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Abstract Network analysis of correlations between

abundances of metabolites across tomato genotypes

can help in unraveling the biological basis of

organoleptic variation in tomato. We illustrate how

to construct and interpret simple correlations net-

works using metabolic data collected on a diverse set

of tomato genotypes. Various types of correlations

are calculated and displayed in the form of networks.

Interpretations on the basis of network analyses are

compared to interpretations following principal com-

ponents analysis.
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Introduction

The Center for BioSystems Genomics (CBSG) is a

joint venture in the field of plant genomics of breeding

companies, biotech companies, research institutes and

universities in the Netherlands. At the web site (http://

www.cbsg.nl) it is stated that ‘The consortium aims at

developing knowledge for the improvement of food

and non-food crops with reduced environmental

impact and enhanced consumer quality.’ An important

part of CBSG concentrates on tomato quality with the

objective of developing a better understanding of the

biological factors involved in tomato taste, with special

attention for the underlying genetics. The ultimate goal

of the CBSG tomato quality program is the develop-

ment of a marker assisted improvement strategy for

quality traits. The empirical basis of the current

research on tomato quality is formed by various types

of observations on a diverse set of tomato consisting of

94 genotypes, mostly cultivars and hybrids. Within the

phenotypic data, a prominent place is given to a set of

metabolites. Before trying to identify the genetic basis

of the variation in metabolite levels by marker-trait

association analyses, we decided to investigate the

patterns of variation and covariation (correlation) in

the metabolites by network visualization. Network

construction and representation techniques provide an

interesting complement to more classical multivariate

methods as described in their application to meta-

bolites in Graffelman and van Eeuwijk (2005) and

van Berloo et al. (submitted). We expect that metabolite
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patterns as identified by network techniques can

eventually be better related to molecular marker

variation than the variation in individual metabolites.

Metabolite correlations are believed to provide a

‘fingerprint’ of the underlying biophysical system

(Steuer et al. 2003b; Steuer et al. 2003a; Weckwerth

et al. 2004; Morgenthal et al. 2006). Elucidating the

origin of metabolite correlations will give us insight

into biochemical processes and their regulation

(Camacho 2005; Steuer 2006).

To illustrate the application of network methodol-

ogy to metabolite data collected within the CBSG

tomato quality program, a selection out of a larger set

of scored metabolites was made, consisting of several

volatile organic compounds (secondary metabolites

that evaporate at normal temperatures), and some

primary metabolites—sugars and organic acids. All

substances were known or expected to play a role in

tomato taste sensation (Baldwin et al. 2000; Tandon

et al. 2003; Baldwin et al. 2004; Krumbein et al.

2004; Ruiz et al. 2005).

Material and methods

Tomato cultivars

The collection of tomato cultivars used within the

CBSG tomato quality project was selected to be a

diverse set with respect to tomato quality traits, plant

characteristics and genotypic background. All culti-

vars were greenhouse cultivars provided by the five

international breeding companies involved in the

project, and almost all were F1 hybrids. In this study

we used data of 94 cultivars for which there was a

complete dataset consisting of AFLP marker scores,

metabolic profiles, organoleptic trait evaluations, plant

and fruit morphology measurements and consumer

appreciation assessments. The cultivars were classi-

fied by eye into three different types of tomato,

labelled as round, beef and cherry. The three groups

made up roughly 50, 25, and 25% of the total

collection, respectively. A priori, there was no reason

to believe that metabolite patterns should differ

between tomato types. The cultivars were evaluated

in three greenhouse experiments over a 2-year-

period. Each experiment consisted of a randomized

complete block design with three replicates. Individ-

ual plots consisted of three plants.

Metabolic profiling

For a given experiment, metabolic profiling of cultivars

was based on pooled fruit samples, where the pooling

arose from combining fruits from the three replicates of

the experiment. Samples for round and beef tomatoes

contained 12 red ripe fruits, while samples for cherry

tomatoes contained 18 fruits. Individual tomatoes from

individual replicates could not be identified anymore

once the pooled samples were constructed. Metabolic

assessments thus pertained to the pooled samples, one

pooled sample for each cultivar in an experiment.

Volatile compounds of red ripe fruit material were

relatively quantified and identified using Gas Chroma-

tography/Mass Spectrometry (GC/MS) (for details, see

Tikunov et al. 2005). Sugars and organic acids were

profiled using GC/MS as described in Roessner-Tunali

et al. (2003). The volatiles were measured once in the

first experiment, twice in the second experiment, and

once in the third experiment. The two metabolic

assessments in the second experiment concerned a

duplicate metabolic sample preparation (technical

replicate) and not a biological duplication, i.e., the

same pooled fruit samples were used for both metabolic

assessments. The sugars and organic acids were

measured once in all three experiments.

Estimation of genotypic means, heritability

and genetic correlation

All metabolites were log10 transformed before further

analysis to improve normality. Linear mixed models

were used to estimate genotypic means. We used

these models to estimate mean trait values per

genotype, taking into account other factors that might

influence individual measurements like environment

and measuring day. Genotypic metabolite means

were estimated with the following mixed model for

metabolite abundance:

yijk ¼ lþ dk þ gi þ ðgeÞij þ eijk

where dk (k = 1...41) stands for measurement day; a

compound effect of experiment, replication and mea-

surement day, with measurement day nested within

replication, and replication nested within experiment.

The effect gi (i = 1...94) represents the main genotype

effect, while (ge)ij is the effect for the interaction of

genotype i and experiment j (j = 1...3). The terms dk and

gi were fixed terms, and (ge)ij and the error term, eijk,
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were random. We realize that our linear mixed model

may look somewhat unconventional in the sense that

we include a random genotype by experiment interaction

on top of two fixed main effects. First, the reason to incl-

ude a fixed day effect was that we found that for almost

all traits there was reason to correct the genotypic means

for the effects of experiment, replicate and measurement

day. However, the relative sizes of those effects diffe-

red very strongly between traits. Fitting the three

experiments or the two replicates within the second

experiment as random terms did not make sense due to

the low number of levels. The only term representing

‘environmental’ variation that would classify for possi-

bly being random was day within replicate within

experiment. However, as we found that these day effects

looked sometimes very far from normal, we preferred to

take the day effects fixed. Furthermore, we felt uneasy to

recover genotype information from the day totals, which

was another reason to take these effects fixed. As we

were interested in the genotypic means as such we

decided to choose the main effects of genotypes fixed.

For the generation of genotypic means, we saw the

genotype by experiment effects as nuisance parameters

and thus we took this interaction random. Random

genotype by replicate within experiment effects were

absent or so small as to be ignorable.

To estimate broad-sense heritability, h2, or better,

repeatability, of each metabolite, we adapted the

above given linear mixed model by changing the

status of the genotypic main effects from fixed to

random. The heritability was then calculated by

introducing the corresponding estimated variance

components in the following equation, which will

provide a rough estimator for the heritability.

h2 ¼
r2

g

r2
g þ

r2
ge

ne
þ r2

e
nenr

:

Here r2
g; r2

ge and r2
e are the variance between

genotypes, the variance for genotype by experiment

interaction, and the residual variance. Further, ne = 3,

is the number of experiments, and nr is the number of

replications within experiments, for which we took 1.2

for the volatiles, the harmonic mean of the number of

replications across the three experiments, 1, 2, and 1,

respectively. For sugars and acids only one replication

was taken per experiment, so then nr = 1.

Genetic correlations between metabolites can be

estimated in various ways. An elegant, but elaborate

method is to fit multi-trait mixed models like in

Malosetti et al. (2008). For exploration purposes, a

quick, although less accurate method for calculating

genetic correlations can be used:

rg ¼
rp

hxhy

(Burdon 1977; Falconer et al. 1996), where rg is the

genetic correlation, rp the phenotypic correlation, and hx

and hy the square root heritabilities of the concerned

metabolites. This method follows directly from the text

book formulation of the phenotypic correlation between

two traits x and y as rp ¼ hxhyrg þ exeyre (Falconer

et al. 1996), with ex ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
x

p

; ey ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� h2
y

q

and re

as the correlation between the traits due to common

micro-environmental influences. When we assume that

re = 0 because of our experimental and randomization

procedures, we arrive at the above expression for

estimation of genetic correlations. This estimation

approach can produce estimates exceeding one.

Genetic correlations exceeding one were set at one.

To study metabolite relations while correcting for

differences due to tomato type, we also estimated

tomato-type corrected correlations between metabo-

lites. These type-corrected correlations were estimated

by regression of the genotypic means on tomato type

(cherry/non-cherry) followed by calculation of corre-

lations between the residual metabolite abundances.

Besides the above mentioned correlations, we also

calculated partial correlations, correlations between

metabolites conditional on all other metabolites, i.e.

correlations between pairs of metabolites that remain

after removal of covariation due to joint dependence on

third metabolites. Partial correlations were calculated

from the inverse of the correlation matrix as follows. Let

aij be the ij-th element of the inverse of the correlation

matrix, then the partial correlation, rpartial
ij , between the

metabolites i and j is calculated as rpartial
ij ¼ �aij

ffiffiffiffiffiffiffi

aiiajj
p . With

these partial correlations we try to determine to what

extend metabolite correlations are direct (not depend-

ing on other metabolites in the network).

Distributions of traits

As a first data exploration and to compare relative

abundance of the different metabolites in our collec-

tion of tomatoes, boxplots were constructed for all

metabolites. With these boxplots we can compare
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quartiles and ranges, and get an idea about trait

distributions in the tomato collection as a whole.

Principal component analysis

We used principal component analysis (PCA) to study

patterns of variation in sets of metabolites. The central

idea of PCA is to reduce the dimensionality of a data set

consisting of a large number of interrelated variables,

while retaining as much as possible of the variation. This

is achieved by transforming to a new set of variables, the

principal components (PCs), which are uncorrelated, and

which are ordered so that the first few retain most of the

variation present in the full set of the original variables

(Jolliffe 2002). All statistical analyses were done on

log10 transformed data and as explained above, geno-

typic means were produced from mixed models applied

to the transformed data. Use of the log transform already

scales variation in different traits to comparable levels

and thus we applied PCA to the genotypic means on the

covariance scale, so that we still could discriminate

between metabolites with large and small magnitudes of

variation, information that would be lost when applying

PCA to standardized data. The loadings (weights) of the

metabolites on the principal components indicate which

traits show similar, opposite or distinct variation. The

PCA output was used to construct biplots to visualize

trait variation in relation to the principal components and

to show how the tomatoes in our collection were

distributed over this part of data space (Graffelman and

van Eeuwijk 2005). Biplots were scaled in such way that

sum of squares of the metabolite loadings was equal to

the corresponding eigenvalue. Biplots help in the

identification of clusters of metabolites that may be

related by function or regulation. Alternatively, when

clustering of tomato genotypes is observed, the metab-

olites that cause this clustering can be identified.

Correlation network analysis

Correlation networks offer another way to investigate

patterns in the pairwise correlations between metab-

olites. Networks consist of a set of nodes connected

by a system of edges. In correlation networks, the

nodes are determined by the metabolites, while the

edges represent the correlations between the metab-

olites. The stronger the correlation between a pair of

metabolites, the thicker the line connecting those

metabolites in the network graph.

With correlation network plots, not only clusters of

metabolites can be identified, but this visualization

technique also makes it possible to see how clusters of

metabolites are connected. The network plots can give

us insight into the functional and regulational relations

between metabolites, by comparing metabolic corre-

lation networks to known biochemical pathways.

For the construction of the metabolic networks, we

used Pearson product-moment correlations between

genotypic means of pairs of metabolites. As a first

variation on this basic approach, we also calculated

and plotted partial correlations between metabolites

after correction for tomato type. Furthermore, we

estimated and plotted genetic correlations between

metabolites. By means of partial correlations we

investigated the unique parts of relations between

metabolites, i.e., the parts of correlations that are

independent of other metabolites in the network.

All networks were constructed using the Pajek

graph drawing software (Batagelj and Mrvar 2003,

URL: http://vlado.fmf.uni-lj.si/pub/networks/pajek/),

but we emphasize that we only used this package to

fine tune the visual layout of the vertices (metabolites)

and edges (correlations) that represent the correlation

matrix in the plane. To compare the various types of

correlation networks we kept the positioning of the

vertices (metabolites) the same in all graphs, so only

the connecting lines (correlations) change. For all

pairwise correlations, P-values were calculated to

determine significance. The P-values were converted

into q-values, a measure of significance in terms of the

false discovery rate (Benjamini et al. 1995), using a

procedure in the R-package (Storey et al. 2003). In

this way significance of correlations was determined,

while correcting for multiple comparisons (300 pair-

wise correlations). The q-value approach is less

conservative and more powerful than the Bonferroni

correction method (Storey et al. 2003). Correlations

were called significant when q B 0.05. Only the sig-

nificant correlations were used in the construction of

networks. To improve interpretation of the correlation

networks, the two highest correlations for each

metabolite (when appropriate) were drawn in black,

while all others were drawn in grey.

Discriminant analysis

The unsupervised analyses described above were

extended with a supervised one. We used discriminant
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analysis (Dillon et al. 1984) to investigate metabolic

variation within and between the different types of

tomato (beef, round and cherry). Data on all 25

metabolites in all 94 genotypes was used. Discriminant

analysis finds linear combinations of metabolites that

maximize the ratio of the between group variance to the

averaged within group variance, thereby producing

functions of the metabolites that can be used to

discriminate between the tomato groups. Estimating

the correlation between metabolic abundances and

discriminant function scores provides an indication of

which metabolites discriminate between tomato types.

Results

Distributions of traits

Boxplots were constructed with the genotypic means

for metabolite abundance (Fig. 1). Box width in Fig. 1

is proportional to estimated heritability of the

metabolite and gives an idea about the genetic basis

and breeding potential. The boxplots show strong

variation between metabolites with respect to median

abundance and range. Metabolites with a wide range

and high heritability (repeatability) are the most

amenable to improvement by breeding, where poten-

tial tomato quality improvement depends on the

relation between metabolites and the organoleptic

traits. In Fig. 1 we can see that 2-methoxyphenol and

methylsalicylate comply with the requirements of

large variation and high heritability. High heritability

with somewhat less variation was found for phenyl-

ethanol. Next, there was a group of metabolites with

reasonably high heritability, but with intermediate

variation: 2-methylbutanal, 3-methylbutanol, 2-methyl-

butanol, 2-isobutylthiazol and phenylacetaldehyde.

Relative abundances of volatiles were difficult to

compare to those of sugars and acids because of

differences in protocol, where the protocol for the latter

groups included a derivatisation step (see Tikunov

et al. 2005 for details).

Fig. 1 Boxplots of

metabolite data (log10

transformed), showing

metabolite variation within

a collection of 94 tomato

cultivars. Box widths

(vertical) represent

estimated percentage

heritability of metabolites,

ranging from 12.5 (glutamic

acid) to 95.1%

(methylsalisylate).

Horizontal lines separate

volatiles, sugars and acids
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Principal component analysis

From the PCA on metabolite data biplots were

constructed. In these biplots, the first three principal

axes are shown, axis two against one in Fig. 2 and

axis three against two in Fig. 3. The first axis shows

large variation in methoxyphenol and methylsalicy-

late within the tomato collection. These metabolites

are known to be phenylpropanoid volatiles (for an

overview of tomato volatile precursors and pathways,

see Buttery et al. 1993; Baldwin et al. 2000; Tikunov

et al. 2005). Other metabolites do not seem to

contribute to the first principal axis. On the second

principal axis the cherry type tomatoes are clearly

separated from the round and beef type tomatoes. On

this second axis we see large variation in phenylethanol,

some variation in phenylacetaldehyde, sucrose and

malic acid. Phenylacetaldehyde, sucrose and espe-

cially phenylethanol have higher concentrations in

cherry tomatoes, while malic acid is less abundant.

Phenylethanol and phenylacetaldehyde are phenolic

volatiles. The third principal axis is mainly based on four

other metabolites, namely 3-methylbutanol, 2-methyl-

butanol, 2-methylbutanal, and 2-isobuthylthiazol. These

metabolites are (iso)leucine derived volatiles.

On the first and third axis no separation of tomato

types is visible. The first three principal axes explain,

respectively, 53.8, 20.2 and 8.5% of the total

metabolite variation measured.

Correlation network analysis

A network of correlations between genotypic means

Figure 4 shows the network that was constructed

from all significant pairwise correlations between

metabolites. As expected, this correlation network

shows similar trends as the biplots in Figs. 2 and 3,

with links between metabolites in the network of

Fig. 4 coinciding with groups of metabolites loading

on the same principal component, or axis, in the

Figs. 2 and 3. For example, methoxyphenol and

methylsalicylate were strongly connected and the

same holds for the phenolic metabolites (phenyleth-

anol and phenylacetaldehyde) and the (iso)leucine

derived metabolites (2- and 3-methylbutanol, 2-

methylbutanal). Besides these expected connections,

other clusters of highly connected metabolites can be

identified. The network shows a hexanal, trans-2-

heptanal, b-ionone cluster, a cluster consisting of

2_methylbutanal

1_penten_3_one

3_methylbutanol

2_methylbutanol

cis_3_hexenal

hexanal

trans_2_hexenal

cis_3_hexenol

trans_2_heptenal
6_methyl_5hepten2_one

2_isobutylthiazol

phenylacetaldehyde

2_methoxyphenol

phenylethanol

methylsalicylate
beta_damascenone

beta_ionone

glucose

sucrose

fructose
myo_inositol

malic_acid

citric_acid

aspartic_acid
glutamic_acid

Fig. 2 Biplot showing the

first axis (horizontal, 53.8%

of total variation) and

second axis (vertical, 20.2%

of total variation) of a

principal component

analysis on log10

transformed metabolite

abundance in 94 tomato

cultivars. Diamonds

represent metabolites,

circles represent tomato

cultivars. Tomato types

are indicated by yellow

(cherry), blue (beef) and

red (round)
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trans-2-hexenal, cis-3-hexenal, 1-penten-3-one, cis-

3-hexenol (all lipid derived volatiles), a glutamic- and

aspartic-acid (amino acids) connection, and a cluster

containing all sugars, citric acid and the earlier

mentioned phenylethanol, phenylacetaldehyde con-

nection. In the background, many, sometimes strong,

connections between the sugars, citric acid, and the 1-

penten-3-one, trans/cis hexenal cluster are visible.

Figure 4 clearly shows that many metabolites were

significantly correlated to many others and, further-

more, indicates that both the highlighted, strongest

relations and the background relations should be

taken into account when drawing conclusions.

Networks of partial and genetic correlations

The interpretation of relations between metabolites

through the use of networks can be made more

2_methylbutanal

1_penten_3_one

3_methylbutanol

2_methylbutanol

cis_3_hexenal

hexanal

trans_2_hexenal

cis_3_hexenol

trans_2_heptenal

6_methyl_5hepten2_one

2_isobutylthiazol

phenylacetaldehyde

2_methoxyphenol

phenylethanolmethylsalicylate

beta_damascenone

beta_ionone

glucose

sucrose
fructose

myo_inositol

malic_acid

citric_acid

aspartic_acid

glutamic_acid

Fig. 3 Biplot showing the

second axis (horizontal,

20.2% of total variation)

and third axis (vertical,

8.5% of total variation)

of a principal component

analysis on log10

transformed metabolite

abundance in 94 tomato

cultivars. Diamonds

represent metabolites,

circles represent tomato

cultivars. Tomato types

are indicated by yellow

(cherry), blue (beef) and

red (round)

Fig. 4 Correlation network

based on log10 transformed

metabolite abundance in 94

tomato cultivars. Nodes

represent metabolites, lines

their pairwise correlations.

Only significant (q \ 0.05)

correlations are drawn. Line

thickness indicates

correlation strength. Dotted

lines represent negative

correlations. The two

strongest connections per

metabolite are depicted in

black, all others in grey
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meaningful by working not only with standard

correlations between metabolites, but also with partial

correlations between metabolites after correction

for particular genetic or environmental disturbing

factors. Further variations are possible when consid-

ering genetic correlations instead of phenotypic

correlations, and when looking at correlations within

particular groups of genotypes. Figures 5–8 show

networks based on partial correlations adjusted for

tomato type (Fig. 5), genetic correlations (Fig. 6),

correlations within the cherry subpopulation (Fig. 7),

correlations within the non-cherry subpopulation

(Fig. 8) and partial correlations (Fig. 9), respectively.

The positions of the vertices representing the meta-

bolites in Figs. 5–8 were fixed to their positions from

Fig. 4 to focus on changing edges in the graphs (the

metabolite relations).

Comparing the network in Fig. 4 to the other

networks shows the main connections described earlier

to be consistent over all types of networks, but

simultaneously reveals many shifts in the levels of the

correlations. Some examples of major shifts are the

mainly non-cherry driven links of citric acid and 2-

isobutylthiazol to the (iso)leucine cluster, the cherry

driven link between the sugars and the pentenone, cis/

trans hexenal cluster. Furthermore, the connection of

phenylacetaldehyde and phenylethanol to the sugars and

trans-2-heptanal was much stronger within the cherry

tomatoes than the non-cherry tomatoes. In the cherry

subpopulation, the phenylpropanoids (methylsalicylate,

Fig. 5 Tomato-type

corrected correlation

network based on log10

transformed metabolite

abundance in 94 tomato

cultivars corrected for the

cherry versus non-cherry

type tomato contrast.

Representation is identical

to representation in Fig. 4.

Fig. 6 Genetic correlation

network based on log10

transformed metabolite

abundance in 94 tomato

cultivars. Representation is

identical to representation

in Fig. 4

188 Euphytica (2008) 161:181–193

123



Fig. 7 Correlation network

based on log10 transformed

metabolite abundance in

cherry tomato cultivars.

Representation is identical

to representation in Fig. 4

Fig. 8 Correlation network

based on log10 transformed

metabolite abundance in

beef and round tomato

cultivars. Representation is

identical to representation

in Fig. 4

Fig. 9 Partial correlation

network based on log10

transformed metabolite

abundance in 94 tomato

cultivars. Representation is

identical to representation

in Fig. 4
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2-methoxyphenol) had a high negative correlation with

2-methylbutanol, while in the non-cherry subpopulation

the phenylpropanoids were negatively correlated to

malic acid.

Figure 5 shows the tomato-type corrected correla-

tion network, correlations between the residuals of the

metabolite genotypic means after regression on the

cherry–non-cherry contrast. Major differences between

networks for corrected (Fig. 5) and uncorrected

(Fig. 4) metabolites are the weaker connected sugars/

phenolic volatiles cluster and the lower correlations

of this cluster with the hexanal/pentenone cluster and

trans-2-heptenal. Furthermore, malic acid loses part of

its negative correlations with the sugars/phenolic

volatiles cluster and 2-isobutylthiazol gains a strong

positive correlation to glucose in the tomato type

corrected network of Fig. 5. This makes sense since

most sugars, citric acid and the phenolic volatiles

had a higher relative abundance and malic acid and

2-isobutylthiazol had lower relative abundance in

cherry compared to beef and round tomatoes.

In the network based on estimated genetic corre-

lations (Fig. 6), the central role for sucrose is even

stronger than in the networks based on phenotypic

correlations (Fig. 4) and partial phenotypic correla-

tions (Fig. 5). Sucrose is the highest correlated

metabolite for citric acid, all measured sugars, the

phenolic volatiles and trans-2-hexanal in the genetic

network of Fig. 6 (Some qualification is necessary

here in that sucrose and the amino acids had a

relatively low estimated heritability, which may lead

to an over-emphasis on the genetic correlations

involving these metabolites due to the method we

used to estimate genetic correlations).

The network based on partial correlations in Fig. 9

shows that many of the main metabolite relations, the

strong correlations that turn up in all networks, seem to

be direct relations, i.e., relations that are largely

independent of the variation in the other metabolites.

Major exception to this finding is the sugar cluster,

where all correlations but the glucose–fructose and a

small fructose-myo-inositol correlation are lost. Fur-

thermore some other metabolite relations turn out to be

indirect, depending on a third metabolite that connects

the two. One example is the trans-2-hexenal relation

with cis-3-hexenal via 1-penten-3-one, and the hexanal

relation with b-ionone via trans-2-heptenal. In addi-

tion new relations can be found, like the positive direct

relation between hexanal and cis-3-hexenal that goes

together with a negative direct relation between

hexanal and 1-penten-3-one, a metabolite that shows

a strong direct relation with cis-3-hexenal.

Discriminant analysis

A clear separation between cherry and non-cherry

tomatoes was found by discriminant analysis (Fig. 10).

Metabolites discriminating between cherry and non-

cherry tomatoes to a large extent also contributed to the

second principal axis in the PCA analysis (compare

Figs. 2 and 3 with Table 1a). Table 1a and b show the

correlations between metabolite abundances and dis-

criminant function scores, 1a for discriminant function

1 and 1b for discriminant function 2. The tables are

sorted on absolute correlation. The separation between

round and beef tomatoes is much less clear (Fig. 10). 2-

isobutylthiazol, 6-methyl-5hepten2_one and methyl-

salicylate are the most important metabolites to

discriminate between round and beef typed tomatoes

and have significantly different means (t-test,

P \ 0.05) in round and beef tomatoes. Figure 11

shows a boxplot of 2-isobutylthiazol for all three

tomato types. Both discriminant functions were sig-

nificant, function 1 and 2 described 91 and 9% of the

Fig. 10 Canonical variate scores for all tomatoes in two-

dimensions representing the two discriminant functions from

the discriminant analysis of tomato type on all metabolites.

Symbols represent tomato types (triangle = round, circle =

beef and square = cherry)
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total plot variation, respectively. The ‘‘metabolic’’

distance, expressed as Mahalanobis distance, between

beef and round tomatoes was an order of magnitude

smaller (5.55) than the distances between cherry and

round (60.62), and cherry and beef (58.87).

Discussion

In this study we investigated taste sensation

related metabolites that display variation in green-

house tomatoes. Methoxyphenol, methylsalicylate and

phenylethanol had the largest variation, fructose,

b-damascenone and glucose the smallest. The esti-

mated heritability was highest for methylsalicylate and

phenylethanol and lowest for the amino acids glu-

tamic- and aspartic-acid. Some metabolites were

always highly correlated, independent of the type of

correlation considered. Examples of ‘robust’ clusters

of correlated metabolites were methoxyphenol and

methylsalicylate (phenylpropanoids), the phenolic

metabolites phenylethanol and phenylacetaldehyde,

the (iso)leucine derived metabolites 2- and 3-methyl-

butanol, methylbutanal, a cluster consisting of trans-2-

hexenal, cis-3-hexenal, 1-penten-3-one, cis-3-hexenol

(lipid derived volatiles) and a glutamic- and aspartic-

acid (amino-acids) group. All ‘robust’ relations seem

to be direct relations, except for the relations that

included cis-3-hexenol and the relation between trans-

2-hexenal and cis-3-hexenal. Many strong relations in

the full phenotypic network were caused by tomato

type related abundance and were therefore less clearly

observable in the tomato-type corrected correlation

network. An example is the relation between sugars

and phenolic volatiles. Other metabolite relations were

much more outspoken within a particular tomato type.

In non-cherry tomatoes, for example, citric-acid and

2-isobutylthiazol were highly correlated to the methyl-

butanol/methylbutanal cluster, whereas in cherry

Table 1 Correlations between metabolite abundance and dis-

criminant function scores (discriminant loadings) for all

metabolites with the two discriminant functions (column a for

function 1, column b for function 2)

Correlations between metabolites and discriminant functions

(a) First function (b) Second function

Phenylethanol 0.39 2-Isobutylthiazol 0.33

Glucose 0.36 6-Methyl-5hepten2-

one

0.28

Sucrose 0.35 Methylsalicylate -0.26

Fructose 0.35 Glucose 0.25

1-Penten-3-one 0.31 Fructose 0.23

Citric-acid 0.29 Sucrose 0.22

trans-2-Hexenal 0.25 cis-3-Hexenol -0.19

Phenylacetaldehyde 0.22 2-Methylbutanal 0.18

Malic-acid -0.21 2-Methoxyphenol -0.16

cis-3-Hexenal 0.20 Myo-inositol 0.14

trans-2-Heptenal 0.19 1-Penten-3-one 0.13

Myo-inositol 0.16 Phenylethanol -0.13

cis-3-Hexenol 0.15 3-Methylbutanol 0.12

2-Isobutylthiazol -0.15 Malic-acid 0.09

6-Methyl-5hepten2-

one

-0.10 b-Damascenone -0.08

Hexanal 0.07 Phenylacetaldehyde -0.07

Aspartic-acid -0.06 2-Methylbutanol -0.05

2-Methylbutanal -0.05 trans-2-Hexenal 0.05

b-Damascenone 0.04 b-Ionone -0.04

2-Methoxyphenol -0.03 Citric-acid 0.04

b-Ionone 0.03 Glutamic-acid -0.04

2-Methylbutanol -0.03 cis-3-Hexenal 0.03

3-Methylbutanol -0.02 Aspartic-acid 0.03

Methylsalicylate -0.02 trans-2-Heptenal 0.01

Glutamic-acid -0.01 Hexanal 0.01

In both columns metabolites are sorted from top to bottom by

absolute correlation with the discriminant function concerned

Fig. 11 Boxplot showing the variation in 2-isobutylthiazol

within the three tomato type groups. Box width represents

group size
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tomatoes the methylbutanol/methylbutanal cluster was

highly negatively correlated to the phenylpropanoid

volatiles methylsalicylate and 2-methoxyphenol. The

correlations within the sugar cluster were highly

interdependent, only the glucose–fructose and a small

fructose-myo-inositol relation were present in the

partial correlation network.

In this paper, we used network plots to simulta-

neously visualize all significant correlations between

metabolites. In contrast to PCA, network plots do not

focus on representation of maximum variation in data

matrices, which sometimes negatively affects repre-

sentation of pairwise relations between variables.

Especially, relations between metabolites whose

variation is spread out over several principal axes

can be easily overlooked in PCA biplots, even when

metabolite abundance is normalized. We demon-

strated that a fruitful way to explore patterns in

metabolite variation is by a combination of PCA

(without column standardization) and network plots.

Correlation networks are very useful to study changes

in metabolite relations when comparing different

experimental conditions or different parts of the

overall metabolic variation. By fixing the positions of

the metabolite nodes, changes in correlation structure

can be easily identified. Dissecting metabolite vari-

ation and correlations into identifiable genetic and

environmental parts will help to understand relations

of these metabolites to processes on other biological

levels. Presently, we are investigating methods to link

patterns in organoleptic variation to patterns in

metabolic variation and molecular marker variation.
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