
Exp Astron (2013) 35:301–318
DOI 10.1007/s10686-012-9287-0

ORIGINAL ARTICLE

Astro-WISE interfaces
Scientific information system brought to the user

Andrey N. Belikov · Willem-Jan Vriend ·
Gert Sikkema

Received: 28 July 2011 / Accepted: 17 January 2012 / Published online: 10 February 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract From a simple text interface to a graphical user interfaces—Astro-
WISE provides the user with a wide range of possibilities to interact with the
information system according to the user’s tasks and use cases. We describe
a general approach to the interfacing of a scientific information system. We
use this approach to create a number of services, which allows the user to
browse the data stored in the system, to process the data and to exchange the
newly created images and catalogs with the users within the system and wider
astronomical community. Reusability of interfaces and services is another
important feature of our approach. It reduces the time and resources spent
to interface other information systems created from Astro-WISE.

Keywords Information system · Interfaces · Web services

1 Introduction

Any information system is as good as the ability of the user to exploit all
features of this system, the same is true for a scientific information system. To
build an extended, stable and easy-to-use system of interfaces to Astro-WISE
and information systems derived from Astro-WISE we had to come a long way

A. N. Belikov · W.-J. Vriend · G. Sikkema (B)
Kapteyn Astronomical Institute, University of Groningen, Landleven 12,
9747AB, Groningen, The Netherlands
e-mail: G.Sikkema@astro.rug.nl

A. N. Belikov
e-mail: belikov@astro.rug.nl

W.-J. Vriend
e-mail: vriend@astro.rug.nl



302 Exp Astron (2013) 35:301–318

of analyzing users requests, trying to satisfy them and collecting feedback and
proposals for improvement.

The types of interfaces from the point of view of the design of interfaces
can vary from the simplest text interface to a dynamic user interface, and
the appropriate choice for the type of interface is an important task for
the developer. The idea of an integrated approach to interfacing a specific
information system is discussed for quite a long period (see, for example, [1]).
The approach which we selected for developing interfaces is closest to a model-
based approach in interfacing [2].

In this paper we will describe not just interfaces to Astro-WISE but services
which implement these interfaces with their non-trivial functionality. As a
result, we will write more about services explaining which particular interfaces
these services provide.

2 Interfaces and services: general overview

Astro-WISE as an information system has three main layers: metadata data-
base, data storage grid and data processing grid. Figure 1 gives an overview
of how the Astro-WISE services are mapped on the three main layers. For
each layer we created a basic API. Such an interface exists as a collection of
methods for each class in the object-oriented data model of Astro-WISE, for
example, store() and retrieve() methods for the data items. But to use these

Fig. 1 The classification of Astro-WISE services by their access to layers of the system



Exp Astron (2013) 35:301–318 303

methods directly the user has to learn the full data model of Astro-WISE,
which includes hundred of classes with complicated relations between them.
Even in the case of scientific information systems users are not ready for such
a sacrifice.

The solution is to study the main requests and operations which the users
will demand from the system and to combine them in a number of user-friendly
services. Before analyzing requests we have to categorize users:

– database administrator—a user who has the highest privileges in the
database;

– project manager—a user who validates the data and calibrates an instru-
ment;

– developer—a user who can change the data model and pipelines;
– researcher—a most common type of users who must be allowed to browse

the data and execute predefined pipelines and programs;
– external users—a group of users who have no account in the Astro-WISE

system, but who are allowed to browse data published by Astro-WISE
users.

All these groups of users will have a number of requests to the information
in Astro-WISE and interact differently with the layers of the system. For
example, external users should be allowed to perform data mining on metadata
and data layers according to the access policy, which will prevent them from
browsing private or unpublished data. They will also have no access to the data
processing layer.

The way to deliver the services to the users was selected to be the same
for almost all services—a HTTP(S) based web server written in Python and
using a modular approach. The only Interface not using a HTTP server is the
Command Line Interface. To access the metadata, two methods can be used:
directly access the metadata, stored in the database, by SQL queries or use the
corresponding Python classes, which will generate the SQL. In both cases it is
verified that the user has the privileges to access the data.

In fact, all these services are a realization of an extended user interaction
cycle [3, 4]. In the case of some services, this is a simplified cycle which involves
database browsing only, but in most cases the service actually changes the state
of the system.

Based on the user classification described above and typical requests to the
system of these users, a distinction is made in the following functionalities:

* Html Interface—html interface for interaction;
* Client Interface—Python client interface for interaction;
* Query or Search—simple data mining abilities;
* Explore—the ability to provide more complicated data mining with sub-

selection and modifying requests;
* Make—an ability to create new objects launching data processing;



304 Exp Astron (2013) 35:301–318

Table 1 The different Astro-WISE services and their properties

Service Html UI Client UI Query or Make Qualify or Visualize Explore
search update

CalTS X – X (3) X – –
Cutout X X – (4) X – (2)
DbView X – X – – X –
GoWISE X – X – – – X
Image server – X – (4) – X –
Quality X – – (3) X X –
RGB X X – (4) – X (2)
Skymap X – – – – X X
Target processor X – X X (1) – –
Virtual observatory X – X – – – –

(1) New database objects are automatically qualified
(2) Has (primitive) interface showing data items created by other users
(3) Creation of comments
(4) Creation of non-database items (images, cutouts)

* Qualify or Update—an ability to verify objects and setting or changing the
qualification parameters;

* Visualize—an ability to inspect the image visually.

Table 1 lists the functionalities per web service. Each web service realizes a
group of use cases which users (actors) demand from the system. For example,
the user (actor) researcher has to browse the metadata database, to select a
data entity, according to specified criteria, and to inspect the image visually.
All these can be done with the DbView Service. The use cases for Astro-
WISE and, in turn, for Astro-WISE webservices are described in Astro-WISE
architectural design,1 these use cases are the basis for functionalities listed in
Table 1. To implement functionalities of the services we used a combination of
object-oriented and modular approach in programming (see Section 3), which
is a specific feature of Astro-WISE. Each service is supplied with extended
online help guiding the user through the service.

As we can see, there is a number of web services provided for Astro-WISE
users. To make this paper and the introduction to Astro-WISE interfaces
more user-friendly we divide all services on the groups according to their
prior functionality, i.e. selecting a group of interfaces which provide data
mining functionality, data processing, monitoring and control and, finally,
visualization. Of course, this division is artificial in the sense that many of the
services provide more than just one functionality. In following sections we will
describe the result of interfacing in more details. Each service will be described
according to the Abowd and Beale framework of interaction [4], i.e., describing
tasks, input and outputs.

1http://www.astro-wise.org/Public/cdr.pdf

http://www.astro-wise.org/Public/cdr.pdf


Exp Astron (2013) 35:301–318 305

Fig. 2 The class diagram of a typical Astro-WISE interface service

3 Modular approach to interface services

The interesting feature of Astro-WISE interfaces is their modularity, i.e.,
all interfaces are built from the standards blocks written in Python. In the
core of each service (except CLI) is a web server written in Python and
invoking a number of services as Python modules, see Fig. 2. Each interface or
functionality is realized in a separate Python module, which can be reused in a
number of services. Modules are glued together by the parent Python class and
a set of configuration parameters, which are provided separately as a detached
file during the initialization of the service. Each service has an assigned TCP/IP
port and a fully qualified domain name.

Reusability of modules allows easily to switch functionality implemented in
one interface to another one, and create a new web service which implements
a different set of tasks. This feature is useful not only for Astro-WISE but
also for developing of new information systems derived from Astro-WISE, for
example, for LOFAR Long-Term Archive data mining service.

4 Data mining services

Data mining functionality is implemented in a number of Astro-WISE services,
three of these are dedicated completely to data mining: DbView, the main
Astro-WISE service to browse the metadata database; GoWise, the service for
the quick search in the metadata database and the Virtual Observatory service.



306 Exp Astron (2013) 35:301–318

Fig. 3 The set of attributes for a particular class



Exp Astron (2013) 35:301–318 307

Fig. 4 A SQL window which represents a user selection

4.1 DbView

The core of the data mining services is the DbView service.2 It provides access
to the metadata database and allows the user to browse according to the user’s
privileges. DbView provides an html interface for SQL queries, this is an html-
based interface which allows to retrieve not only the data item itself but build
a tree of dependencies for this item.

DbView presents the Astro-WISE data model to the user. Practically all
classes of Astro-WISE can be browsed in DbView (for the full list see dbview
Tables page3). The user can browse the Astro-WISE classes, make a request
by providing a range of values for each attribute of the class (Fig. 3) or by a
direct SQL statement (the user can modify it, see Fig. 4), which will result in a
list of data items (Fig. 5).

The Astro-WISE data model has following types of data:

* desc; atomic types as integer, string, float, datetime
* link; pointer to objects
* link self; pointer to objects of the same type
* link inline; same as link, but the linked object is not stored as a

separate object.

Types described above can occur as single instances and lists. A persistent
class is an aggregation of these types. The data model is defined and imple-
mented in the programming language Python. Database administrators can

2http://dbview.astro-wise.org
3http://dbview.astro-wise.org/DbView?mode=table_sel&table_sel=all

http://dbview.astro-wise.org
http://dbview.astro-wise.org/DbView?mode=table_sel&table_sel=all


308 Exp Astron (2013) 35:301–318

Fig. 5 Figure showing the result of a query

invoke a Python script which generates on the fly data schemes for the Oracle
database from the persistent Python class definitions. It is also possible to
generate the Python code from, for example, xml. This approach is used by the
Multi Unit Spectroscopic Explorer (MUSE4) data processing system, which
will be based on Astro-WISE.

The Python data model building blocks are :

* DBObject; base class for persistent classes
* DataObject; persistent class with an attached file
* persistent; method for making class attributes persistent.

The persistent Python classes are stored in the database. The relation be-
tween Oracle tables and Python classes are stored in Oracle Comments. Oracle
Comments are a specific feature of Oracle which allows to store additional
information on the table or column in the database. The information is a free-
format text which can be retrieved to understand what kind of information
is stored in the table or column. These Comments provide a way of storing
metadata about Oracle objects, generally we use them to couple Python classes
and attributes to Oracle tables and columns. DbView web service uses these
Comments to generate the html query forms. The query form lets the user
query on the desc attributes of the class, and the desc attributes of child
classes. After submitting the form the DbView web service will generate SQL
statement, which is used to query the database. The result can span multiple
classes and is rendered as an html table.

4http://www.eso.org/sci/facilities/develop/instruments/muse/

http://www.eso.org/sci/facilities/develop/instruments/muse/


Exp Astron (2013) 35:301–318 309

DbView is a core service for the data mining with Astro-WISE, as it
combines links to many other services, including Quality Service, Cut-out
Service, Image Server and Target Processor. The resulting tables are enriched
with links to: files, cutouts, object views and other web services. The DbView
web services is not bound to a specific data model implementation. It uses the
meta-data of the data model, in the Oracle Comments, to generate the html
forms. Specific implementations can extend the functionality of the generic
DbView web service.

4.2 GoWise

The GoWise web service5 is a simplified DbView version. It only allows the
user to give an object as input. The object can be specified by name or
coordinates. In case of an object name the service will resolve the name to
coordinates, using Simbad web service.6 Given the coordinates the service
queries a set of tables (data item classes) in the database, for one or all projects.
The result of these queries is rendered in html tables. Only a subset of the
attributes of the resulting data item classes is shown. In case there are more
results then a defined maximum not all results will be shown but the service
gives the option to zoom in on a specific project or data item class.

This service is aimed at the novice user. It gives a rough overview of the data
of an object or coordinate range in the system, and provides links to additional
services for the discovered data items.

4.3 Virtual observatory interfaces

Virtual Observatory (VO) interfaces are realized as a separate VO service,7

which enables browsing the metadata database and retrieving the data from
dataservers. Astro-WISE provides two VO interfaces: Simple Image Access
Protocol for images and ConeSearch for sources. Both interfaces and registry
are built upon standard Python classes for web services described earlier.
Each data entity in Astro-WISE has a persistent attribute which shows the
scope of visibility of this entity. For example, if for some image the attribute
privileges=1, this mean that the image can be accessed by the owner of
the image only. Rising this attribute to 5 will allow to VO user to browse the
metadata of this image and to retrieve the image itself.

All data items in Astro-WISE are assigned to some project which is a group
of users who share data and can work on this data collection together. Usually
a project is connected to a specific scientific use-case. Most of the data items
(except catalogs merged from other catalogs and catalogs external to Astro-
WISE like 2MASS PSC, for example) are associated with some instrument. A

5http://gowise.astro-wise.org
6http://simbad.u-strasbg.fr/simbad/
7http://www.astro-wise.org/portal/aw_vo.shtml

http://gowise.astro-wise.org
http://simbad.u-strasbg.fr/simbad/
http://www.astro-wise.org/portal/aw_vo.shtml


310 Exp Astron (2013) 35:301–318

VO user has two options: select data items by a project or by an instrument.
In the first case the user will retrieve data related to some use-case, in the
second case the user browses an archive of the instrument (for example,
WFI@2.2m). If the user wants to retrieve the data for a specific object or
range of coordinates through a set of projects he has to issue multiple requests,
one request per project/instrument, and combine the data in the external
application. This task can be easily peformed with the use of the DbView
service which can return the data in a VOTable format and has a SAMP
implementation.

5 Data interfaces

The DataServers form the backbone of the data file distribution of the Astro-
WISE system. These services use the HTTP protocol to serve files. The files are
linked in the database by filename, as defined by the DataObject class. The
interface is straightforward, a user requests a file by filename, the dataserver
returns the file content. Multiple data servers can form a logical unit.

6 Command line interface

Command Line Interface (CLI, or Astro-WISE Environment—AWE) is the
simplest and most powerful way the user can interact with the Astro-WISE
system. CLI is developed on the base of Python and in fact it is an environment
put on the standard Python CLI. Astro-WISE CLI gives access to all Astro-
WISE classes and libraries and allows to build a Python program.

CLI is set by a configuration file, which specifies the user’s login, the
initial project, dataserver, Distributed Processing Unit (DPU) and numerous
other configuration options. CLI is also used as a programming environment
which allows submitting Python programs to Astro-WISE, the user can write
his own program involving Astro-WISE classes and libraries and execute it
through CLI.

There is a web-based version of the CLI,8 although not given the full
performance and functionality of the local CLI, it can be used when the user
has no local CLI installed.

7 Data processing interfaces

Data processing interfaces provide to the user an access to the data processing
layer of Astro-WISE. The task of data processing interfaces is to implement
an uniform way for the user to access different data processing facilities

8http://awe.astro-wise.org

http://awe.astro-wise.org


Exp Astron (2013) 35:301–318 311

employed by Astro-WISE, including “native” Astro-WISE processing ele-
ments (High Performance Computing cluster in Groningen, for example) and
“external” processing facilities (for example, BiGGrid processing element
in Amsterdam).

7.1 Target processor

The Target Processor web service9 gives the user an html interface to the
Target Processing Interface. Target processing is a certain way of processing.
A user requests a certain object and the system will then determine what has to
be made and how [5]. The Target Processor uses the data model to determine
what has to be made to fulfill the request of the user. In the most extreme
case only the raw objects exist and everything above (or below) is processed
by the Target Processor, until the user requested object is made. The Target
Processor traverses the data model, using the persistent dependencies of the
classes. For each dependency the Target Processor checks if an instance of the
dependency already exists in the database, and if so, whether the dependency
is uptodate. The decision model looks like:

object exist ?
no -> make object
yes -> object uptodate ?

no -> remake object
yes -> use object

The exist method queries the database, using a set of parameters. The set
of parameters depends on the class. If the query results in multiple objects
the most recent is returned. The uptodate check is more complicated. This
first checks if the object is flagged, if so the object is out-of-date. Then for
all the dependencies of the object it is checked if they are the newest version.
Essentially calling the exist method on every dependency checks if this returns
the current dependency. If not all dependencies represent the newest version,
the object is out-of-date. The last check is to call the uptodate method of all the
dependencies. If not all dependencies are up-to-date, the object is out-of-date.
This recursive calling of the uptodate method can be done to a certain depth, or
until a raw class is hit. Raw objects can be flagged, but have no dependencies
to check.

7.2 DPU

The DPU provides a HTTP interface for submitting jobs on compute clusters.
The jobs are Python pickles and contain the parameters to run each job. The
user instantiates the jobs, defines the hierarchical structure of the jobs and
which compute cluster to use. The DPU then takes care of submitting the jobs

9http://process.astro-wise.org

http://process.astro-wise.org


312 Exp Astron (2013) 35:301–318

to the specified compute cluster, monitors the progress of the jobs and returns
the logs. The jobs are responsible for storing the resulting files on a data server
and populate the database by committing an instance of the datamodel.

7.3 gLite interface

Making use of Grid storage and processing facilities requires confirming to
standards. We use the following packages to implement these standards:

* jLite;10 proxy certificate handling
* dcache-srmclient;11 srm interaction (ls, cp, rm, mkdir)
* globus;12 myproxy handling.

These packages are Java only, making the installation of them easy and
architecture independent. We made Python wrappers for these packages, so
they can be easily used throughout the system.

7.4 RGB maker

The RGB Maker web service13 generates a RGB image from 3 input frames.
The service aids the user in selecting the possible input frames, presenting an
overview of all frames with the same pixel size and target area on the sky. The
three input frames are cut (using the Image Server) to the same dimensions
and the utility stiff14 is used to combine the three frames to a RGB image.

The RGB images are stored on the web server and are visible to other users.
The metadata of the RGB images is not stored in the database.

8 Monitoring and control services

One of the core task in the producing a survey is to verify it’s quality. There
are a number of services in Astro-WISE which allow doing this—CalTS is
tracing all calibrations used for data processing, Quality service allow to
visualize information about the quality of a particular image, it’s astrometric
and photometric solution. Together these services allow to trace the quality of
all data processing steps.

10http://code.google.com/p/jlite/
11http://www.dcache.org/downloads/1.9/
12http://www.globus.org/toolkit/
13http://rgb.astro-wise.org
14http://www.astromatic.net/software/stiff

http://code.google.com/p/jlite/
http://www.dcache.org/downloads/1.9/
http://www.globus.org/toolkit/
http://rgb.astro-wise.org
http://www.astromatic.net/software/stiff


Exp Astron (2013) 35:301–318 313

8.1 CalTS

The CalTS web service15 provides an html interface for updating or qualifying
the calibration objects in the database. Calibration objects in the “astro”
implementation have five attributes which determine whether and when the
object will be used for data processing in the Astro-WISE system [6]:

* timestamp_start (date)
* timestamp_end (date)
* creation_date (date)
* quality_flags (int)
* is_valid (int)

The timestamp attributes define the date range for which this calibration
object should be used. The date range can be in the order of a day to years. In
case there is overlap in timestamp range between multiple calibration objects,
the object with the newest (latest) creation_date will be used. There are
two flags indicating the quality of the object; the quality_flags will be set
by the system automatically, the is_valid flag is (un)set by an authorized
user. When the quality_flags is set (i.e., non-zero) or the is_valid is
unset these attributes indicate that the object should not be used. Using the
CalTS web service a user can specify a date range and a calibration object
type. The CalTS web service will then render a graphical overview of when
the calibration objects of this type are relevant. The user can then adjust the
timestamp ranges of the objects and (un)set the is_valid flag.

8.2 Quality service

The Quality Service gives an overview of the quality of a data item. An html
page (Fig. 6) is rendered with tabular and graphical data. This data is extracted
and calculated from the metadata in the database and file(s) on the dataserver.
The user can inspect the various quality plots and decide to invalidate the data
item. The quality of the Astro-WISE system and the quality service is fully
covered in [7].

9 Visualization services

Astro-WISE develops visualization of the data stored in the system by creating
“native” Astro-WISE services (Image Server, visualization in a number of
other services like Quality Server and DbView) and exchanging the data with
the external visualising applications which is in most cases implemented by
using Simple Application Messaging protocol (see Section 9.3).

15http://calts.astro-wise.org

http://calts.astro-wise.org


314 Exp Astron (2013) 35:301–318

Fig. 6 Quality information of a reduced science frame. On the left are numerical quality indicators,
on the right is the image and the weight frame. Not all information provided by the service is shown
in this plot

9.1 SkyMap

SkyMap is a web service16 that is build on top of Google Sky.17 Google Sky
interfaces the visible sky with the same interface as Google Maps. The user can
pan and zoom to explore the sky, from fully zoomed out to almost arc-second.

The SkyMap web service overplots Google Sky with objects in the Astro-
WISE database (Fig. 7). These are frames (from raw to reduced), SourceLists
and individual sources. In zoomed-out mode only aggregative information per
square degree of all objects is shown. When zooming in the actual objects are
plotted on the sky. The user can select a filter, observer or object name to
refine the shown objects.

9.2 Image server

In the astronomical world pixel data is stored in FITS format, as it is also done
in Astro-WISE. The FITS format is not supported by web browsers. To be able
to link to FITS files and view them in browsers we made the Image Server. This

16http://skymap.astro-wise.org
17http://www.google.com/sky/

http://skymap.astro-wise.org
http://www.google.com/sky/


Exp Astron (2013) 35:301–318 315

Fig. 7 SkyMap web service, showing 5 OmegaCam observations in the SDSS z’ filter. The dither
pattern of the 8 by 4 ccd’s is clearly visible, coverage of the ccd’s is about 1 by 1 degree

HTTP service converts the requested FITS file to PNG and returns this image
to the user. The user does not have to use dedicated viewing software to inspect
FITS files.

Next to converting FITS files, the Image Server is also used to make cutouts
of FITS files. When only a small part of a large image is needed for inspection
or data analysis the Image Server can make a cutout and return the cutout in
PNG or FITS format. The header of the FITS file is changed according to the
cutout coordinates.

9.3 SAMP

The Simple Application Messaging Protocol (SAMP18) is a messaging protocol
that enables (astronomy) software tools to interoperate and communicate.
We adopted the SAMP protocol in the DbView web service and the Client

18http://www.ivoa.net/Documents/SAMP

http://www.ivoa.net/Documents/SAMP


316 Exp Astron (2013) 35:301–318

Interface. Data from DbView of CLI can be send to the analysis software, for
example, TopCat19 using the SAMP protocol.

Communication through SAMP is based on application defined messages.
We designed new messages [8] to interact with the client interface. This
allows third party software to request both existing and new data and even
influence the processing through SAMP. The messages are designed to allow
other clients to interact with Astro-WISE on various levels, depending on the
knowledge they have of the inner workings of Astro-WISE. This results in a
wide range of possible applications that could function as an auxiliary interface
to Astro-WISE.

10 Authentication and authorization service—Login server

The Login server is used to hand out user credential proxies. These user
credential proxies can be encoded in browser cookies. The users only need
to login once, the cookie will be used for multiple services. The proxies can
also be forwarded to other services, using SAMP, which then uses the proxy
to authenticate the user. Proxies can be limited in time, for example for one
month, or for a number of usages.

11 Conclusion and future work

The set of interfaces described above was implemented not only for Astro-
WISE but can be inherited by any information system developed on the base of
Astro-WISE. LOFAR Long-Term Archive is using a DbView-based interface
to access and browse the data. The astronomy specific web services can be
used as a basis for other implementations, because the way of modeling the
underlying data model will be the same.

The developing of interfaces for any information system created from
Astro-WISE follows the same pattern due to the same infrastructure inherited
from Astro-WISE, i.e., metadata, data files and data processing layer. Each of
these layers have a simple general API which is kept practically untouched,
and the specific web services are build based on the tasks performed by users
of the newly created system. This approach was already used for developing
interfaces for the LOFAR Long-Term Archive20 and Monk.21

The system of interfaces and services of Astro-WISE creates a balance
between the high level GUI (SkyMap, Quality Service etc.) and the low-level

19http://www.star.bris.ac.uk/~mbt/topcat/
20http://lofar.astro-wise.org
21http://application22.target.rug.nl:8802

http://www.star.bris.ac.uk/~mbt/topcat/
http://lofar.astro-wise.org
http://application22.target.rug.nl:8802


Exp Astron (2013) 35:301–318 317

interfaces (CLI). The user can select an appropriate set of services to perform
his task or to write his own program from scratch and use CLI to execute it in
Astro-WISE.

A number of services are linked, allowing to follow the object selected with
one of the services to another service. For example, an image selected with
the use of DbView can be followed in the Quality Service by the link from
DbView, an image selected with the Target Processor is linked to DbView,
Quality Service etc. This is due to the fact that all data entities in Astro-WISE
have an unique identifier. To exchange the data between Astro-WISE services
and non-Astro-WISE applications (topcat, Aladin) SAMP is used. This makes
it possible to return data from the external application to Astro-WISE with the
use of SAMP as well, for example, visualizing a catalog from Astro-WISE in
Aladin, selecting a subset from the catalog and sending it back from Aladin to
Astro-WISE.

The future development is targeted towards further automatization of the
process of interfacing of a newly created system for the user. For example, a
number of web services (data mining services, first of all, DbView) are quite
common and should be realized in any information system for the reason of
browsing the metadata. In the future DbView-like service can be created using
the basic interface components written in Python and can generate the system-
depending part from the data model of a newly created system. Such a services
were already implemented for LOFAR Long-term Archive.22 The simplicity
of the realization of data mining services are due to the fact that they deal with
the data model only and have the only source of information—the database
itself, which stores, in the case of Astro-WISE, all relationships between the
data objects.

In the case of data processing services and monitoring and control services
the task is more complicated due to the fact that a new pipeline for the
data processing should be integrated. In this case an external pipeline can be
wrapped into Python modules (if the pipeline obeys to modular principles of
programming) and each Python module is treated as an independent recipe
which can be interfaced to the web service like Target Processor. This work can
be automatized to some limit which is defined by specific user requirements to
the services which can not be deduced from the data model or pipeline (for
example, outline of monitoring and quality control services).

Acknowledgements Astro-WISE is an on-going project which started from a FP5 RTD program
funded by the EC Action “Enhancing Access to Research Infrastructures”.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.

22http://lofar.astro-wise.org

http://lofar.astro-wise.org


318 Exp Astron (2013) 35:301–318

References

1. Frank A.U., Mark D.M.: Language Issues for Geographical Information Systems, In: Maguire,
D. J., Goodchild, M. F., Rhind, D. W. (eds.) Geographical Information Systems: Principles and
Applications, vol. 1, pp. 147 (1991)

2. Trætteberg, H.: Model-based User Interface Design (2002). ISBN 82-471-5459-5
3. Norman, D.A.: The Psychology of Everyday Things. Basic Books, New York (1988)
4. Abowd, G.D., Beale, R.: Users, systems and interfaces: a unifying framework for interaction.

In: Proceedings of the HCI’1991 conference on people and computers VI, 73 (1991)
5. McFarland, J., Sikkema, G.: Optical Image Pipeline: Development and Implementation. Ex-

perimental Astronomy, Astro-WISE issue (2011)
6. Begeman K., Belikov A.N., Boxhoorn D., Valentijn E.A.: The Astro-WISE datacentric infor-

mation system. Exp. Astron. (2012, submitted)
7. McFarland, J., Neeser, M., Heraudeau, P.: Quality control for astronomical data. Exp. Astron.

(2012, submitted)
8. Buddelmeijer, H., Valentijn, E.A.: Query driven visualization of astronomical catalogs. Exp.

Astron. (2012, accepted)


	Astro-WISE interfaces
	Abstract
	Introduction
	Interfaces and services: general overview
	Modular approach to interface services
	Data mining services
	DbView
	GoWise
	Virtual observatory interfaces

	Data interfaces
	Command line interface
	Data processing interfaces
	Target processor
	DPU
	gLite interface
	RGB maker

	Monitoring and control services
	CalTS
	Quality service

	Visualization services
	SkyMap
	Image server
	SAMP

	Authentication and authorization service---Login server
	Conclusion and future work
	References


