processes. Figure 2 shows simulations of these processes in dimension $d=2$ that were obtained using the R-package RandomFields V3.0 (Schlather et al. 2014).

Corollary 17 The following four processes on \mathbb{R}^{2} are stationary simple max-stable and share the same TCF $\chi(t)=\operatorname{erfc}(\sqrt{\|t\|})$, $t \in \mathbb{R}^{2}$:
(i) the BR process on \mathbb{R}^{2} associated to the variogram $\gamma(t)=8\|t\|$ for $t \in \mathbb{R}^{2}$,
(ii) the MPS process on \mathbb{R}^{2} with intensity mixing distribution

$$
G_{\beta}(s)= \begin{cases}0 & \text { if } s \leq \pi / 2, \\ 2 \pi^{-1} \arctan \left(\sqrt{2 \pi^{-1} s-1}\right) & \text { if } s>\pi / 2,\end{cases}
$$

(iii) the restriction of the M2r process on \mathbb{R}^{3} to $\mathbb{R}^{2}=\left\{\left(t_{1}, t_{2}, 0\right): t \in \mathbb{R}^{3}\right\}$ that has the monotone shape function

$$
f(t)=\pi^{-3 / 2}(1+\|4 t\|)\|2 t\|^{-5 / 2} e^{-\|2 t\|}, \quad t \in \mathbb{R}^{3},
$$

(iv) the restriction of the M3b process on \mathbb{R}^{3} to $\mathbb{R}^{2}=\left\{\left(t_{1}, t_{2}, 0\right): t \in \mathbb{R}^{3}\right\}$ with random radius R, where the density $g_{2 R}$ of $2 R$ is given by

$$
g_{2 R}(s)=1 / 12(\pi s)^{-1 / 2}\left(4 s^{2}+8 s+5\right) e^{-s}, \quad s \in[0, \infty)
$$

7 Concluding remarks

The present text puts particular emphasis on isotropic models, i.e., they are radially symmetric. Of course, all models can be combined with a linear or non-linear transformation of the space to account for observed anisotropies as commonly done in spatial applications.

We showed that the TCF uniquely determines the distribution of some max-stable processes when certain subclasses of max-stable processes are considered. On the other hand different max-stable models may share the same TCF. This phenomenon arises not just from exotic coincidences, but happens systematically, even among well-known subclasses of max-stable processes, cf. Fig. 2. We conclude that the TCF should not be overrated as an informative dependence measure solely and that other criteria should be involved as well in the extreme value analysis of spatial data.

Our considerations exceed the max-stable setting. First, the TCF of a stochastic process in the domain of attraction of a max-stable process X coincides with the TCF of X. Second, the results also concern inverted max-stable processes (Wadsworth and Tawn 2012). Let $X^{\text {inv }}:=-\log (1-\exp (-1 / X))^{-1}$ be the inverted max-stable process associated to the max-stable process X with TCF χ and η the tail dependence function, where $\mathbb{P}\left(X_{t}^{\text {inv }}>\tau, X_{o}^{\text {inv }}>\tau\right) \sim \mathcal{L}(\tau) \tau^{-1 / \eta(t)}$ for a slowly varying function $\mathcal{L}(\tau)$ as $\tau \rightarrow \infty$ (Ledford and Tawn 1996), Wadsworth and Tawn (2012) observe that

$$
\eta(t)=(2-\chi(t))^{-1}=\frac{1}{2}\left(1-\frac{\chi(t)}{2}\right)^{-1} \in\left[\frac{1}{2}, 1\right], \quad t \in \mathbb{R}^{d}
$$

In particular, η is also positive definite and not differentiable unless η is constant. The function η comes along with similar benefits and dangers in the regime of inverted max-stable processes as presented here for χ in the regime of max-stable processes.

Acknowledgements We thank two anonymous referees for many helpful comments that lead to significant improvements of the paper and Zakhar Kabluchko for a discussion on ergodicity and mixing of max-stable processes. Financial support by the German Research Foundation DFG for K. Strokorb who undertook this work as a member of the RTG 1023 and for M. Schlather by Volkswagen Stiftung within the 'WEX-MOP' project is gratefully acknowledged.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

A Proofs

Lemma 18 Let $k_{1} \leq k_{2} \leq k_{3}$.
a) The composition map $\mathcal{V}_{k_{1}}\left(\mathbb{R}^{k_{2}}\right) \times \mathcal{V}_{k_{2}}\left(\mathbb{R}^{k_{3}}\right) \rightarrow \mathcal{V}_{k_{1}}\left(\mathbb{R}^{k_{3}}\right)$ which maps (A, B) to $B \circ A$ is continuous.
b) If $B \sim \sigma_{k_{2}}^{k_{3}}$ is uniformly distributed on $\mathcal{V}_{k_{2}}\left(\mathbb{R}^{k_{3}}\right)$ and A is an independent (Borelmeasurable) random variable with values in $\mathcal{V}_{k_{1}}\left(\mathbb{R}^{k_{2}}\right)$, then the composition $B \circ A$ will also be uniformly distributed $B \circ A \sim \sigma_{k_{1}}^{k_{3}}$.
c) The turning bands operator is compatible with compositions, i.e., we have $T B_{k_{2}}^{k_{3}} \circ$

$$
T B_{k_{1}}^{k_{2}}=T B_{k_{1}}^{k_{3}}
$$

Proof The composition of matrices is continuous and here just restricted to a subspace. This shows a). Let f be a continuous function on $\mathcal{V}_{k_{1}}\left(\mathbb{R}^{k_{3}}\right)$, then (by dominated convergence) the function $g(b):=\mathbb{E}_{A}(f(b \circ A))$ will also be continuous on $\mathcal{V}_{k_{2}}\left(\mathbb{R}^{k_{3}}\right)$. Therefore, $\mathbb{E}_{B}\left(g\left(G^{-1} B\right)\right)=\mathbb{E}_{B}(g(B))$ for all $G \in \mathrm{O}\left(k_{3}\right)$, since $B \sim \sigma_{k_{2}}^{k_{3}}$. Thus, we also have for $G \in \mathrm{O}\left(k_{3}\right)$ that

$$
\begin{aligned}
\mathbb{E} f\left(G^{-1} \circ B \circ A\right) & =\mathbb{E}\left(\mathbb{E}\left(f\left(G^{-1} \circ B \circ A\right) \mid B\right)\right)=\mathbb{E}\left(g\left(G^{-1} B\right)\right) \\
& =\mathbb{E}(g(B))=\mathbb{E}(\mathbb{E}(f(B \circ A) \mid B))=\mathbb{E} f(B \circ A) .
\end{aligned}
$$

Since $G \in \mathrm{O}\left(k_{3}\right)$ and f were arbitrary, the last relation implies that the distribution of $B \circ A$ is invariant to left actions of $\mathrm{O}\left(k_{3}\right)$. This fact and the uniqueness of the normalized Haar measure imply part b), which entails c).

Proof (of Lemma 2) Let M be a non-empty finite subset of \mathbb{R}^{d} and $x \in(0, \infty)^{M}$. The finite-dimensional distributions of Y are determined by

$$
-\log \mathbb{P}\left(Y_{t} \leq x_{t}, t \in M\right)=\int_{\mathcal{V}_{k}\left(\mathbb{R}^{d}\right)} \int_{E} \bigvee_{t \in M} x_{t}^{-1} V_{A} \mathrm{~T}_{t}(e) \mu(\mathrm{d} e) \sigma_{k}^{d}(\mathrm{~d} A)
$$

If X is stationary, then we have for all $h \in \mathbb{R}^{d}$ and all $A \in \mathcal{V}_{k}\left(\mathbb{R}^{d}\right)$ that $\int_{E} \bigvee_{t \in M} x_{t}^{-1} V_{A}{ }^{\mathrm{T}}(t+h)(e) \mu(\mathrm{d} e)=\int_{E} \bigvee_{t \in M} x_{t}^{-1} V_{A} \mathrm{~T}_{t}(e) \mu(\mathrm{d} e)$, since A is linear,
which implies the assertion a). Subsequently, part b) follows since σ_{k}^{d} is $\mathrm{O}(d)$ invariant. Part c) follows with Eq.3.

Proof (of Proposition 3) In view of Lemma 2 we need to show that continuous TCFs on \mathbb{R}^{k} coincide with the TCFs of stochastically continuous processes on \mathbb{R}^{k}. Let χ be a continuous TCF on \mathbb{R}^{k} and let X be a corresponding stationary max-stable process. Let θ be the extremal coefficient function (ECF) of X as in Strokorb and Schlather (2013) and let X^{*} be the associated Tawn-Molchanov process as in Theorem 8 therein. Note that $\chi(h)=2-\theta(\{h, o\})$. By construction, X^{*} is also stationary and has TCF χ. Additionally, X^{*} is stochastically continuous due to Theorem 25 therein.

Proof (of Lemma 6) Let M be a non-empty finite subset of \mathbb{R}^{d} and $x \in(0, \infty)^{M}$. The finite-dimensional distributions of Y are determined by

$$
-\log \mathbb{P}\left(Y_{t} \leq x_{t}, t \in M\right)=\mathbb{E}_{B} \int_{\mathbb{R}^{d}} \int_{E} \bigvee_{t \in M} c_{B}^{-1} x_{t}^{-1} B(t-z) V_{t}(e) \mu(\mathrm{d} e) \mathrm{d} z
$$

a) If X is stationary, we have for all $h \in \mathbb{R}^{d}, z \in \mathbb{R}^{d}$ and $B \in\{0,1\}^{\mathbb{R}^{d}}$ that $\int_{E} \bigvee_{t \in M} \frac{B(t-z) V_{t+h}(e)}{x_{t}} \mu(\mathrm{~d} e)=\int_{E} \bigvee_{t \in M} B(t-z) V_{t}(e) x_{t} \mu(\mathrm{~d} e)$, which entails for all $h \in \mathbb{R}^{d}$ and all integrable functions $B \in\{0,1\}^{\mathbb{R}^{d}}$ that $\int_{\mathbb{R}^{d}} \int_{E} \bigvee_{t \in M} \frac{B((t+h)-z) V_{t+h}(e)}{x_{t}} \mu(\mathrm{~d} e) \mathrm{d} z=\int_{\mathbb{R}^{d}} \int_{E} \bigvee_{t \in M} \frac{B(t-z) V_{t}(e)}{x_{t}} \mu(\mathrm{~d} e) \mathrm{d} z$.
b) The assertion follows from Eq. 3 and the fact that $b_{1} v_{1} \wedge b_{2} v_{2}=b_{1} b_{2}\left(v_{1} \wedge v_{2}\right)$ for non-negative real numbers $b_{1}, b_{2}, v_{1}, v_{2}$ with $b_{i} \in\{0,1\}$ for $i=1,2$.

It is shown already in Gneiting (1999c) that H_{d} and the Mittal-Berman class V_{d} coincide (for $d \geq 2$; cf. Gneiting (1999c, Eq. 40) and Mittal (1976)). Here, V_{d} is the class of functions φ on $[0, \infty)$ of the form

$$
\begin{equation*}
\varphi(t)=2 \int_{t / 2}^{\infty} S_{d, u, \theta(t, u)} S_{d, u, \pi}^{-1} p(u) \mathrm{d} u \tag{27}
\end{equation*}
$$

where p is a probability density function on $(0, \infty)$, such that $p(u) / u^{d-1}$ is nonincreasing, and $S_{d, u, \theta}$ is the surface area of the sphere $\{x:\|x\|=u\} \subset \mathbb{R}^{d}$ intersected by the cone of angle $\theta(t, u)=\arccos (t /(2 u))$ (with apex the origin). In what follows, we show that we have

$$
\begin{equation*}
H_{d}=T_{\mathrm{M} 3 \mathrm{r}}^{d}=T_{\mathrm{M} 2 \mathrm{r}}^{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}\left(=V_{d}\right) \quad \text { for } d \geq 1(d \geq 2) . \tag{28}
\end{equation*}
$$

Proof (of Proposition 8 and Proposition 14c)

We divide the proof into five steps:
1 st step $H_{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}$ for $d \geq 1$.
The assertion follows immediately from Eq. 15.
2nd step $T_{\mathrm{M} 2 \mathrm{r}}^{d}=V_{d}=H_{d}$ for $d \geq 2$ and Eq. 25 holds for $d \geq 2$.

Members of $T_{\mathrm{M} 2 \mathrm{r}}^{d}$ depend on a shape function $f \geq 0$ with $\int_{\mathbb{R}^{d}} f(\|t\|) \mathrm{d} t=1$, which is non-increasing as the radius grows, whereas members of V_{d} depend on a probability density function p on $(0, \infty)$ with $p(u) / u^{d-1}$ non-increasing in $u>0$. Integration along the radius shows that both functions are in one-to-one corresponcence via

$$
f(\|t\|)=S_{d,\|t\|, \pi}^{-1} p(\|t\|)
$$

Moreover, since f is non-increasing, this correspondence is compatible with the integration in Eq. 27 and the TCF for M2r processes in Table 1, that is

$$
\begin{align*}
\int_{\mathbb{R}^{d}} f(\|z\|) \wedge f(\|z-t\|) \mathrm{d} z & =2 \int_{\|t\| / 2}^{\infty} S_{d, u, \theta(\|t\|, u)} f(u) \mathrm{d} u \\
& =2 \int_{\|t\| / 2}^{\infty} S_{d, u, \theta(\|t\|, u)} S_{d, u, \pi}^{-1} p(u) \mathrm{d} u \tag{29}
\end{align*}
$$

Hence $T_{\mathrm{M} 2 \mathrm{r}}^{d}=V_{d}$ for $d \geq 2$. From Gneiting (1999c) we already know that $H_{d}=V_{d}$. In particular, f and $G_{1 /(2 R)}=G$ from Proposition 14 can be recovered from each other by (44) and (45) in Gneiting (1999c) with $n \geq 2$ (Theorem 5.2 therein), or, equivalently, f and $G_{1 /(2 R)}$ can be recovered from each other by (25) with $d \geq 2$ here. Note that our f corresponds to g in Gneiting (1999c).
$3 r d$ step $T_{\mathrm{M} 2 \mathrm{r}}^{1}=H_{1}$ and Eq. 25 holds for $d=1$.
If $d=1$, it is straightforward to check that, for $\chi \in T_{\mathrm{M} 2 \mathrm{r}}^{1}$ depending on a single shape function f, we have

$$
\begin{equation*}
\chi(t)=\int_{\mathbb{R}} f(z) \wedge f(z-t) \mathrm{d} z=2 \int_{t / 2}^{\infty} f(u) \mathrm{d} u \tag{30}
\end{equation*}
$$

(similarly to the integration along the radius in Eq. 29). Now, precisely the same proof as the proof of Theorem 5.2. in Gneiting (1999c) applies here when we set $n=1, g=f, \varphi=\chi$ and omit the term $S_{n, u, \theta}$ in (48) and (49) therein, showing that $T_{\mathrm{M} 2 \mathrm{r}}^{1}=H_{1}$. In particular, f and $G_{1 /(2 R)}=G$ from Proposition 14 can also be recovered from each other by (44) and (45) in Gneiting (1999c) with $n=1$ or, equivalently, f and $G_{1 /(2 R)}$ can be recovered from each other by Eq. 25 with $d=1$ here (where our f corresponds to g therein).

$$
\text { 4th step } T_{\mathrm{M} 3 \mathrm{r}}^{d} \subset H_{d} \text { for } d \geq 1
$$

From the 2nd and 3rd step we know that $T_{\mathrm{M} 2 \mathrm{r}}^{d}=H_{d}$ for $d \geq 1$. That means for each (single deterministic) radially symmetric non-increasing shape function $f \geq 0$ on $[0, \infty)$ with $0<\|f\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)}<\infty$ we may define a unique distribution function $G_{f /\|f\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)}}$ via Eq. 25. We set

$$
A(f)_{s}=\|f\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)} G_{f /\|f\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)}}(s), \quad s>0,
$$

such that $A(f)$ is non-decreasing on $(0, \infty)$ with $A(f)_{0+}=0, A(f)$ is rightcontinuous and $A(f)$ has total variation $\|f\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)}$. It is coherent to set $A_{0} \equiv 0$. Now,
consider a member χ of $T_{\mathrm{M} 3 \mathrm{r}}^{d}$ and its corresponding measurable map $f: \mathbb{R}^{d} \times \Omega$ $\rightarrow[0, \infty]$, which satisfies

$$
\int_{\Omega}\|f(\cdot, \omega)\|_{\mathrm{L}^{1}\left(\mathbb{R}^{d}\right)} v(\mathrm{~d} \omega)=1
$$

Then the assignment $\omega \mapsto\left(A(f(\cdot, \omega))_{s}\right)_{s>0}$ defines a non-decreasing, rightcontinuous process A on $(0, \infty)$, such that $\mathbb{E}\left(A_{\infty}\right)=1$ and $A_{0+}=0$. Moreover, note that (by the correspondence $T_{\mathrm{M} 2 \mathrm{r}}^{d}=H_{d}$)

$$
\chi(t)=\mathbb{E} \int_{0}^{\infty} h_{d}(s t) \mathrm{d} A_{s},
$$

where the expectation is taken with respect to the process A (the expectation comes from the measure μ). Set $G(s)=\mathbb{E} A_{s}$. Then G is also non-decreasing, rightcontinuous with total variation 1 and with $G(0+)=0$ (by dominated convergence). Finally, we obtain (again by dominated convergence) that

$$
\chi(t)=\int_{0}^{\infty} h_{d}(s t) \mathrm{d} \mathbb{E} A_{s}=\int_{0}^{\infty} h_{d}(s t) \mathrm{d} G(s)
$$

as desired. Hence $T_{\mathrm{M} 3 \mathrm{r}}^{d} \subset H_{d}$.
5th step (Summary) From the previous steps we know that $T_{\mathrm{M} 3 \mathrm{r}}^{d} \subset H_{d}=T_{\mathrm{M} 3 \mathrm{~b}}^{d}$ $=T_{\mathrm{M} 2 \mathrm{r}}^{d}$ for $d \geq 1$. Clearly, $T_{\mathrm{M} 3 \mathrm{~b}}^{d} \subset T_{\mathrm{M} 3 \mathrm{r}}^{d}$ by definition.

Proof (of Proposition 9) a) If φ is completely monotone, then also $-\varphi^{\prime}$ and $-\varphi^{\prime}(\sqrt{\cdot})$ will be completely monotone, since $\sqrt{ } \cdot$ is a Bernstein function, cf. Berg et al (1984, p. 141/142) and Bochner (1955, p. 83) (where Bernstein functions are confusingly also called "completely monotone"). This shows $T_{\mathrm{MPS}}^{d} \subset H_{\infty}$. Clearly, $H_{\infty} \subset H_{d}$ and the other equalities are restated from Proposition 9.
b) Clearly, $T_{\mathrm{BR}}^{d} \subset T_{\mathrm{VBR}}^{d}$, since BR processes form a proper subclass of VBR processes. The inclusion $H_{\infty} \subset T_{\mathrm{VBR}}^{d}$ follows from Eq. 20, since $\gamma(t)=8\|t\|^{2}$ is a valid variogram in each dimension.
c) The variogram $\gamma(t)=8\|t\|^{2 \alpha}$ is valid in each dimension for $\alpha \in(0,1]$ (corresponding to fractional Brownian motion). Hence $\operatorname{erfc}\left(t^{\alpha}\right)$ is a valid TCF of a BR process for $\alpha \in(0,1]$. Moreover, the function $\operatorname{erfc}\left(t^{\alpha}\right)$ is completely monotone (\Leftrightarrow it belongs to T_{MPS}^{d}) if and only if $\alpha \leq 0.5$.
d) The class $T_{\mathrm{M} 3 \mathrm{r}}^{d}=H_{d}$ naturally contains functions with compact support, e.g. the function h_{d}, see Eq. 14, whereas T_{VBR}^{d} cannot contain such functions. To see this, recall (19) and observe that members of H_{∞} are scale mixtures of erfc that cannot have compact support. Thus, the involved variogram in Eq. 20 would have to take the value ∞ outside a compact region.
e) Consider the simple erfc-mixture

$$
\chi(\|t\|)=0.25 \cdot \operatorname{erfc}(\|t\|)+0.75 \cdot \operatorname{erfc}(5\|t\|), \quad t \in \mathbb{R}^{d}
$$

Surely, χ is a member of H_{∞}, cf. (19). Suppose that there is a BR process on \mathbb{R}^{d} corresponding to a variogram $\tilde{\gamma}$ such that its TCF $\tilde{\chi}$ coincides with χ. We will
show now that this cannot be true for any dimension d. Otherwise,

$$
\tilde{\gamma}(\|t\|)=8\left[\operatorname{erfc}^{-1}(0.25 \cdot \operatorname{erfc}(\|t\|)+0.75 \cdot \operatorname{erfc}(5\|t\|))\right]^{2}, \quad t \in \mathbb{R}^{d}
$$

is a variogram for any dimension d. In particular, $\tilde{\gamma}(\|\cdot\|)$ is for any dimension d a continuous negative definite function on \mathbb{R}^{d}. By Berg et al (1984, 5.1.8) it follows that the function

$$
\psi(r)=\left[\operatorname{erfc}^{-1}(0.25 \cdot \operatorname{erfc}(\sqrt{r})+0.75 \cdot \operatorname{erfc}(5 \sqrt{r}))\right]^{2}, \quad r \in[0, \infty)
$$

is a (continuous) negative definite function on $[0, \infty)$ in the semigroup sense and obviously $\psi(r) \geq 0$. Hence $\psi(r)$ is a Bernstein function, cf. Berg et al (1984, 4.4.3). However, the second derivative of $\psi(r)$ has a local minimum. So, the assertion fails and our assumption must be wrong. That means there is a dimension d_{0} such that the above $\chi \in H_{\infty}$ cannot be realized as a TCF of a BR process for any dimension $d \geq d_{0}$.

Lemma 19 For all $1 \leq k \leq d$ the turning bands operator $T B_{k}^{d}$ transfers members of the class H_{1} into members of H_{1}.

Proof The class H_{1} is the class of continuous functions h on $[0, \infty)$ that are convex and satisfy $h(0)=1$ and $\lim _{t \rightarrow \infty} h(t)=0$. All properties are preserved under TB_{k}^{d}. For continuity and $\lim _{t \rightarrow \infty} h(t)=0$ use the dominated convergence theorem. Preservation of convexity follows from $\mathrm{TB}_{k}^{d}(h)(r)=\mathbb{E}_{A}(h(r c(A)))$ for $r \geq 0$ with $A \sim \sigma_{k}^{d}$ and $c(A)=\left\|A^{\mathrm{T}}(1,0, \ldots, 0)^{\mathrm{T}}\right\|$.

Proof (of Proposition 10) A priori it is clear that $\varphi_{1}=h_{1}$ does not belong to H_{k} for $k \geq 2$ (Gneiting 1999c).
a) Because of Proposition 3 the function φ_{d} is a radial TCF on \mathbb{R}^{d}. Lemma 19 shows that $\varphi_{d}=\mathrm{TB}_{1}^{d}\left(h_{1}\right)$ belongs to H_{1}.
b) By Eq. $9 \varphi_{d}$ can be expressed as

$$
\begin{equation*}
\varphi_{d}(t)=2 \pi^{-1 / 2} \Gamma(d / 2) \Gamma((d-1) / 2)^{-1} \int_{0}^{1} h_{1}(t w)\left(1-w^{2}\right)^{(d-3) / 2} \mathrm{~d} w . \tag{31}
\end{equation*}
$$

Thus, we have for $d \geq 2$ that

$$
-\varphi_{d}^{\prime}(\sqrt{t})=\beta_{d} \begin{cases}1 & t \leq 1 \tag{32}\\ 1-(1-1 / t)^{(d-1) / 2} & t>1\end{cases}
$$

where β_{d} is the constant from Eq. 23. Clearly, $-\varphi_{d}^{\prime}(\sqrt{t})$ is not convex. From Eq. 17 (which is an equality for $d=3$) we see that φ_{d} cannot belong to H_{3}.
c) We verify that one of the conditions of Theorem 3.3 in Gneiting (1999c) (that is necessary to belong to the class H_{2}) is not fulfilled: Namely, we show that for all
$d \geq 6$ the function

$$
\begin{equation*}
c(t):=\int_{0}^{t} \sqrt{v^{-1}(t-v)}\left(-\varphi_{d}^{\prime}(1 / \sqrt{v})\right) \mathrm{d} v \tag{33}
\end{equation*}
$$

is not convex. From Eq. 32 we see that

$$
-\varphi_{d}^{\prime}(1 / \sqrt{v})=\beta_{d} \begin{cases}1-(1-v)^{(d-1) / 2} & v<1 \\ 1 & v \geq 1\end{cases}
$$

Since $d \geq 6$ we can compute the second derivative of c at 1 :

$$
\begin{aligned}
c^{\prime \prime}(1) & =\left.\int_{0}^{1} \sqrt{w^{-1}(1-w)} \cdot \frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=1}\left(-\varphi_{d}^{\prime}(1 / \sqrt{t w}) \cdot t\right) \mathrm{d} w \\
& =-\beta_{d}(d-1)\left(3 / 16 \sqrt{\pi} \Gamma(d / 2-2) \Gamma((d+1) / 2)^{-1}\right)<0
\end{aligned}
$$

Since $c^{\prime \prime}(1)$ is negative, the function c cannot be convex.
Lemma 20 If $f, g \in H_{1}$ then $f g \in H_{1}$ as well.
Proof This is an immediate consequence of Gneiting (1999c, Lemma 4.7) or Williamson (1956, Lemma 2), which states that if f and g are non-negative, nonincreasing and convex on an interval, then the product $f g$ is also non-negative, non-increasing and convex there.

Proof (of Proposition 12) a) From Proposition 10 we know that $\varphi_{d}(2 t)$ is a radial TCF on \mathbb{R}^{d} that belongs to H_{1}. Since $h_{d}(t)$ belongs to H_{d} it follows from Example 7 that the product $\chi_{d}(t)=\varphi_{d}(2 t) h_{d}(t)$ is a radial TCF on \mathbb{R}^{d}. Moreover $h_{d}(t)$ also belongs to $H_{d} \subset H_{1}$ and therefore $\chi_{d} \in H_{1}$ due to Lemma 20. However, $\chi_{d} \notin T_{\mathrm{VBR}}^{d}$ because of its compact support (cf. Propostion 9 d).
b) It suffices to show that the function

$$
f(t)=-\chi_{3}^{\prime}(\sqrt{t})=-2 \varphi_{3}^{\prime}(\sqrt{4 t}) h_{3}(\sqrt{t})+\varphi_{3}(\sqrt{4 t})\left(-h_{3}^{\prime}(\sqrt{t})\right)
$$

is not convex, because then one of the conditions of Eq. 17 (which is an equality for $d=3$) is not fulfilled. From Eq. 14), Eq. 31 and Eq. 32 we see that for $t \in[0,1]$

$$
\begin{array}{rlrl}
h_{3}(\sqrt{t}) & =\frac{1}{2}\left(2-3 t^{1 / 2}+t^{3 / 2}\right), & -h_{3}^{\prime}(\sqrt{t})=\frac{3}{2}(1-t), \\
\varphi_{3}(\sqrt{4 t}) & =\left\{\begin{array}{ll}
1-\sqrt{t} & t \leq 1 / 4 \\
1 /(4 \sqrt{t}) & t \geq 1 / 4
\end{array},\right.
\end{array} \quad-2 \varphi_{3}^{\prime}(\sqrt{4 t})=\left\{\begin{array}{ll}
1 & t \leq 1 / 4 \\
1 /(4 t) & t \geq 1 / 4
\end{array} .\right.
$$

Thus, $f(t)$ is a decreasing function on $[0,1]$ with the following left-hand and right-hand derivative at $1 / 4$

$$
\lim _{t \uparrow 1 / 4} f^{\prime}(t)=-3 \quad \text { and } \quad \lim _{t \downarrow 1 / 4} f^{\prime}(t)=-17 / 4
$$

Hence, f cannot be convex in a neighbourhood of $1 / 4$.

Proof (of Proposition 14) c) The recovery of f and $G_{1 /(2 R)}$ has been proved already alongside the Proof of Proposition 8.
b) The recovery of $G_{1 /(2 R)}$ is stated in Gneiting (1999c), Eq. 18 (case $d=1$), Theorem 3.2 (case $d \geq 3$ odd), Theorem 3.4 (case $d \geq 2$ odd) with $G_{1 /(2 R)}=G$ therein.
a) The recovery of f is obtained from part b) when Eq. 25 from part c) is applied. In case d is odd, we can simplify the result as follows

$$
\begin{aligned}
f(u) & =\frac{1}{\kappa_{d}} \int_{0}^{1 /(2 u)}(2 s)^{d} \mathrm{~d} G(s)=\frac{2^{d} \sqrt{\pi}}{\kappa_{d} d \Gamma(d / 2)} \int_{0}^{1 /(2 u)} \mathrm{d} \lambda\left(\frac{1}{s^{2}}\right) \\
& =\left(\frac{2}{\sqrt{\pi}}\right)^{d-1}\left(\lambda\left(4 u^{2}\right)-\lim _{x \rightarrow \infty} \lambda(x)\right)
\end{aligned}
$$

But $\lim _{x \rightarrow \infty} \lambda(x)$ necessarily vanishes, since $\lambda(t)=-a^{\prime}(t)$ for a non-negative (i.e. bounded from below), non-increasing and convex function $a(t)$ due to (Gneiting 1999c, Eq. 22).

Proof (of Table 3) If the density $g_{1 /(2 R)}$ of the $\operatorname{cdf} G_{1 /(2 R)}$ of $1 /(2 R)$ exists, then the density $g_{2 R}$ of $2 R$ is given by $g_{2 R}(s)=g_{1 /(2 R)}(1 / s) / s^{2}$. The cases $d=1$ and $d=3$ follow directly from Proposition 14. The case $d=2$ has been derived in a tedious calculation that can be found in Strokorb (2013, p. 100, Proof of Table 4.2.) under the additional assumption that $\chi \in H_{5}$.

Proof (of Lemma 15 analogously to Gneiting (1999c), p. 104) Replacing t by t^{2} and r by s^{2} yields

$$
-\varphi^{\prime}(t)=\int_{0}^{\infty} 2 s e^{-s^{2} t^{2}} f\left(s^{2}\right) \mathrm{d} s=\int_{0}^{\infty} \frac{\mathrm{d}}{\mathrm{~d} t}[-\operatorname{erfc}(s t)] g(s) \mathrm{d} s
$$

Applying Fubini's theorem when integrating w.r.t. t gives

$$
\varphi(0)-\varphi(t)=\int_{0}^{\infty}[\operatorname{erfc}(0)-\operatorname{erfc}(s t)] g(s) \mathrm{d} s
$$

which entails the claim, since g is a density on $(0, \infty)$ and $\varphi(0)=1$.
Proof (of Table 4) We apply Lemma 15 and derive this table from known Laplace transforms in Polyanin and Manzhirov (2008) using (in this order) Eq.'s [p. 9645.3 (11)], [p. 9645.3 (12), p. 9635.2 (12) and p. 9625.1 (26)], [p. 9635.3 (1)] and [p. 963 5.3. (3) with $v=1.5]$ therein.

Proof (of Corollary 17) The variogram $\gamma(t)=8\|t\|$ corresponds to Brownian motion and is a valid variogram that determines a BR process with TCF

$$
\chi(t)=\operatorname{erfc}(\sqrt{\gamma(t) / 8})=\operatorname{erfc}(\sqrt{\|t\|}) .
$$

Proposition 9 ensures the existence an intensity mixing distribution G_{β} of an MPS process (Part c)), of a monotone shape function f of an M2r process (Part a)) and a
random radius R of an M3b process (Part a)), such that all involved processes share the same TCF χ as above. In fact, f, R and G_{β} are uniquely determined by χ, cf. Section 5. The quantities f and R (that is the density $g_{2 R}$ of $2 R$) are recovered from χ as in Table 3 through

$$
\begin{aligned}
f(u) & =\chi^{\prime \prime}(2 u) /(\pi u)=\pi^{-3 / 2}(1+4 u)(2 u)^{-5 / 2} e^{-2 u} \\
g_{2 R}(s) & =\frac{s}{3}\left(\chi^{\prime \prime}(s)-s \chi^{\prime \prime \prime}(s)\right)=1 / 12(\pi s)^{-1 / 2}\left(4 s^{2}+8 s+5\right) e^{-s} .
\end{aligned}
$$

Derivatives are taken with respect to $\|t\|$ (not $t \in \mathbb{R}^{d}$) and the monotone shape function f depends on $u=\|t\|$ only. Furthermore, it follows from Gradshteyn and Ryzhik (2007, p. 1100, 17.13.5) that the Laplace transform of

$$
G(s)= \begin{cases}0 & \text { if } s \leq a \\ 2 \pi^{-1} \arctan \left(\sqrt{a^{-1} s-1}\right) & \text { if } s>a\end{cases}
$$

which admits the density $\sqrt{a} \mathbf{1}_{x \geq a} /(\pi s(s-a))$, is given by $\operatorname{erfc}(\sqrt{a x})$ for $|a|<\pi$, that is $\mathcal{L}(G)(x)=\operatorname{erfc}(\sqrt{a x})$. From the MPS entry of Table 1 we know that $\chi\left(x / c_{d}\right)=\mathcal{L}\left(G_{\beta}\right)(x)$ holds for the TCF χ of an MPS process where $c_{d}=2$ $\kappa_{d-1} /\left(d \kappa_{d}\right)$ is a dimension specific constant. With $d=2$, we obtain $c_{d}=2 / \pi$. Therefore, choosing $a=1 / c_{d}=\pi / 2$ for G yields the desired intensity mixing distribution G_{β} of an MPS process with TCF $\operatorname{erfc}(\sqrt{\|t\|})$.

B Monotonicity properties of continuous functions

Let (a, b) be an open interval and $n \in \mathbb{N}$. A real-valued function f on (a, b) is called n-times monotone, where $n \geq 2$, if it is differentiable up to order $n-2$ and $(-1)^{k} f^{(k)}$ is non-negative, non-increasing and convex on (a, b) for $k=$ $0,1, \ldots, n-2$. If $n=1$, we simply require f to be non-negative and non-increasing (McNeil and Neślehová 2009; Williamson 1956). The function f is called completely monotone if it is n-times monotone of any order n, which is equivalent to require that it has derivatives of all orders and that $(-1)^{k} f^{(k)}(x) \geq 0$ for all $x \in(a, b)$ and $k \in \mathbb{N} \cup\{0\}$ (Widder 1946, Chapter IV). If I is a closed or half-open interval, a function f on I is called n-times monotone (resp. completely monotone) if f has this property when restricted to the interior I and if f is continuous at the boundary points of I. In the literature, the focus often lies on the intervals $I=(0, \infty)$ or $I=[0, \infty)$, since completely monotone functions on $[0, \infty)$ are precisely the functions f, such that $f\left(\|\cdot\|^{2}\right)$ is positive definite on \mathbb{R}^{d} for all dimensions d (cf. e.g. Berg et al (1984, 5.1 .5 and 5.1.6)). Such functions are characterized as Laplace transforms of nondecreasing functions, or, equivalently, positive measures (Widder 1946, Chapter IV, Theorem 12).

Theorem 21 (Bernstein) A function $f:(0, \infty) \rightarrow \mathbb{R}$ is completely monotone on $(0, \infty)$ if and only if it has an integral representation of the form

$$
\begin{equation*}
f(x)=\int_{[0, \infty)} \exp (-t x) d F(t) \tag{34}
\end{equation*}
$$

for some non-decreasing function $F:[0, \infty) \rightarrow \mathbb{R}$, such that the integral converges for $x \in(0, \infty)$. Furthermore, the function f can be extended continuously to $[0, \infty)$ - and, thus, is completely monotone on $[0, \infty)$ - if and only if F is bounded. In this case $f(0)=F(\infty)-F(0)$.

An analogous integral representation with Bernstein's theorem as the limiting case holds for n-times monotone functions (Williamson 1956). It presents n-times monotone functions as scale mixtures of Askey's function.

Theorem 22 (Williamson) A function $f:(0, \infty) \rightarrow \mathbb{R}$ is n-times monotone on $(0, \infty)$ if and only if it has an integral representation of the form

$$
\begin{equation*}
f(x)=\int_{[0, \infty)}(1-t x)_{+}^{n-1} d F(t) \tag{35}
\end{equation*}
$$

for some non-decreasing function $F:[0, \infty) \rightarrow \mathbb{R}$ bounded from below. This representation is unique in the sense that when F is normalized to $F(0)=0$, the value $F(t)$ is determined at continuity points $t>0$ of F.

Finally, this motivates the definition of α-times monotone functions for real $\alpha \geq 1$ according to Williamson (1956). A real-valued function f on ($0, \infty$) (resp. [0, ∞)) is called α-times monotone if it has an integral representation of the form Eq. 35 with $n=\alpha$ for some non-decreasing function $F:[0, \infty) \rightarrow \mathbb{R}$ with $F(0)=0$ (resp. additionally $f(0+)=f(0))$.

References

Beirlant, J., Goegebeur, Y., Teugels, J., Segers, J.: Statistics of extremes. Wiley series in probability and statistics. John Wiley \& Sons Ltd., Chichester (2004)
Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic Analysis on Semigroups, Graduate Texts in Mathematics, vol. 100. Springer-Verlag, New York (1984)
Berg, C., Mateu, J., Porcu, E.: The Dagum family of isotropic correlation functions. Bernoulli 14(4), 11341149 (2008)
Blanchet, J., Davison, A.C.: Spatial modeling of extreme snow depth. Ann. Appl. Stat. 5(3), 1699-1725 (2011)

Bochner S.: Harmonic analysis and probability theory. Berkeley and Los Angeles (1955)
zu Castell, W.: Recurrence relations for radial positive definite functions. J. Math Anal. Appl 271(1), 108123 (2002)
Coles, S., Heffernan, J., Tawn, J.: Dependence measures for extreme value analyses. Extremes 2(4), 339365 (1999)
Cooley, D., Naveau, P., Poncet, P.: Variograms for spatial max-stable random fields, Dependence in Probability and Statistics, Lecture Notes in Statist, vol. 187, pp. 373-390. Springer, New York (2006)
Davis, R.A., Mikosch, T.: The extremogram: a correlogram for extreme events. Bernoulli 15(4), 977-1009 (2009)

Davison, A.C., Gholamrezaee, M.M.: Geostatistics of extremes. Proc. R. Soc. Lond Ser. A Math Phys. Eng. Sci 468(2138), 581-608 (2012)
Davison, A.C., Padoan, S.A., Ribatet, M.: Statistical modeling of spatial extremes. Statist Sci 27(2), 161186 (2012)
Engelke, S., Kabluchko, Z., Schlather, M.: Maxima of independent, non-identically distributed Gaussian vectors. Bernoulli, To appear (2012a)

Engelke, S., Malinowski, A., Kabluchko, Z., Schlather, M.: Estimation of Hüsler-Reiss distributions and Brown-Resnick processes. Journal of the Royal Statistical Society, Series B (Statistical Methodology), To appear (2012b)
Falk, M.: On the generation of a multivariate extreme value distribution with prescribed tail dependence parameter matrix. Statist Probab Lett 75(4), 307-314 (2005)
Ferreira, H.: Generating multivariate extrema value distributions. arXiv:1203.1875 (2012)
Fiebig, U., Strokorb, K., Schlather, M.: The realization problem for tail correlation functions. arXiv:1405.6876 (2014)
Furrer, R., Genton, M.G., Nychka, D.: Covariance tapering for interpolation of large spatial datasets. J. Comput. Graph Stat. 15(3), 502-523 (2006)
Geffroy, J.: Contribution à la théorie des valeurs extrêmes. Publ Inst Statist Univ Paris 7/8, 37-185 (1958/1959)
Gneiting, T.: Isotropic correlation functions on d-dimensional balls. Adv Appl Probab 31(3), 625-631 (1999a)
Gneiting, T.: On the derivatives of radial positive definite functions. J. Math Anal. Appl. 236(1), 86-93 (1999b)
Gneiting, T.: Radial positive definite functions generated by Euclid's hat. J. Multivariate Anal. 69(1), 88119 (1999c)
Gneiting, T., Z Sasvári, Z.: The characterization problem for isotropic covariance functions. Math Geol 31, 105-111 (1999)
Golubov, B.I.: On Abel-Poisson type and Riesz means. Anal. Math 7(3), 161-184 (1981)
Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals. 7th edn. Elsevier/Academic Press, Amsterdam (2007)
de Haan, L.: A spectral representation for max-stable processes. Ann Probab 12(4), 1194-1204 (1984)
Jupp, P.E., Mardia, K.V.: Maximum likelihood estimators for the matrix von Mises-Fisher and Bingham distributions. Ann Statist 7(3), 599-606 (1979)
Kabluchko, Z.: Spectral representations of sum- and max-stable processes. Extremes 12(4), 401-424 (2009)

Kabluchko, Z., Schlather, M.: Ergodic properties of max-infinitely divisible processes. Stochastic Process Appl 120(3), 281-295 (2010)
Kabluchko, Z., Stoev, S.: Stochastic integral representations and classification of sum- and max-infinitely divisible processes. Bernoulli To appear (2012)
Kabluchko, Z., Schlather, M., de Haan, L.: Stationary max-stable fields associated to negative definite functions. Ann Probab 37(5), 2042-2065 (2009)
Lantuéjoul, C.: Geostatistical simulation: models and algorithms. 1139, Springer (2002)
Lantuéjoul, C., Bacro, J.N., Bel, L.: Storm processes and stochastic geometry. Extremes 14(4), 413-428 (2011)

Ledford, A.W., Tawn, J.A.: Statistics for near independence in multivariate extreme values. Biometrika 83(1), 169-187 (1996)
Mardia, K.V., Khatri, C.G.: Uniform distribution on a Stiefel manifold. J Multivariate Anal 7(3), 468-473 (1977)

Matheron, G.: The intrinsic random functions and their applications. Adv Appl Probab 5, 439-468 (1973)
McNeil, A.J., Neṡlehová, J.: Multivariate Archimedean copulas, d-monotone functions and l_{1}-norm symmetric distributions. Ann Statist 37(5B), 3059-3097 (2009)
Miller, K.S., Samko, S.G.: Completely monotonic functions. Integral Transform Spec Funct 12(4), 389402 (2001)
Mittal, Y.: A class of isotropic covariance functions. Pacific J Math 64(2), 517-538 (1976)
Molchanov, I., Stucki, K.: Stationarity of multivariate particle systems. Stochastic Process Appl 123(6), 2272-2285 (2013)
Nachbin, L.: The Haar integral. Robert E. Krieger Publishing Co., Huntington, NY (1976). Translated from the Portuguese by Lulu Bechtolsheim, Reprint of the 1965 edition
Naveau, P., Guillou, A., Cooley, D., Diebolt, J.: Modelling pairwise dependence of maxima in space. Biometrika 96(1), 1-17 (2009)
Tiago de Oliveira J.: Structure theory of bivariate extremes; extensions. Est Mat Estat Econ 7, 165-95 (1962/63)
Polyanin, A.D., Manzhirov, A.V.: Handbook of integral equations. 2nd edn. Chapman \& Hall/CRC, Boca Raton, FL (2008)
Schlather, M.: Models for stationary max-stable random fields. Extremes 5(1), 33-44 (2002)

Schlather, M.: Construction of covariance functions and unconditional simulation of random fields, vol. 207, pp. 25-54. Springer, Berlin and Heidelberg (2012)
Schlather, M., Tawn, J.: A dependence measure for multivariate and spatial extreme values: Properties and inference. Biometrika 90, 139-156 (2003)
Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J., Ballani, F., Menck, P., Gross, S., Ober, U., Burmeister, K., Manitz, J., Singleton, R., Pfaff, B.: R Core team random fields: Simulation and analysis of random fields, http://ms.math.uni-mannheim.de (2014). R package version 3.0.13
Schneider, R., Weil, W.: Stochastic and integral geometry, Probability and its applications. SpringerVerlag, Berlin (2008)
Schoenberg, I.: Metric spaces and positive definite functions. Trans Amer Math Soc 44, 522-536 (1938)
Segers, J.: Rare events, temporal dependence, and the extremal index. J Appl Probab 43(2), 463-485 (2006)

Sibuya, M.: Bivariate extreme statistics. I. Ann Inst Statist Math Tokyo 11, 195-210 (1960)
Smith, R.: Max-stable processes and spatial extremes. Unpublished manuscript (1990)
Stoev, S.A.: On the ergodicity and mixing of max-stable processes. Stochastic Process Appl 118(9), 16791705 (2008)
Stoev, S.A., Taqqu, M.S.: Extremal stochastic integrals: a parallel between max-stable processes and α stable processes. Extremes 8(4), 237-266 (2005)
Strokorb, K.: Characterization and construction of max-stable processes. In: PhD thesis Georg-AugustUniversität Göttingen, http://hdl.handle.net/11858/00-1735-0000-0001-BB44-9 (2013)
Strokorb, K., Schlather, M.: An exceptional max-stable process fully parameterized by its extremal coefficients. Bernoulli To appear (2013)
Thibaud, E., Opitz, T.: Efficient inference and simulation for elliptical pareto processes. arXiv:1401.0168 (2014)

Wadsworth, J.L., Tawn, J.A.: Dependence modelling for spatial extremes. Biometrika 99(2), 253-272 (2012)

Wang, Y., Stoev, S.A.: On the structure and representations of max-stable processes. Adv in Appl Probab 42(3), 855-877 (2010)
Wang, Y., Roy, P., Stoev, S.A.: Ergodic properties of sum- and max-stable stationary random fields via null and positive group actions. Ann Probab 41(1), 206-228 (2013)
Widder, D.: The laplace transform. Princeton mathematical series. Princeton University Press Princeton, NJ (1946)
Williamson, R.E.: Multiply monotone functions and their Laplace transforms. Duke Math J. 23, 189-207 (1956)

Zhang, Z., Smith, R.L.: The behavior of multivariate maxima of moving maxima processes. J. Appl. Probab. 41(4), 1113-1123 (2004)

[^0]: K. Strokorb (\boxtimes) • M. Schlather

 Institute of Mathematics, University of Mannheim,
 D-68131 Mannheim, Germany
 e-mail: strokorb@math.uni-mannheim.de
 F. Ballani

 Institute of Stochastics, Faculty of Mathematics and Computer Science, TU Bergakademie Freiberg, D-09596 Freiberg, Germany

[^1]: There are two exceptions: The TCF bound for the truncated power function is sharp for odd dimensions and the CF bound for the powered error function is sharp if we require validity of the model for all dimensions

