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Abstract The Interagency Working Group Memo on the

social cost of carbon is used to compute the value of

information (VOI) of climate observing systems. A generic

decision context is posited in which society switches from

a business as usual (BAU) emissions path to a reduced

emissions path upon achieving sufficient confidence that a

trigger variable exceeds a stipulated critical value. Using

assessments of natural variability and uncertainty of mea-

suring instruments, it is possible to compute the time at

which the required confidence would be reached under the

current and under a new observing system, if indeed the

critical value is reached. Economic damages (worldwide)

from carbon emissions are computed with an integrated

assessment model. The more accurate observing system

acquires the required confidence earlier and switches

sooner to the reduced emissions path, thereby avoiding

more damages which would otherwise be incurred by BAU

emissions. The difference in expected net present value of

averted damages under the two observing systems is the

VOI of the new observing system relative to the existing

system. As illustration, the VOI for the proposed space-

borne CLARREO system relative to current space-borne

systems is computed. Depending on details of the decision

context, the VOI ranges from 2 to 30 trillion US dollars.

Keywords Value of information � Climate observing

system � Social cost of carbon � DICE � CLARREO

1 Introduction

In early 2010, the United States government published

estimates of the social cost of carbon for use in regulatory

cost–benefit analysis (Interagency Working Group on

Social Cost of Carbon; IWG SCC 2010, hereafter SCC).

The estimates concern the monetized climatic benefits of

regulations for the transportation, electricity, and other

economic sectors that reduce carbon emissions. Since

formal publication of the SCC, it has been employed in

more than 20 regulations ranging from fuel economy

standards for vehicles to air pollution regulations for power

plants to energy efficiency standards for appliances and

equipment (Kopp and Mignone 2012).

The value of learning about climate change has been

emphasized in a host of papers including Kelly and Kolstad

(1999), O’Neill et al. (2006), Webster et al. (2008), and

McInerney et al. (2011). The related notion of value of

design has been used in appraising aeronautical systems

(Brathwaite and Saleh 2013). This paper uses the SCC to

compute the value of information (VOI) provided by pro-

jected climate observing system (COS) improvements

designed to learn about key climate parameters faster than

existing observations. For background on VOI, see Lax-

minarayan and Macauley (2012). The key to computing

this VOI is to place this new COS in a decision context

where its information can be used. Indeed, if the new

information is not used, then the COS can be valued only in

terms of pure knowledge accretion, and its potential social

value is lost. The VOI formalism is the essential tool in

structuring the decision problem in which the social value
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of a new COS can be computed. Although based on the US

baseline for computing the SCC, the climate damages are

worldwide. Switching from a business as usual (BAU) to a

reduced emissions path (see Sect. 4) upon achieving a

given level of confidence that a climate parameter has been

exceeded avoids damages worldwide whose net present

value (NPV) runs into tens of trillions of US dollars.

To illustrate VOI calculations of COSs, this paper

considers the proposed CLARREO space-borne observing

system. Driving this choice is the fact that key accuracy

parameters of this system as compared to the current space-

based systems have been computed (Wielicki et al. 2013).

This initial VOI estimate uses several simplifying

assumptions. Besides the assumptions underlying the SCC,

we use the integrated assessment model DICE coupling

climate change to economic damages (Nordhaus 2008),

and we simplify the decision context in many ways. Sen-

sitivity tests of selected parameters suggest that, while total

societal costs vary greatly, the VOI of accelerated climate

change information is relatively robust against the selection

of a reduced emissions scenario, a climate trigger for

switching to the reduced emissions scenario, and the level

of confidence required for the switch. The main message of

this paper, however, is that VOI calculations of new COSs

are possible, and should be used to assess their potential

contribution, beyond a current baseline, of new observing

systems.

Section 1 describes the SCC. Section 2 discusses the

COS improvements treated in this paper. Section 3

describes the decision context for evaluating the VOI for

the improved COS. Section 4 presents results, and a final

section summarizes and concludes. Supplementary Online

Material gives the mathematical basis for learning a trend

from noisy signals, based on Leroy et al. (2008). The SSC

explicitly introduced quantitative uncertainty analysis into

the social cost of carbon. This is certainly not the last word

on the subject; see Cooke (2012) for background on

uncertainty analysis and climate change.

2 Interagency memo on the social cost of carbon

The SCC is intended to be a comprehensive estimate of the

economic impacts of climate change, including impacts

ranging from (but not limited to) changes in crop produc-

tivity, loss of land to sea level rise, health effects, and

potential economic catastrophes associated with Earth

system tipping points. The SCC does not currently include

costs due to changing international political stability, ocean

acidification, species and wildlife loss, or ecosystem

services.

Calculating the SCC involves specifying a baseline

emissions scenario, computing the NPV of the resulting

climate damage, and subtracting this from the NPV of

damages resulting from adding one extra unit of carbon

emissions in the current time period. Three discount rates

are stipulated for the calculation 2.5, 3, and 5 %. The range

of discount rates is chosen to acknowledge uncertainties in

the appropriate rates for long-term global climate change

(Arrow et al. 1996; Stern 2008). Three integrated assess-

ment models (IAMs) are used to couple emissions to

temperature rise, and to climate damages: DICE (Nordhaus

2008), FUND (Anthoff and Tol 2010; Tol 2002) and PAGE

(Hope 2006). These IAMs combine simple climate, carbon

cycle, and economic models with assumptions about pop-

ulation and income growth, technological change, and

public policies.

For SCC calculations, equilibrium climate sensitivity

(CS) is one of the primary uncertainties. The CS proba-

bility distribution is stipulated to be that of Roe and Baker

(2007), with modifications to improve consistency with the

IPCC AR4 conclusions. CS is defined as the equilibrium

global temperature increase for doubled CO2; its cumula-

tive frequency distribution and probability density function

used in SCC are shown in Fig. 1. The probability density of

CS has a median value of 3 �C, drops rapidly for values

below 2 �C, but drops slowly for high CS values until it is

truncated at a value of 10 �C. The range for 66 % proba-

bility is between 2 and 4.5 �C. The 5th percentile is 1.7 �C,

while the 95th percentile is 7.1 �C (IWG SCC 2010). The

range of CS is critical for SCC calculations as the IAMs

primarily link future climate change economic damages to

a power of the global temperature change, with the typical

relationship being quadratic. In this case, an uncertainty of

CS of a factor of 4 (the 90 % confidence range) can drive

uncertainty in economic impacts of a factor of 16.

There is a very wide range of uncertainty in estimates of

the SCC due to the difficulty of assessing future policies,

economic developments, the climate response to CO2

forcing, and other assumptions used in the analysis (Tol

2005; Kopp and Mignone 2012). The SCC acknowledges

the many uncertainties involved and the need to update

SCC estimates over time to reflect advances in the science

and economics of climate impacts (IWG SCC 2010,

p. 32).1

In spite of these acknowledged uncertainties, the US-

SCC establishes a common decision context and a common

baseline for rigorous VOI computations. This, for the first

time, enables quantitative, monetary valuation of the social

benefits of climate system observations.

1 The interagency report (p. 32) states: ‘‘It is the hope of the

interagency group that over time researchers and modelers will work

to fill these gaps and that the SCC estimates used for regulatory

analysis by the Federal government will continue to evolve with

improvements in modeling.’’.
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Table 1 shows SCC values at 5-year intervals during

2010–2050 in 2007 dollars, for the stipulated discount

rates.

The SCC increases over time reflecting larger incre-

mental damages as physical and economic systems become

more stressed in response to greater climatic change. The

SCC estimates for 2010 range from $5 to $35 per metric

ton of CO2 equivalent depending on the discount rate.2 The

SCC estimate also provides a 95th percentile value for low

probability but high economic impacts as might be found

for high CS and/or climate tipping points such as destabi-

lization of major ice sheets.

3 Climate observing system

Earth is observed more completely today than at any other

time in its history (GCOS 2011; GEO 2005, 2010). Yet

major challenges remain, especially for observations of

climate change, where unprecedented accuracy and rigor

are required to observe subtle but critical climate changes

on decade and longer timescales (Trenberth et al. 2012;

GCOS 2011; NRC 2007). Major challenges remain in

achieving traceability to international physical standards

for space-based global observations (NRC 2007; Ohring

et al. 2005; Ohring 2007), in providing independent

observations and analysis to allow verification of surprising

results (CCSP 2003), and in achieving sufficient sampling

to document climate extremes (Trenberth et al. 2012).

Specific areas of uncertain climate change science with

large impacts on societal costs include uncertainty in the

rate and magnitude of sea level change from the major ice

sheets in Greenland and Antarctica, uncertainty in CS

including cloud and carbon cycle feedbacks, uncertainty in

anthropogenic aerosol radiative forcing, and uncertainty in

future ocean acidification (IPCC 2007). The list is not

exhaustive, but serves to demonstrate the diversity of cli-

mate science challenges. Solving these challenges requires

both improved observations as well as improved climate

system predictive models. More accurate climate predic-

tions, validated by improved observations, can then pro-

vide the basis for more cost-effective and lower risk

climate policies.

Currently, there are no VOI estimates for climate

observations or climate modeling science. In contrast, we

do have more rigorously traceable estimates of the eco-

nomic value of weather predictions (Morss et al. 2008;

Katz and Murphy 2005; Teisberg et al. 2005; Freebairn and

Zillman 2002). Such estimates can be based on an exten-

sive past history of weather events and their economic

impacts. Climate change, meanwhile, has its primary

impacts well into the future, and is a very different pre-

diction challenge than weather (Hurrell et al. 2009; IPCC

2007). Weather prediction is primarily a dynamical pre-

diction based on initial conditions and predicting a specific

place (your city) and a specific instant of time (to within

Fig. 1 Cumulative frequency

distribution of equilibrium CS

used in the US-SCC

calculations (k) (left), and

corresponding probability

distribution function of CS

(right)

Table 1 Social cost of CO2, 2010–2050 (2007 dollars per ton)

Year\Discount rate 5 % avg 3 % avg 2.5 % avg 3 % 95th

2010 4.7 21.4 35.1 64.9

2015 5.7 23.8 38.4 72.8

2020 6.8 26.3 41.7 80.7

2025 8.2 29.6 45.9 90.4

2030 9.7 32.8 50.0 100.0

2035 11.2 36.0 54.2 109.7

2040 12.7 39.2 58.4 119.3

2045 14.2 42.1 61.7 127.8

2050 15.7 44.9 65.0 136.2

Source: US Interagency Working Group (IWG SCC 2010, pp 1–2)

2 CO2 equivalent is a metric measure to compare emissions from

different greenhouse gases based on their global warming potential

(GWP), the cumulative radiative forcing effects of a gas over a

specified time horizon relative to a reference gas. For the procedure

used by the US EPA in inventorying US greenhouse gases, the

reference gas is carbon dioxide (CO2). The CO2 equivalent for a gas is

derived by multiplying the tons of the gas by its associated GWP.
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hours) within a few days into the future. Climate prediction

on decadal up to century scales is primarily an energetics

prediction based on changing boundary conditions and

predicting the climate system response over long time

scales (decades to century) with spatial averages from local

(city) to regional (continent) to global. As a result, weather

prediction VOI metrics are not directly applicable to cli-

mate prediction. The problem of decade to century time

scale climate science VOI is sufficiently daunting and

complex that it has remained largely unexplored. Most

climate-related VOI studies have focused on short-term

seasonal prediction as opposed to long-term climate change

(Katz and Murphy 2005).

Consideration of all of the above climate science

uncertainties and their potential observational improve-

ments is beyond the scope of the present paper. Instead, we

focus on the crucial climate uncertainty identified in the

US-SCC, the uncertainty in CS. This selection is made

because of its large impact on potential future climate

change societal impacts. As mentioned in Sect. 1, an

uncertainty of a factor of 4 in CS leads to a factor of 16

uncertainty in future economic impacts (IWG SCC 2010).

The selection of CS is also motivated by recent advances in

more clearly defining the relationship between decadal

change climate observation accuracy and uncertainty in CS

(Wielicki et al. 2013; Soden et al. 2008). Finally, we focus

on the space-borne component of climate observations

because of its unique global perspective. This focus allows

us to take an initial step toward more rigorous climate

science VOI that can provide a basis for later expansion to

a more complete range of climate science uncertainties.

Climate sensitivity is the result of a wide range of both

negative (stabilizing) and positive (destabilizing) feed-

backs. The Stefan–Boltzmann law provides the strongest

negative feedback. As the Earth’s surface warms, it emits

greater infrared energy. Water vapor feedback is a strong

positive feedback driven by the Clausius Clapeyron rela-

tionship (Soden and Held 2006; IPCC 2007). Ice albedo

feedback is a moderately strong positive feedback (Soden

et al. 2008). The major uncertainty in CS, however, is

cloud feedback (IPCC 2007; Roe and Baker 2007; Soden

and Held 2006; Soden et al. 2008) which produces most of

the uncertainty in the probability distributions shown in

Fig. 1 (Roe and Baker 2007).

There are multiple methods that have attempted to

determine CS, all of which have different uncertainties

(IPCC 2007). Use of glacial/interglacial paleo data has the

advantage of long climate records, but also has concerns

about observation accuracy, spatial sampling, and varia-

tions of CS from the peak of glacial epochs to the inter-

glacial of today (Hansen et al. 2011; IPCC 2007).

Ensemble distributions of climate model simulations

(including perturbed physics ensembles) struggle to relate

climate model prediction errors in climate base state or

seasonal cycles to decade to century-scale CS uncertainties

(IPCC 2007; Roe and Baker 2007; Murphy et al. 2004;

Klocke et al. 2011). Efforts to relate climate change to CO2

concentrations over the last several decades struggle with

both surface and air temperature accuracy (IPCC 2007;

Karl et al. 2006; Hansen et al. 2010) and even more so with

uncertainties in anthropogenic aerosol radiative forcing.

Uncertainty in anthropogenic aerosol radiative forcing

causes a factor of 3 uncertainty in the current total

anthropogenic radiative forcing of the climate system

(IPCC 2007; Hansen et al. 2005). Fortunately, recent

advances in separating climate feedbacks in climate model

simulations (Soden et al. 2008; Soden and Vecchi 2011)

have helped clarify the observations needed on long time

scales, including estimates of decadal changes in cloud

radiative forcing for cloud feedbacks.

Obtaining a full set of observations of the feedbacks,

along with the basic anthropogenic radiative forcing and

global temperature response, would provide fully inde-

pendent verification of CS. In the present paper, we do not

consider all of these variables, but focus on global average

temperature, which is key to observing climate system

response. Measures of surface temperature and tropo-

spheric air temperature are considered here. Future work

can extend this to consider uncertainty in aerosol and cloud

radiative forcing, but direct and indirect aerosol forcing are

more complex issues than low cloud feedback (IPCC 2007;

Hansen et al. 2005).

All estimates of anthropogenic climate change must be

observed against the noise produced by natural variability

of the climate system. This natural variability is driven

primarily by the internal nonlinear dynamics of ocean and

atmosphere in the climate system. Examples include El-

Nino Southern Oscillation (ENSO), Arctic Oscillation, and

Pacific Oscillation, with ENSO typically providing the

largest noise source for global means (Foster and Rahm-

storf 2011; Lean and Rind 2009). Sources of external

natural variability include solar variability and large vol-

canic eruptions such as Pinatubo (IPCC 2007; Lean and

Rind 2009). In order to quantify uncertainty in decadal

trends, we use the simplifying concept of linear decadal

trends as a metric. While decadal change is not strictly

linear, this assumption provides a very useful metric for

understanding the effect of natural variability on uncer-

tainty in observing anthropogenic trends (Weatherhead

et al. 1998; Von Storch and Zwiers 1999; Leroy et al.

2008).

In addition to the noise of natural variability, climate

trend uncertainty can also be increased by uncertainties in

the COS. One of the largest sources of observing system

uncertainty is changing calibration of satellite instruments

over time (Leroy et al. 2008; Karl et al. 2006; Trenberth

Environ Syst Decis (2014) 34:98–109 101

123



et al. 2012). This can be caused either by slow drifts of

instrument calibration over years in orbit, or by differences

in absolute calibration between successive instruments that

either cannot be fully removed during overlap time periods,

or cannot be removed because there is a time gap between

the end of one observation and the start of its replacement.

A second major source of observing system uncertainty is

sampling error which can be caused either by limited

space/time sampling or by systematic drifts in local time of

day sampling for satellite instruments (Karl et al. 2006;

IPCC 2007).

We can combine the sources of uncertainty in climate

trends to determine the total uncertainty in a decadal trend3

dm as (see Leroy et al. 2008, the Supplementary Online

Material contains a derivation):

ðdmÞ2 ¼ 12ðDtÞ�3 r2
varsvar þ r2

calscal þ r2
orbitsorbit

� �
ð1Þ

where Dt is the length of observation period in years, r2
var is

the variance of natural variability and svar is the autocor-

relation time scale of natural variability. The observing

system uncertainties include absolute calibration uncer-

tainty r2
cal and satellite orbit sampling uncertainty r2

orbit.

Equation (1) is general enough to be used for any climate

variable of interest such as temperature, water vapor, cloud

height, sea level, or, for remote sensing observations,

radiance, reflectance, or brightness temperature. In each

case, the variable chosen determines the units of dm, r2
var,

r2
cal, and r2

orbit.

The time scales for satellite instrument calibration are

taken as the instrument lifetime in order to allow for either

instrument drift or gaps between instruments and is

assumed to be 5 years, a typical design lifetime for an

instrument in orbit (Leroy et al. 2008). The time units for

Dt and s determine the time units for the trend dm, and are

taken as years for the values shown in Table 2. The cal-

culation in Eq. (1) uses absolute calibration uncertainty and

not instrument stability as the more rigorous and robust

uncertainty in future observations, since we cannot assume

instruments will overlap, and often cannot prove whether

or not they drift. This uncertainty is in essence the limit

imposed by the need for more accurate traceability to

physical standards (the Systeme International, or SI stan-

dards) in orbit. It is a conservative limit that is chosen in

light of the high cost of societal decisions on climate

change (Leroy et al. 2008; Wielicki et al. 2013). More

complete discussions and derivations of Eq. (1) as well as

the estimates of each error source can be found in Wielicki

et al. (2013) and Leroy et al. (2008).

Figure 2 gives results for the 95 % confidence bound

(1.96 sigma for a two-sided Gaussian distribution) on

climate trend accuracy for global average temperature.

Table 2 provides the Eq. (1) values used in Fig. 2. The

results are shown for a perfect observing system as well as

varying levels of instrument absolute calibration. Tem-

perature trend accuracy is a strong function of satellite

calibration accuracy, but for accuracy below 0.06 K (95 %

confidence), there is little further gain in improvements,

and natural variability becomes the limiting factor for

accuracy in climate trends. Current orbiting infrared

spectrometers used to measure surface and atmospheric

temperature vertical profiles (IASI, AIRS, CrIS, or I/A/C)

have absolute radiometric accuracies ranging from 0.2 to

0.4 K (95 % confidence) (Hilton et al. 2012; EUMETSAT

2011). The CLARREO infrared spectrometer recom-

mended by the NRC Decadal Survey (2007) would

advance in-orbit calibration accuracy by roughly a factor of

5. Global temperature trends over the next few decades are

expected to be *0.2 K/decade (IPCC 2007). Figure 2

shows, for example, that observing a warming trend of at

least 0.1 K/decade with 95 % confidence would require a

20-year observational record for a perfect observing sys-

tem, 22 years for CLARREO, and more than 40 years for

the IASI/AIRS/CrlS system. Alternatively, given 22 years

of climate observation, a system with 0.36 K calibration

accuracy could detect a trend of 0.3 K/decade or more with

95 % confidence.4 A system with only 0.06 K calibration

accuracy could detect trends of 0.1 K/decade or more.

Figure 2 suggests a framework for evaluating the eco-

nomic impact of higher accuracy climate change observa-

tions by studying the ability to reach given levels of

confidence earlier than for a less capable COS. While the

examples given here are for one of the future CLARREO

advances relative to current satellite sensors, the concept is

general and can in principle be extended to a wide range of

climate observations with economic impacts such as sea

level rise, anthropogenic aerosol radiative forcing, carbon

cycle, or ocean acidification. The next section provides an

example of how to link the social cost of carbon discussed

Table 2 Values of natural variability and observation uncertainties

used in Eq. (2) for Fig. 2 (from Wielicki et al. 2013)

Uncertainty source Global temperature trend uncertainty

r (K) s

CLARREO

improved COS

I/A/C current

system

Years

Natural variability 0.085 0.085 2.3

Calibration uncertainty 0.03 0.18 5

Orbit sampling uncertainty 0.018 0.018 1

3 The units in Eq. (1) are [C/year]2, where C is degrees Celsius.

4 Specifically, a trend of 0.3 K/decade is outside the [2.5%, 97.5%]

confidence band.
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in Sect. 2, with the climate observation trend accuracy in

Sect. 3.

4 Decision context for VOI calculations

CLARREO is designed to learn the decadal rate of tem-

perature rise faster than would be possible with existing

global satellite observations. This knowledge is of no

economic value, however, if it is not used. Using the US-

SCC baseline, we monetize this accelerated learning as

averted damages by introducing a decision context in

which this information is used to alter our emissions path.

All calculations are performed with the IAM DICE, which

is freely downloadable at http://nordhaus.econ.yale.edu/

DICE2007.htm. Four emissions paths define the decision

context, BAU, the DICE Optimal path, a path stabilizing

global temperature rise above the pre-industrial level

(lim2.5C), and a Stern report emissions path5 (see Table 3).

Assuming an equilibrium CS of 3C for doubled CO2,

Table 4 shows the damages and temperature rise associated

with these paths. Emissions and calculations of damages

are extended out to 2205, though only the initial

2005–2115 are shown in Tables 3 and 4. Depending on

discount rate, damages after 2115 have very little effect on

NPV. At 2.5 % discount rate, such damages are discounted

over 100 years to \8 % of their 2115 value, while for a

discount rate of 3 % the damages are discounted to less

than 5 % of their 2115 value, and for a discount rate of 5 %

the damages are discounted to \1 % of their 2115 value.

The decision context used to calculate the VOI is as

follows. It is assumed that we begin on the BAU path. A

trigger variable Da (CS, E(t)), a trigger value Ds, and a

confidence level Zs dm are chosen. The trigger variable

may be any observed climate variable, in this study, we

focus on the decadal rate of global temperature rise. When

the trigger value of the trigger variable is exceeded with the

required confidence, we switch from the BAU path to an

alternative path, which may be any of the other paths in

Table 2. The trigger value is exceeded with the required

confidence when

Da CS; E tð Þð Þ � 10 Zsdm [ Ds ð2Þ

where Da is the time varying anthropogenic climate trend

of the climate variable of interest in the absence of natural

variability. This trend is determined using the DICE IAM

from Sect. 2 and is a function of equilibrium climate sen-

sitivity CS and the time varying emissions scenario E(t) as

shown in Table 4 and Fig. 4. The units of this trend are the

units of the climate variable being considered per decade

(e.g., for temperature trends, �C/decade). The confidence

level Zs dm is the one-sided Z statistic for the desired

societal decision confidence level (e.g. Zs = 1.65 for a one-

sided 95 % confidence bound, and Zs = 1.96 for a one-

sided 97.5 % confidence bound). The Z statistic is unit-less

and assumes a normal distribution for the current results.

dm is the standard deviation of uncertainty in anthropo-

genic change for the climate variable of interest. This

uncertainty is determined in Eq. (1) and includes both

natural variability and observing system uncertainty. For

the results here, we use the values of Table 2 in Eq. (1).

The factor of 10 in Eq. (2) converts the units of the climate

variable of interest per year in Eq. (1) to per decade needed

to be consistent with the other terms in Eq. (2). Finally, the

societal decision trigger value Ds is the anthropogenic trend

of the climate variable of interest that would spur society to

take action and change emissions path through technology

change and efficiency change. While CS is currently

unknown to within a factor of 4, Da increases as CS

increases (see Fig. 4 for temperature). Similar increases in

trend absolute magnitude would typically be present for

any climate variable considered (rainfall, cloud cover,

hurricane intensity, etc.). As a result, when climate change

trends become sufficiently large and sufficiently confident,

Fig. 2 The relationship between global average temperature trend

accuracy, length of a climate record, and satellite sensor calibration

absolute accuracy. Current satellite observations include IASI/AIRS/

CrIS weather sensors. CLARREO represents a future higher accuracy

sensor following the NRC decadal survey recommendations (2007).

From Wielicki et al. (2013)

5 This is based on (Nordhaus 2008) where Stern industrial emissions

per decade are given out to 2105. Industrial emissions for Stern are

zero beyond 2095. Total Stern emissions are determined by adding

emissions due to land use changes, which are the same for all

scenarios.
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society then reaches the trigger value and decides to move

to a reduced emissions path. While societal decisions are

complex and will typically involve trends in many climate

variables, this initial study uses a simpler single variable to

illustrate the general concept. Later studies can extend this

concept to multiple climate variables as the decision

trigger.

Using the decision trigger concept in Eq. (2), we com-

pute the decision trigger time for the more accurate

CLARREO advanced COS observation system as well as

the current I/A/C satellite observations. We then compute

the climate damages along the altered emissions paths. The

difference between BAU damages and damages on the

altered path are the averted damages. Upon choosing a

discount rate, the NPV of averted damages is computed.

The VOI of the CLARREO advanced COS is the surfeit of

averted damage, relative to the existing I/A/C system. This

VOI depends on when CLARREO is launched, the trigger

value, the required confidence, and the reduced emissions

path to which we switch. Note that the time to detection of

the trigger value and the damages depend on the (uncer-

tain) CS parameter. The decision context is summarized in

Table 5.

Climate damages in DICE are computed in time period

i (we divide DICE’s 10-year steps into two 5-year steps) by

decrementing global output in period i by the factor

1/[1 ? 0.00284 9 DT2(i)], where DT(i) is the atmospheric

temperature in period i in degrees Celsius above pre-

industrial average. DT(i) is computed in DICE using total

emissions up to time period i. The relationship between

industrial output and emissions in the BAU scenario is also

used for the reduced emissions scenarios. This means that

emissions reductions are not modeled as intelligently

phasing out the dirtiest technologies first. Flanking studies

confirmed that the difference in averted damages between

CLARREO and the current system are insensitive to the

method of emissions reductions. Note that choosing the

trigger value and/or the confidence very high would make

it unlikely that the trigger would be pulled with either the

new or current COS. Similarly, choosing the trigger value

and/or the confidence level very low would cause the

trigger to be pulled immediately for both systems. In either

case, the VOI of CLARREO above the current system

Table 3 Total carbon emissions per year through 2115 for each of the 4 scenarios used in the VOI calculations

Total carbon emissions (GTC per year)

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095 2105 2115

BAU 9.058 10.463 12.395 14.566 16.741 18.716 20.388 21.699 22.593 23.158 23.361 22.640

DICE Opt 9.058 8.956 9.994 10.838 11.227 11.027 10.222 8.887 7.149 5.154 3.044 0.932

Lim2.5C 9.058 8.897 9.868 10.576 10.716 10.106 8.702 6.601 4.079 1.684 0.541 0.401

Stern 9.058 5.200 4.974 4.653 4.211 3.630 2.878 1.951 0.805 0.148 0.118 0.0945

Table 4 Damages in trillion 2008 US international dollars per year and global surface air temperature warming above pre-industrial levels

For CS = 3C

2005 2015 2025 2035 2045 2055 2065 2075 2085 2095 2105 2115

BAU dam 0.103 0.244 0.556 1.173 2.279 4.079 6.773 10.508 15.352 21.285 28.199 35.783

BAU temp 0.731 0.947 1.198 1.477 1.781 2.102 2.433 2.766 3.093 3.410 3.711 3.986

DICE dam 0.103 0.202 0.417 0.774 1.283 1.898 2.507 2.950 3.068 2.730 1.902 0.641

DICE temp 0.731 0.938 1.164 1.401 1.642 1.879 2.101 2.300 2.468 2.600 2.692 2.735

lim 2.5 dam 0.103 0.200 0.410 0.750 1.209 1.702 2.058 2.066 1.592 0.752 0.238 0.197

lim d.5 temp 0.731 0.938 1.162 1.397 1.633 1.861 2.068 2.243 2.376 2.461 2.500 2.500

Stern dam 0.103 0.103 0.166 0.237 0.305 0.353 0.357 0.291 0.124 0.000 0.000 0.000

Stern temp 0.731 0.916 1.081 1.226 1.353 1.461 1.549 1.616 1.658 1.676 1.676 1.661

Damages and temperature warming are shown for each of the 4 scenarios used in the VOI calculations

Table 5 Decision context

Trigger variable Global temperature change/decade

Trigger value Ds Freely choose

Confidence level Zs Freely choose

Launch date After 2020 in 5-year steps

Altered emissions

policy: switch from

BAU to:

DICE Opt Lim 2.5C Stern

Discount rate 2.50 % 3 % 5 %
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would be zero. The trigger value and confidence level

should reflect society’s risk tolerance. High values are very

risk tolerant, low values are very risk intolerant. A flow

chart for the calculations is given in Fig. 3.

Predicting global mean temperature on a 100-year time

scale depends on the CS and on the emissions scenario. The

value of greater accuracy on decadal time scales is related to

the fact that different values of CS are difficult to distin-

guish in early decades. Figure 4 shows the temperature rise

above pre-industrial levels as a function of time for values

of CS spanning the possible range, assuming the BAU

emissions scenario. A gain in accuracy for temperature rise

on decadal scales would leverage large gains in accuracy on

century scales, especially for high CS scenarios.

5 Results

The difference in averted damages based on the CLARREO

and on the existing I/A/C observing system depends on the

year at which the trigger value is exceeded with required

confidence with these two systems. Consulting Eq. (2), it is

clear that reducing the magnitude of the positive definite dm

(left hand side of Eq. 1) leads to reaching this confidence

earlier, though when that happens depends on the unknown

CS. Figure 5 shows plots of the time at which the trigger

value is exceeded with the required confidence for three

observing systems. A perfect observing system has to con-

tend only with natural variability, but not with calibration or

sampling uncertainty. ‘‘Perf’’ shows the time at which a

perfect observing system would yield the required certainty

that the trigger value had been exceeded. CLARREO

(‘‘CLAR’’) and the current system (‘‘I/A/C’’) have to contend

with natural variability and with these latter two sources of

uncertainty, as described in Eq. (1) and Table 2. Figure 4

compares 4 different settings of decision parameters. The

first (upper left panel) is the base case: CLARREO is laun-

ched in 2020, and we require 95 % confidence that the trigger

value of 0.2C/decade is exceeded. In this case, we see that, if

CS is 4, then the perfect observing system discovers this fact

with 95 % certainty in 2035, CLARREO makes the same

discovery in 2040, whereas I/A/C does not become 95 %

certain until 2050.

Raising the trigger value to 0.3C (upper right panel)

shifts all curves up and to the right, and makes the dif-

ference between CLAR and I/A/C a little larger. Requiring

higher confidence (97.5 %) increases the separation

between CLARREO and I/A/C (lower right panel).

Delaying the launch to 2030 (lower left panel) decreases

the difference between CLAR and I/A/C, as the latter

system has a longer head start. We start both observing

systems in 2020 for the base case because of the current

large uncertainties in total anthropogenic forcing of the

climate system. But these uncertainties will reduce as

Sample
value of climate sensitivity

Choose: 
Trigger variable 
Trigger value 
Confidence level 
Reduced emissions
scenario

Compute 
Year in which trigger value is 
exceeded with required 
confidence under current and new 
observing system 

Store: 
Difference of NPV of climate 
damages when switching to reduced 
emission scenario after exceeding 
trigger value, using 2.5%, 3% and 5% 
discount rates 

Fig. 3 Calculation flow chart. The loop for sampling of climate sensitivity values is carried out over the frequency distribution shown in Fig. 1

Fig. 4 Temperature rise for different climate sensitivities under BAU
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aerosol forcing climate science improves and as green-

house gas emissions increase their fraction of total climate

forcing with time (IPCC 2007).

In the base case (upper left panel of Fig. 5), when the

switch from the BAU to a reduced emissions scenario is

triggered by 95 % certainty of at least 0.2 �C temperature

rise per decade, then the averted damages, given CS = 4,

will be lower between 2040 and 2050 if we have the

CLARREO system. To compute the VOI of CLARREO in

this base case, we compute the NPV (under various dis-

count rates) for each value of CS of the difference in

averted damages with and without CLARREO and take

their expected value over the frequency distribution in

Fig. 1.

Table 6 shows the NPV of the difference in averted

damages when switching from BAU to DICE Optimal

emissions is triggered by 95 % confidence that decadal

temperature rise exceeds 0.2 �C, with a 2020 launch date.

When discounting at 2.5 %, damages in the future are

valued more highly and the difference in averted damages

is 17.55 trillion USD (2008); using a 5 % discount rate

reduces the importance and the NPV of the difference in

averted damages becomes 3.14 trillion USD (2008), while

the nominal 3 % discount rate gives averted damages of

11.67 trillion. It must be emphasized that these are

worldwide damages. Using IMF projections out to 20506

and extrapolating out to 2115, VOI in averted US damages

is 7.2, 3.8, and 0.54 trillion USD for discount rates of 2.5,

3, and 5 %, respectively.

This analysis makes several simplifying assumptions.

Sensitivity of results to these assumptions can be partially

addressed by running the calculations under variations of

parameter settings for the decision context. Table 7 shows

the base case and 7 variations. ‘‘Delta mean averted dam-

ages’’ denotes the mean NPV of averted damages under the

decadal temperature rise 

launch 2020 conf 95% trigger 0.2C launch 2020 conf 95% trigger 0.3C 

decadal temperature rise 

launch 2030 conf 95% trigger 0.2C launch 2020 conf 97.5% trigger 0.2C 

Fig. 5 Year in which trigger value of decadal temperature rise is exceeded with given confidence, as function of climate sensitivity

6 http://en.wikipedia.org/wiki/List_of_countries_by_past_and_future_

GDP_(nominal).
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existing I/A/C system minus the mean NPV of averted

damages under CLARREO. This is the VOI of CLARREO

in the stipulated decision context.

Raising the trigger value or the required confidence

increases the difference in time between discovery of

exceedence with CLARREO and the existing system.

Hence, the NPV of mean averted damages increases

relative to the base case. Switching to a more aggressive

emissions reduction scenario also increases the difference

in damages between the two observing systems. On the

other hand, delaying the launch time gives the existing

system a greater head start and reduces the mean averted

damages of CLARREO. Comparing the 2020 CLARREO

launch VOI with the 2030 launch VOI allows an esti-

mate of the cost of delaying an advanced COS at

roughly 250 billion USD in NPV per year of delay.

Given the fact that the STERN emissions scenario is

much more aggressive than the DICE optimal scenario,

one might have expected that switching from BAU to

STERN instead of DICE OPT would have a greater

impact on CLARREO’s VOI. The results are explained

by noting that mean averted damages are the differences

in the NPV of damages when the switch is triggered by

the two observing systems.

6 Conclusion

In all cases shown in Table 7, the VOI of an advanced COS

using the CLARREO example appears to be large relative

to their cost. Current climate observations costs in the US

are roughly 2.5 billion USD/year (USGCRP 2012), with

international efforts of roughly similar magnitude for a

total of 5 billion USD/year on climate observations. A

complete advanced COS might easily reach 3 times these

costs, or roughly an additional 10 billion USD/year glob-

ally. These additional costs would include advances in

climate monitoring, climate process studies, as well as

advanced climate modeling. Such an advanced COS might

then cost 200–250 billion USD in total NPV for 30 years of

observations from 2020 to 2050. But relative to the VOI

estimates in this paper at 2–30 trillion USD in NPV, such

an investment would pay back between 8 and 120 USD per

dollar invested.

Table 6 VOI for CLARREO in base case

VOI: BAU ? DICE optimum emissions; Launch = 2020, Conf = 95 %, Trigger = 0.2 �C

BAU and altered

emissions path

Mean NPV damages

trillion USD 2008

SD Delta mean averted damages:

increase in VOI with CLARREO

advanced COS over I/A/C

current observations

BAU 2.5 % 345.39 158.66 2.5 % 17.55

BAU 3 % 209.14 92.58 3 % 11.67

BAU 5 % 43.02 16.13 5 % 3.14

Discovered by CLARREO VOI-CLARREO 2.5 % 73.10 35.95

VOI-CLARREO 3 % 53.58 20.01

VOI-CLARREO 5 % 20.12 3.38

Discovered by A/C/I VOI-I/A/C 2.5 % 90.65 41.05

VOI-I/A/C 3 % 65.24 21.69

VOI-I/A/C 5 % 23.26 2.87

Table 7 CLARREO VOI

results for decadal temperature

rise

Values in bold are departures

from base case

Delta mean averted damages trillion USD (2008)

Launch date Switch to Confidence (%) Trigger (C/decade) 2.5 % 3 % 5 %

2020 DICE OPT 95 0.2 17.55 11.67 3.14

2020 DICE OPT 97.5 0.2 21.63 14.22 3.66

2030 DICE OPT 95 0.2 14.79 9.16 1.88

2020 DICE OPT 95 0.3 23.34 14.36 2.91

2020 STERN 95 0.2 22.25 15.57 5.01

2020 STERN 97.5 0.2 27.19 18.78 5.75

2020 STERN 97.5 0.3 31.86 20.30 4.65

2030 STERN 97.5 0.3 30.61 18.54 3.50
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While CLARREO is used as the example to demonstrate

the concept, societal decisions will be made using many

climate change signals, so that this value should be con-

sidered to be relevant to an improved overall COS. A

number of caveats apply to these calculations:

1. Following the SCC, only damages are considered in

computing the social cost of carbon. Switching to a

reduced emissions scenario undoubtedly entails costs

which themselves depend on many uncertain param-

eters on both the climate and the economic side. It is

important to appreciate that the SCC is not solving a

social choice problem, it is computing a price that

should be added to the price of carbon to account for

environmental damages. As analogy, the amount we

should be willing to pay for a low emissions car

depends on the damages averted by reduced emissions.

In the same way, the amount we should be willing to

pay for an improved COS depends on the value of

averted damages. This is what the VOI computes.

Mitigation costs are not included in the analysis as

they have no traceability equivalent to that for

damages in the SCC. For example, mitigation cost

estimates in the IPCC report (2007) vary by a factor of

12 for achieving stabilization of CO2 at 535–590 ppm.

Future VOI developments should examine inclusion of

these costs.

2. Again following the SCC, only CS is considered

uncertain. There are many other uncertain parameters

in these calculations, including the carbon cycle, ice

sheet dynamics, economic damages, and abatement

costs. Agreement on uncertainty distributions for these

other uncertain parameters would enable improve-

ments in the present calculations.

3. Observing the decadal temperature rise is not the only

way to learn about CS, nor is it the best way.

Observing cloud radiative forcing and temperature

change together provide more direct information about

cloud feedbacks and therefore CS (Dessler 2010;

Soden et al. 2008). While not shown here, a similar

advance in the knowledge of cloud radiative forcing

and cloud feedback using CLARREO higher accuracy

reflected solar radiation observations has been shown

in Wielicki et al. (2013).

4. Any real decision context is more complex than that

modeled here. For example, these calculations assume

that a switch to a reduced emissions scenario would

happen instantaneously, on a time scale discretized

into 5-year steps. A policy ramp would be more

realistic, involving additional decision parameters.

Since this policy ramp would apply to switches under

both the new and current observing systems, its effect

might be relatively small on VOI values.

Despite these caveats, the results show that a uniform

yardstick, however imperfect, can enable calculations

supporting complex social decisions. The same method

could be used with improved climate and economic models

and with a broader range of uncertain inputs. This in itself

will hopefully motivate improvements in second genera-

tion tools for computing the social cost of carbon, as well

as a better understanding of the economic value of future

advances in climate observations.

Open Access This article is distributed under the terms of the

Creative Commons Attribution License which permits any use, dis-
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