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Abstract
Aggregative moral theories face a series of devastating problems when we apply 
them in a physically realistic setting. According to current physics, our universe 
is likely infinitely large, and will contain infinitely many morally valuable events. 
But standard aggregative theories are ill-equipped to compare outcomes containing 
infinite total value. So, applied in a realistic setting, they cannot compare any out-
comes a real-world agent must ever choose between. This problem has been dis-
cussed extensively, and non-standard aggregative theories proposed to overcome it. 
This paper addresses a further problem of similar severity. Physics tells us that, in 
our universe, how remotely in time an event occurs is relative. But our most promis-
ing aggregative theories, designed to compare outcomes containing infinitely many 
valuable events, are sensitive to how remote in time those events are. As I show, the 
evaluations of those theories are then relative too. But this is absurd; evaluations of 
outcomes must be absolute! So we must reject such theories. Is this objection fatal 
for all aggregative theories, at least in a relativistic universe like ours? I demonstrate 
here that, by further modifying these theories to fit with the physics, we can over-
come it.
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1 Introduction

Determining the correct moral theory is not just a normative matter but also, in part, 
an empirical one. Suppose that we have a candidate moral theory that delivers plau-
sible verdicts in some highly idealised cases. But once you apply that theory under 
realistic empirical assumptions, quite inconveniently, it delivers absurd verdicts in 
almost every decision that moral agents ever face. No matter your metaethics, you 
must agree that the theory should be rejected. In this manner, the moral theories we 
accept or reject can depend on empirical facts about the world.

In just this manner, empirical lessons from physics appear to undermine a swathe 
of leading moral theories: any and all theories that are aggregative with respect to 
value. These include not only classical utilitarianism but, rather, all theories that 
rank outcomes according to total aggregate of all of the value in each (no matter 
where in space or time that value arises).1 Such theories appear to deliver absurd 
verdicts, in almost every practical case we might consider, if the universe is infinitely 
populous.

Current physics predicts that our universe will span an infinite volume over space 
and time, and that within this volume will occur infinitely many tokens of every 
physically possible discrete event.2 Some of those events are morally valuable, e.g.: 
a human brain processing a sensation of pleasure, perhaps. Our universe will contain 
infinitely many such pleased brains, and so infinitely many instances of value (of 
value at least some 𝜀 > 0 , on any given cardinal scale).3 Similarly, our universe will 
contain infinitely many displeased brains, and so infinitely many instances of dis-
value (of value below −𝜀 < 0 ). If we sum up the total value across any possible out-
come—in effect, summing a positively infinite value with a negatively infinite one—
then the total sum is undefined. And one undefined sum is no greater than another. 
With total aggregates like these for every outcome ever available to us, it seems that 
aggregative moral theories cannot say that any outcome is better than any other—
they are incomparable. In many cases, this is deeply implausible. Thus we seem to 
have reason to reject aggregative theories en masse, thanks to empirical findings.4

Fortunately for the project of aggregation, philosophers have proposed aggrega-
tive theories that avoid this problem (one of which is demonstrated below). These 

1 These include all theories that endorse a total utilitarian, total prioritarian, or critical level view of 
value, regardless of what other considerations those theories might recognise.
2 This is implied by the widely accepted flat-� model of cosmology (see Wald, 1983; de Simone et al., 
2010; Carroll, 2020, for discussion). It is also implied by the inflationary view (see Guth, 2007; Garriga 
and Vilenkin, 2001). But, by the latter theory, the universe as a whole may have infinite volume but only 
a finite volume of it within our causal future. If so, it may be physically impossible to cause changes in 
value at infinitely many different locations, and so the problems raised below may not arise. (But they 
may still arise if we adopt an evidential decision theory for moral decision-making—see MacAskill et al. 
(2021).)
3 Specifically, we will have a countably infinite number of them. Why? Because they are each positioned 
in a four-dimensional spacetime. They’ll also each occupy some (exclusive) finite region of spacetime—
e.g., for a human brain to experience some amount of pleasure, it requires some non-zero spatial volume 
and some non-zero, finite duration. So we can only fit a countably infinite number of those token events 
into the world.
4 Arguments similar to this are presented by Nelson (1991), Bostrom (2011), and Askell (2019).
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proposals do not rely on simple sums of value; they aggregate value differently, and 
represent the resulting aggregates using slightly more complicated mathematical 
objects (see, e.g., Vallentyne, 1993; Vallentyne and Kagan, 1997; Bostrom, 2011; 
Arntzenius, 2014; Jonsson and Voorneveld, 2018; Wilkinson, 2021a,2021b; Clark, 
n.d.). . Many of those proposals do this by taking advantage of the physical structure 
of our universe, whereby valuable events are positioned in time and space. Where 
simple aggregation delivered incomparability in infinite worlds, these proposals are 
thought to deliver just the verdicts the aggregationist wanted (see Sect. 3).

But physics has further surprises in store for us, much to the woe of aggregative 
theories. A century of work in physics, both theoretical and experimental, tells us 
that time in our universe is relative: the duration observed between one event and 
another varies with the velocity of whoever does the observing (Cohn, 1904). So 
too, whether two events are simultaneous or not can depend on that velocity (see 
Comstock, 1910, for an illustration of this phenomenon). If you were to simply 
speed up, the set of events that are happening ‘now’ for you would shift; it would 
include events that, for a slower observer, lie in the distant past or future. That isn’t 
to say that fast-moving observers are wrong—one observer’s perspective is no less 
legitimate than another, since we have no scientific experiment that distinguishes 
one constant velocity over any other as ‘at rest’. There simply is no absolute perspec-
tive—no absolute time—by which we can measure the duration between any two 
events, nor by which we can judge which events are simultaneous (Einstein, 1905).5

This is a further blow to aggregative moral theories, as I demonstrate in this 
paper. Many of our proposals for aggregative theories that still work in an infinitely 
populous universe are time-sensitive—sensitive to when in time valuable events 
occur. But when those events occur is, in some sense, relative. And it turns out that 
so too the moral evaluations of those time-sensitive aggregative theories are relative. 
As I show in Sect. 4 below, none of our extant time-sensitive proposals can provide 
absolute moral evaluations. They all fail, in almost every decision moral agents ever 
face. And, as I show in Sect. 5, the same goes for such proposals designed specifi-
cally to avoid this relativistic problem.

But this problem bears not only on the plausibility of some narrow selection of 
views, which happen to be time-sensitive. If time-sensitive theories of aggregation 
fail, then all aggregative theories fail in an infinite universe. As shown elsewhere, 
any aggregative theory that is not time-sensitive will, in the infinite context, fail to 
compare any of the outcomes between which we might ever need to choose in prac-
tice (see Wilkinson, n.d.(a); Jonsson and Peterson, 2020). Given this, if problems of 
relativity undermine time-sensitive theories, then they undermine aggregative theo-
ries in general.

Aggregative theories thus face another problem akin to that posed by an infinitely 
populous universe. Based on empirical findings, our existing versions of those theo-
ries deliver absurd verdicts on a vast scale. Does this mean we must abandon all 
aggregative theories, just because our universe has these peculiar characteristics? 
Thankfully, no. Despite the failure of existing proposals, I demonstrate in this paper 

5 For readers unfamiliar with special relativity and seeking more explanation than I give here, I recom-
mend Resnick (1979).
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that a satisfactory solution does exist (see Sect. 6). By drawing on tools from phys-
ics, we can concoct a method of aggregation that indeed allows absolute moral eval-
uations, that avoids the flaws of previous solutions, and that even succeeds in the 
trickier setting of general relativity (see Sect. 7). Aggregationists need not abandon 
their theories just yet—this peculiar problem can be solved, and we can indeed make 
moral judgements based on what will promote the good.

2  Preliminaries

In what is to come, we will need to compare outcomes, or worlds. In particular, to 
give moral verdicts, we need only compare worlds that have a great deal in com-
mon—worlds that share exactly the same events everywhere except the causal future6 
of the agent who is choosing which world to bring about. We can ignore worlds that 
do not share a common history. After all, we necessarily cannot change the past.7

To compare such worlds, we want an ‘at least as good as’ relation ≽ on the set of 
all possible8 worlds W . This relation ≽ will be a binary relation: it compares two 
worlds. It will be reflexive: each world must be at least as good as itself. It will be 
transitive9: if a world Wa is at least as good as Wb , and Wb is at least as good as Wc , 
then Wa is at least as good as Wc . And it will have an asymmetric component ( ≻ ) 
that holds between worlds of which the first is strictly better, as well as a symmetric 
component ( ≃ ) that holds between worlds that are equally good.

The goal is an aggregative theory. So whether ≽ holds between two worlds must 
be determined by the total aggregate10 of value in each—some impartial11 combina-
tion of the values of every individual valuable event. In the finite setting, this aggre-
gate might be represented by a finite number on some cardinal scale. In the infinite 

6 Despite the relativistic nature of spacetime, at least some points are observed as occurring in our future 
(or our past) no matter our velocity: those within our future (past) lightcone. That is our causal future 
(past).
7 This is somewhat controversial as, under evidential decision theory, we may often need to compare 
lotteries containing outcomes that differ in some past events. But this controversy is avoided if we are 
simply comparing the outcomes of our actions ex post, as I do here.
8 Possible in what sense? This could be the set of all epistemically possible worlds, or metaphysically 
possible worlds, or logically possible worlds. What follows can be read in terms of any of these.
9 Transitivity of moral betterness has its critics, e.g., Temkin (2014). It has also received compelling 
defences from, e.g., Broome (2004); Nebel (2018); Dreier (2019). I find it overwhelmingly plausible and, 
in keeping with the infinite aggregation literature to date, will assume without argument that it holds.
10 This aggregate may be the total sum of all instances of value, represented on a cardinal scale. Or it 
may be some other mathematical object which represents some combination of the values of all indi-
vidual events. For example, the method described in Sect. 3 represents total value as a set of functions.
11 Impartiality here can be interpreted in any of several senses: 1) that ≽ must be a qualitative relation; 2) 
that ≽ must be a qualitative internal relation, and so entirely independent of the identities of which per-
sons obtain value; 3) that, in addition to (1) and (2), ≽ must be invariant under any changes in some cho-
sen class of qualitative properties of the persons obtaining value (e.g., their positions in space and time). 
I take ≽ as a qualitative internal relation but not independent of where persons are positioned in space 
and time. For discussion of whether this counts as impartial, see Wilkinson (2021a,2021b, §3).
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setting, it can only be represented by more complicated mathematical objects. For 
instance, under the method described in the next section, the aggregate can be repre-
sented as a set of cumulative sums.

I will focus on time-sensitive ≽ relations. Such relations take advantage of the 
fact that each valuable event occupies some position in space and time (or so I will 
assume) so we can associate each such event with a discrete spacetime point.12 For 
example, the event of a human stubbing their toe might be associated with the time 
and place of the stubbing. Or we might treat an entire human life as a single event, 
associated with the time and place of their birth, or perhaps the midpoint of all posi-
tions they ever occupy. However we select that point and however fine-grained we 
make each event—and nothing below hangs on how we do so—each valuable event 
will be associated with some point x in spacetime.

Conversely, we can associate each point in spacetime with the value of all events 
associated with it. For each world Wa , a corresponding value function Va maps each 
spacetime point to some real number, a cardinal representation of the moral value at 
that point. Where there is no valuable event at x , we can let Va(x) be 0 or indeed any 
finite value, as long as that value is consistent.

To compare worlds Wa and Wb in the ways described below, we will need to eval-
uate Va(x) and Vb(x) for particular points x—to identify the value at the same point 
across worlds. But how do we identify that same point (or, if you prefer, its coun-
terpart) across worlds?13 This is fairly easy, given that the worlds we compare will 
be identical everywhere except the causal future of the decision-maker. So they will 
always share at least some of the same events. It is then natural to associate each of 
those events with the same point x in both worlds. And we can extend this mapping 
of points into our causal future, simply by identifying each point x across worlds 
by its position relative to those past points that the worlds have in common. For 
instance, the point 1 metre in front of me and at 1 second in the future in one world 
is the same point as that which is 1 metre in front of me and 1 second in the future 
in another world (provided that I am in the same position, relative to past events, in 
both worlds). This will (usually)14 allow us to specify, for each point in one world, a 
unique spacetime point to map it to in the other world.

12 Alternatively, we could associate each event with a region of points. This is compatible with what 
follows, so long as we replace the value function Vi(x) with a value density function vi(x) and sum value 
over a region using a (Lebesgue) integral rather than a discrete sum.
13 Note that I do not rely on such points having essential properties (as under spacetime substantival-
ism)—points may just be artefacts of the relational properties of physical events. Nor am I committed 
to a particular view on whether such points are identical across worlds or merely counterparts—nothing 
below hangs on this.
14 This relation sometimes cannot give unique counterparts when outcomes differ in their spatiotemporal 
structure. More on this in Sect. 7.
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3  Expansionism

To demonstrate the relativistic objection, I will focus on one plausible method of 
aggregation that can compare infinite worlds: expansionism. By way of example, it 
goes like this.

Take two worlds, such as Wrecurring and Wonce in Figs. 1 and 2, displayed on spa-
cetime diagrams with matching coordinates.15 Each world contains infinitely many 
valuable events—perhaps each is a human living a happy life. In Wrecurring , there is 
such a happy life lived at every grid-point in space and time from t = 1 onwards. In 
Wonce , there are happy lives lived at t = 0 but at no other time.

How might we compare these worlds? If we simply summed up the value in each, 
we could not say either is better—both contain infinitely many happy lives, so both 
sums are positively infinite.

Instead, we could sum the value in each world in a particular order, and consider 
their cumulative sum as we go. For instance, start at the point p illustrated below. 
And sum the value of events in order of how far they are from p on the diagram. 
Events that are one unit in length from p get counted before those at two units in 
length, and so on. We sum value moving outwards from p , effectively expanding the 
circular region around p , letting the radius approach infinity (see Figs. 3 and 4).

Summing in this order, we obtain cumulative sums of the value within radius r of 
p , for each real r. Those cumulative sums are shown in Fig. 5.

A clear winner emerges: Wrecurring . Even though both worlds have the same total 
sum of value—both sums are positively infinite—Wrecurring ’s sum approaches infin-
ity a lot faster when we sum over uniformly-expanding regions of space and time. 
In fact, for any sufficiently large circular region centred at p , Wrecurring will have a 
greater cumulative sum. And, for these two worlds, we can replace p with any point 
and a large enough circular region around it will contain more value in Wrecurring 
than in Wonce . This is because value is far more densely packed into Wrecurring ; in an 
important sense, it contains more of it. So we might judge that Wrecurring is better than 
Wonce.

This method can be stated more precisely as Spatiotemporal Expansionism (or 
SE), which is adapted from Wilkinson (2021b, p. 19-20) and Vallentyne and Kagan 
(1997, p. 17).16

15 This example hails from Vallentyne and Kagan (1997, p. 15).
16 Wilkinson (2021b) demonstrates several problems for SE, and proposes that we instead adopt the 
slightly stronger SE2.
 SE2: Let Wa and Wb be worlds with the same spacetime points. For any starting point p , let {r1, r2, r3, ...} 
be the strictly increasing sequence of distances between p and each x such that Va(x) − Vb(x) ≠ 0.
Then Wa ≻ Wb if the following sum diverges unconditionally to +∞.

And Wa ≃ Wb if the sum is bounded both above and below.
 The problems and solutions described below apply in much the same way to both SE and SE2. For sim-
plicity, I focus on the former.

lim
r→∞

r∑

i=1

(ri+1 − ri)
∑

{x | d(x,p)≤r}

(
Va(x) − Vb(x)

)
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SE: For worlds Wa and Wb with the same spacetime points, Wa ≻ Wb if, for all 
starting points p , there exists r� ∈ ℝ such that for all r > r′,

And Wa ≃ Wb if, for all p and all r > r′ the sum equals 0.

As described above, SE says the following. Take any starting point p . For each 
world, take the sum of all value within distance r′ of p . Take the difference between 
the sums for the two worlds. Is one greater, such that the difference between them is 
greater than 0? Will it still be greater if you expand the distance to even greater dis-
tances r? And will the same hold for any p you choose? If so, you can say that one 
world is strictly better. If instead the difference remains 0, for all large r, then the 
worlds are equally good.

Note that here the measure of distance d(x, p) between two points x and p is dis-
tance in the standard Euclidean sense: d2 = Δx2 + Δy2 + Δz2 + Δt2 (where Δx,Δy, 
and Δz are differences in spatial coordinates along three dimensions and Δt is the 
difference in time)17 or, when the points differ in just one spatial dimension x as 
above, d2 = Δx2 + Δt2 . This matches the distance obtained by placing a ruler on the 
page in the above diagrams. And this needs to be our distance metric for us to obtain 
the nice, bounded, circular regions we saw above.18

With SE in hand, we seem to have a plausible method for comparing infinite 
worlds. It deals neatly with Wrecurring and Wonce above, even though both worlds con-
tain infinitely many valuable events. And it happens to satisfy a variety of desirable 
conditions. For one, it delivers a ≽ relation which is reflexive and transitive. For 
another, it aggregates value over different points in an impartial manner, in that no 
point (and no person) is favoured over another—indeed, we could swap the value at 
one point with the value at any other, and SE would confirm that the world remains 
equally good.19 So, even though the positioning of value in spacetime helps to com-
pare worlds under SE, we need not discount nor ignore value based on its position 
(see Wilkinson 2021b: 12-15; contra Koopmans 1972).

∑

{x | d(x,p)≤r}

(
Va(x) − Vb(x)

)
> 0

17 We use different units for spatial distance (e.g., metres) and time (e.g., seconds), so how should we 
weigh these against each other when summing Δx2 and Δt2 ? We could select any weighting we like but, 
fortunately, all possible weightings produce the same results in the examples below. (See the next foot-
note.) For simplicity of notation, I will weigh the two quantities such that 1 metre is equivalent to 1 metre

c
 

seconds, where c is the speed of light in a vacuum in metres per second.
18 We might instead adopt any distance metric which satisfies dp = |Δx

a
|p + |Δy

a
|p + |Δz

a
|p + |Δt

b
|p , for 

some real p, a, b. But alternative values of p, a,   and b would give us regions of more arbitrary shape. 
And they wouldn’t make any difference to problems we encounter in the next section so, for brevity’s 
sake, I will ignore them (see Wilkinson, 2021b, p. 19 for further discussion).
19 This is the condition of Finite Anonymity (over points in time and space) which is a common desidera-
tum in the literature (e.g. Lauwers, 2010).
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Problems

But SE faces a serious problems, as do other time-sensitive methods of aggregation: 
it depends on an impoverished understanding of time.20

Note that, in what follows, I demonstrate these problems for SE specifically. But 
analogous problems emerge, and can be demonstrated with similar examples, for the 

Fig. 1  Wrecurring

Fig. 2  Wonce

20 The problems raised in this section have previously been noted by Cain (1995) and Arntzenius (2014).



1 3

Aggregation in an Infinite, Relativistic Universe  

proposals of Vallentyne (1993), Bostrom (2011,  p. 16), Arntzenius (2014,  p. 56), 
and Jonsson and Voorneveld (2018).21

4.1  Galilean Relativity

Problems emerge even without relativity in the Einsteinian sense. They arise even in 
the simpler setting of Newtonian physics.

Consider a seemingly straightforward case: Erid.

Fig. 3  Wrecurring

Fig. 4  Wonce

21 The same goes for time-sensitive theories of value even outside the infinite context, including theories 
of pure time discounting (Arrow, 1999) and Temkin’s (2015) temporal distribution view.
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Erid
A civilisation based on the planet Erid is fortunate that it will last forever. 
Eridians are born at regular intervals and all have happy, identical lives. So 
constant amounts of moral value arises on Erid at regular intervals of time. 
You can choose to visit Erid and see the sights, or to pass by. If you do visit, 
your spacecraft will slightly disturb the motion of Erid’s star and surrounding 
planets, setting it moving at a tiny speed relative to where it would otherwise 
be, producing Wmoving . Pass by and the system remains undisturbed, producing 
Wstationary . Either way, the same values will arise at the same times; your visit 
would make no one better or worse off.

Figure 6 represents the difference between the two worlds, Wmoving −Wstationary.22 This 
world of differences has positive values at the positions the Eridians would occupy 
in Wmoving and negative values where they would have been left in place in Wstationary 
(since Wmoving has that much less value at those positions than does Wstationary ). This 
diagram contains all of the information necessary to compare Wmoving and Wstationary . 
Since SE’s verdicts depend only on the differences between the two worlds, Wmoving 
will be at least as good as Wstationary if and only if Wmoving −Wstationary is at least as 
good as the world with value 0 at every point.

Intuition suggests that Wmoving and Wstationary should be equally good. After all, 
they differ only by how fast the Eridians are travelling, and in that respect only 
slightly. But SE says otherwise: that Wmoving −Wstationary is worse than the zero-
world; so Wmoving is worse than Wstationary . To see why, expand from starting point p ; 
and (naively) use the distance metric d based on the coordinate representation used 
above. We obtain the cumulative sum plotted in Fig. 7, which soon falls below 0, 
never to return.

Fig. 5  Cumulative sums in 
Wrecurring and Wonce , with expan-
sions starting from p

22 This is the world given by value function Vm−s(x) = Vmoving(x) − Vstationary(x).



1 3

Aggregation in an Infinite, Relativistic Universe  

The same holds no matter which starting point we choose. So SE seems to judge 
Wstationary as better than Wmoving . But this verdict is counterintuitive. Surely, setting 
the planet ever so slightly in motion should not make the lives of the Eridians, in 
effect, worth less. Intuition suggests that it should make no moral difference at all.

SE’s implications get all the more counterintuitive if we recognise that, under the 
laws of Newtonian mechanics, it will appear to any observer travelling at a constant 
velocity that they are at rest; they will be unable to detect their movement with any 
mechanical experiment. (This is known as Galilean relativity.) So, in Wstationary and 
Wmoving , there is a symmetry between the two outcomes—in each, the Eridians may 
consider themselves at rest, and that it’s the other outcome in which they would be 
in motion.

In fact, if Wmoving occurred and the Eridians looked back on your decision from 
their own perspective, with themselves at rest, the regions used in the comparison 
above would appear as in Fig. 8.

Those regions around p now look awfully peculiar—far from the most natural 
shape we might choose. From the Eridians’ perspective in Wmoving they aren’t circles 
of fixed radius, but instead these peculiar skewed ellipses. Were they to compare the 
worlds themselves , and treated their own velocity as the one at absolute rest , they 
would draw those regions quite differently (as circles rather than ellipses in Fig. 8). 
Applying SE using those regions, they would reach the opposite verdict: that Wmoving 
is the better outcome.

So we have a problem. The distance measure d, the regions of fixed distance 
around a given p and, it seems, the verdicts of SE all depend on which velocity 
counts as being at absolute rest. Earlier, I assumed it was that of the Eridians in 
Wstationary . But they themselves may not know that—there’s no mechanical experi-
ment they could perform that would distinguish their own velocity as any more ‘at 
rest’ than another. Indeed, modern physics now tells us that there is no experiment 
at all which would distinguish one velocity over another (Einstein, 1905; Michelson 
& Morley, 1887)—there is no non-arbitrary way to specify absolute rest. So we have 
no reason to think there is such a thing.

What does this mean for SE? It seems that there can be no absolute distance met-
ric d, that we cannot construct absolute regions of distance d around a point, and 
that SE cannot give absolute judgements. It seems we must abandon SE as well as, it 
seems, any aggregative moral theory.

4.2  Special Relativity

Although this problem arises in Newtonian physics, that isn’t the full story. Our 
understanding of space and time did not stop with Newton. We now know that 
observers at different velocities disagree about much more than what counts as at 
rest; they also disagree about measurements of spatial distance, measurements of 
time, and even whether events are simultaneous. Their perspectives differ far more 
than they would under Galilean relativity. (Surprisingly, this greater difference will 
help later in developing solutions).
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To see such disagreement in action, consider worlds analogous to those above: in 
Wstationary , Erid stays ‘at rest’ and produces moral value at regular intervals; and, in 
W ′

moving
 , Erid is instead set in motion. These are illustrated in Fig. 9. (On this dia-

gram, its relative speed is 4
5
 of the speed of light, but the same result arises with even 

minuscule speeds.)
In both outcomes, the Eridians produce the same value per unit of time, accord-

ing to their own experience of time. But, as shown in Fig. 9, they would disagree 
with their counterparts in the other outcome about which outcome produces value 
more quickly. If we treat Erid as at rest in Wstationary , as this diagram does, the events 
in W ′

moving
 occur more slowly. But from the perspective by which W ′

moving
 is at rest, 

we would observe the exact opposite: that events in Wstationary occur more slowly!

Fig. 6  Wmoving −Wstationary

Fig. 7  Cumulative sum of Wmoving −Wstationary , with expansions starting from p
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Fig. 8  Wmoving −Wstationary , with the regions centred on p as above, but plotted in a coordinate system 
under which the velocity of the inhabitants of Wmoving is treated as at rest

Fig. 9  W �

moving
−Wstationary
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This is due to time dilation, a consequence of the special theory of relativity. If 
one observer watches t seconds tick by on their own wristwatch, any observer 
moving at speed v (as a fraction of the speed of light) relative to them sees that 
ticking take t′ seconds, where t� = t√

1−v2
.

Since no velocity is any more at rest than another, the reverse holds as well: 
the first observer will also see the ‘moving’ observer’s wristwatch tick more 
slowly. So of course the Eridians W ′

moving
 and Wstationary would disagree about 

which outcome produces value more quickly. So too, they would disagree about 
the order of events: those in Wstationary would observe their first valuable event 
occurring before the first such event would occur in W ′

moving
 ; those in W ′

moving
 

would observe the reverse.
From the perspective of the Eridians in W ′

moving
 , the regions used in Fig. 9 above 

would now appear as in Fig. 10—no longer based on a sequence of nice concentric 
circles, but instead a sequence of ellipses skewed even more than before.

As before, these regions look awfully peculiar. And again, if the Eridians in 
W ′

moving
 drew the regions of fixed distance d from their own perspective, they would 

do so very differently. This is because the measure d between any (non-identical) 
points x and p is not absolute; it varies with the velocity at which it is measured.

But the deeper problem is that the definition d2 = Δx2 + Δt2 makes no mention 
of perspective or velocity; instead, it assumes that there were some such absolute 
quantities Δt and Δx . But there aren’t—any such measurements are relative to 
the velocity of the observer, by special relativity. So we have no measure d with 
which to construct regions of fixed distance, we have no such regions, and we 
have no verdicts at all from SE. The principle is silent in all cases—all pairs of 
outcomes are incomparable.

But before we abandon SE entirely, perhaps we can modify it or the definition of 
d ever so slightly to still deliver some judgements. Here is one way we might do that. 
Define Δt and Δx as those quantities that would be measured at the velocity of the 
agent making the evaluation. They and d are then relative to that velocity. And let 
SE use this relativised version of d. Then SE’s verdicts will be relative too—in the 
case above, an agent travelling at one velocity would judge W ′

moving
 as the better out-

come, and an agent travelling at another velocity would judge Wstationary as better. 
Both would be right, since SE’s verdicts are relative to the velocity of the judge.

But this modification is implausible. Our moral judgements must be abso-
lute—when evaluating outcomes (rather than judging acts, where agent-relative 
considerations might be relevant) we are interested only in goodness simpliciter. 
And when evaluating outcomes based on their goodness simpliciter, we usually 
think that there can be only one correct evaluation for any pair of outcomes. But 
even for those who deny this and endorse moral relativism (such as relativism to 
the cultural setting in which a judgement is made), relativism to the agent’s speed 
seems particularly absurd. An otherwise worse outcome can be made better if the 
agent simply speeds up? This seems absurd to me.

And it is all the more absurd given that it can result from even arbitrarily small 
changes in velocity—the same disagreement arises in the case above when the 
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civilisations in W ′

moving
 and Wstationary differ by any non-zero velocity. So this modi-

fication is a non-starter.23

Here is an alternative modification. Again, let the metric d be relative to the 
velocity of the agent. But, for SE to compare two outcomes, don’t just require that 
all starting points p agree. Also require that agents at all velocities agree—super-
valuate over all perspectives. If they disagree, let SE remain silent: the two worlds 
under consideration are simply incomparable. But this approach is implausible too. 
The example above was a mundane one: you can either leave be or set future events 
(ever so slightly) in motion. If a method of aggregation cannot compare these out-
comes, it seems seriously inadequate. And SE cannot, if modified in this way—it 
falls silent, even in cases as mundane as this. So, again, we must abandon SE.

5  Existing Solutions (and their Problems)

Must we abandon the expansionist approach entirely, and moral aggregation along 
with it? I hope not. Here are two other proposals for salvaging it, both from Arn-
tzenius (2014). Unfortunately, each faces further problems, and serious ones at that.

5.1  Double Lightcones

Here is one suggested solution, described by Arntzenius (ibid.: 44) and credited to 
Cian Dorr.

In the definition of SE, forget about any distance measure d. All we need is a 
sequence of expanding regions of spacetime, each compact and containing the 
regions that come before it. And, to overcome the relativistic problem, those regions 
must not vary with the perspective of the observer.

We can obtain such regions as follows. Select two points, one earlier in time than 
the other, according to all observers—perhaps two points with the same spatial posi-
tion, as illustrated below. For the earlier point, draw its future lightcone: the region 
of points you could reach from that point by travelling at or below the speed of light 
in any direction. And, for the later point, draw its past lightcone: the region of points 
from which you could reach the later point by travelling at or below light speed. The 
intersection of those two regions—their ‘double lightcone’—forms a diamond-
shaped region with both endpoints as vertices. Repeat this process with further pairs 
of points to obtain your expanding regions. One such sequence of regions is illus-
trated in Fig. 11, expanding around p , applied to W �

moving
−Wstationary from above.

We could sum value over this sequence of regions instead of SE’s expanding 
circles. If we did, we would sum the −1 s faster than the +1 s, so our cumulative 

23 This modification faces a further problem. In practice, agents are often accelerating. If we allowed the 
verdicts of SE to be relative to not just the velocity but also the acceleration of an agent, the regions we 
obtain (such as those in Fig. 10) would no longer strictly contain one another—they would only partially 
overlap. Nor would they eventually cover all of spacetime, so SE would ignore value in some parts of the 
world!
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sum would approach −∞ . We would be led to the verdict that W ′

moving
 is worse 

than Wstationary . But is this verdict absolute, no matter the observer’s velocity?
Indeed, these regions would be constructed the same way by observers mov-

ing at any velocity, as long as they use the same pairs of endpoints to construct 
them. But the challenge lies in selecting those endpoints. To get a sense of why 
different observers or agents might disagree about which endpoints to use—and 
hence which double lightcones to use—consider that same sequence of regions 
from the perspective of the Eridians in W ′

moving
 , as illustrated in Fig. 12.

As in the previous section, these regions now look awfully peculiar. They 
seem no more appropriate than, say, if we constructed the regions by setting 
endpoints at the same spatial position as p , but did so from the perspective of 
W ′

moving
 . We would generate very different regions which, from this perspective, 

would have the same nice diamond shape we saw above. But they would give us 
a different verdict: summing over such a sequence of regions we would sum the 
+1 s much faster than the −1 s; our cumulative sum would approach +∞ ; so we 
would conclude that W ′

moving
 is better than Wstationary.

In short, there is no non-arbitrary way to select the endpoints from which we 
construct these double lightcones. Simply placing them at some particular posi-
tion relative to your starting point p will always result in different regions for 
agents travelling at different velocities. And different selections can deliver dif-
ferent verdicts, as demonstrated above. So the problem remains.

Fig. 10  W �

moving
−Wstationary , with regions centred on p as above, but plotted in a coordinate system under 

which the velocity of the inhabitants of W ′

moving
 is treated as at rest
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5.2  The Spacetime Metric

Here is another proposal, also from Arntzenius (ibid.: 43).
In the definition of SE, simply replace the d with a better measure of 4-dimen-

sional distance—one that is invariant across changes in velocity. In the standard, 
flat spacetime of special relativity we have one such metric: the spacetime metric, s, 
given by

When Δy and Δz are 0, as in my examples below, we have s2 = Δx2 − Δt2.
What does s represent? It actually measures ‘proper time’, or ‘proper distance’. 

The proper time between two points is the duration of time we’d record on a clock 
travelling from one to the other at constant velocity. (Note that this only exists if 
you could reach one from the other by travelling below light speed.) Meanwhile, the 
proper distance is the spatial distance that you’d measure between them if you were 
travelling at just the right velocity to see those points as simultaneous. (And this 
only exists if there is such a velocity—if neither lies in the other’s future lightcone.)

If we replace d with s in the definition of SE, the regions we generate around 
p will look like those shown in Fig.  13 below.24 Each of these hyperbola-shaped 
regions corresponds to the set of all points within some constant proper time (or 

s2 = Δx2 + Δy2 + Δz2 − Δt2

Fig. 11  W �

moving
−Wstationary with a sequence of double lightcones around p

24 Unlike d, s sometimes takes on imaginary values (whenever Δt > Δx ). So |s2| serves as the better 
replacement for d.
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distance) of p . Effectively, each region is the set of points that you could reach from 
p within some time |s2| (from your own perspective) by travelling at a constant 
speed, or that would look like they were within distance |s2| of p from some perspec-
tive. But recall that time passes more slowly for fast-moving observers, and lengths 
appear shorter. So, for two future points which seem to you to lie at the same time, 
the one further from you in space would actually be the smaller proper time from 
your position. Likewise, for two points which seem to you to lie at the same spatial 
position but at different times, the one further from you in time would be the smaller 
proper distance from you.

Crucially, the proper time/distance measured between any two points will be 
the same no matter the velocity at which it is measured. So too, any two observ-
ers would draw precisely the same regions no matter their velocity. They would 
draw specific points in different places on the graph, but they would still draw them 
within precisely the same regions. So we have a sequence of expanding regions on 
which everyone can agree, and over which we can apply SE absolutely and without 
controversy.

In the problem case of W ′

moving
 versus Wstationary from above, we would construct 

the regions in Fig. 14. And as you can see, each −1 and its corresponding +1 lie on 
the boundary of the same region—they lie at the same proper time/distance from p , 
and this would be the case from any perspective.

Fig. 12  W �

moving
−Wstationary with the same sequence of double lightcones, viewed from the perspective of 

the inhabitants of W ′

moving
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If we applied SE using these regions instead of the circles from earlier, each −1 
would cancel out the corresponding +1 . Our cumulative sum would be 0 at all stages 
(and, if we started from a point other than p , it would be 0 beyond some stage). So 
we would judge W ′

moving
 and Wstationary as equally good. Not only do we have a ver-

dict, but we have the intuitively correct one: that the world is equally good whether 
we set the civilisation in motion or leave it be.

But this supposed solution faces its own serious problem: any of those regions 
can contain infinite value (or undefined total value). For instance, consider the 
worlds: Wright , which contains a sequence of valuable events extending off towards 
the right; and Wleft , which contains a sequence extending off towards the left. These 
events are arranged such that Wright −Wleft is as illustrated in Fig. 15.

In Wright −Wleft , all of those events with value +1 or −1 lie at s = 0 from p . Sup-
pose we tried to take a cumulative sum, starting from p . That cumulative sum will 
break down immediately: we cannot assign a finite value to the region within proper 
time/distance 1 of p (or even that within distance 0.000001); the sum of value in 
each such region is undefined.

So this proposal puts us in a position similar to where we started: we wanted to 
compare worlds containing infinite value, but standard addition on the real numbers 

Fig. 13  A sequence of regions each comprised of points within some fixed |s2| of p
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Fig. 14  W �

moving
−Wstationary

Fig. 15  Wright −Wleft
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does not allow us to do so. For the same reason, we cannot compare worlds like 
these.25 So the proposal is inadequate.

6  A Better Solution

Despite the problems with that last solution, there is a promising solution in its vicinity.
As Arntzenius diagnoses it, the key problem with that solution was that each of 

the regions it uses has infinite 4-dimensional volume.26 Thanks to this infinite vol-
ume and their shape, we can arrange infinitely many valuable events within each of 
them, as we saw above.

We could avoid that problem if only we had a similar sequence of regions but 
each with only finite volume. Why? I assume—quite plausibly, I think—that a 
(compact) region of finite volume can only ever fit finite total value. On standard 
accounts of value, a collection of events with infinite total value would require infi-
nite volume. For instance, to produce a given quantity of pleasure within a human 
brain would require some minimum spatial volume and duration of time; to scale up 
this quantity ever more would require an ever greater duration (to extend the experi-
ence longer) and/or ever greater volume (to fit additional brains). You cannot scale 
up the quantity of pleasure to be infinite without scaling up the volume of spacetime 
involved to be infinite as well, and likewise if value takes on some plausible form 
other than pleasure. So you cannot fit infinite value into a (compact) region of finite 
volume.27

25 Why not just accept that worlds like this are exotic enough that we need not compare them? My main 
reason is that I suspect that, as argued in Wilkinson (n.d.(a)), almost every practical moral decision we 
face will resemble this case—the available outcomes will differ by infinite or undefined value over any 
region of our future lightcone that has infinite volume.
26 There are two notions of volume we might use here. The first is standard Euclidean volume, extended 
to four dimensions—a region with constant spatial volume V and duration in time t simply has 4-dimen-
sional volume V × t . The alternative is ‘Riemannian volume’, which is generated from the metric s. 
Fortunately, in flat spacetime, the Riemannian volume of any given region will simply be −1 times its 
Euclidean volume. So, if one is finite, so will be the other. And, given that Riemannian volume is the 
same for all observers, so will be the Euclidean volume.
 The Euclidean volume of the region of all points within |s2| = k of p is given by:

volume = ∫
+∞

−∞

4�

3
Δx3dt

= 2∫
1

0

4�

3

√
t2 + k

3

dt + 2∫
+∞

1

4�

3

�√
t2 + k

3

−

√
t2 − k

3
�
dt

27 One benign exception is this. Suppose a person lives a life of infinite duration, containing infinite 
value. If we treat their entire life as a single event and associate it with a single point, then any region 
containing that point will contain infinite value, even if the region has only finite volume.
 But this exception only arises due to the simplicity of how I have so far modelled the world. Lives 
need not be treated as single events; we could instead decompose them into smaller events. Nor must we 
associate events with discrete points in spacetime, rather than with the entire densely-packed regions of 
spacetime they occupy. (See Footnote 12.)
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In fact, we can avoid the problem even more easily. The regions in our sequence 
need not have finite volume. They need only have a finite portion of their volume 
lying within the agent’s future lightcone—in the agent’s causal future. As noted ear-
lier, in practice, we do not need to ever compare worlds that differ anywhere except 
the agent’s causal future. So we can safely assume that, at any point x outside the 
lightcone, the local values in any worlds Wa and Wb under comparison will be such 
that Va(x) − Vb(x) = 0 . So any region of spacetime with only finite volume within 
the agent’s future lightcone will only contain a finite difference in value between 
outcomes.

With this knowledge in hand, we can solve the problem faced earlier when com-
paring Wright and Wleft . As before (and as depicted by the dotted lines in Fig. 16), 
we can construct sequences of regions using proper time/distance, each containing 
points within some fixed |s2| from starting point p . But we can restrict our attention 
to only some of those sequences: those in which each region contains only finite 
value. And we know that there will always be some sequences like this: just let p be 
in the agent’s past; then each region will only have finite volume within the agent’s 
future lightcone, and so only finite value.28 In Wright −Wleft here, starting from one 
such p , the cumulative sum would be 0 at every stage (see Fig. 16). Likewise for any 
p in the agent’s past lightcone.29 And likewise for any p we might choose here that 
gives regions each containing finite value. If we consider only such regions, then we 
can judge Wright and Wleft as equally good, as intuition suggests they are!

That is just what I propose, with Relativistic Spatiotemporal Expansionism 
(RSE).30

RSE: Let Wa and Wb be any worlds with the same spacetime points. Then 
Wa ≻ Wb if there is some starting point p and some distance r′ such that the fol-

28 This can be shown in general. Let p and a (the position of the agent) be any two points such that p 
is in a ’s past lightcone. (We can assume that both points have the same spatial position since there will 
always be some velocity such that, for observers travelling at that velocity, they are at the same spatial 
position.) Take any value of s′ such that a is proper time less than s′ from p . And take the region of 
points in p ’s future lightcone that are proper time exactly s′ from p , corresponding to the curve given 
by s(x,p) = s� . This region—call it R—is asymptotic to the edge of p ’s future lightcone (given by 
s(x,p) = 0 ). So we can take any ray starting at a along the edge of its future lightcone, which will be 
parallel to some ray along the edge of p ’s future lightcone, and the ray will intersect R within finite time. 
The same goes for every ray from a along the edge of its future lightcone so, by symmetry, the edge of 
a ’s future lightcone will intersect R in a sphere. As a result, the region bordered by the edge of a ’s future 
lightcone and R will be compact and have finite Riemannian volume (see Footnote 26). I thank an anony-
mous reviewer for suggesting this proof.
29 Strictly speaking, for p not centred between the two sequences, each valuable event would not imme-
diately be cancelled out by the corresponding event in the other sequence—the cumulative sum would 
still deviate from 0 (though for shorter and shorter intervals). So SE would still fail to say that Wright and 
Wleft are equally good. But that is no great problem—the strengthened principle SE2 (from Wilkinson, 
2021b) deals neatly with situations like this and judges the worlds as equally good. (See Footnote 16.)
30 This definition of RSE generates a sometimes intransitive ≽ relation (see Footnote 31 of Wilkinson, 
2021b). But this is easily remedied, by modifying RSE in line with Wilkinson’s (ibid.: 30) later proposal 
(see Footnote 16). To avoid complicating RSE even further, without much gain, I will stick with the sim-
pler definition used here.
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lowing sum is finite and positive for all r > r′ , and for no starting point p is the 
sum finite and negative for all r > r′.

And Wa ≃ Wb if for there is some starting point p and some distance r′ such 
that the sum is equal to 0, and no starting point p for which it is positive (or 
negative) for all r > r′.

RSE has us follow much the same procedure as SE: sum the values in Wa and Wb 
in order of their distance from p ; if Wa ’s sum takes the lead and keeps it beyond 
some distance r′ , then Wa is better; and, if instead the sums are equal and stay equal 
beyond r′ , then the worlds are equally good. The only differences from SE are: we 
use the distance given by proper time/distance (via |s2| ), to avoid problems with rela-
tivity; and, crucially, we don’t need all starting points p to agree. To say that Wa 
is better, it’s enough to have just one p that gives Wa the winning sum, as long as 
there is no other starting point p′ that disagrees. Similarly, to say that the worlds are 
equally good, it’s enough to have just one p that says that the sums become equal, as 
long as there is no p′ that disagrees.

∑

{x | |s(x,p)2|≤r}

(
Va(x) − Vb(x)

)

Fig. 16  Wright −Wleft
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And RSE succeeds in comparing Wleft and Wright , as illustrated above. We have 
some point p that generates a sequence of expanding regions over which the dif-
ferences between worlds sum to 0 no matter how far we expand. And it so happens 
that no other starting point says otherwise, that the sum is strictly positive or strictly 
negative (and finite)31 beyond some distance r′ . So RSE judges Wleft and Wleft as 
equally good. And, intuitively, so they should be! One world involved sending off 
some sequence of value into space in one direction; the other involved sending it off 
in another, precisely mirrored direction at the same speed; so neither world should 
be any better than the other.

So RSE delivers the intuitively correct verdict in this problem case. And, since it 
uses a distance metric on which all observers agree, its verdicts are absolute. So we 
avoid the problems encountered earlier (and, indeed, can judge W ′

moving
 and Wstationary 

as equally good). The relativistic problem is solved.

7  General Relativity

This new aggregation method, RSE, delivers plausible and absolute verdicts in a 
universe governed by the special theory of relativity. But special relativity only 
approximates the spacetime structure of our universe. Does RSE succeed in an even 
more realistic setting—a universe governed by the general theory of relativity?

Under special relativity alone, spacetime is flat: objects not subject to any force 
travel in straight lines, which respect the properties of Euclidean geometry. But 
under general relativity, depending on the matter and radiation present, spacetime 
may be curved. This curvature corresponds to what we might think of as a gravita-
tional ‘field’—massive objects appear to accelerate towards one another. But, given 
the discrepancies we observe in measuring distance and time (e.g. Hafele and Keat-
ing, 1972), we know that this is not due simply to a field of force; it is due to curva-
ture of spacetime itself.

In a curved spacetime, the spacetime metric s no longer applies universally. Over 
any large interval, measurements of s will no longer be agreed upon by all observers, 
nor will it correspond to the proper time and distance between points. So we have a 
problem: where spacetime is curved, RSE as defined above will fail to deliver ver-
dicts on which all observers agree.

But this problem is easily solved. Every curved spacetime has a near-analogue 
of s, often simply called its metric, or g. This metric depends on the distribution of 
matter and radiation across spacetime. So the measurements it produces between 
two points may depend on the absolute position of those points. But this is fitting, 
since the proper times (or proper distances) between those points depend on curva-
ture, so on absolute position, as well.

One simple example of a curved spacetime is Schwarzschild spacetime, in which 
there is just one massive object32 and nothing else. This closely approximates the 

31 There are some points we might choose that give an infinite value at every single stage of the sum: 
those precisely in line with either of the two sequences of value (but not both). This is why RSE specifies 
that starting points are only allowable if they give finite sums.
32 By assumption, this body has no electric charge nor angular momentum, and the cosmological con-
stant is 0.



1 3

Aggregation in an Infinite, Relativistic Universe  

shape of spacetime close to the Earth. And it comes with a metric g, measurements 
of which match those of proper time and distance, and with which we can construct 
expanding regions.33 We can use g to construct expanding regions around a point p 
in some agent’s past lightcone, each region containing those points within fixed dis-
tance g of p . Those regions will be as illustrated in Fig. 17.

These regions allow us to apply a version of RSE in curved spacetime. They regions 
are similar to those generated by s, just skewed a bit by gravitational curvature—as we 
approach the massive body at r = 0 , they tend towards being perfectly vertical on the 
diagram, matching that body’s path. And, as we see here, only a finite portion of each 
region lies within the agent’s future lightcone.34 So, with the right choice of p , these 
regions will each only contain finite value, as we need them to. On top of that, these 
regions will be constructed the same way by all observers, regardless of their velocity, 
since g is a distance measure independent of the observer’s velocity (as it measures 
proper time and proper distance). And so, by switching our distance metric from |s2| to 
g, it seems that we can easily modify RSE to work in curved spacetime.

In how broad a range of curved spacetimes does this strategy work? It is hard 
to say for sure (and far beyond the scope of a single paper), but I would speculate 
that RSE is likely to work in almost all spacetimes we might face in practice. After 
all, every possible spacetime will come with some distance metric g on which all 
observers agree. And, upon examination, a broad range of other realistic spacetimes 
seem to preserve the key property that: for any point p in the agent’s past lightcone, 
the regions within proper time g of p will overlap with the agent’s future lightcone 
for only a finite volume. For instance, this holds if we move from a Schwarzschild 
spacetime, with just one massive body, to a more realistic spacetime with many such 
bodies—such a spacetime becomes warped (as on the left side of the above figure) 
at many positions rather than just one. But that warping didn’t stop the overlap of the 
agent’s future lightcone and regions around p from having finite volume; nor would 
having similar warping occur elsewhere stop it. And it seems that other realistic spa-
cetimes will not prevent this either—whether we face a spacetime under which the 
universe is expanding or contracting (e.g., a Friedmann-Lemaître-Robertson-Walker 
spacetime), or in which massive bodies are rotating (as approximated by, e.g., Kerr 
spacetime) or have charge (as approximated by, e.g., a Reissner-Nordström space-
time), or even in which entropy is so great that curvature is approximately constant 

33 The Schwarzschild metric g′ is given by the equation(Schwarzschild, 1916):

Here, spatial coordinates x, y,  and z are replaced with polar spherical coordinates r, � , and � . And Δr , 
Δt , and so on are replaced by dr and so on, because g′ only gives the rate of change of the measure at 
each point—since curvature varies across spacetime, any equation in terms of Δt will vary as well. Given 
this, to obtain the distance between two points, we need to take the integral of g′ along a straight line 
between the points, and take the lowest such value—call it g.

g� =
r

r − k
dr2 + r2d�2 + r2 sin2 �d�2

− (1 −
k

r
)dt2

34 This can be shown by a method similar to, but more complicated than, that of Footnote 28 above.
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(e.g., a de Sitter or anti-de Sitter spacetime, as is predicted to characterise the far 
future of our universe according to versions of the flat-� model—see Carroll,, 
2020).35 At least over a wide range of plausible spacetimes our future might resem-
ble, it seems likely that a form of RSE (with the appropriate metric g) will still be 
able to deliver comparisons.36

General relativity also presents a second problem. Recall the method I sug-
gested in Sect.  2 for identifying the ‘same’ (or counterpart) spacetime points 
across worlds: first, identify events outside the agent’s future lightcone with the 
same points in each outcome, since those events are fixed; then, for each point 
p within the future lightcone in some outcome, map it to whichever point q 
in another outcome is the same distances in space and time from every points 

Fig. 17  A sequence of regions each comprised of points within some fixed g of p

35 A full discussion of each of these spacetimes is beyond the scope of this paper, but I would refer inter-
ested readers to Carroll (2004) for detailed descriptions of each.
36 I suspect that this strategy will not always work in Gödel spacetime or other spacetimes that involve 
closed timelike curves. But these seem exotic enough to set aside for present purposes.
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outside the lightcone as p was. But it is now abundantly clear that this relation 
fails—distances in space and time are not absolute but instead differ with the 
velocity of the observer. So we might reformulate the relation: instead, map each 
such p in one outcome to the q in another outcome that is positioned at the same 
distances from each point outside the future lightcone, where distance is meas-
ured with |s2| (or, in curved spacetime, g). All observers agree on those measures, 
so they can agree on which points are the same under this relation.

But this reformulation can still break down in curved spacetimes. Agents will 
sometimes choose between outcomes with different curvature if their actions 
affect the distribution of matter in the universe. And it is possible that the cur-
vature in those outcomes—and so the distances between points—is such that the 
point p in one outcome maps to multiple points in the other (or none at all). This 
is an odd implication for an identity (or counterpart) relation to have!

Fortunately, this problem does not affect RSE. There are two places where the 
identity/counterpart relation can affect RSE’s verdicts. The first: we need to be able 
to expand our regions around the same point p in each world. But we can do this 
even with a relation that misbehaves within our future lightcone—simply pick a 
point p outside the agent’s future lightcone, which will always map to a unique and 
plausible point in every world. The second: for each point x , we want to identify the 
same point across worlds to take the difference in value at that point, which we will 
then sum up over all such points within each region. But nothing much hangs on 
whether some value lies at x or at another point in the region; we really just need the 
(difference in) value across the whole region. So we can avoid any problem here by 
simply assigning Va(x) = 0 (on whichever cardinal representation we are using for 
local values) whenever x is absent from world Wa ; and, when x has multiple coun-
terparts in Wa , simply let Va be the sum of their values. This allows us to sum the 
differences in value across each region without needing to worry whether each point 
has a unique identity/counterpoint in every world. RSE works just fine despite this.

8  Conclusion

Above, we saw a potentially devastating problem for aggregative moral theories: 
thanks to special relativity, many such theories either cannot compare any outcomes 
at all, or else they must allow their comparisons to be dependent on the velocity of 
whoever is doing the comparing.

Many of our existing proposals for how to aggregate value in a physically realis-
tic, infinitely large universe are time-sensitive. Indeed, Jonsson and Peterson (2020) 
and Wilkinson (n.d.(a)) argue that the only plausible aggregative theories in such a 
setting are time-sensitive. But often these time-sensitive theories only work under 
unrealistic assumptions about time. For example, in Sect. 3, we saw that to evalu-
ate outcomes using the standard version of the ‘expansionist’ approach (from Val-
lentyne and Kagan, 1997; Arntzenius, 2014; Wilkinson, 2021b), we need standard 
Euclidean distance over four dimensions to be absolute and observer-independent. 
But it isn’t. So that approach cannot make any judgements at all. Even if we let that 
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measure depend on the velocity of the observer, this approach leads to an absurd 
form of moral relativism—the correct judgement may differ if you change your 
speed enough.

Similar problems can be demonstrated for other theories—the proposals of Val-
lentyne (1993), Bostrom (2011, p. 16), and Jonsson and Voorneveld (2018) all face 
analogous problems, arising in analogous cases. So it seems we must reject all such 
proposals; it seems we must reject aggregative moral theories entirely.

But, as I’ve demonstrated, this problem can be overcome. With careful consid-
eration of the geometry of spacetime, we can modify aggregative theories to still 
deliver judgements, and plausible ones at that, even in a relativistic universe. We can 
even do so in a universe in which spacetime is curved (depending, perhaps, on the 
exact nature of that curvature). We can still compare outcomes based on their total 
aggregate of value, even under the demands of a universe as peculiar as ours.
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