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Abstract The tail correlation function (TCF) is a popular bivariate extremal depen-
dence measure to summarize data in the domain of attraction of a max-stable process.
For the class of TCFs, being largely unexplored so far, several aspects are con-
tributed: (i) generalization of some mixing max-stable processes (ii) transfer of two
geostatistical construction principles to max-stable processes, including the turning
bands operator (iii) identification of subclasses of TCFs, including M3 processes
based on radial monotone shapes (iv) recovery of subclasses of max-stable processes
from TCFs (v) parametric classes (iv) diversity of max-stable processes sharing an
identical TCF. We conclude that caution should be exercised when using TCFs for
statistical inference.
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1 Introduction

The tail correlation function (TCF) χ of a stationary process X on R
d is defined

through the following limit provided that it exists

χ(t) = lim
τ↑τup

P(Xt > τ | Xo > τ), t ∈ R
d .

Here, o ∈ R
d denotes the origin and τup is the upper endpoint of Xo. If χ(t) = 0, the

variables Xt and Xo are called asymptotically independent. Otherwise χ(t) expresses
the strength of asymptotic dependence. Dating back to Geffroy (1958/1959),
Sibuya (1960) and Tiago de Oliveira (1962/63) the bivariate summary statistic χ(t)

is one of the most popular extremal dependence measures that has entered the lit-
erature under various names including (upper) tail dependence coefficient (Beirlant
et al. 2004; Davis and Mikosch 2009; Falk 2005) or χ−measure (Coles et al. 1999).
We chose the name “tail correlation function” in order to emphasize the spatial char-
acter of χ and that it is a symmetric positive definite function. Indeed, the TCF χ (or
equivalently θ := 2 − χ , see below) was proposed as an extreme value analogue to
the usual correlation function (Schlather and Tawn 2003; Smith 1990).

If the process X is max-stable, the TCF χ is equivalent to the extremal coefficient
function (ECF)

θ(t) = logP(Xt ≤ τ, Xo ≤ τ)/ logP(Xo ≤ τ), t ∈ R
d ,

since χ(t) = 2 − θ(t), see also Eq. 3 below. Note that in the max-stable case the
expression on the right-hand side is indeed independent of the threshold τ . Estima-
tors for θ (and, thus, also for χ) can be found for instance in Smith (1990), Schlather
and Tawn (2003), Cooley et al (2006) and Naveau et al (2009). Parametric subclasses
of max-stable processes have been fitted to environmental spatial data and the ECF θ

(that is equivalent to the TCF χ) is usually considered in order to assess the goodness
of fit (Blanchet and Davison 2011; Engelke et al. 2012b; Davison and Gholamrezaee
2012; Davison et al. 2012; Schlather and Tawn 2003; Thibaud and Opitz 2014).
All these references contain plots comparing non-parametric estimates of extremal
coefficients to the theoretical ECFs.

While continuous correlation functions can be characterized by means of
Bochner’s theorem as Fourier transforms of probability measures, no such characteri-
zation is available for the subclass of (continuous) TCFs. At least, Fiebig et al. (2014)
show that the set of TCFs on an arbitrary space T is closed under convex combina-
tions, products and pointwise limits and provide necessary conditions for a function
to be a tail correlation function. In particular, χ cannot be differentiable except when
χ is constant, cf. Schlather and Tawn (2003). Some attempts to recover a max-stable
random vector from a prescribed tail correlation matrix can be found in Falk (2005)
and Ferreira (2012).

The text is structured as follows. Section 2 gives an overview over well-known
classes of mixing max-stable processes and their TCFs. In Section 3 we transfer two
construction principles from geostatistics to max-stable processes and their TCFs – a
turning bands operator and a stationary truncation. In Section 4 some classes of radial
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monotonous TCFs and their relations are identified. Sharp bounds for some paramet-
ric families of positive definite functions are derived as well. Subsequently, Section 5
deals with the recovery of some max-stable processes from a prescribed TCF. Addi-
tionally, we reassess the stationary truncation of variance-mixed Brown-Resnick
processes as possibly useful models with tractable TCFs. Finally, Section 6 provides
a concrete example for the non-uniqueness of a max-stable process with a pre-
scribed TCF. Since Sections 4 and 5 depend heavily on results in Gneiting (1999c),
for convenience, some of them are recalled in the notation of the present setup.
Appendix B provides some background information on monotonicity properties of
continuous functions. We close the text with some remarks (Section 7) indicating that
our results may be relevant beyond the max-stable setting. All proofs are postponed
to Appendix A.

Some notation Let νd be the Lebesgue measure on the Borel σ -algebra Bd of Rd and
‖·‖ the Euclidean norm. We denote Bd

r := {
h ∈ R

d : ‖h‖ ≤ r
}

the d-dimensional
ball of radius r centred at the origin o ∈ R

d . The constant

κd := νd

(
Bd

1

)
= πd/2/Γ (1 + d/2)

is the volume of the d-dimensional unit ball. When a function on R
d depends on the

Euclidean norm only, we will usually treat it as a function on [0,∞). The expression
cdf abbreviates “cumulative distribution function”. When we consider a cdf G on
(0,∞), it is always meant that G(0+) = 0. The Laplace transform of a cdf G on
[0,∞) is L(G)(x) = ∫∞0 exp(−xt) dG(t). The function

erfc(x) = 2√
π

∫ ∞

x

e−y2
dy

is the complementary error function, while erf(x) = 1− erfc(x) is the error function
and 1A is the indicator function of A. By a∧b we denote the minimum between a and
b, whereas

∨
i∈I ai is the supremum over the ai . We set a+ := max(a, 0). Finally, an

integral of the form
∫

f (x) dF(x), where F is a monotone function, is always meant
in the Riemann-Stieltjes sense.

2 Max-stable processes and their TCFs

A stochastic process X = {Xt }t∈Rd is called max-stable if all its finite-dimensional
distributions are max-stable, that is, for each m, n ∈ N, t1, . . . , tm ∈ R

d and n

independent copies
(
Y (i)

)n
i=1 of the random vector Y = (

Xt1 , . . . , Xtm

)
the com-

ponentwise maximum
∨n

i=1 Y (i) is distributed as the random vector anY + bn for
suitable norming vectors an ∈ (0,∞)m and bn ∈ R

m. Henceforth, we will con-
sider only stationary max-stable processes with standard Fréchet marginals, i.e.
P(Xt ≤ x) = e−1/x for t ∈ R

d and x > 0. Note that the TCF χ is invariant under
eventually continuous order-preserving marginal transformations.
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Spectral representation Max-stable processes that are separable in probability allow
for a spectral representation of the form (de Haan 1984; Kabluchko 2009; Stoev and
Taqqu 2005)

{Xt }t∈Rd
D=
{ ∞∨

n=1

UnVt (en)

}

t∈Rd

. (1)

Here,
D= means equality in distribution and {(Un, en)}n is a Poisson point process on

R+ × E with intensity u−2 du × μ( de) for some Polish measure space (E, E, μ),
and the functions Vt : E → R+, called spectral functions, are measurable with∫
E

Vt (e)μ( de) = 1 for each t ∈ R
d . Of course, any process X of the form (1) is

max-stable and has standard Fréchet marginals. In particular, the finite-dimensional
distributions of X are given through

− logP(X(tk) ≤ xk; k = 1, . . . , m) =
∫

E

m∨

k=1

Vtk (e)

xk

μ( de) (2)

and the TCF χ of the max-stable process X may be expressed as

χ(t) = 2 − lim
τ→∞

1 − P (Xt ≤ τ, Xo ≤ τ)

1 − P(Xo ≤ τ)
= 2 − logP (Xt ≤ τ, Xo ≤ τ)

logP(Xo ≤ τ)

= 2 −
∫

E

Vt (e) ∨ Vo(e) μ( de) =
∫

E

Vt (e) ∧ Vo(e) μ( de). (3)

A max-stable process X with spectral representation (1) is mixing if and only if its
TCF χ(t) converges to 0 as t tends to ∞ (Kabluchko and Schlather 2010; Stoev
2008), while it is ergodic if and only if its TCF χ(t) converges to 0 in a Cesàro sense
as t tends to ∞ (Wang et al. 2013, Theorem 5.3).

If the measure space (E, E, μ) is a probability space, the spectral functions
{Vt }t∈Rd themselves form a stochastic process on R

d , which we call spectral process.
Note that the stationarity of the spectral process V is a sufficient but not a neces-
sary condition for X being stationary (Kabluchko et al. 2009; Molchanov and Stucki
2013).

2.1 Subclasses of mixing max-stable processes and their TCFs

(Mixed) Moving maxima and subclasses (M3r, M2r and M3b) Slightly different
notions for M3 processes are given in the literature, cf. Kabluchko and Stoev (2012),
Segers (2006), Smith (1990), Stoev (2008), Stoev and Taqqu (2005) and Zhang and
Smith (2004), for example. We consider the following version: Let (Ω,A, ν) be a
probability space and f : Rd ×Ω → [0,∞] be measurable, such that

∫

Ω

∫

Rd

f (t, ω) dt ν( dω) = 1. (4)

We refer to the assignment ω �→ (t �→ f (t, ω)) which maps each element from the
probability space to its sample path on R

d as (random) shape function. A process X
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with spectral representation on (E, E, μ) = (Rd ×Ω,Bd ⊗A, νd × ν
)

and spectral
functions

Vt ((z, ω)) := f (t − z, ω), (z, ω) ∈ R
d ×Ω, t ∈ R

d ,

will be called Mixed Moving Maxima process (M3 process), or Moving Maxima pro-
cess (M2 process) if the random shape function is deterministic, i.e., if ν charges only
one point ω0 ∈ Ω . In this case, we simply treat f as a deterministic shape function
on R

d without a second argument ω ∈ Ω .
We put particular emphasis on such random shapes, where each realization f (·, ω)

is radially symmetric around the origin o ∈ R
d and non-increasing as the radius

grows, and refer to this class as M3r processes, or M2r processes if the random shape
is deterministic. Moreover, we will also consider the subclass of M3b processes that
have as shape functions only normalized indicator functions of balls Bd

R , i.e.

f (t, ω) = νd

(
Bd

R(ω)

)−1
1Bd

R(ω)
(t) = κ−1

d R(ω)−d 1Bd
R(ω)

(t),

where R : (Ω,A, ν) → ((0,∞),B((0,∞)),PR) is a random radius. Clearly, M3r,
M2r and M3b processes are stationary and isotropic and both M2r processes and
M3b processes each form a proper subclass of M3r processes.

Mixed poisson storm processes (MPS) We consider a mixed version of the Pois-
son storm process introduced in Lantuéjoul et al. (2011). The construction is similar
to the construction of an M3b process, where the ball with random radius R is
replaced by the typical cell of a Poisson hyperplane mosaic with random inten-
sity β. To this end, let us consider some facts from stochastic geometry based on
Schneider and Weil (2008). Any pair of polar coordinates (S, r) ∈ Sd−1 × R+
determines a hyperplane H(S, r) = {

t ∈ R
d | 〈t, S〉 = r

}
in R

d . The hyperplanes
that arise from a homogeneous Poisson point process {(Sn, rn)}n on Sd−1 × R+
split Rd into polytopes called cells. The collection of these cells forms a Poisson
hyperplane mosaic and can be seen as a stationary process of convex particles,
whose intensity measure uniquely determines an intensity β > 0 and a grain
distribution Qβ (Schneider and Weil 2008, p. 101, Theorem 4.1.1). A random
set that is distributed according to Qβ is called typical cell. Now, if C ∼ Q1
and β > 0, then β−1C = {x : βx ∈ C} ∼ Qβ and β−1C has expected
volume

E

(
νd

(
β−1C

))
= ddκ−d

d−1κ
d−1
d β−d =: μd(β)

(Schneider and Weil 2008, Eqs. 10.4 and 10.4.6). Now, let (β, C) be a random ele-
ment on a probability space (Ω,A, ν) where β is distributed according to a cdf Gβ

on (0,∞) with Gβ(0+) = 0 and, independently, C ∼ Q1. Let

f (t, ω) := μd(β(ω))−1 1β(ω)−1C(ω)(t), t ∈ R
d .

Conditioning on β, the function f satisfies (4) and, thus, defines an isotropic M3
process X. We call this process Mixed Poisson storm process (MPS process) with
intensity mixing distribution Gβ .
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(Variance-mixed) Brown-Resnick processes (BR and VBR)
Let {Wt }t∈Rd be a Gaussian process with stationary increments (meaning that the

law of {Wt+h−Wh}t∈Rd does not depend on h ∈ R
d ) and variance σ 2(t) = Var(Wt ).

Independently, let S be a random variable on (0,∞) with cdf GS . Then we call the
process X with spectral process

Vt = exp
(
SWt − S2σ 2(t)/2

)
, t ∈ R

d ,

variance-mixed Brown-Resnick process (VBR process) with variance mixing distri-
bution GS . The law of X is stationary and depends on the variogram γ (t) = E

(Wt − Wo)
2 and the cdf GS only (Kabluchko et al. 2009, Theorem 2). If S = 1

almost surely, V is the usual Brown-Resnick process (BR process). We shall assume
throughout the text that the variogram γ (t) tends to ∞ as t → ∞, that is we
treat only mixing VBR processes, cf. their TCFs in Table 1. If the variogram tends
to ∞ fast enough, a BR process may even be representable as an M3 process
(Kabluchko et al. 2009, Theorem 14).

Remark 1 A related construction as in the case of a VBR process can be found in
Engelke et al. (2012a), where the BR process is mixed in its scale instead of its
variance. This yields the same class of processes in the most prominent example
when Wt is a fractional Brownian motion.

Subclasses of TCFs The TCFs of the above processes are listed in Table 1, the
formulae therein being easily derived from the indicated references. In the sequel we
will identify relations between the classes of TCFs arising from the processes above.
To this end, we use the notation

T d
model =

{
χ : Rd → [0, 1]

∣∣∣∣
χ TCF of a process X on R

d

from the process class model

}
(5)

when referring to the set of TCFs arising from processes on R
d of the class model.

For instance, T d
M3 is the set of TCFs of M3 processes on R

d . By

T d =
{
χ : Rd → [0, 1]

∣∣∣ χ TCF on R
d
}

we denote the set of all TCFs on R
d .

3 Construction principles for stationary max-stable processes

Two well-known construction principles for correlation functions in a geostatistical
context also yield valid operations on the set of TCFs. First, also inspired by the work
of Kabluchko and Stoev (2012), the turning bands operator can be transferred as
an operator from lower to higher dimensions in the context of isotropic max-stable
processes. Second, the stationary truncation generalizes a construction described
in Schlather (2002, p. 39) and corresponds to the multiplication of a given TCF
with another TCF that has compact support. It can shorten the range of tail depen-
dence, e.g. to a compact set, a feature which is of interest for modelling purposes, cf.
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Table 1 Tail correlation functions χ of max-stable processes introduced in Section 2.1. Here erfc denotes
the complementary error function and L(G) the Laplace transform of a cdf G

Process model Parameter TCF χ(t) for t ∈ R
d Reference

M3r M3 of radial non-increasing
∫

Ω

∫

Rd

f (‖z‖, ω) . . . Eq. 3

non-increas. random shape · · · ∧ f (‖z− t‖, ω) dz ν( dω)

shapes f ≥ 0 on [0,∞)×Ω

s.t. (4) holds

M2r M2 of radial non-increasing
∫
Rdf (‖z‖) ∧ f (‖z− t‖) dz ibid.

non-increas. determ. shape

shapes f ≥ 0 on [0,∞)

s.t. ‖f ‖L1(Rd )= 1

M3b M3 of ball random radius ER

∫
Rd

1‖z‖≤R∧1‖z−t‖≤R

κdRd dz ibid.

indicators R on (0,∞)

MPS Mixed Poisson cdf Gβ on (0,∞) L(Gβ)
(

2κd−1
dκd

‖t‖
)

Lantuéjoul et al.

Storm (2011), Prop.4

BR Brown-Resnick variogram γ erfc
(√

γ (t)/8
)

Kabluchko et al.

increasing to ∞ (2009), Remark 25

VBR Var-mixed variogram γ
∫∞

0 erfc
(
s
√

γ (t)/8
)

dGS(s) ibid.

Brown-Resnick increasing to ∞,

cdf GS on (0,∞)

Section 5 for an example. In the geostatistics literature the multiplication with a com-
pactly supported covariance function is known as tapering high-dimensional data, cf.
Furrer et al (2006).

3.1 Turning bands

The turning bands operator Let k, d ∈ N with 1 ≤ k ≤ d . The set of ordered
tuples (x1, . . . , xk) of k orthonormal vectors in R

d is known as the Stiefel manifold
of orthonormal k-frames in R

d (Nachbin 1976, p. 131), and is denoted by Vk

(
R

d
)
.

Interpreting the vectors x1, . . . , xk as columns of a matrix, we identify

Vk

(
R

d
)
=
{
A ∈ R

d×k : A TA = 1k×k

}
, (6)

where A T denotes the transpose of A and 1k×k the identity matrix in R
k×k . A

matrix A ∈ Vk

(
R

d
)

embeds R
k linearly and isometrically into R

d , whereas A T

applied to a vector t ∈ R
d is a vector in R

k whose coordinates can be interpreted
as the coordinates of the projection of t onto A

(
R

k
)

with respect to the orthonormal
frame defined by the columns of A. For k = 1 the Stiefel manifold is simply the
sphere V1

(
R

d
) = Sd−1, and for k = d the orthogonal group Vd

(
R

d
) = O(d). In
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view of Eq. 6 the Stiefel manifold Vk

(
R

d
)

is a compact submanifold of Rd×k . The
action of the orthogononal group O(d) (from the left) exhibits Vk

(
R

d
)

as a locally
compact homogeneous space on which a unique normalized left invariant Haar mea-
sure σd

k can be defined (Nachbin 1976, p. 142, Example 4), which we call uniform
distribution (Jupp and Mardia 1979; Mardia and Khatri 1977).

By C
(
R

d
)

we denote the set of real-valued continuous functions on R
d . Since

Vk

(
R

d
)

is compact, the so-called turning bands operator

TBd
k : C

(
R

k
)
→ C

(
R

d
)

, TBd
k (f )(t) =

∫

Vk(R
d )

f
(
A T(t)

)
σd

k ( dA).

is well-defined. Moreover, it is compatible with compositions (see Lemma 18 in
Appendix A)

TBk3
k2
◦ TBk2

k1
= TBk3

k1
for k1 ≤ k2 ≤ k3. (7)

Turning bands in the Gaussian case The turning bands operator TBd
1 is

a familiar operator on positive definite functions, see Gneiting (1999a), Gneit-
ing (1999b), Gneiting and Z. Sasvári (1999), Lantuéjoul (2002), Matheron (1973),
Schlather (2012) and zu Castell (2002), where explicit formulae and recurrence
relations are provided. For convenience, we recall some of them here: Let

Φd =
{
ρd : [0,∞) → [0, 1] | ρd(‖·‖) continuous correlation function on R

d
}

.

Schoenberg (1938) showed that a function ρd belongs to the class Φd if and only if
there exists a cdf F on [0,∞) such that ρd can be represented as a scale mixture

ρd(t) =
∫

[0,∞)

Ωd(ts) dF(s), t ≥ 0, (8)

with Ωd(t) = Γ (d/2) (2/t)(d−2)/2 J(d−2)/2(t), where J denotes a Bessel function
of the first kind. For instance, Ω1(t) = cos(t) and Ω3(t) = sin(t)/t . This relation
provides a bijection of Φd with the set of cdfs on [0,∞) and hence a bijection of Φd

and Φk for any k ≥ 1. In particular, the mapping of ρ1 to ρd may be expressed as (cf.
Gneiting, 1999a, Eq. 6),

ρd(t) = 2 Γ (d/2)√
π Γ ((d − 1)/2)

∫ 1

0
ρ1(tw)

(
1 − w2

)(d−3)/2
dw, t ≥ 0, (9)

and is known as turning bands operator (Gneiting 1999a; Matheron 1973). In our
notation TBd

1(ρ1) = ρd(‖·‖). In view of Eq. 7 this implies that TBd
k is a bijection

between Φk and Φd . In fact TBd
k (ρk(‖·‖)) = ρd(‖·‖) (where the norms are taken in

R
k and R

d , respectively). Recurrence relations between the basis functions Ωd and
Ωk immediately lead to recurrence relations between ρd and ρk (zu Castell 2002).
For instance, the recursive relation
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ρd(t) = ρd+2(t)+ t

d
ρ′d+2(t), t ≥ 0,

and its inverse

TBd+2
d (ρd(‖·‖))(te) = ρd+2(t) = d

td

∫ t

0
ud−1ρd(u) du, t ≥ 0, e ∈ Sd+1,

(10)
hold true. Because TBd

k : Φk → Φd is a bijection, the turning bands method is
an important tool for simulating stationary isotropic Gaussian processes. Given a
correlation function ρd ∈ Φd with ρd = TBd

1(ρ1), one may approximate a Gaussian
random field on R

d with correlation function ρd through

Z(t) = n−1/2
n∑

i=1

Yi(〈t, Si〉), t ∈ R
d ,

for sufficiently high n ∈ N, an i.i.d. sequence Si ∈ Sd−1 and independent copies Yi

of a random field Y on R with correlation function ρ1 (Matheron 1973).

Turning bands in the max-stable case In the context of max-stable processes
and their TCFs the situation transfers to the following extent. Let X be a stochasti-
cally continuous simple max-stable process on R

k . Then the process X has a spectral
representation as in Eq. 1

Xt =
∞∨

n=1

UnVt (en), t ∈ R
k, (11)

where {(Un, en)}n denotes a Poisson point process on R+ × E with intensity
u−2 duμ( de) and the spectral function Vt (e) is jointly measurable in the variables
t ∈ R

k and e ∈ E (Wang and Stoev 2010, Proposition 4.1). Based on this rep-
resentation we define another simple max-stable process Y on R

d with d ≥ k as
follows. Let {(Un, en, An)}n be a Poisson point process on R+ × E × Vk

(
R

d
)

of
intensity u−2 duμ( de) σ d

k ( dA), where σd
k ( dA) is the uniform distribution on the

Stiefel manifold Vk

(
R

d
)

and let

Yt =
∞∨

n=1

UnVA T
n (t)(en), t ∈ R

d . (12)

Lemma 2 Let X and Y be max-stable processes as given by Eqs. 11 and 12,
respectively.

a) If X is stationary, then Y is stationary.
b) For any M ∈ O(d) the law of

{
YM(t)

}
t∈Rd and the law of Y coincide,

i.e., Y is isotropic.
c) Let X be stationary. The (radial) TCF χ(Y) of the stationary isotropic process Y

can be expressed in terms of the TCF χ(X) of X by

χ(Y) = TBd
k

(
χ(X)

)
.
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Proposition 3 If χ is a continuous TCF on Rk and k ≤ d , then TBd
k (χ) is a TCF on

R
d (which is also continuous).

Remark 4 The function χ(t) = e−‖t‖ is an admissible radial TCF on R
d for any

d ≥ 1, see e.g. Table 2. Therefore, the radial function TB3
1(χ)(t) = (1 − e−‖t‖

)
/‖t‖

is a radial TCF on R
3 by Eq. 10. However, contrary to correlation functions, not

all radial continuous TCFs on R
d arise as TBd

k (χ) for some TCF χ on R
k . As a

counterexample consider the identity

e−‖t‖ = TB3
1(f )(t), t ∈ R

3 with f (t) = (1 − ‖t‖) e−‖t‖, t ∈ R
1.

While e−‖t‖ is a valid radial TCF on R
3, f cannot be a TCF on R

1 since f attains
negative values.

Remark 5 The turning bands method is compatible with iterations in the following
sense: Let q ≥ d and construct a process Z on R

q from the spectral representation of
Y on R

d by

Zt =
∞∨

n=1

UnVB T
n ◦A T

n (t)(en) =
∞∨

n=1

UnV(An◦Bn) T(t)(en), t ∈ R
q,

where {(Un, en, An, Bn)}n is a Poisson point process on R+×E×Vk

(
R

d
)×Vd (Rq)

with intensity u−2 duμ( de) σ d
k ( dA) σ

q
d ( dB). Then Z has the same law as

Z̃t =
∞∨

n=1

UnVC T
n (t)(en), t ∈ R

q,

where {(Un, en, Cn)}n is a Poisson point process of intensity u−2 duμ( de) σ
q
k ( dC)

(see Lemma 18 in Appendix A). Thus, Z can be constructed directly from the spectral
representation of X without involving Y as an intermediate step.

Table 2 Parametric families of continuous radially symmetric functions on R
d and their sharp parame-

ter bounds for being a correlation function (CF) and for being a tail correlation function (TCF) on R
d ,

respectively

Parametric family of cts. radial functions on R
d CF for TCF for

powered exponential exp(−rν) 0 < ν ≤ 2 0 < ν ≤ 1

Whittle-Matérn 21−ν Γ (ν)−1 rν Kν(r) 0 < ν 0 < ν ≤ 0.5

Cauchy (1 + rν)−β β > 0 0 < ν ≤ 2 0 < ν ≤ 1

powered error function∗ erfc(rν) 0 < ν ≤ 1 0 < ν ≤ 1

truncated power function∗ (1 − r)ν+ ν ≥ (d + 1)/2 ν ≥ �d/2� + 1

There are two exceptions: The TCF bound for the truncated power function is sharp for odd dimensions
and the CF bound for the powered error function is sharp if we require validity of the model for all
dimensions
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3.2 Stationary truncation

Let X be a stochastically continuous max-stable process on R
d with spectral rep-

resentation as in Eq. 11 with k = d and let {B(t)}t∈Rd be a measurable process
on R

d taking values in {0, 1}. We denote the probability space corresponding to
B by (ΩB,AB,PB) and expectation w.r.t. PB by EB . Further, we require that
cB := ∫

Rd B(t) dt ∈ (0,∞) holds PB -almost surely. Based on these two processes
X and B we define another max-stable process Y on R

d by

Yt =
∞∨

n=1

Un

Bn(t − zn)

cBn

Vt (en), t ∈ R
d , (13)

where {(Un, en, zn, Bn)}n is a Poisson point process on R+ × E × R
d × ΩB with

intensity u−2 du× μ× νd × PB .

Lemma 6 Let X and Y be simple max-stable processes as given by Eq. 11 for k = d

and Eq. 13, respectively.

a) If X is stationary, then Y is stationary.
b) Let X be stationary. Then the TCF χ(Y) of the stationary process Y is given by

the product
χ(Y)(t) = χ(X)(t) · χ(B)(t), t ∈ R

d ,

with χ(X) being the TCF of X and

χ(B)(t) = EB

[∫
Rd B(z)B(z− t) dz
∫
Rd B(z) dz

]
, t ∈ R

d .

Example 7 If the process B on R
d is chosen to be the indicator function B(t) =

1‖t‖≤R of the ball Bd
R for a random radius R ∈ (0,∞), then

χ(B)(t) = ER

∫

Rd

1‖z‖≤R ∧ 1‖z−t‖≤R

κdRd
dz, t ∈ R

d ,

which means that the functions χ(B) build the class T d
M3b, cf. Eq. 5 and the entry on

M3b processes in Table 1.

4 Identification of classes of TCFs and their relations

Some relations between the subclasses of TCFs that arise from the subclasses of max-
stable processes introduced in Section 2.1 follow immediately from their definition,
e.g. T d

M2r ⊂ T d
M3r and T d

M3b ⊂ T d
M3r. The aim of this section is to identify more

sophisticated relations between these subclasses and to provide necessary and suffi-
cient conditions for a given function χ to belong to such a class. We conclude with
some parametric families of TCFs and their affiliation to the respective subclasses.

The subsequent considerations rely on certain monotonicity properties of func-
tions. We review the required notions α-times monotone and completely monotone
in Appendix B and focus on a clear statement of the relations and conditions in this
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section, while the proofs are postponed to Appendix A. We start with sharpening the
inclusions T d

M2r ⊂ T d
M3r and T d

M3b ⊂ T d
M3r. Since elements of these classes are

functions that depend on the Euclidean norm only, we will identify them with the
respective functions on [0,∞) henceforth.

Proposition 8 For all d ≥ 1 we have T d
M3r = T d

M2r = T d
M3b.

In fact, the class T d
M3r = T d

M2r = T d
M3b is well-known in geostatistics and has

been intensively studied in Gneiting (1999c), therein called Hd . Gneiting (1999c)
defines Hd as the class of scale mixtures of the function hd(t) = h̃d (t)/h̃d(0) where
h̃d is the self-convolution of the ball indicator function 1Bd

0.5
viewed as a radial

function, i.e.

Hd =
{
ϕ(t) =

∫

(0,∞)

hd(st) dG(s)

∣∣∣∣ Gcdf on(0,∞)

}
, where

hd(t) = d Γ (d/2)√
π Γ ((d + 1)/2)

∫ 1

t

(
1 − v2

)(d−1)/2

+ dv. (14)

For d = 1, 2, 3 the function hd is given by

h1(t) = 7(1 − t)+
h2(t) = 2π−1

(
arccos(t)− t

√
1 − t2

)
1t≤1

h3(t) = (1 − t)2+(2 + t)/2.

From the definition of Hd it is apparent that Hd = T d
M3b, since the minimum in

the following expression is in fact a multiplication. Indeed, we may rewrite the M3b
entry in Table 1 as a scale mixture of hd

ER

[(
κdRd

)−1
∫

Rd

1‖z‖≤R ∧ 1‖z−t‖≤R dz

]

= h̃d (0)−1
ER

[∫

Rd

1‖z‖≤0.5 1‖z−t/(2R)‖≤0.5 dz

]

= ER

[
h̃d (‖t‖/(2R))

h̃d(0)

]

=
∫

(0,∞)

hd(s‖t‖) dG1/(2R)(s) (15)

if G1/(2R) is the distribution function of 1/(2R) ∈ (0,∞) and vice versa. Another
way to perform the integration (one may think of full balls as foliated by spheres)
leads to the coincidence of Hd with the Mittal-Berman class Vd (Gneiting (1999c,
Eq. 40) and Mittal (1976)), which in turn is easily connected to T d

M2r, see also Proof
of Proposition 8 in Appendix A. A crucial observation in Gneiting (1999c) is that the
first derivative of hd applied to the square root is proportional to Askey’s function
with exponent (d + 1)/2 − 1, that is

− h′d
(√

t
)
∼ (1 − t)

(d+1)/2−1
+ .
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Now, scale mixtures of this function are precisely (d + 1)/2-times monotone
functions (cf. Appendix B), which entails the characterization

Hd =
{
ϕ : [0,∞) → [0, 1]

∣∣∣∣
ϕ continuous, ϕ(0) = 1, limt→∞ ϕ(t) = 0,
−ϕ′

(√·) is (d + 1)/2-times monotone on (0,∞)

}

Gneiting (1999c, Proof on Theorem 3.1, Theorem 3.2, and Criterion 1.2. on p. 103).
A simplified version of this statement, which is easier to handle, is that

T 1
M3r = T 1

M2r = T 1
M3b = H1

=
{
ϕ : [0,∞) → [0, 1]

∣∣∣∣
ϕ continuous, convex,
ϕ(0) = 1, limt→∞ ϕ(t) = 0

}
, (16)

and for d ≥ 2

T d
M3r = T d

M2r = T d
M3b = Hd

⊇
{
ϕ : [0,∞) → [0, 1]

∣∣∣∣
ϕ continuous, ϕ(0) = 1, limt→∞ ϕ(t) = 0,

(−1)k dk

dtk

[−ϕ′
(√

t
)]

convex for k = �(d − 2)/2�
}

,(17)

where �(d − 2)/2� denotes the greatest integer less than or equal to (d − 2)/2. The
inclusion (17) is in fact an equality if and only if d is odd (Gneiting 1999c, Theo-
rem 3.1., Theorem 3.3., Criterion 1.2). The classes Hd are all nested, i.e. H1 ⊃ H2 ⊃
Hd ⊃ . . . Gneiting (1999c), Theorems 3.7 and 3.8, also characterizes the class

H∞ =
∞⋂

d=1

Hd. (18)

as scale mixtures of the complementary error function

H∞ =
{
ϕ(t) =

∫

(0,∞)

erfc(st) dG(s)

∣∣∣∣ G cdf on (0,∞)

}
(19)

=
{
ϕ : [0,∞) → [0, 1]

∣∣∣∣
ϕ continuous, ϕ(0) = 1, limt→∞ ϕ(t) = 0,
−ϕ′

(√·) completely monotone on (0,∞)

}
.

This characterization of H∞ is not too surprising in view of the proportionality
− erfc′(

√
t) ∼ e−t , which corresponds to Bernstein’s Theorem that can be seen as the

limiting case of Williamson’s Theorem as n →∞ (cf. Appendix B). It is astonishing,
however, that characterization (19) of H∞ provides a direct link between the TCFs of
VBR processes and the TCFs of M3r processes: From the VBR entry in Table 1 and
Eq. 19 (replacing γ /8 by γ̃ and G corresponding to the variance mixing distribution
GS), we see that

T d
VBR =

{∫

(0,∞)

erfc(s
√

γ̃ ) dG(s)

∣∣∣∣ γ̃ variogram on R
d and G cdf on (0,∞)

}

=
{
ϕ
(√

γ̃
) ∣∣∣ γ̃ variogram on R

d and ϕ ∈ H∞
}

. (20)

On the other hand the equalities in Proposition 8 carry over. For instance, a function
belongs to the class H∞ if and only if it is a TCF of an M3r process on R

d for any
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dimension d ≥ 1. In particular both classes, T d
VBR and T d

M3r, comprise the class H∞
in any dimension d ≥ 1, see Proposition 9 below.

Finally, we observe from the MPS entry in Table 1 that in every dimension d ≥ 1
the class of TCFs arising from MPS processes is given by Laplace transforms of cdfs
on (0,∞) and, thus, coincides with

T d
MPS =

{
ϕ(t) =

∫

(0,∞)

e−st dG(s)

∣∣∣∣ G cdf on (0,∞)

}
(21)

=
{
ϕ : [0,∞) → [0, 1]

∣∣∣∣
ϕ continuous, ϕ(0) = 1, limt→∞ ϕ(t) = 0,
ϕ completely monotone on (0,∞)

}
.

Here the cdf G is related to the intensity mixing distribution Gβ via G(s) =
Gβ (s/cd) with cd = 2κd−1/(dκd), cf. Table 1. In particular, the class T d

MPS
does not depend on the specific dimension d , even though the involved factor cd

does. These observations lead to the following relations between the classes of
TCFs arising from the considered mixing processes, which are also illustrated in
Fig. 1.

Proposition 9 The following relations hold for all dimensions d ≥ 1:

a) T d
MPS ⊂ H∞ ⊂ Hd = T d

M3r = T d
M2r = T d

M3b.

b) T d
BR ∪H∞ ⊂ T d

VBR.

c) erfc(tα) ∈ T d
BR ⇔ α ∈ (0, 1] and erfc(tα) ∈ T d

MPS ⇔ α ∈ (0, 0.5].
In particular, T d

BR \ T d
MPS �= ∅ and T d

BR ∩ T d
MPS �= ∅.

d) While Hd contains functions with compact support, the class T d
VBR does not

contain such functions. In particular Hd \ T d
VBR �= ∅.

e) H∞ \ T d
BR �= ∅ for all d ≥ d0 and some fixed dimension d0 ∈ N.

Fig. 1 Inclusions and intersection of sets of tail correlation functions arising from mixing max-stable
processes, cf. Proposition 9. The expression “(Prop. . . . )” provides the reference for the indicated region
to be non-empty. See also Eqs. 14, 19, 20 and 21 for characterizations of these classes and scale mixture
representations
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One might assume the impression that any continuous radial TCF on R
d that is

non-increasing and convex on [0,∞) and that vanishes at ∞ belongs already to the
class T d

M3r or at least appears already in Fig. 1. This is true for d = 1. By means of
the operations from Section 3, however, we may construct counterexamples in higher
dimensions. Let us denote

T d
r :=

⎧
⎨

⎩
χ : [0,∞) → [0, 1]

∣∣∣∣∣∣

χ continuous radial TCF on R
d

that is convex in the radius
and vanishes at ∞

⎫
⎬

⎭
= T d ∩H1.

First, we provide for each d ≥ 3 an example of a TCF ϕd ∈ T d
r \Hd . To this end,

we consider the tent function h1(t) = (1− t)+, which is the basis function of H1, see
Eq. 14. If we apply the turning bands operator, we obtain the radial TCF ϕd on R

d

(cf. Proposition 3)

ϕd(t) := TBd
1(h1)(t), t ≥ 0. (22)

Proposition 10 a) For d ≥ 1 we have ϕd ∈ T d
r = T d ∩H1.

b) For d ≥ 1 and k ≥ 3 we have ϕd �∈ Hk .

c) For d = 1 and d ≥ 6 we have ϕd �∈ H2.

Remark 11 The TCF ϕd from Eq. 22 decreases linearly on the interval [0, 1], cf.
Eq. 32 in Appendix A.

ϕd(t) = 1 − βd t, t ∈ [0, 1], where βd = Γ (d/2)√
π Γ ((d + 1)/2)

. (23)

Therefore, the radial function χβ(t) := 1 − βt is an admissible radial TCF on the
d-dimensional ball Bd

r of radius r if β ∈ [0, βd/r]. This complements results in
Gneiting (1999a), where it is shown that ϕ(t) = 1 − αt is positive definite on Bd

r if
and only if α ∈ [0, 2βd/r]. We assume that the bound βd/r is sharp for χβ(t) to be
a TCF on Bd

r .

Secondly, combining the turning bands operator and the stationary truncation leads
to an example of a TCF χ3 ∈ T 3

r that is not contained in any of the classes given in
Fig. 1 for d = 3, and we conjecture that our example χd satisfies this property also
for any other dimension d ≥ 2. With ϕd from Eq. 22 we consider the function

χd(t) := ϕd(2t) hd(t), t ≥ 0. (24)

Proposition 12 a) For d ≥ 1 we have χd ∈ T d
r \ T d

VBR.

b) For d = 3 we have χd ∈ T d
r \ (T d

VBR ∪Hd

)
.

Parametric families The considerations above also lead to sharp bounds for
some well-known parametric families of positive definite functions to be a TCF, see
Table 2.
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The first three families (powered exponential, Whittle-Matérn, Cauchy) are
completely monotone for the parameters given in Table 2 (Miller and Samko
2001, Eqs. 1.2, 1.6 and 2.32 for example), and thus they can be realized by either
an MPS process, an M3 process of non-increasing shapes (e.g. M2r or M3b) or by a
VBR process (in all cases in any dimension). The powered error function is not com-
pletely monotone but a member of the class H∞. That means it can be realized by an
M3 process of non-increasing shapes or by a VBR process (both in any dimension),
but not by an MPS process. In all of these cases, we may exclude bigger parameters
ν because the (right-hand) derivative at 0 vanishes for bigger ν (which would entail
the differentiability of the respective function when viewed as a function on R

d ).
The truncated power function is an example of a TCF with compact support.

Hence, the valid model parameter depends on the dimension. The function belongs
to Hd (Gneiting 1999c, Theorem 6.3), and thus can be realized by an M3 pro-
cess of non-increasing shapes on R

d (e.g. M2r or M3b). Because of its compact
support the function cannot belong to any of the other classes presented in Fig. 1.
The bound in Table 2 is valid in any dimension and sharp in odd dimensions, cf.
(Golubov 1981, Theorem 1 and p. 165). For even dimensions ν has to satisfy at least
ν ≥ (d + 1)/2 in order to ensure positive definiteness.

Remark 13 Davison and Gholamrezaee (2012), p. 590, provide some examples of
χ(B) from Lemma 6 when d = 2, e.g., the function h2 (from below Eq. 14) cor-
responding to a deterministic radius in Eq. 15 is computed and the approximation
α(t) = (1 − ‖t‖)+ proposed. However, note that α(t) is not admissible for d = 2,
since ν ≥ 1.5 is needed for αν(t) = (1 − ‖t‖)ν+ to be at least positive definite.

5 Recovery of some subclasses of max-stable processes from TCFs

For some subclasses of max-stable processes the recovery of the process from its
TCF is mathematically trivial. Indeed the formulae in Table 1 give one-to-one rela-
tions between the underlying variogram γ of a BR process and its TCF χ and the
underlying intensity mixing distribution Gβ of an MPS process and its TCF χ . Up to
the dimension specific scaling constant cd = 2κd−1/(dκd) the cdf Gβ is the inverse

Table 3 Recovery expressions for the defining quantities of an M2r and an M3b process from a prescribed
TCF χ ∈ T d

M2r = T d
M3b = Hd in dimensions d = 1, 2, 3 (cf. Proposition 14): (i) the deterministic shape

function f of an M2r process and (ii) the density g2R of 2R, where R is the random radius that defines an
M3b process (if the density g2R exists)

d=1 d=2 d=3

f(u) −χ ′(2u) 4u
π

∫ 1/(2u)

0 ((2ut)−2 − 1)1/2 dλχ (t) χ ′′(2u)/(π u)

g2R(s) s χ ′′ (s) s2

2

∫ 1/s

0

(
(s/t)2 − 1

)−1/2
dλχ (t) s

3

(
χ ′′(s)− sχ ′′′(s)

)

The function f may have a pole at 0 and g2R may have other poles as well. We abbreviate λχ (t) := t

χ ′′(1/t)
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Laplace transform of χ , i.e. Gβ(s) = L−1(χ)(cds). We address the remaining pro-
cesses of type M2r, M3b and VBR in this section and close with connections to the
stationary truncation of a VBR process (cf. Section 3).

Recovery of M2r and M3b processes We know already that the set of TCFs
arising from M2r or M3b processes coincides with the Gneiting class Hd ,
cf. Proposition 8. For a prescibed TCF χ ∈ Hd , the following proposition essentially
restates recovery results from Gneiting (1999c). Explicit expressions in dimensions
d = 1, 2, 3 are given in Table 3.

Proposition 14 Let χ ∈ T d
M2r = T d

M3b = Hd . For odd d ≥ 1 set k = (d − 1)/2 and
define the (right-hand) derivative

λ(t) = (−1)k
dk

dtk

[
−χ ′ (√t

)]
.

For even d ≥ 2 set k = d/2 and define the (right-hand) derivative

μ(t) = dk

dtk

[

−
∫ t

0

v(d−1)/2χ ′ (1/
√

v
)

√
π(t − v)1/2

dv

]

.

a) The monotone shape function f of an M2r process with TCF χ is given by

f (u) =
{ (

2/
√

π
)d−1

λ(4u2) d ≥ 1 odd,
∫ 1/(2u)

0

(
2s/

√
π
)d−1

dμ(s2) d ≥ 2 even.

b) The cdf G1/(2R) of 1/(2R), where R is the random radius of an M3b process
with TCF χ , is given by

G1/(2R)(s) =
{√

π(dΓ (d/2))−1
∫ s

0 t−d dλ
(
t−2
)

d ≥ 1 odd,√
π(dΓ (d/2))−1

∫ s

0 t−1 dμ(t2) d ≥ 2 even.

c) The monotone shape function f and the cdf G1/(2R) can be recovered from each
other by

f (u) =
∫ 1/(2u)

0

(2s)d

κd

dG1/(2R)(s) and G1/(2R)(s) =
∫ s

0

κd

(2u)d
d

[
f

(
1

2u

)]
.

(25)

Recovery of VBR processes The TCF of a VBR processes is given by χ =
ϕ
(√

γ̃
)

, where γ̃ is a variogram and ϕ is a scale mixture of the complementary

error function, that is ϕ ∈ H∞, cf. (20). If the variance mixing distribution GS

that determines ϕ is fixed, the TCF of a VBR process uniquely determines the law
of the VBR process, since the variogram γ = 8γ̃ can be recovered from χ . The
following lemma can be useful in order to detect pairs ϕ and G, such that indeed
ϕ(t) = ∫

(0,∞)
erfc(st) dG(s) holds. In Table 4 we give some examples of corre-

sponding pairs ϕ and cdfs G. They include the Whittle-Matérn family (ii), the arctan
model (iii) and the Dagum model (iv), cf. Berg et al (2008).
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Table 4 Members ϕ of the class H∞ as scale mixtures of the complementary error function

Distribution function G(s)org(s) = G′(s) ϕ(t) = ∫∞0 erfc(st) dG(s)

(i) G(s) = e−1/(as)2
e−2t/a a > 0

(ii) g(s) =
√

π

Γ (ν)Γ ( 1
2−ν)

∫ s

0
x2ν−3e−1/(4x2)

(s2−x2)
ν+1/2 dx 21−ν

Γ (ν)
tνKν(t) ν ∈ (0, 1/2)

(iii) G(s) = erf(as) 1 − 2
π

arctan (t/a) a > 0

(iv) G(s) = 1 − e−(as)2
1 − (1 + (t/a)−2)−1/2

a > 0

Lemma 15 Let g(s) = √
π f (s2) be a probability density on (0,∞) and let

ϕ : [0,∞) → [0, 1] with ϕ(0) = 1 be such that −ϕ′
(√·) is the Laplace transform

of f in the sense that −ϕ′
(√

t
) = ∫∞0 e−rt f (r) dr . Then

ϕ (t) =
∫ ∞

0
erfc (st) g(s) ds.

Stationary truncated VBR processes It is well-known that BR processes do not
allow for a restricted range of asymptotic dependence, i.e., their TCF cannot have
compact support, which also holds true for their generalized version of VBR pro-
cesses (cf. Proposition 9d)). However, this feature may be incorporated by stationary
truncation, i.e.

Xt :=
∞∨

n=1

Un1‖t−zn‖≤Rn

κd (Rn)
d

exp

(
SnW

(n)
t − (Sn)

2σ 2(t)

2

)
, t ∈ R

d , (26)

where (Un, zn) is a Poisson process on R+ × R
d with intensity u−2 du × νd and,

independently, Rn, Sn, W(n) are mutually independent i.i.d. random elements, such
that

• 1/(2Rn) is drawn from a cdf G1/(2R) on (0,∞),
• Sn is drawn from a cdf GS on (0,∞),
• W(n) is a realization of a Gaussian process on R

d with stationary increments with
variogram γ (t) = E(Wt −Wo)

2 and variance σ 2(t) = Var(Wt ).

We call X a stationary truncated VBR processes. Any stationary truncated process X

might be still attractive for statistical inference of high-dimensional data, even though
in many cases full or partial likelihoods cannot be computed anymore, as the TCF X

is still tractable, cf. Lemma 6. Here, we have

χ(t) = ϕ(
√

γ (t)/8) ψ(‖t‖),
where ϕ ∈ H∞ and ψ ∈ Hd with

ϕ(t) =
∫

(0,∞)

erfc(st) dGS(s) and ψ(t) =
∫

(0,∞)

hd(st) dG1/(2R)(s).

Example 16 If both GS(s) = 1[1,∞)(as) and G1/(2R)(s) = 1[1,∞)(bs) are cdfs of a
deterministic distribution with total mass at 1/a > 0 and 1/b > 0, respectively, then
we obtain the TCF of a stationary truncated BR process as
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χ(t) = erfc

(√
γ (t)/(8a2)

)
hd (‖t‖/b) , t ∈ R

d ,

which is compactly supported on the ball of radius b in R
d , see Eq. 14 for hd .

6 Example of max-stable processes with an identical TCF

Although it has been a commonplace that the TCF of a max-stable process (with
standardized margins) does not uniquely determine the process, the diversity of the
processes that share an identical TCF seems to be remarkably large. Here, we illus-
trate this diversity with a concrete example. Since the recovery in odd dimensions
is computationally easier to handle (cf. Proposition 14 and Table 3), we consider
only the two-dimensional sections of M2r and M3b processes on R

3 instead of

Fig. 2 Simulations of different mixing max-stable processes on [0, 5]2 ⊂ R
2 with identical tail corre-

lation function χ(t) = erfc(
√‖t‖) (see Proposition 17): Brown-Resnick process (BR), Mixed Poisson

Storm process (MPS), two-dimensional section of an M2r process with deterministic shape (M2r), two-
dimensional section of an M3b process of normalized ball indicator functions (M3b). The plots were
transformed to standard Gumbel marginals
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two-dimensional M2r and M3b processes. Figure 2 shows simulations of these pro-
cesses in dimension d = 2 that were obtained using the R-package RandomFields
V3.0 (Schlather et al. 2014).

Corollary 17 The following four processes on R
2 are stationary simple max-stable

and share the same TCF χ(t) = erfc
(√‖t‖), t ∈ R

2:

(i) the BR process on R2 associated to the variogram γ (t) = 8‖t‖ for t ∈ R
2,

(ii) the MPS process on R2 with intensity mixing distribution

Gβ(s) =
{

0 if s ≤ π/2,

2π−1 arctan
(√

2π−1s − 1
)

if s > π/2,

(iii) the restriction of the M2r process on R
3 to R

2 = {(t1, t2, 0) : t ∈ R
3} that has

the monotone shape function

f (t) = π−3/2 (1 + ‖4t‖)‖2t‖−5/2e−‖2t‖, t ∈ R
3,

(iv) the restriction of the M3b process on R
3 to R

2 = {(t1, t2, 0) : t ∈ R
3} with

random radius R, where the density g2R of 2R is given by

g2R(s) = 1/12 (πs)−1/2
(

4s2 + 8s + 5
)

e−s , s ∈ [0,∞).

7 Concluding remarks

The present text puts particular emphasis on isotropic models, i.e., they are radially
symmetric. Of course, all models can be combined with a linear or non-linear trans-
formation of the space to account for observed anisotropies as commonly done in
spatial applications.

We showed that the TCF uniquely determines the distribution of some max-stable
processes when certain subclasses of max-stable processes are considered. On the
other hand different max-stable models may share the same TCF. This phenomenon
arises not just from exotic coincidences, but happens systematically, even among
well-known subclasses of max-stable processes, cf. Fig. 2. We conclude that the TCF
should not be overrated as an informative dependence measure solely and that other
criteria should be involved as well in the extreme value analysis of spatial data.

Our considerations exceed the max-stable setting. First, the TCF of a stochas-
tic process in the domain of attraction of a max-stable process X coincides with
the TCF of X. Second, the results also concern inverted max-stable processes
(Wadsworth and Tawn 2012). Let Xinv := − log(1 − exp(−1/X))−1 be the inverted
max-stable process associated to the max-stable process X with TCF χ and η the
tail dependence function, where P

(
Xinv

t > τ , Xinv
o > τ

) ∼ L(τ ) τ−1/η(t) for a
slowly varying function L(τ ) as τ →∞ (Ledford and Tawn 1996), Wadsworth and
Tawn (2012) observe that

η(t) = (2 − χ(t))−1 = 1

2

(
1 − χ(t)

2

)−1

∈
[

1

2
, 1

]
, t ∈ R

d .
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In particular, η is also positive definite and not differentiable unless η is constant. The
function η comes along with similar benefits and dangers in the regime of inverted
max-stable processes as presented here for χ in the regime of max-stable processes.
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A Proofs

Lemma 18 Let k1 ≤ k2 ≤ k3.

a) The composition map Vk1

(
R

k2
)×Vk2

(
R

k3
)→ Vk1

(
R

k3
)
which maps (A, B) to

B ◦ A is continuous.
b) If B ∼ σ

k3
k2

is uniformly distributed on Vk2

(
R

k3
)
andA is an independent (Borel-

measurable) random variable with values in Vk1

(
R

k2
)
, then the composition

B ◦ A will also be uniformly distributed B ◦ A ∼ σ
k3
k1
.

c) The turning bands operator is compatible with compositions, i.e., we have TBk3
k2
◦

TBk2
k1
= TBk3

k1
.

Proof The composition of matrices is continuous and here just restricted to a
subspace. This shows a). Let f be a continuous function on Vk1

(
R

k3
)
, then (by dom-

inated convergence) the function g(b) := EA(f (b ◦ A)) will also be continuous
on Vk2

(
R

k3
)
. Therefore, EB

(
g
(
G−1B

)) = EB(g(B)) for all G ∈ O(k3), since

B ∼ σ
k3
k2

. Thus, we also have for G ∈ O(k3) that

Ef (G−1 ◦ B ◦ A) = E

(
E

(
f
(
G−1 ◦ B ◦ A

)
|B
))

= E(g(G−1B))

= E(g(B)) = E(E(f (B ◦ A)|B)) = Ef (B ◦ A).

Since G ∈ O(k3) and f were arbitrary, the last relation implies that the distribution
of B ◦ A is invariant to left actions of O(k3). This fact and the uniqueness of the
normalized Haar measure imply part b), which entails c).

Proof (of Lemma 2) Let M be a non-empty finite subset of Rd and x ∈ (0,∞)M .
The finite-dimensional distributions of Y are determined by

− logP (Yt ≤ xt , t ∈ M) =
∫

Vk(Rd)

∫

E

∨

t∈M

x−1
t VA Tt (e) μ( de) σ d

k ( dA).

If X is stationary, then we have for all h ∈ R
d and all A ∈ Vk

(
R

d
)

that∫
E

∨
t∈M x−1

t VA T(t+h)(e) μ( de) = ∫
E

∨
t∈M x−1

t VA Tt (e) μ( de), since A is linear,
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which implies the assertion a). Subsequently, part b) follows since σd
k is O(d)-

invariant. Part c) follows with Eq.3.

Proof (of Proposition 3) In view of Lemma 2 we need to show that continuous TCFs
on R

k coincide with the TCFs of stochastically continuous processes on R
k . Let

χ be a continuous TCF on R
k and let X be a corresponding stationary max-stable

process. Let θ be the extremal coefficient function (ECF) of X as in Strokorb and
Schlather (2013) and let X∗ be the associated Tawn-Molchanov process as in Theo-
rem 8 therein. Note that χ(h) = 2− θ({h, o}). By construction, X∗ is also stationary
and has TCF χ . Additionally, X∗ is stochastically continuous due to Theorem 25
therein.

Proof (of Lemma 6) Let M be a non-empty finite subset of Rd and x ∈ (0,∞)M .
The finite-dimensional distributions of Y are determined by

− logP (Yt ≤ xt , t ∈ M) = EB

∫

Rd

∫

E

∨

t∈M

c−1
B x−1

t B(t − z)Vt (e) μ( de) dz.

a) If X is stationary, we have for all h ∈ R
d , z ∈ R

d and B ∈ {0, 1}Rd
that∫

E

∨
t∈M

B(t−z)Vt+h(e)
xt

μ( de) = ∫
E

∨
t∈M B(t − z)Vt (e)xt μ( de),

which entails for all h ∈ R
d and all integrable functions B ∈ {0, 1}Rd

that∫
Rd

∫
E

∨
t∈M

B((t+h)−z)Vt+h(e)
xt

μ( de) dz = ∫
Rd

∫
E

∨
t∈M

B(t−z)Vt (e)
xt

μ( de) dz.

b) The assertion follows from Eq.3 and the fact that b1v1 ∧ b2v2 = b1b2(v1 ∧ v2)

for non-negative real numbers b1, b2, v1, v2 with bi ∈ {0, 1} for i = 1, 2.

It is shown already in Gneiting (1999c) that Hd and the Mittal-Berman class Vd

coincide (for d ≥ 2; cf. Gneiting (1999c, Eq. 40) and Mittal (1976)). Here, Vd is the
class of functions ϕ on [0,∞) of the form

ϕ(t) = 2
∫ ∞

t/2
Sd,u,θ(t,u) S−1

d,u,π p(u) du, (27)

where p is a probability density function on (0,∞), such that p(u)/ud−1 is non-
increasing, and Sd,u,θ is the surface area of the sphere {x : ‖x‖ = u} ⊂ R

d

intersected by the cone of angle θ(t, u) = arccos(t/(2u)) (with apex the origin). In
what follows, we show that we have

Hd = T d
M3r = T d

M2r = T d
M3b (= Vd) for d ≥ 1 (d ≥ 2). (28)

Proof (of Proposition 8 and Proposition 14c)
We divide the proof into five steps:

1st step Hd = T d
M3b for d ≥ 1.

The assertion follows immediately from Eq. 15.

2nd step T d
M2r = Vd = Hd for d ≥ 2 and Eq. 25 holds for d ≥ 2.
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Members of T d
M2r depend on a shape function f ≥ 0 with

∫
Rd f (‖t‖) dt = 1,

which is non-increasing as the radius grows, whereas members of Vd depend on a
probability density function p on (0,∞) with p(u)/ud−1 non-increasing in u > 0.
Integration along the radius shows that both functions are in one-to-one correspon-
cence via

f (‖t‖) = S−1
d,‖t‖,π p(‖t‖).

Moreover, since f is non-increasing, this correspondence is compatible with the
integration in Eq. 27 and the TCF for M2r processes in Table 1, that is

∫

Rd

f (‖z‖) ∧ f (‖z− t‖) dz = 2
∫ ∞

‖t‖/2
Sd,u,θ(‖t‖,u) f (u) du

= 2
∫ ∞

‖t‖/2
Sd,u,θ(‖t‖,u) S−1

d,u,π p(u) du. (29)

Hence T d
M2r = Vd for d ≥ 2. From Gneiting (1999c) we already know that Hd = Vd .

In particular, f and G1/(2R) = G from Proposition 14 can be recovered from each
other by (44) and (45) in Gneiting (1999c) with n ≥ 2 (Theorem 5.2 therein), or,
equivalently, f and G1/(2R) can be recovered from each other by (25) with d ≥ 2
here. Note that our f corresponds to g in Gneiting (1999c).

3rd step T 1
M2r = H1 and Eq. 25 holds for d = 1.

If d = 1, it is straightforward to check that, for χ ∈ T 1
M2r depending on a single

shape function f , we have

χ(t) =
∫

R

f (z) ∧ f (z− t) dz = 2
∫ ∞

t/2
f (u) du (30)

(similarly to the integration along the radius in Eq. 29). Now, precisely the same
proof as the proof of Theorem 5.2. in Gneiting (1999c) applies here when we set
n = 1, g = f , ϕ = χ and omit the term Sn,u,θ in (48) and (49) therein, showing
that T 1

M2r = H1. In particular, f and G1/(2R) = G from Proposition 14 can also
be recovered from each other by (44) and (45) in Gneiting (1999c) with n = 1 or,
equivalently, f and G1/(2R) can be recovered from each other by Eq. 25 with d = 1
here (where our f corresponds to g therein).

4th step T d
M3r ⊂ Hd for d ≥ 1.

From the 2nd and 3rd step we know that T d
M2r = Hd for d ≥ 1. That means for

each (single deterministic) radially symmetric non-increasing shape function f ≥ 0
on [0,∞) with 0 < ‖f ‖L1(Rd ) < ∞ we may define a unique distribution function
Gf/‖f ‖L1(Rd )

via Eq. 25. We set

A(f )s = ‖f ‖L1(Rd ) Gf/‖f ‖L1(Rd )
(s), s > 0,

such that A(f ) is non-decreasing on (0,∞) with A(f )0+ = 0, A(f ) is right-
continuous and A(f ) has total variation ‖f ‖L1(Rd ). It is coherent to set A0 ≡ 0. Now,



264 Strokorb et al.

consider a member χ of T d
M3r and its corresponding measurable map f : Rd × Ω

→ [0,∞], which satisfies
∫

Ω

‖f (·, ω) ‖L1(Rd ) ν( dω) = 1.

Then the assignment ω �→ (A(f (·, ω))s)s>0 defines a non-decreasing, right-
continuous process A on (0,∞), such that E (A∞) = 1 and A0+ = 0. Moreover,
note that (by the correspondence T d

M2r = Hd )

χ(t) = E

∫ ∞

0
hd(st) dAs ,

where the expectation is taken with respect to the process A (the expectation comes
from the measure μ). Set G(s) = EAs . Then G is also non-decreasing, right-
continuous with total variation 1 and with G(0+) = 0 (by dominated convergence).
Finally, we obtain (again by dominated convergence) that

χ(t) =
∫ ∞

0
hd(st) dEAs =

∫ ∞

0
hd(st) dG(s)

as desired. Hence T d
M3r ⊂ Hd .

5th step (Summary) From the previous steps we know that T d
M3r ⊂ Hd = T d

M3b
= T d

M2r for d ≥ 1. Clearly, T d
M3b ⊂ T d

M3r by definition.

Proof (of Proposition 9) a) If ϕ is completely monotone, then also −ϕ′ and
−ϕ′(

√·) will be completely monotone, since
√· is a Bernstein function, cf. Berg

et al (1984, p. 141/142) and Bochner (1955, p. 83) (where Bernstein functions
are confusingly also called “completely monotone”). This shows T d

MPS ⊂ H∞.
Clearly, H∞ ⊂ Hd and the other equalities are restated from Proposition 9.

b) Clearly, T d
BR ⊂ T d

VBR, since BR processes form a proper subclass of VBR pro-
cesses. The inclusion H∞ ⊂ T d

VBR follows from Eq. 20, since γ (t) = 8‖t‖2 is a
valid variogram in each dimension.

c) The variogram γ (t) = 8‖t‖2α is valid in each dimension for α ∈ (0, 1] (corre-
sponding to fractional Brownian motion). Hence erfc(tα) is a valid TCF of a BR
process for α ∈ (0, 1]. Moreover, the function erfc(tα) is completely monotone
(⇔ it belongs to T d

MPS) if and only if α ≤ 0.5.
d) The class T d

M3r = Hd naturally contains functions with compact support, e.g.
the function hd , see Eq. 14, whereas T d

VBR cannot contain such functions. To
see this, recall (19) and observe that members of H∞ are scale mixtures of erfc
that cannot have compact support. Thus, the involved variogram in Eq. 20 would
have to take the value ∞ outside a compact region.

e) Consider the simple erfc-mixture

χ(‖t‖) = 0.25 · erfc(‖t‖)+ 0.75 · erfc(5‖t‖), t ∈ R
d .

Surely, χ is a member of H∞, cf. (19). Suppose that there is a BR process on R
d

corresponding to a variogram γ̃ such that its TCF χ̃ coincides with χ . We will
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show now that this cannot be true for any dimension d . Otherwise,

γ̃ (‖t‖) = 8
[

erfc−1 (0.25 · erfc(‖t‖)+ 0.75 · erfc(5‖t‖))
]2

, t ∈ R
d

is a variogram for any dimension d . In particular, γ̃ (‖·‖) is for any dimension
d a continuous negative definite function on R

d . By Berg et al (1984, 5.1.8) it
follows that the function

ψ(r) =
[

erfc−1 (0.25 · erfc
(√

r
)+ 0.75 · erfc

(
5
√

r
))]2

, r ∈ [0,∞)

is a (continuous) negative definite function on [0,∞) in the semigroup sense and
obviously ψ(r) ≥ 0. Hence ψ(r) is a Bernstein function, cf. Berg et al (1984,
4.4.3). However, the second derivative of ψ(r) has a local minimum. So, the
assertion fails and our assumption must be wrong. That means there is a dimen-
sion d0 such that the above χ ∈ H∞ cannot be realized as a TCF of a BR process
for any dimension d ≥ d0.

Lemma 19 For all 1 ≤ k ≤ d the turning bands operator TBd
k transfers members

of the class H1 into members of H1.

Proof The class H1 is the class of continuous functions h on [0,∞) that are con-
vex and satisfy h(0) = 1 and limt→∞ h(t) = 0. All properties are preserved under
TBd

k . For continuity and limt→∞ h(t) = 0 use the dominated convergence theorem.
Preservation of convexity follows from TBd

k (h)(r) = EA(h(rc(A))) for r ≥ 0 with
A ∼ σd

k and c(A) = ∥∥A T(1, 0, . . . , 0) T
∥∥.

Proof (of Proposition 10) A priori it is clear that ϕ1 = h1 does not belong to Hk for
k ≥ 2 (Gneiting 1999c).

a) Because of Proposition 3 the function ϕd is a radial TCF on R
d . Lemma 19

shows that ϕd = TBd
1(h1) belongs to H1.

b) By Eq. 9 ϕd can be expressed as

ϕd(t) = 2π−1/2 Γ (d/2) Γ ((d − 1)/2)−1
∫ 1

0
h1(tw)

(
1 − w2

)(d−3)/2
dw.

(31)
Thus, we have for d ≥ 2 that

− ϕ′d
(√

t
)
= βd

{
1 t ≤ 1
1 − (1 − 1/t)(d−1)/2 t > 1

, (32)

where βd is the constant from Eq. 23. Clearly, −ϕ′d
(√

t
)

is not convex. From
Eq. 17 (which is an equality for d = 3) we see that ϕd cannot belong to H3.

c) We verify that one of the conditions of Theorem 3.3 in Gneiting (1999c) (that is
necessary to belong to the class H2) is not fulfilled: Namely, we show that for all
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d ≥ 6 the function

c(t) :=
∫ t

0

√
v−1(t − v)

(−ϕ′d
(
1/
√

v
))

dv (33)

is not convex. From Eq. 32 we see that

− ϕ′d
(
1/
√

v
) = βd

{
1 − (1 − v)(d−1)/2 v < 1
1 v ≥ 1

Since d ≥ 6 we can compute the second derivative of c at 1:

c′′(1) =
∫ 1

0

√
w−1(1 − w) · d2

dt2

∣∣∣∣∣
t=1

(
−ϕ′d

(
1/
√

tw
)
· t
)

dw

= −βd(d − 1)
(

3/16
√

π Γ (d/2 − 2)Γ ((d + 1)/2)−1
)

< 0

Since c′′(1) is negative, the function c cannot be convex.

Lemma 20 If f, g ∈ H1 then fg ∈ H1 as well.

Proof This is an immediate consequence of Gneiting (1999c, Lemma 4.7) or
Williamson (1956, Lemma 2), which states that if f and g are non-negative, non-
increasing and convex on an interval, then the product fg is also non-negative,
non-increasing and convex there.

Proof (of Proposition 12) a) From Proposition 10 we know that ϕd(2t) is a radial
TCF on R

d that belongs to H1. Since hd(t) belongs to Hd it follows from Exam-
ple 7 that the product χd(t) = ϕd(2t)hd(t) is a radial TCF on R

d . Moreover
hd(t) also belongs to Hd ⊂ H1 and therefore χd ∈ H1 due to Lemma 20.
However, χd �∈ T d

VBR because of its compact support (cf. Propostion 9 d).
b) It suffices to show that the function

f (t) = −χ ′
3

(√
t
)
= −2ϕ′3

(√
4t
)

h3

(√
t
)
+ ϕ3

(√
4t
) (

−h′3
(√

t
))

is not convex, because then one of the conditions of Eq. 17 (which is an equality
for d = 3) is not fulfilled. From Eq. 14), Eq. 31 and Eq. 32 we see that for
t ∈ [0, 1]

h3

(√
t
)
= 1

2

(
2 − 3t1/2 + t3/2

)
, −h′3

(√
t
)
= 3

2
(1 − t),

ϕ3

(√
4t
)
=
{

1 −√
t t ≤ 1/4

1/
(
4
√

t
)

t ≥ 1/4
, − 2ϕ′3

(√
4t
)
=
{

1 t ≤ 1/4
1/(4t) t ≥ 1/4

.

Thus, f (t) is a decreasing function on [0, 1] with the following left-hand and
right-hand derivative at 1/4

lim
t↑1/4

f ′(t) = −3 and lim
t↓1/4

f ′(t) = −17/4.

Hence, f cannot be convex in a neighbourhood of 1/4.
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Proof (of Proposition 14) c) The recovery of f and G1/(2R) has been proved
already alongside the Proof of Proposition 8.

b) The recovery of G1/(2R) is stated in Gneiting (1999c), Eq. 18 (case d = 1),
Theorem 3.2 (case d ≥ 3 odd), Theorem 3.4 (case d ≥ 2 odd) with G1/(2R) = G

therein.
a) The recovery of f is obtained from part b) when Eq. 25 from part c) is applied.

In case d is odd, we can simplify the result as follows

f (u) = 1

κd

∫ 1/(2u)

0
(2s)d dG(s) = 2d

√
π

κd d Γ (d/2)

∫ 1/(2u)

0
dλ

(
1

s2

)

=
(

2√
π

)d−1 (
λ
(

4u2
)
− lim

x→∞ λ(x)
)

But limx→∞ λ(x) necessarily vanishes, since λ(t) = −a′(t) for a non-negative
(i.e. bounded from below), non-increasing and convex function a(t) due to
(Gneiting 1999c, Eq. 22).

Proof (of Table 3) If the density g1/(2R) of the cdf G1/(2R) of 1/(2R) exists, then the
density g2R of 2R is given by g2R(s) = g1/(2R)(1/s)/s2. The cases d = 1 and d = 3
follow directly from Proposition 14. The case d = 2 has been derived in a tedious
calculation that can be found in Strokorb (2013, p. 100, Proof of Table 4.2.) under
the additional assumption that χ ∈ H5.

Proof (of Lemma 15 analogously to Gneiting (1999c), p. 104) Replacing t by t2 and
r by s2 yields

− ϕ′ (t) =
∫ ∞

0
2se−s2t2

f
(
s2
)

ds =
∫ ∞

0

d

dt
[− erfc(st)] g(s) ds.

Applying Fubini’s theorem when integrating w.r.t. t gives

ϕ(0)− ϕ(t) =
∫ ∞

0
[ erfc(0)− erfc(st)] g(s) ds,

which entails the claim, since g is a density on (0,∞) and ϕ(0) = 1.

Proof (of Table 4) We apply Lemma 15 and derive this table from known Laplace
transforms in Polyanin and Manzhirov (2008) using (in this order) Eq.’s [p. 964 5.3
(11)], [p. 964 5.3 (12), p. 963 5.2 (12) and p. 962 5.1 (26)], [p. 963 5.3 (1)] and [p.
963 5.3. (3) with ν = 1.5] therein.

Proof (of Corollary 17) The variogram γ (t) = 8‖t‖ corresponds to Brownian
motion and is a valid variogram that determines a BR process with TCF

χ(t) = erfc
(√

γ (t)/8
)
= erfc(

√‖t‖).
Proposition 9 ensures the existence an intensity mixing distribution Gβ of an MPS
process (Part c)), of a monotone shape function f of an M2r process (Part a)) and a
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random radius R of an M3b process (Part a)), such that all involved processes share
the same TCF χ as above. In fact, f , R and Gβ are uniquely determined by χ , cf.
Section 5. The quantities f and R (that is the density g2R of 2R) are recovered from
χ as in Table 3 through

f (u) = χ ′′(2u)/(πu) = π−3/2(1 + 4u)(2u)−5/2e−2u,

g2R(s) = s

3

(
χ ′′(s)− sχ ′′′(s)

) = 1/12(πs)−1/2
(

4s2 + 8s + 5
)

e−s .

Derivatives are taken with respect to ‖t‖ (not t ∈ R
d ) and the monotone shape

function f depends on u = ‖t‖ only. Furthermore, it follows from Gradshteyn and
Ryzhik (2007, p. 1100, 17.13.5) that the Laplace transform of

G(s) =
{

0 if s ≤ a,

2π−1 arctan
(√

a−1s − 1
)

if s > a,

which admits the density
√

a1x≥a/(πs(s − a)), is given by erfc(
√

ax) for |a| < π ,
that is L(G)(x) = erfc(

√
ax). From the MPS entry of Table 1 we know that

χ(x/cd) = L(Gβ)(x) holds for the TCF χ of an MPS process where cd = 2
κd−1/(dκd) is a dimension specific constant. With d = 2, we obtain cd = 2/π .
Therefore, choosing a = 1/cd = π/2 for G yields the desired intensity mixing
distribution Gβ of an MPS process with TCF erfc(

√‖t‖).

B Monotonicity properties of continuous functions

Let (a, b) be an open interval and n ∈ N. A real-valued function f on (a, b)

is called n-times monotone, where n ≥ 2, if it is differentiable up to order
n − 2 and (−1)kf (k) is non-negative, non-increasing and convex on (a, b) for k =
0, 1, . . . , n− 2. If n = 1, we simply require f to be non-negative and non-increasing
(McNeil and Neṡlehová 2009; Williamson 1956). The function f is called completely
monotone if it is n-times monotone of any order n, which is equivalent to require
that it has derivatives of all orders and that (−1)kf (k)(x) ≥ 0 for all x ∈ (a, b) and
k ∈ N∪ {0} (Widder 1946, Chapter IV). If I is a closed or half-open interval, a func-
tion f on I is called n-times monotone (resp. completely monotone) if f has this
property when restricted to the interior I̊ and if f is continuous at the boundary points
of I . In the literature, the focus often lies on the intervals I = (0,∞) or I = [0,∞),
since completely monotone functions on [0,∞) are precisely the functions f , such
that f (‖·‖2) is positive definite on R

d for all dimensions d (cf. e.g. Berg et al (1984,
5.1.5 and 5.1.6)). Such functions are characterized as Laplace transforms of non-
decreasing functions, or, equivalently, positive measures (Widder 1946, Chapter IV,
Theorem 12).

Theorem 21 (Bernstein) A function f : (0,∞) → R is completely monotone on
(0,∞) if and only if it has an integral representation of the form

f (x) =
∫

[0,∞)

exp(−tx) dF(t) (34)



TCFs of max-stable processes 269

for some non-decreasing function F : [0,∞) → R, such that the integral converges
for x ∈ (0,∞). Furthermore, the function f can be extended continuously to [0,∞)

– and, thus, is completely monotone on [0,∞) – if and only if F is bounded. In this
case f (0) = F(∞)− F(0).

An analogous integral representation with Bernstein’s theorem as the limiting
case holds for n-times monotone functions (Williamson 1956). It presents n-times
monotone functions as scale mixtures of Askey’s function.

Theorem 22 (Williamson) A function f : (0,∞) → R is n-times monotone on
(0,∞) if and only if it has an integral representation of the form

f (x) =
∫

[0,∞)

(1 − tx)n−1+ dF(t) (35)

for some non-decreasing function F : [0,∞) → R bounded from below. This rep-
resentation is unique in the sense that when F is normalized to F(0) = 0, the value
F(t) is determined at continuity points t > 0 of F .

Finally, this motivates the definition of α-times monotone functions for real α ≥ 1
according to Williamson (1956). A real-valued function f on (0,∞) (resp. [0,∞))
is called α-times monotone if it has an integral representation of the form Eq. 35 with
n = α for some non-decreasing function F : [0,∞) → R with F(0) = 0 (resp.
additionally f (0+) = f (0)).
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