Exp Astron (2013) 35:203-225
DOI 10.1007/510686-011-9272-z

ORIGINAL ARTICLE

Automatic optimized discovery, creation
and processing of astronomical catalogs

Hugo Buddelmeijer - Danny Boxhoorn -
Edwin A. Valentijn

Received: 8 August 2011 / Accepted: 4 November 2011 / Published online: 7 February 2012
© The Author(s) 2012. This article is published with open access at Springerlink.com

Abstract We present the design of a novel way of handling astronomical
catalogs in Astro-WISE in order to achieve the scalability required for the data
produced by large scale surveys. A high level of automation and abstraction
is achieved in order to facilitate interoperation with visualization software for
interactive exploration. At the same time flexibility in processing is enhanced
and data is shared implicitly between scientists. This is accomplished by using
a data model that primarily stores how catalogs are derived; the contents of
the catalogs are only created when necessary and stored only when beneficial
for performance. Discovery of existing catalogs and creation of new catalogs is
done through the same process by directly requesting the final set of sources
(astronomical objects) and attributes (physical properties) that is required, for
example from within visualization software. New catalogs are automatically
created to provide attributes of sources for which no suitable existing catalogs
can be found. These catalogs are defined to contain the new attributes on
the largest set of sources the calculation of the attributes is applicable to,
facilitating reuse for future data requests. Subsequently, only those parts of the
catalogs that are required for the requested end product are actually processed,
ensuring scalability. The presented mechanisms primarily determine which

H. Buddelmeijer (<) - D. Boxhoorn - E. A. Valentijn
Kapteyn Astronomical Institute, Postbus 800, 9747 AD,
Groningen, The Netherlands

e-mail: buddel@astro.rug.nl

D. Boxhoorn
e-mail: danny@astro.rug.nl

E. A. Valentijn
e-mail: valentyn@astro.rug.nl

@ Springer

204 Exp Astron (2013) 35:203-225

catalogs are created and what data has to be processed and stored: the actual
processing and storage itself is left to existing functionality of the underlying
information system.

Keywords Data mining - Data lineage

1 Introduction

Billions of astronomical objects are detected in large astronomical surveys, for
which thousands of properties are quantified. The classical way to handle cata-
log data produced by large surveys, is to create a static relational database with
a direct interface to the user. This classical approach has several conceptual
drawbacks. The catalogs are published in releases as is; there is very limited
flexibility in the derivation of the data. Redoing part of the data reduction
entails downloading a large part of the original data and reprocessing it offline.
Scientists require knowledge about the internal representation of the data to
access it.

Examples of such an approach are the Sloan Digital Sky Survey (SDSS)
[5, 9] and the WFCAM Science Archive [6]. It is possible to create user-
defined tables in the ‘CasJobs’ service! of SDSS. These are of a limited size
and there is no facility to reprocess the data. This is an inherently pushing
or forward chaining approach, that is, scientists create derived catalogs in a
stepwise fashion—starting from the released catalogs—until they reach their
required end product. The used database queries are stored within the tables,
but there is no conceptual information about what the data in the catalogs
represent.

This paper discusses the design of novel mechanisms to handle such large
catalogs in Astro-WISE through request driven processing. That is, scientists
request their required end product, and the information system autonomously
determines the best way to provide this catalog. We achieve a high level of
automation and implicit scalability, while enhancing flexibility in processing
and sharing of data. This is done by using an object oriented data model that
focuses on storing information about processing; storing the catalog data itself
is of secondary importance.

1.1 Astro-WISE

The Astro-WISE consortium has designed a new paradigm and has imple-
mented a fully scalable information system to overcome the huge information
avalanche produced by wide-field astronomical surveys [7, 8]. This is achieved
by capturing in a generic way the reality of end-to-end survey operations into a
conceptual data model which is translated into hierarchical classes. The model

Thttp://casjobs.sdss.org/CasJobs/

@ Springer

http://casjobs.sdss.org/CasJobs/

Exp Astron (2013) 35:203-225 205

maps all links between dependencies: objects are stored in the database, which
links all data products to their dependencies. This creates a dependency graph
with the full data lineage of the entire processing chain.

Astro-WISE uses the advantages of Object-Oriented Programming (OOP)
to process data in the simplest and most powerful ways. In essence, it turns the
objects that represent conventional astronomical science products, into OOP
objects, called process targets. Every individual science product, such as frame
or catalog, is an instantiation of a specific process target class. Each of these
process target instances knows how to process itself to create the data product
it represents. Each process target has associated processing parameters, which
are configurable parameters that guide the processing of that target.

The most unique aspect of Astro-WISE is its ability to process data based on
the final desired result to an arbitrary depth. This data pulling is the heart
of Astro-WISE and is called target processing. Contrary to the typical case
of forward chaining such as in the SDSS CasJobs service, the Astro-WISE
database links allow the dependency chain to be examined from the intended
process target all the way back to the raw data. A target’s dependencies are
checked to see if it is up-to-date: if there is a newer dependency or if the target
does not exist, the target is (re)created.

1.2 A functional approach to catalogs as Process Targets

Target processing has been incorporated in the image reduction part of the
Astro-WISE information system since its inception [8]. Originally, only a few
classes were available in Astro-WISE to handle catalog data, of which the
SourceList is the most prominent. The SourceList is primarily used to create
catalogs with attributes derived from images and has limited functionality
for creating new catalogs from existing catalogs. In particular such derived
catalogs do not have full data lineage and can therefore not be pulled.
Furthermore they can require large amounts of duplication of catalog data,
leading to scalability problems.

This paper describes how data lineage and data pulling mechanisms are
extended to cover astronomical catalogs with the design of process target
classes—which we call Source Collections—for catalog data. A Source Col-
lection instance represents a collection of sources (astronomical objects) with
attributes (or parameters) that quantify physical properties. There are separate
process target classes for different operations to create and manipulate cata-
logs (Section 3.1). The Source Collection classes take data pulling mechanisms
to a higher level than is necessary for images; in particular it is not required to
store the catalog data that a Source Collection represents in its entirety.

The full data lineage allows any target to be processed at any time for
any reason, since the process parameters unambiguously define how to do so.
Ultimately, this means that it is not necessary to process a target completely,
or at all. In a sense, this turns the Object-Oriented approach into a Functional
one: A process target can also be seen as a representation of the operation that
is used derive the science product, in addition to seeing it as a representation

@ Springer

206 Exp Astron (2013) 35:203-225

of the result itself. The actual processing of the object and storing the result is
then optional. These two viewpoints are equivalent and interchangeable and
the contributions in this work stem from this dual perspective:

1. We allow Source Collections to be created—and used as a dependency for
other process targets—by specifying their data lineage, without requiring
them to be processed, unlike other process targets in Astro-WISE.

2. Dependency graphs of Source Collections are created automatically
through data pulling. These mechanisms create new Source Collections in
a way that maximizes their reusability for future data pulling requests.

3. We present a novel way to process only the part of a Source Collection
that is required for the last process target in a dependency graph. This is
done by using the power of backward chaining to temporarily optimize the
dependency graph.

4. We use a novel algorithm (Buddelmeijer et al. [1], hereafter Paper II) to
infer the logical relationships between catalogs from their data lineage
directly. This is required because the exact set of sources that a catalog
represents might not be evaluated. This algorithm is used to find Source
Collections and for the optimization of dependency graphs.

5. The methods to calculate new attributes from existing attributes are
decoupled from their application. This offers scientists flexibility in imple-
menting their own methods while reinforcing the principles of data pulling.

6. The catalog objects and data pulling mechanisms are designed to be used
in query driven visualization [2]. The high level of automation allows the
data pulling to be abstracted, which implicitly minimizes the processing
required to create the visualized datasets.

1.3 Outline

The remainder of the paper is structured as follows. The Source Collection
concept is introduced and demonstrated with an example in Section 2. This
is followed by a short description of the different Source Collection classes
that are implemented in Astro-WISE in Section 3 and a discussion about
storing Source Collections and the catalog data they represent in Section 4.
Subsequently the concept of dependency graphs is explained in Section 5 and
their automatic creation through data pulling in Section 6. The optimization of
dependency graphs is discussed in Section 7 and their processing in Section 8.
A summary and conclusion is provided in Section 9.

2 Introducing Source Collections
A Source Collection is an Astro-WISE process target (Section 1.1) for the

handling of astronomical catalogs. These catalogs consist of sets of sources and
attributes that quantify properties of the sources. The exact set of sources and

@ Springer

Exp Astron (2013) 35:203-225 207

the values of the attributes is determined by processing a Source Collection.
When we refer to catalog data, we mean this processing result. A Source
Collection can also be seen as a representation of the action required to
derive the catalog data, since a Source Collection can be created without being
processed. We refer to this action in a conceptual sense as the operator of
a Source Collection and define separate process target classes for different
operations on catalogs (Section 3.1).

Every source in a Source Collection has a unique identifier and two Source
Collections are considered to represent the same sources if and only if the
identifiers of their sources are identical. A source itself can be seen as an
object in the computer science reading of the term. A parametrized property
of a source can then be seen as an attribute of such an object. We will use the
term attribute instead of parameter, which originates from this object oriented
approach. Attributes quantify physical properties of the sources in a Source
Collection and the set of attributes forms the Source Collection dimensions.
The label of an attribute only describes what physical property is represented
by the attribute. This labeling could be standardized, for example with Unified
Content Descriptors; for the scope of this paper we will refer to attributes by
their name only.

Every Source Collection instance is linked to its dependencies, forming a
dependency graph all the way to the raw data. Dependencies of a Source
Collection that are Source Collections themselves are also called its parents,
because the catalog represented by the Source Collection is derived from
them. Such a dependency graph can be visualized as interconnected nodes.
In the figures in this paper, the dependencies of a process target are shown
above it. Therefore the data processing runs from top to bottom and the data
lineage from bottom to top. Such a dependency graph can conceptually be
extended in both directions. The top nodes will contain photometric attributes
and can be connected to nodes representing frames that were used to measure
these attributes. The bottom nodes can be connected to nodes representing
hypothetical process targets for graphs or other analysis products.

2.1 Source Collection example

We demonstrate the Source Collection concept with a simplified example of
data pulling. We assume the existence of a Source Collection (labeled A,
Fig. 1) that contains apparent magnitudes and redshifts for a large set of galax-
ies. A scientist pulls a dataset with both absolute and apparent magnitudes for
nearby galaxies. First, the scientist formulates a data pulling request (Fig. 1) in
which three pieces of information are specified:

— The data set from which the sources should be selected: Source Collec-
tion A.

— The selection criterion for the sources: a redshift below 0.1.

— The required attributes: absolute and apparent magnitudes.

@ Springer

208 Exp Astron (2013) 35:203-225

1D Op crator A External I would like to have
Process Parameters sres: (@) 100000 | |7 & e sources i Source Callection A
(Set of Sources) Number RA, DEC « within a redshift of 0.1
List of Attributes mag_u, z
(a) Primitive (b) Example (c) A scientist pulling data from

the information system.

Fig. 1 a A Source Collection primitive, b a representation of a Source Collection used in the
example and ¢ the scientist formulating a data pulling request. The following elements can be seen
in the Source Collection representation: Top left: a unique identifier of this Source Collection. Top
right: the operator of the Source Collection. The second row represents the process parameters, if
any. The next row describes the sources of the Source Collection. The number on the right is the
number of sources and the letter between parenthesis represents the exact set of sources. Source
Collection with the same symbol represent the exact same set of sources; different symbols might
represent different sets. At the bottom: the names of the attributes that are represented by this
Source Collection; in this case celestial coordinates, an apparent magnitude in the u# band and a
redshift

Subsequently, the information system creates the required Source Collec-
tions (Fig. 2a):

— Source Collection B is created to select all sources that match the given
selection criterion.

— The information system determines that no absolute magnitudes have
been defined for these sources and it creates Source Collection C to
calculate absolute magnitudes from apparent magnitudes.

— The information system determines that the calculation can be performed
on all sources in Source Collection A. Therefore, it optimizes for generality
and uses Source Collection A as dependency for Source Collection C,
instead of B. The Source Collection is not yet processed at this stage.

— Source Collections D and E are created to combine the attributes repre-
sented by different Source Collections and select the required ones.

Finally, the created dependency graph is optimized and processed (Fig. 2b):

— The information system creates a temporary copy of the dependency graph
in order to optimize it for scalability to fulfill the request as quickly as
possible.

— It reorganizes the dependency graph to minimize the required processing
by placing the selection of sources before the calculation of absolute
magnitudes.

— The information system retrieves the data of Source Collection b and uses
this to process Source Collection ¢ completely. The calculated attributes
will be stored for future requests as part of Source Collection C, because
they cannot be derived on the fly.

@ Springer

Exp Astron (2013) 35:203-225 209
A | External
a External
srcs: (a) 100000
RA. DEC srcs: (a) 100000
mag_u, z RA, DEC
/ \ mag_u, z
B Fi
ilter C Attribute .
Sources b Filter
Calculator S
uery: z < 0.1 ourees
duery: . calc: AbsMag werv: 2 < 0.1
stes: (b) 1000 query:z=<4
srcs: (a) 100000 sres: (b) 1000
RA, DEC :
mag_u, z absmag_u RA, DEC
\ / mag_u, z
D Concatenate /
Attributes ¢ Attribute Sel
Calculator € elect
sres: (b) 1000 Attributes
calc: AbsMa,
RA, DEC £ stes: (b) 1000
mag_u, z srcs: (b) 1000
mag_u
absmag_u absmag u
E Select q \C
Attributes oncgtenate
Attributes

attrs: mag_u, absmag_u

srcs: (b) 1000

mag_u
absmag_u

(a) Persistently Stored Source
Collections

srcs: (b) 1000

mag_u
absmag_u

(b) Transient Source Collections
used for Processing

Fig. 2 Two dependency graphs of Source Collection, generated by the information system. Every
box represents a Source Collection. The Source Collections on the left are persistently stored,
where the Attribute Calculator is defined as general as applicable, to facilitate reuse. The Source
Collections on the right are temporary and transient, where the Attribute Calculator is defined as
specific as possible, to minimize the required processing

— The other Source Collections are processed on the fly while retrieving
the catalog data of Source Collection e. The catalog data is subsequently
returned to the scientist.

@ Springer

210 Exp Astron (2013) 35:203-225

2.2 Key features in example

The example in Section 2.1 highlights the key aspects of the Source Collection:

— Catalog data is pulled and new Source Collections are created to compute
attributes that do not yet exist (Section 6).

— The final catalog has full data lineage: any attribute value can be recalcu-
lated and the selection criterion is stored (Section 4).

— Calculations are defined to be as general as applicable. Source Collection
C can be reused if at a later stage absolute magnitudes are requested for
another subset of Source Collection A (Section 6).

— The information system reorganizes the order of the Source Collections to
prevent the calculation of unnecessary data (Section 7). The algorithm to
determine logical relationships between sets of sources of Paper II is used
for more complex dependency graphs.

— Source Collection C is processed partially by processing its smaller copy ¢
entirely and sharing the result (Sections 4 and 7).

— The calculation of the absolute magnitudes can be performed on the
workstation of the scientist or on a distributed computing cluster, while
the selection of data can be performed on the database (Section 7).

3 Source Collection classes: elementary operations on catalogs

Many of the novel features of the Source Collections originate from the ability
of the information system to assess aspects of the catalogs by inspecting only
the data lineage. This is achieved by having a predefined set of operations that
can be used to process a Source Collection. Separate process target classes are
designed for the different operations. We use the term operator to refer to the
action required to create the catalog data.

These operators are designed to be as elementary as possible in order to
maximize the information that can be inferred from the data lineage directly.
Therefore, there are no Source Collection operators that are entirely user-
defined. However, the behavior of Source Collections can be influenced by
setting the process parameters. For example, we do define an operator to
calculate new attributes of sources from existing attributes (Section 3.2). This
allows scientist to specify their own calculation method as a process parameter.

There are two main effects of the elementary operators: firstly, they allow
the information system to determine whether a Source Collection can be used
in the construction of a dependency graph (Section 6). Secondly, they allow
efficient reorganization of the dependency graph, e.g. for partial processing
(Section 7).

Most operators we define are modeled after relation operations [3] to allow
them to be evaluated on the Astro-WISE database. In essence, we extend SQL
commands to target processing, although this is not directly our goal. The
important aspect in the design of the operators is maximizing the information

@ Springer

Exp Astron (2013) 35:203-225 211

that can be inferred from the data lineage. Not all operators we describe can
be evaluated on SQL and vice versa, most operators can be evaluated in the
Astro-WISE Python environment as well.

3.1 List of classes
We summarize the operators that are most important for our research:

— Select Attributes: Selects a subset of attributes from a parent Source
Collection.

— Concatenate Attributes: Combines the different attributes from several
parent Source Collections that represent the same sources.

— Rename Attributes: Renames attributes of a parent Source
Collection.

— Filter Sources: Selects a subset of sources from a parent Source Collection
by evaluating a selection criterion.

— Select Sources: Selects a subset of sources from a parent Source Collection
by listing the required sources explicitly.

— Concatenate Sources: Combines the different sources of several parent
Source Collections that represent the same attributes.

— Relabel Sources: Changes the source identifiers of a parent Source
Collection.

— Attribute Calculator: Calculates new attributes from existing attributes for
the sources in a parent Source Collection (Section 3.2).

— External: Represents a catalog without data lineage.

— Pass: Represents the exact same catalog as its parent.

— SourceList Wrapper: A special Source Collection to use the Astro-WISE
SourceList class as a Source Collection. The SourceList class is used to de-
tect sources from images and measure photometric and related attributes.

3.2 Generic operator for attribute calculation

A special Source Collection class is designed for the calculation of new
attributes of sources from existing attributes. The calculation performed by
a Source Collection of this class, is decoupled from the definition of the class
and is stored as another persistent object, which can be created by scientists
themselves.

This auxiliary object is called an Attribute Calculator Definition and contains
both information about how to perform the calculation as well as information
about the calculation itself: which attributes are calculated, which attributes
are required and which process parameters can be set. This allows the infor-
mation system to discover attribute derivation methods in order to instantiate
Source Collections to calculate these attributes for a requested set of sources.
This offers scientists flexibility in implementing their own methods while
reinforcing the principles of data pulling.

@ Springer

212 Exp Astron (2013) 35:203-225

Multiple Attribute Calculator Definitions might exist for the calculation of
the same attribute, for example through different methods or different versions
of the same method. Astro-WISE has functionality to indicate that stored
objects should not be used anymore by invalidating them, for example when
a newer version of the object exist. This is used within the Source Collections
to indicate that newer versions of Attribute Calculator Definitions exist. This
allows existing functionality to be used for ensuring that catalogs are always
created with the latest method and that out-dated catalogs are flagged for
possible recreation.

4 Storing data lineage instead of tables

SourceCollections can be created and stored by specifying their data lineage
only; it is not required to process them. That is, the actual determination of the
exact composition of sources in a catalog, and the calculation of the values of
their attributes, is delayed as long as possible. Furthermore, the result of the
processing is stored only if necessary for performance reasons and the results
can be shared between Source Collections. We summarize the benefits of this
approach:

— Different Source Collections can represent partially identical catalogs
without any duplication of stored data.

— The processing of intermediate Source Collections can be limited to
those subsets that are required for the end node of a dependency graph.
Source Collections can therefore be created with arbitrary sizes without
performance penalties. This ensures maximum reusability of the created
Source Collections.

— No results have to be stored at all for Source Collections that can be
processed on the fly.

4.1 Source Collection persistent properties

The persistent properties of a process target are the properties of the object
that are stored in a database. These properties can be grouped in the following
types, a categorization that is especially important for Source Collections:

— Data Lineage: Properties that define the catalog that is represented by the
Source Collection. These are dependencies and process parameters. De-
pendencies are other process targets from which the catalog represented
by this Source Collection is derived, often Source Collections as well.
Process parameters influence the processing and are defined by the class of
the Source Collection. The dependencies and process parameters together
unambiguously define the catalog that the Source Collection represents.

— Processing Results: Results of processing the Source Collection, detailed
in Section 4.2.

@ Springer

Exp Astron (2013) 35:203-225 213

— Other Properties: Properties that do not refer directly to the processing
or the processing results. These include identifiers of the object, a human
readable name of the Source Collection, a reference to its creator, status
of the processing, etc. Some of these can be specified by the user, others
are set automatically by the information system.

4.2 Processing results

The result of processing a process target instance (Section 1.1) can be stored
persistently. The processing results of image classes are primarily the values
of the pixels of the image, which in Astro-WISE are stored as FITS files on
the dataserver. For Source Collections the primary result is the catalog data it
represents, which in Astro-WISE is stored in the database.

The Source Collection classes are designed to allow partial processing of
objects, for example because only a part of the catalog data is required at a
specific moment. The processing results are split up in distinct components
in order to achieve this. These components can, in principle, be processed
separately. The following results can be distinguished:

— The catalog the Source Collection represents: the values of all the at-
tributes for all the sources. This is the primary processing result and can
be decomposed in the partial results that follow.

— A partial catalog: the values of the attributes for a subset of the sources or
attributes.

— The set of sources the Source Collection represents, which can be seen as a
list of identifiers of the sources. This can be further split up into the number
of sources, or an identification of the set without actually enumerating all
the sources individually.

— The set of attributes of the sources. That is, which physical properties the
Source Collection represents, not the actual values of the attributes.

To process a Source Collection partially, a new process target is created that
only represents the required component, which is subsequently processed in
its entirety. Such a component is either stored in its entirety or not at all, and
can be shared between Source Collections.

The sharing of processing results leads to multiple paths to the same stored
data. The dependency graphs representing these different paths are only
created automatically by the information system through modifications of
existing dependency graphs (Section 5.1). The information system ensures that
the different paths are equivalent by only performing modifications where this
is guaranteed.

5 Source Collection dependency graphs

A Source Collection represents a catalog that is derived from its dependen-
cies, which again have dependencies themselves. These dependencies chain

@ Springer

214 Exp Astron (2013) 35:203-225

a Source Collection back to the raw data and form a graph of process
targets. The term dependency graph is used to refer to this complete set of
dependencies of a Source Collection. These graphs are directed acyclic graphs,
or acyclic digraphs, because there are no cyclic dependencies [10].

In the figures depicting dependency graphs in this paper, the dependencies
of a Source Collection are shown above it. Therefore the data processing
runs from top to bottom and the data lineage from bottom to top. There are
no arrows on the shown edges, because the preferred direction is dependent
on context. This paper only treats the part of such a dependency graph that
considers Source Collections.

5.1 Modifications of dependency graphs

The information system can modify dependency graphs of Source Collections,
e.g. while constructing new ones or when optimizing existing ones as discussed
in the next sections. All modification steps in the following algorithms are
performed by replacing a Source Collection with another one. There are two
ways to do this:

— Replacing a Source Collection with another one that represents the exact
same catalog. This is the only mechanism that is used in the dependency
graph optimization (Section 7).

— Replacing a Source Collection with one that represents a different catalog.
This is only performed during the creation of new dependency graphs
(Section 7) and only on dependencies of the Pass Source Collections at
the end of the graph.

The individual modifications themselves are designed in a way that sepa-
rates the knowledge of how to perform a modification and why to do so. How
to perform a modification is part of the definition of the Source Collection
classes. Whether a specific modification should be applied is the responsibility
of the part of the information system that governs the entire dependency
graph. Therefore, all modifications are between a Source Collection and its di-
rect dependencies, because an individual Source Collection has no knowledge
of other objects.

A specific kind of modifying a dependency graph is ‘moving’ Source Col-
lections through the graph. The way this should be interpreted—in simplified
form—is that copies of a Source Collection and its parent are created, but with
their dependencies swapped. The original Source Collection is then replaced
by these copies. As a result, Source Collections can only be moved ‘up’ the
graph. To move a Source Collection down, the Source Collection with that
Source Collection as a parent should be moved up.

Some modifications can only be performed if the relationship between the
sets of sources of the involved Source Collections is known. The information
system uses the algorithm of Paper II to provide this information to the
individual Source Collections.

@ Springer

Exp Astron (2013) 35:203-225 215

6 Pulling catalogs

The ‘pushing’ way to use catalogs such as represented by the Source Collec-
tions is to define the catalog, process and store it, and then request subsets of
the catalog. This order is changed with target processing [8].

Source Collections are primarily created automatically by pulling data,
which means that the evaluation of processing starts at the end of the chain
by requesting the final catalog that is required. The information system will
autonomously create a dependency graph of Source Collection which ends
with a Source Collection that represents the requested catalog (Algorithm 1).

There are two main goals of the data pulling mechanisms with respect to
the creation of the dependency graph: Firstly, they ensure that existing Source
Collections will be reused as much as possible and secondly, new Source
Collections are created in a way that maximizes their reusability.

6.1 Data pulling: formulating a request

The pulling of data starts with a request for a specific dataset. In our research
we have limited such requests to three pieces of information:

— A starting Source Collection from which a selection is made.

— A list of required attributes, not necessarily represented by the starting
Source Collection.

— Optionally, a selection criterion for the sources.

Algorithm 1 Creating Target Dependency Graph

1: Receive and parse a request for catalog data.

2: Instantiate the starting Source Collection.

3: Create a Select Attributes that selects an empty attribute list from this
Source Collection.

4: Create a Pass Source Collection with the Select Attributes as parent.

5: if a selection criterion is specified then

6: Select the right sources (Algorithm 2).

7: end if

8: for all requested attributes do

9: Add the attribute to the Pass Source Collection (Algorithm 3).

10: end for

6.2 Data pulling: derivation preferences

The information system will use existing and newly created Source Collections
to create a dependency graph which ends with a Source Collection represent-
ing the requested catalog. The information system is able to autonomously
decide how to proceed if there are multiple Source Collections that can be
used to fulfill a particular dependency. This is done by applying a ranking

@ Springer

216 Exp Astron (2013) 35:203-225

function to all Source Collections that can be used and select the one with the
highest ranking. Scientists can influence this process by specifying their own
ranking function or by overruling the choices made by the information system
manually.

6.3 Data pulling: selecting sources

Fulfilling a request for a catalog begins with creating a Source Collection with
the correct the composition of sources (Algorithm 2). The resulting Source
Collection will only represent the selected set of sources at this stage, without
attributes.

Algorithm 2 Selecting Sources

1: Search for all Source Collections representing the original sources.
2: Search for all Filter Sources with one of these Source Collections as parent
and the specified criterion as parameter.
Rank all found Source Collections.
if a suitable Source Collection is found then
Use the highest ranking Source Collection to represent the sources.
else
Use Algorithm 1 to create a Source Collection with all attributes refer-
enced in the selection criterion.
Create a new Filter Sources to represent the sources.
9: end if
10: Create a Select Attributes to select no attributes from the Source Collec-
tion representing the sources.
11: Create a Select Sources with the original Source Collection as parent and
the Select Attributes to specify the selected sources.
12: Use the Select Sources as the parent of the final Pass Source Collection.

N kR

*®

In this paper we restrict ourselves to requesting subsets of sources that are
already represented by an existing Source Collection, because our focus is
on operations on catalogs. In particular we assume the existence of Source
Collections with photometric and related attributes derived from images.
These catalogs could be created through pulling mechanisms as well; this is
beyond the scope of this paper.

The logical relations algorithm of Paper II is used to search for an existing
Source Collection that represents the requested selection. First all Source
Collections that represent the same sources as the original Source Collection
are found. Subsequently a Filter Sources is sought, one with the specified
selection criterion and with one of these Source Collections as parent. New
Source Collections are created to select the required sources if no suitable
Source Collection is found. This might require more than only a single Filter
Sources Source Collection because the information system has to ensure that
the attributes used in the selection criteria are available.

@ Springer

Exp Astron (2013) 35:203-225 217

For example, the specified selection criterion in the example in Section 2.1
depends on the availability of the redshift attribute. The information system
would have tried to find this attribute if it would not have been included in
Source Collection A.

A Select Attributes Source Collection is created to select no attributes
from the found or created Source Collection with the sources. The required
attributes are subsequently added to this new Source Collection with only
sources (Section 6.4).

6.4 Data pulling: selecting attributes

A catalog pulling request should contain a list of required attributes. For every
requested attribute, the information system will search for an existing Source
Collection that represents this attribute for the requested sources. A hierarchy
of Select Attributes and Concatenate Attributes Source Collections is created
to add the attribute to the Pass Source Collection already representing the
sources (Algorithm 3).

Algorithm 3 Adding Attributes

1: Search for all Source Collections representing the attribute.
Rank all found Source Collections.
if a suitable Source Collection is found then
Use the highest ranking Source Collection to represent the attribute.
else
Create an Attribute Calculator to represent the attribute (Algorithm 4).
end if
Create a Select Attributes that selects the requested attribute from this
Source Collection.
9: Create a Concatenate Attributes with the original parent of the final Pass
Source Collection and the new Select Attributes as parents.
10: Use the Concatenate Attributes as new parent of the final Pass.

Requested attributes for which no suitable Source Collections can be found,
are derived with new Source Collections (Algorithm 4). In this paper we limit
ourselves to attributes that are derived from other attributes using Attribute
Calculators Source Collections. The calculation performed by an Attribute
Calculator is specified through a process parameter referencing an Attribute
Calculator Definition object. New Attribute Calculator Source Collections
are instantiated for all Attribute Calculator Definitions that can be used to
derive the requested attribute. The search for attributes is applied recursively
if more attributes are required for the derivation of the requested attributes,
as specified by the Attribute Calculator Definition.

Source Collections that require the calculation of new attributes will au-
tomatically be defined to operate on the largest dataset the calculation is
applicable for. This is done by giving Source Collections which represent a
larger set of sources a higher ranking when searching for attributes.

@ Springer

218 Exp Astron (2013) 35:203-225

Algorithm 4 Instantiate Attribute Calculators
1: Search for all Attribute Calculator Definitions that can be used to calculate
the required attribute.
2: for all found Attribute Calculator Definitions do
3: Create a Source Collection with all the attributes required by the
Attribute Calculator Definition (Algorithm 1).
4: Create an Attribute Calculator with that Source Collection as parent,
using the Attribute Calculator Definition.
end for
. Rank all created Attribute Calculators.
. Use the highest ranking Attribute Calculator to represent the attribute.

92 9w

6.5 Data pulling: storing Source Collections

The result of data pulling is the creation of a dependency graph that ends
with a Source Collection that represents the requested catalog. The Source
Collections in this dependency graph might be stored persistently if necessary.
The information system will subsequently optimize this graph to process it in
the most optimal way (Section 7).

7 Optimization of dependency graphs and processing

The information system will optimize the dependency graph of a Source
Collection before processing the Source Collections that it contains. There are
two goals to these optimizations: minimization of the required processing and
optimization of the processing itself. These optimizations are performed on a
temporary transient copy of the dependency graph, which can be discarded
after the processing is completed.

Reducing the necessary processing to the minimum required for the last
Source Collection is the primary goal of this paper. In essence this is done
by placing filtering Source Collections before Source Collections that create
new attributes and removing parts of the dependency graph that are not
necessary for the final result. This will ensure that the Source Collections in
the dependency graph only represent data that is required for the requested
catalog data. These mechanisms allow the information system, or the scientist,
to create and store Source Collections instances in their most general and
reusable form, (e.g. as in Fig. 2a), because the creation and storage of the
catalog data is minimized automatically (e.g. as in Fig. 2b).

Optimization of the processing itself is a secondary goal of this paper. This
is done by reorganizing the dependency graphs such that the processing can
be performed on the most suitable subsystem of the information system. For
example, Source Collections that can best be processed on the database are
placed such that they can be combined into one SQL query and processed

@ Springer

Exp Astron (2013) 35:203-225 219

together. Parts of the dependency graph can be parallelized in order to process
large Source Collections on a distributed cluster, especially those that cannot
be processed on the database.

Optimizing the dependency graph of the example in Fig. 2 is depicted in
Fig. 3. The required processing in this example is dominated by a calculation
of absolute magnitudes. Without optimization, absolute magnitudes have to
be calculated for 100,000 sources; with optimization the calculation is only
performed for the 1,000 sources that are actually requested, resulting in a
factor 100 increase in performance. The optimizations required to determine
the exact set of sources in a Source Collection is depicted in Fig. 4. In this case,
the calculation of absolute magnitudes is removed from the dependency graph
entirely and the entire graph can be processed on the database.

7.1 Dependency optimization: strategy

The best strategy for the optimization of dependency graphs depends on many
factors, such as the size of the catalogs, how they will be processed, etc.
Therefore it is not possible to give a one-size-fits-all optimization strategy.
Algorithms 5 and 6 are procedures that cover most scenarios, they can be
adjusted for particular cases. The steps described in the algorithms are detailed
in the rest of the section.

a External a External a External a ‘ External
sres: (a) 100000 sres: (a) 100000 sres: (a) 100000 sres: (a) 100000
RA, DEC RA, DEC RA, DEC RA, DEC
mag_u.z mag_u.z mag_u.z mag_u.z
¢ [Auribue ¢ | Atribue 5| seleet 3] seleet
a External Calculator Calculator Sources Sources
sres: (a) 100000 cale: AbsMag cale: AbsMag sres: (b) 1000 sres: (b) 1000
RA, DEC sres: (a) 100000 sres: (a) 100000 RA, DEC RA, DEC
mag_u, 7 mag_u, 7 mag_u,z
absmag_u absmag_u \
S Select ¢ Attibute @ | Concatonate T sae ST saa 3 | Select 2 | Auibute 2| Auribute
Sources Caleulator ‘Attebutes Sources Sources Sources Caleulator Caleulator
sres: (b) 1000 calc: AbsMag oS @ 100000 w5 () 1000 wrcs: () 1000 sres: (b) 1000 calc: AbsMag calc: AbsMag
RA, DEC sres: (a) 100000 RADEC RADEC RADEC RA, DEC stes: (b) 1000 stes: (b) 1000
mag_u. 2 absmag_u mag_u.z mag_u,z mag_u,z mag u, z absmag_u absmag_u
absmag_u
d| Concatenate 43 | Concatenate 43 | Concatenate a3 | Concatenate
Adtributes 2 [Seleet Attributes Attributes Atributes
sres: (b) 1000 Sources sres: (b) 1000 sres: (b) 1000 sies: (b) 1000
RA, DEC sres: (b) 1000 RA, DEC RA, DEC RA, DEC
mag_u, z RA, DEC mag_u, z mag_u, z mag_u, z
absmag_u mag_u, z absmag_u absmag_u absmag_u
(a) (b) (© (d) (e

Fig. 3 Source limiting optimizations for before processing. On the left a transient copy of the
Source Collections of Fig. 2a, without the final Select Attributes. The criterion of the Filter Sources
has been evaluated so its sources are known and is converted in a Select Sources, which explicitly
lists the sources. The Select Sources can move through the dependency graph freely, since its
operator is not dependent on the attributes of the parent anymore. The Select Sources is moved
down to the end of the dependency graph in b and subsequently back up in ¢ and d. In ¢, two
copies of the Select Sources are created, which are merged back into one in d. The temporary
transient copy Attribute Calculator ¢2 describes a subset of the original Source Collection C,
thereby reducing the required processing

@ Springer

220 Exp Astron (2013) 35:203-225

a External
sres: (a) 100000
RA, DEC, z, mag_u

a External a ‘ External
sres: (a) 100000 sres: (a) 100000
b Filter Sources c Concatenate Attributes RA. DEC RA. DEC
query: z < 0.1 calc: AbsMag mag_u, Z mag_u, z
sres: (b) 1000 sres: (a) 100000 ‘
RA, DEC, 2, mag_u absmag_u b | Filter - b | Filter a [Extemal
Sources N Conc‘a[ena!e Sources
Attributes sres: (a) 100000
ery: 0.1 ery: 0.1
d Concatenate Attributes query:z < calc: AbsMag Query: z< RA, DEC
sres: (b) 1000 res: (b) 1000 ag_u, 7
stes: (b) 1000 sres: (0) sres: (a) 100000 sres: (b) e
RA, DEC RA, DEC
RA, DEC, z ’ absmag_u ;
ag_u, absmag_u mag_u, z mag_u,z
mag_u, abs & b Filter
Sources
1 Select 2 Select 1 Select 12<0.1
¢ | Select Auributes " cle " ek " clec auery:2
Attributes Attributes Attributes .
sres: (b) 1000
attrs: mag_u, absmag_u s attss: (s
— oo attrs: attrs: attrs: RA. DEC
sres:) sres: (b) 1000 sres: (@) 100000 stes: (b) 1000 mag_u,z
mag_u, absmag_u ‘
‘ ml Select
Select Attributes Attributes
o ‘ e routes d2 Concatenate d3 | C
attrs: Attributes Attributes attrs:
sres: (b) 1000 sres: (b) 1000 sres: (b) 1000 sres: (b) 1000

(a) (b) (©) (d)

Fig. 4 Evaluation of the exact set of sources in a Source Collection. On the left a transient
copy of the Source Collections of the example in Fig. 2a. A Select Attributes that selects no
attributes is placed at the end of the dependency graph, which is subsequently moved up in b.
One of the parents of the Concatenate Attributes can be removed, because the algorithm from
Buddelmeijer et al. [1] is used to infer that it is not required anymore. The Concatenate Attributes
itself is removed because it has only one parent. The final dependency graph does not involve any
calculation and can be evaluated quickly

Algorithm 5 Optimization for Processing

1: Create transient copy of the involved Source Collections.

2: Simplify the dependency graph (Algorithm 6). Perform this step after
every movement-step.

3: Move all Select Attributes up the graph, to remove parts of the graph.

4: Convert all Filter Sources to Select Sources, to move them through the
graph.

5: Move all Select Sources down, to copy them to every part of the graph.

6: Move all Select Sources up the graph, to limit processing to the required
subset.

7: Move all Select Attributes up the graph once more, to simplify the graph
further.

8: Move all Select Sources up the graph in order to combine them.

@ Springer

Exp Astron (2013) 35:203-225 221

Algorithm 6 Simplification for Processing

1: repeat

2: Convert processed Source Collections to External Source Collections.
Remove parts of the graph with unnecessary dependencies.
Remove Source Collections that are essentially a Pass Source Collection.
Integrate Source Collections and their parents if possible.
Unite identical Source Collections, especially those with the same par-
ents.
7: until no more of these modifications are possible.

kW

7.2 Dependency optimization: simplifications

A dependency graph of Source Collections can be simplified as part of the
optimization routines (Algorithm 6). A Source Collection that has already
been fully processed does not have to be processed again. All these Source
Collections can be substituted with an External Source Collection that repre-
sents the same catalog. Furthermore, the complexity of a dependency graph
can be reduced by combining operators or removing redundant ones.

For example, the initial Source Collection in Fig. 2 is an External Source
Collection for simplicity. In a realistic scenario, this Source Collection would
have dependencies of its own and would only be substituted with an External
Source Collection just before processing. In Fig. 4a two serial Select Attributes
Source Collections are combined and in Fig. 3d two parallel Select Sources
Source Collections are combined.

7.3 Dependency optimization: removing dependencies

Unnecessary parts of a dependency graph can be removed by moving Select
Attributes Source Collections up in the graph (Algorithm 5). The result of
moving a Select Attributes up past a Concatenate Attributes, might be that
one of the dependencies of the Concatenate Attributes does not represent
attributes anymore. The part of the graph that ends with this dependency might
be removed from the graph in its entirety.

The set of sources of a Concatenate Attributes is the intersection of the sets
of sources of its parents. Therefore it is only possible to remove this part of the
dependency graph if doing so does not influence the selection of sources. The
logical relations algorithm of Paper II is used to determine whether this is
the case.

7.4 Dependency optimization: sources limitation

Select Sources Source Collections are moved through the dependency graph
to ensure that only those parts of the Source Collections are processed that

@ Springer

222 Exp Astron (2013) 35:203-225

are required to create the catalog data of the end node (Algorithm 5). Filter
Sources Source Collections first have to be converted into a Select Sources. Be-
fore moving the Select Sources Source Collections up the dependency graph,
they are moved down in order to copy them to all parts of the dependency
graph they are applicable to.

In Fig. 3 the Select Sources Source Collection is moved up through the
Attribute Calculator Source Collection. This creates a copy of the Attribute
Calculator that represents a subset of the sources of the original.

7.5 Dependency optimization: parallelization

The Source Collections are well suited for parallelization because they are
processed on a per-source basis. A Source Collection can be parallelized by
creating a set of Select Sources (or Filter Sources) Source Collections that
each select a subset of the original target, such that all sources are selected
exactly once. The set of Select Sources Source Collections is then combined
with a Concatenate Sources Source Collection which can replace the original
Source Collection in the dependency graph. Further optimization can move the
Select Sources up to parallelize the entire graph. The parallelization algorithm
is currently not implemented in Astro-WISE.

8 Processing and storage

The result of the dependency graph optimization is a set of Source Collections
that requires the least amount of processing to create the requested catalog
data. The information system will recursively process the Source Collections
and store the results if necessary.

The mechanisms designed for the research presented in this paper are
intended be used in conjunction with existing large-scale data storage and
processing facilities. Therefore, the precise way catalog data is processed
and stored is largely beyond the scope of this paper and will depend on
what is available in the information system. We give a general discussion of
how the processing and storage could be achieved and highlight how this is
implemented in Astro-WISE.

In particular, for this paper we assume the existence of mechanisms for
authentication of users, privilege management and for queuing requests when
processing Source Collections on shared resources.

8.1 Processing: processing Source Collections

The information system can process the Source Collections on the most
suitable subsystem to achieve scalability for large scale catalogs and real time

@ Springer

Exp Astron (2013) 35:203-225 223

interaction for small scale catalogs. We describe the different subsystems to
evaluate the operators on:

— Database: The selection and combining operators are designed to be
evaluated on a database. The operators of consecutive Source Collections
can be combined into one database query. The database can create indexes
on columns containing attributes that are frequently used in selection
criteria and can automatically cache the results. Some Source Collections,
in particular Attribute Calculators, will not be suitable to be processed on
the database.

— Workstation: The processing can be performed on the workstation of the
scientist for Source Collection that cannot be processed on the database.
Furthermore, all the relational operators should also be evaluated on
the local machine during interactive visualization of small datasets. The
latency of a round trip to the database or distributed computing facility
is too large for responsive interaction. Such a local implementation of the
Source Collections holds all the catalog data in memory or in files.

— Distributed Computation: Operators that require large computations can
be performed on a distributed processing cluster. This is done by paral-
lelizing the respective parts of the dependency graph and evaluating each
sub-graph on a cluster node.

Within Astro-WISE, most operators can be performed on both the Oracle 11g
database or in the Python. Database queries usually scale linearly; requests
similar to the example of Section 2.1 are typically delivered with speeds of
100,000 source attributes per second in the current setup. There is currently
no explicit functionality to process Source Collections on the distributed
processing cluster.

8.2 Processing: storing catalog data

The result of processing a Source Collection—the exact set of sources and
the values of the attributes—only has to be stored if this is necessary for
performance reasons. Therefore we make no explicit distinction between
storing and caching of catalog data.

The optimization process (Section 7) creates copies of Source Collections
that represent subsets of the originals. If the information system decides to
store the processing result of such a copy, it will append the catalog data of
the copy to that of the original. Deciding what should be stored is primarily
the responsibility of the information system. The decision should be made for
individual processing results.

For example, it can be useful to store the identifiers of the sources without
storing the values of the attributes in order to store the result of evaluating
a complex selection criterion. Different Source Collections that represent the
same sources can share this processing result.

A key principle of the presented research, inherited from Astro-WISE, is
that a Source Collection cannot be altered once stored. Therefore, any stored

@ Springer

224 Exp Astron (2013) 35:203-225

catalog data of a Source Collection cannot change either. Reliability of the
data storage, e.g. ACID properties [4], is automatically achieved as a result.
For example, an incomplete database transaction will not leave the database in
an invalid state because these will only append data that could also be ingested
partially in the first place.

Stored catalog data can, in principle, also be deleted at any time, since it
can always be recreated. A deletion mechanism is currently not incorporated
in Astro-WISE; instead, all catalog data is backed up regularly to be able to
recover quickly from database failures.

8.3 Processing: retrieving catalog data

The last node in the dependency graph represents the requested catalog. Once
it has been processed, the catalog data can be returned to the scientist or
used for further analysis or visualization. Any temporary transient Source
Collections instantiated for the processing are discarded.

9 Summary and conclusions

The presented work shows a novel approach for the handling of source
catalogs, as incorporated in Astro-WISE. The core difference between the
Astro-WISE approach and the way astronomical catalogs are traditionally
disclosed, is that the user works with data models rather than a set of tablesin a
relation database. We showed how data pulling is extended to source catalogs,
a first step to data pulling and data lineage in the analysis domain. A process
target—labeled a Source Collection—is designed to represent catalog data and
operations thereon. We summarize the key features of our design:

— Source Collections are primarily created automatically by the information
system through data pulling. Source Collections that derive new data are
created as general as possible in order to facilitate reuse and to prevent
duplication of data.

— Source Collections allow a functional approach to target processing: they
can be seen as the operation to create the catalog data. A Source Collection
is only processed when this is required, not necessarily at the moment
it is created. Every Source Collection class correspond to an elementary
operation on catalogs; complex operations should be split over multiple
Source Collection instances.

— The Source Collection have full data lineage, which allows the information
system to assess aspects of the catalogs without processing them. For
example, it allows the information system to optimize the a dependency
graph of Source Collections before processing it.

— A Source Collection is processed by creating temporary copy of the
dependency graph and reordering the dependencies so they are as specific
as possible in order to minimize the required processing.

@ Springer

Exp Astron (2013) 35:203-225 225

— A generic Source Collection class is designed for the calculation of new
attributes from existing attributes. This offers a framework for scientists
to implement their own methods while enforcing the benefits of full data
lineage and data pulling.

The Astro-WISE way of handling astronomical catalogs takes care of most
of the administrative tasks automatically. Discovery of existing catalogs and
creation of new catalog is done in the same way, by requesting the required
end product. Catalogs are shared implicitly, because existing catalogs are
discovered automatically. New catalogs are automatically created in their most
general form, but only the necessary parts are processed. Together, this allows
scientists to focus on the data itself and the science they want to perform
instead of how the data is handled.

Acknowledgements This research is part of the project “Astrovis”, research program STARE
(STAR E-Science), funded by the Dutch National Science Foundation (NWO), project no.
643.200.501.

Astro-WISE is an on-going project which started from a FP5 RTD programme funded by the
EC Action “Enhancing Access to Research Infrastructures”.

Open Access This article is distributed under the terms of the Creative Commons Attribution
License which permits any use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.

References

1. Buddelmeijer, H., Valentijn, E.A.: Leveraging data lineage to infer logical relations between
sets. Paper 1. Exp. Astron. (2011a). doi:10.1007/s10686-012-9288-z

2. Buddelmeijer, H., Valentijn, E.A.: Query driven visualization of astronomical catalogs.
Exp. Astron. (2011b). doi:10.1007/s10686-011-9263-0

3. Codd, E.F.: A relational model of data for large shared data banks. Commun. ACM 13(6),
377-387 (1970)

4. Gray, J.: The transaction concept: virtues and limitations. In: Proceedings of the 7th Interna-
tional Conference on Very Large Databases, pp. 144-154 (1981)

5. Gray, J., Szalay, A.S., Thakar, A.R., Kunszt, P.Z., Stoughton, C., Slutz, D., van den Berg, J.:
Data Mining the SDSS SkyServer Database. ArXiv Computer Science e-prints (2002)

6. Hambly, N.C., Collins, R.S., Cross, N.J.G., Mann, R.G., Read, M.A., Sutorius, E.T.W., Bond,
I., Bryant, J., Emerson, J.P., Lawrence, A., Rimoldini, L., Stewart, J.M., Williams, P.M.,
Adamson, A., Hirst, P., Dye, S., Warren, S.J.: The WFCAM science archive. Mon. Not. R.
Astron. Soc. 384, 637-662 (2008)

7. McFarland, J.P., Verdoes-Kleijn, G., Sikkema, G., Helmich, E.M., Boxhoorn, D.R,,
Valentijn, E.A.: The Astro-WISE optical image pipeline development and implementation
(2011). doi:10.1007/510686-011-9266-x

8. Mwebaze, J., Boxhoorn, D., Valentijn, E.A.: Astro-wise: tracing and using lineage for scientific
data processing. In: Proceedings of the 2009 International Conference on Network-Based
Information Systems, NBIS 09, pp. 475-480. IEEE Computer Society, Washington (2009)

9. Szalay, A.S., Gray, J., Thakar, A.R., Kunszt, P.Z., Malik, T., Raddick, J., Stoughton, C.,
vandenBerg, J.: The SDSS SkyServer: Public Access to the Sloan Digital Sky Server Data.
ArXiv Computer Science e-prints (2002)

10. Thulasiraman, K., Swamy, M.N.S.: Graphs: Theory and Algorithms. Wiley-Interscience,
New York (1992)

@ Springer

http://dx.doi.org/10.1007/s10686-012-9288-z
http://dx.doi.org/10.1007/s10686-011-9263-0
http://dx.doi.org/10.1007/s10686-011-9266-x

	Automatic optimized discovery, creation and processing of astronomical catalogs
	Abstract
	Introduction
	Astro-WISE
	A functional approach to catalogs as Process Targets
	Outline

	Introducing Source Collections
	Source Collection example
	Key features in example

	Source Collection classes: elementary operations on catalogs
	List of classes
	Generic operator for attribute calculation

	Storing data lineage instead of tables
	Source Collection persistent properties
	Processing results

	Source Collection dependency graphs
	Modifications of dependency graphs

	Pulling catalogs
	Data pulling: formulating a request
	Data pulling: derivation preferences
	Data pulling: selecting sources
	Data pulling: selecting attributes
	Data pulling: storing Source Collections

	Optimization of dependency graphs and processing
	Dependency optimization: strategy
	Dependency optimization: simplifications
	Dependency optimization: removing dependencies
	Dependency optimization: sources limitation
	Dependency optimization: parallelization

	Processing and storage
	Processing: processing Source Collections
	Processing: storing catalog data
	Processing: retrieving catalog data

	Summary and conclusions
	References

