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Abstract This article considers a thin-walled hollow cylinder, which is composed of a fibrous and swellable
hyperelastic material. The fibers are arranged in two families and they are taken to be parallel within each fiber
family. The two fiber families are also assumed to be mechanically equivalent and symmetrically disposed in the
ground substance material. At each instant of the homogeneous swelling, the material is taken to be incompressible.
This article studies the interplay of swelling, fiber orientation, and the mechanical properties of the constituents on
the initiation as well as on the axial propagation of bulging.

Keywords Axial propagation of bulging · Bulging bifurcation · Fiber reinforcement · Hyperelasticity

1 Introduction

Bulging of a pressurized cylinder has been studied in different works such as Fu et al. [1,2] and Merodio and
collaborators [3–7] in the context of volume-preserving material behavior. While Kyriakides and Chang [8] and
Kyriakides [9] show that bulging can be the result of a limit load instability, Fu et al. [2] illustrate that localized
bulging can occur even when there is no maximum pressure.

Formation of a localized bulge is a purely non-linear phenomenon of bifurcation. For isotropic elastomer tubes
with one end closed, when air is forced into the tube from the other end, a necessary condition for bulging is that the
pressure-change in volume response of a section of the constrained tube being inflated uniformly has an up–down
behavior (see, e.g., [9,10]). The bulge then grows radially unless the mechanical response recovers to a second
stable branch, i.e., unless the pressure-change in volume response has an up–down–up behavior which is associated
with axial propagation of bulging. The propagation of bulging into axial direction can be subdivided into two stages.
In the first stage, the inner pressure remains fixed during the ensuing propagation of the bulging instability mode
beyond the onset of bifurcation until a suitable configuration is obtained. Then in the second stage, the inflation
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pressure has to be increased for axial propagation of bulging to continue. The bulging propagation pressure in the
first stage corresponds to the one obtained using the equal-area rule, i.e., the Maxwell (propagation) pressure. In
the case of open-end hollow cylinders, axial propagation of bulging also involves the two periods captured for
closed-end tubes (see Alhayani et al. [11]). Nevertheless, the so-called propagation pressure (first stage) is not
captured with the Maxwell condition and furthermore, bulging can be obtained with no pressure maximum. This
article continues the considerations from [12] and it focuses on these aspects in regard to swelling.

Due to different factors, such as injuries, inflammation, and hormonal changes, biological soft tissue may swell.
Swelling (and shrinking) of soft tissue is accompanied with changes in the mechanical properties (see, e.g., Guo
et al. [13] on swelling of arterial tissue). This change in the tissue volume has been taken into account in different
mechanical modeling works, for example in the context of isotropic material behavior (see, e.g., Tsai et al. [14],
and Pence & Tsai [15,16] for homogeneous swelling and van der Sman [17] for inhomogeneous swelling), in the
context of anisotropic material behavior due to fibrous constituents in a swellable matrix (see, e.g., Demirkoparan
and Pence [18–20]). The effect of residual stresses and swelling in soft tissue modeling has been studied in different
works such as Lanir [21,22] and Sorrentino et al. [23]. The recent work by Topol et al. [24] models the interaction
between soft tissue swelling of a ground substance material and strain stabilization of collagenous fiber to enzymatic
degradation. This effect has been further investigated in the finite element study by Gou et al. [25] for fiber remodeling
homeostasis in swelling cervical soft tissue. The recent works by Demirkoparan and Merodio [12,26] study the
swelling-induced bulging in hyperelastic fibrous tubes.

In the framework of the present work, we study bulging initiation and propagation in a tube open at both ends
made of a swellable Mooney–Rivlin material. In the swellable ground substance material two families of fibers
symmetrically disposed and with the same mechanical properties are embedded. Within a fiber family, the fibers
are parallel to each other. The strain energy density function for the fibers is considered in both exponential and
quadratic form. The use of exponential form for fibrous component has gained some popularity in the modeling
of collagen fibers in arterial tissue. This is due to the fact that the fibers may be wavy when unloaded (see, e.g.,
the review by Holzapfel and Ogden [27]). This article studies the interplay of swelling, fiber orientation, and the
mechanical properties of the constituents on bulging initiation and propagation, and it is organized as follows. In
Sect. 2, the mathematical problem is described including the bulging condition for the materials at hand. In Sect.
3, the analysis of bulging initiation is carried out while Sect. 4 deals with axial propagation of bulging. Section 5
gives some final conclusions.

2 Geometric and mechanical conditions

Consider an incompressible elastic body in its undeformed reference configuration Br , in which the location of a
material point is described by a position vector X. In the deformed configuration B, the location of the same material
point is described by the position vector x, so that the mapping for this deformation is described by the deformation
gradient tensor F = ∂x/∂X. The corresponding left and right Cauchy–Green deformation tensors are B = FFT and
C = FTF.

Now consider a cylindrical coordinate system that is defined by the three base unit vectors {ER,E�,EZ } into
the radial, circumferential, and axial directions, respectively. In the undeformed reference configuration Br , the
location of a hollow cylinder can be described in terms of the cylindrical coordinates {R,�, Z} as

A ≤ R ≤ B, 0 ≤ � < 2π, 0 ≤ Z ≤ L , (1)

where A and B are the inner and outer radii, and L is the length of the cylinder, which may be finite or infinite. The
position vector of a material point X in the undeformed configuration then reads

X = RER(�) + ZEZ . (2)

Prior to its bifurcation, the cylinder is subjected to an axial force N , an inflation pressure P , and a swelling field

v = det(F), (3)
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which is the ratio of the volume of the swollen material to the volume of the unswollen material. Condition (3)
ensures that at each instant of the swelling the material remains incompressible. Any location of the deformed
cylinder is described by the position vector

x = rer (θ) + zez, 0 ≤ θ < 2π, 0 ≤ z < �, (4)

where (r, θ = �, z) are the cylindrical coordinates, {er , eθ , ez} are the three base unit vectors of the deformed
configuration, and � is the length of the cylinder in the deformed configuration. The coordinates of the deformed
configuration are

r = r(R), θ = �, z = λz Z , (5)

where λz is the stretch ratio on the axial direction of the cylinder. The azimuthal stretch ratio corresponds to the
ratio from the deformed to the undeformed radius, λθ = λ = r/R > 0, and the radial stretch then becomes
λr = vλ−1λ−1

z = ∂r/∂R. From (3) it follows that v = (∂r/∂R)(r/R)λz .
Furthermore, in the cylindrical coordinate system the deformation gradient tensor and the left and right Cauchy–

Green deformation tensors become

F = v

λλz
er ⊗ ER + λeθ ⊗ E� + λzez ⊗ EZ , (6a)

B = C = v2

λ2λ2
z
er ⊗ er + λ2eθ ⊗ eθ + λ2

zez ⊗ ez, (6b)

respectively.

2.1 Material behavior

The material of the cylinder consists of a swellable isotropic matrix and reinforcing fibers. From the mechanical
modeling perspective, the material is treated in a homogenized fashion so that any locationX of the cylinder contains
both matrix and fiber material. In an incompressible and swellable solid, the Cauchy stress tensor can be expressed
as

σ = −qI + 1

v

∂W

∂F
FT, (7)

where F is given in (6a), I is the second-order identity tensor and q is a scalar that results from the constraint (3).
The mechanical behavior of a material is described in terms of a strain energy density function

W = W (I1, I2, I4, I5, I6, I7, v), (8)

where I1,I2, I4, I5, I6, and I7 are invariants defined in what follows.
The three principal invariants of C (and due to the symmetry, also of B) in Eq. (6b) have the forms

I1(C) = tr(C) = v2

λ2λ2
z

+ λ2 + λ2
z , (9a)

I2(C) = 1

2

[
[tr(C)]2 − tr

(
C2

)]
= v2

λ2
z

+ v2

λ2 + λ2λ2
z , (9b)

I3(C) = det(C) = v2. (9c)

In modeling of compressible solids, the third invariant represents a change of material volume during the defor-
mation, while in our modeling the material remains incompressible at all stages of the deformation. Hence the
volume change in the material is solely due to swelling. This motivates the swelling v instead of I3 in the argument
structure of the strain energy density function (8).
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Fig. 1 A cylindrical membrane. The material consists of a matrix and fibers. The fibers are arranged in two families of parallel fibers
with equal mechanical properties, and these fiber families are in a symmetric and helical arrangement that guarantees the cylinder
inflation described by Eq. (6) is an admissible deformation. The unit vectors M1 and M2 describe the orientation of the fibers from the
two families in the reference configuration

The fibers are arranged in two families of parallel fibers within each family with equal mechanical properties,
and these fiber families are in a symmetric and helical arrangement that guarantees the cylinder inflation described
by Eq. (6). The unit vectors

M1 = cos βez + sin βeθ , M2 = cos βez − sin βeθ (10)

describe the orientation of the two fiber families in the reference configuration using the angle β (see Fig. 1). These
fibers require further invariants to be introduced and used in the definition of the strain energy density function. In
particular, the invariants associated with the orientations M1 and M2 are

I4 = C : M1 ⊗ M1 = λ2
z cos2 β + λ2 sin2 β, (11a)

I5 = C2 : M1 ⊗ M1 = λ4
z cos2 β + λ4 sin2 β, (11b)

I6 = C : M2 ⊗ M2 = λ2
z cos2 β + λ2 sin2 β, (11c)

I7 = C2 : M2 ⊗ M2 = λ4
z cos2 β + λ4 sin2 β, (11d)

where the invariants I4 and I5 are associated with the first fiber family (the one with orientation angle M1) and the
invariants I6 and I7 are associated with the second fiber family (the one with orientation angle M2).

The invariants I4 and I6 can be interpreted as the squared magnitude of the fiber stretch ratios, while the invariants
I5 and I7 are related to fiber shearing. Due to the symmetric arrangement of the fibers in the cylinder that results
from (10) we obtain I4 = I6 and I5 = I7 (see Eq. (11)).

The expressions of the invariants in Eqs. (9) and (11) motivate the reformulation of the strain energy density
function (8) in terms of the principal stretches as

W (I1, I2, I4, I5, I6, I7, v) = W̄ (λ, λz, v). (12)

In order to simplify the notation, partial derivatives of W̄ shall be indicated by the subscripts as W̄λz = ∂W̄/∂λz ,
W̄λzλz = ∂2W̄/∂λ2

z , etc.

2.2 Bulging bifurcation in the membrane approximation

In the absence of body forces, as it is the case in the present work, the Cauchy stress tensor needs to satisfy div σ = 0.
Let us consider the cylinder in the membrane approximation in which it is taken a unique radius R = (A + B)/2,
the midsurface radius, and H = (B − A) � R is the thickness. In this membrane approximation, the relation
between the inflation pressure P , the axial normal force N , and the deformation is given by [12]

P = H

R

W̄λ

λλz
, N = W̄λz . (13)
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The radial normal stresses are negligible in the membrane approximation, hence we take σrr = 0. Then the
circumferential and axial components σθθ and σzz of the Cauchy stress tensor (7) become

σθθ = λ
∂W̄

∂λ
, σzz = λz

∂W̄

∂λz
. (14)

In order to investigate the possible bulging bifurcation mode of the cylinder, we consider incremental displace-
ments with respect to the deformed configuration (under equilibrium), of the form

δu = δur (z)er + δuz(z)ez, (15)

in which δ is the increment. The bulging condition for a cylinder membrane of radius R and length L is derived in
[7] and given by

f (W̄ , λ, λz) +
(

2πR

L

)2

λ2λz W̄λz W̄λzλz = 0, (16)

where

f (W̄ , λ, λz) = λ2
z W̄λzλz (λ

2W̄λλ − λW̄λ) − (λλz W̄λλz − λW̄λ)
2. (17)

The last term on the left-hand side of (16) vanishes for a cylinder of infinite length, L → ∞, which is the focus of
this analysis.

3 Bulging for specific material models

Different hyperelastic models have been proposed that account for the mechanical behavior of fibrous biological
soft tissue (see, e.g., Chagnon et al. [28]). Let us consider a strain energy density function in the form

W (I1, I2, I4, I5, v) = μ1

2

(
I1 − 3v−2/3

)
+ μ2

2

(
I2 − 3v−4/3

)

+ k1

k̄1

[
exp

(
k̄1 [I4 − 1]2

) − 1
] + k2

k̄2

[
exp

(
k̄2 [I5 − 1]2

) − 1
]
.

(18)

The first two terms on the right-hand side of (18) define the isotropic behavior of the ground substance material, in
which the fibers are embedded, and they describe a swellable modification of the classical Mooney–Rivlin material
(see, e.g., [16]). The material parameters μ1 and μ2 are taken to be independent of the swelling, and we refer to
works such as [24,25] that discuss the changes of the material stiffness with the amount of swelling. The last two
terms on the right-hand side of equation (18) account for the anisotropic material behavior due to the two fiber
families. The expression given in (18) has already made use of the equal properties and the symmetric arrangement
of the fibers that are associated with the first fiber family (and therefore with I4, I5) and with the second fiber family
(and therefore with I6, I7), i.e., the following identities are already used in (18)

k1

k̄1

[
exp

(
k̄1 [I4 − 1]2

)
− 1

]
= k1

2k̄1

∑
i=4,6

[
exp

(
k̄1 [Ii − 1]2

)
− 1

]
, (19a)

k2

k̄2

[
exp

(
k̄2 [I5 − 1]2

)
− 1

]
= k2

2k̄2

∑
i=5,7

[
exp

(
k̄2 [Ii − 1]2

)
− 1

]
. (19b)

The material parameters k1 and k2 can be regarded as relative strength parameters for the fiber stiffness. Moreover
k̄1 and k̄2 are also material parameters which may be regarded as fiber sensitivity parameters. The exponential terms
account for fibers in an initially wavy form that have to be extended in order to fully bear loading. Specialization of
the strain energy density function (18) has been applied in different works. For example, a non-swellable version
of this material model has been applied in the work [29] for modeling of arteries.

For the material model (18) the bulging condition for an infinitely long cylinder (17) can be written as

f = f I1 + f I2 + f I4 + f I5 = 0. (20)
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The first two terms on the right-hand side of (20) account for the behavior of the matrix. In particular, the first term
on the right-hand side of (20) results from the first term on the right-hand side of (18), and the second term of (20)
results from the second term on the right-hand side of (18). In particular, for the material model (18), one can find
that

f I1 = μ2
1(−λ4

zλ
8 + 4λ4

zλ
2v2 + 6λ2

zλ
4v2 + 3v4)

(λ4
zλ

4)
, (21a)

f I2 = μ2
2(−λ6

zλ
8 + 2λ4

zλ
4v2 − λ2

zv
4 + 12λ2v4)

λ2
zλ

4 . (21b)

Moreover the third term in (20) accounts for the exponential response in (18) which is in turn associated with the
invariant I4 (and I6). One can also deduce that

f I4 =
[
λ2
z

{
λ2

[
4k1 sin2 β [I4 − 1] + 8k1λ

2 sin4 β + 16k̄1k1λ
2 sin4 β [I4 − 1]2

] − 4k1λ
2 sin2 β [I4 − 1]

}

× [
4k1 cos2 β [I4 − 1] + 8k1λ

2
z cos4 β + 16k̄1k1λ

2
z cos4 β [I4 − 1]2

]

−
{
λzλ

[
8k1λzλ cos2 β sin2 β + 16k̄1k1λzλ cos2 β sin2 β [I4 − 1]2

]

− 4k1λ
2 sin2 β [I4 − 1]

}2]
exp

(
2k̄1 [I4 − 1]2

)
,

(22)

where I4 is given in terms of the stretches in Eq. (11a). The last term in (20) accounts for the exponential response
in (18) that is associated with the invariant I5 (and I7),

f I5 =
[
λ2
z

{
λ2

[
32k2λ

6 sin4 β + 24k2λ
2 sin2 β [I5 − 1] + 64k̄2k2λ

6 sin4 β [I5 − 1]2
] − 8k2λ

4 sin2 β [I5 − 1]

}

× [
32k2λ

6
z cos4 β + 24k2λ

2
z cos2 β [I5 − 1] + 64k̄2k2λ

6
z cos4 β [I5 − 1]2

]

−
{
λzλ

[
32k2λ

3
zλ

3 cos2 β sin2 β + 64k̄2k2λ
3
zλ

3 cos2 β sin2 β [I5 − 1]2
]

− 8k2λ
4 sin2 β [I5 − 1]

}2]
exp

(
2k̄2 [I5 − 1]2

)
,

(23)

where I5 is given in terms of the stretches in Eq. (11b).

Bulging in the limit k̄1 → 0 and k̄2 → 0: The exponential terms in the strain energy density function reduce to
the standard forms in the limits

lim
k̄1→0

k1

k̄1

[
exp

(
k̄1 [I4 − 1]2

)
− 1

]
= k1 [I4 − 1]2 , (24a)

lim
k̄2→0

k2

k̄2

[
exp

(
k̄2 [I5 − 1]2

)
− 1

]
= k2 [I5 − 1]2 . (24b)

In these limits, the contributions of the fibers to the bulging condition in (22) and (23) become

f I4 = λ2
z

{
λ2

[
4k1 sin2 β [I4 − 1] + 8k1λ

2 sin4 β
] − 4k1λ

2 sin2 β [I4 − 1]
}

× [
4k1 cos2 β [I4 − 1] + 8k1λ

2
z cos4 β

]

− [
4k1λ

2 sin2 β [I4 − 1] − 8k1λ
2
zλ

2 cos2 β sin2 β
]2

,

(25)

and
f I5 = λ2

z

{
λ2

[
32k2λ

6 sin4 β + 24k2λ
2 sin2 β [I5 − 1]

] − 8k2λ
4 sin2 β [I5 − 1]

}
× [

32k2λ
6
z cos4 β + 24k2λ

2
z cos2 β [I5 − 1]

]

− [
8k2λ

4 sin2 β [I5 − 1] − 32k2λ
4
zλ

4 cos2 β sin2 β
]2

.

(26)

The bulging condition function (20) with f I1 and f I2 in (21) and f I4 and f I5 in (25) and (26) corresponds to a strain
energy density function in the form

W (I1, I2, I4, I5, v) = μ1

2

(
I1 − 3v−2/3

)
+ μ2

2

(
I2 − 3v−4/3

)
+ k1 [I4 − 1]2 + k2 [I5 − 1]2 . (27)
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Fig. 2 Equation (20) f = f I1 + f I2 = 0 gives the bulging condition for a Mooney–Rivlin material in the absence of fibers. a shows
different curves of values f/μ2

1 vs. λ for an axial stretch of λz = 1.1 and different ratios of μ1 to μ2. In both figures, the blue curves
show the results for μ2/μ1 > 0, the red curves show the response for μ2/μ1 < 0, and the black curve shows the neo-Hookean response
(μ2 = 0). b depicts relations between the circumferential and the axial stretches λ and λz , respectively, which fulfill the bulging
condition f I1 + f I2 = 0 for different ratios of μ1 to μ2

Different forms of (27) (for instance with μ2 = k2 = 0, etc) have been used in the literature (see, e g., El Hamdaoui
et al. [30,31], Vinh et al. [32], and Goriely [33]). In what follows bulging for different models is analyzed.

3.1 Mooney–Rivlin behavior

Consider a swellable Mooney–Rivlin material having no fibers, which is described by the strain energy density
function (18) with k1 = k2 = 0,

W (I1, I2, v) = μ1

2

(
I1 − 3v−2/3

)
+ μ2

2

(
I2 − 3v−4/3

)
. (28)

This model has been applied in the modeling of the elastinous ground substance behavior of arterial tissue in works
such as [34]. While μ1 is usually taken to be positive, the parameter μ2 can take positive or negative values in the
mechanical modeling. In this case, the bulging condition (20) reduces to f = f I1 + f I2 = 0. As it is clear from (21a)
and (21b), the resulting equation is a polynomial of order 8 in λ and λz (and order 4 polynomial in v). Therefore
numerical methods are utilized to analyze the bulging condition.

Some results are shown in Fig. 2 for an unswollen material (v = 1). In both panels, the blue curves show the
results for μ2/μ1 > 0, the red curves show the response for μ2/μ1 < 0, and the black curve shows the neo-Hookean
response (μ2 = 0).

Figure 2a shows different curves f/μ2
1 vs. λ for an axial stretch of λz = 1.1 and different ratios of μ1 to μ2.

These curves take larger values for f when μ2 increases. The curve for μ2 = −μ1 does not take positive values
for f/μ2

1. Figure 2b depicts relations between the circumferential and the axial stretches λ and λz , which fulfill the
bulging condition f I1 + f I2 = 0 for different ratios of μ1 to μ2. Notice that for μ2 = −μ1 and for the depicted
values for λz and λ the bulging condition f = 0 is not fulfilled.

3.2 Fibers in neo-Hookean Matrix

In this section, we consider two fiber families that are embedded in a swellable neo-Hookean ground material
(μ2 = 0). Despite its simple form, the neo-Hookean model is often sufficient in describing the mechanical behavior
of a ground material, in which the fibers are embedded. In the following parts, we study the bulging behavior of
fibers with a mechanical behavior described by either I4 or I5.
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Fig. 3 Bulging for a fiber-reinforced neo-Hookean material (29). a shows the function (20), which is f = f I1 + f I4 (normalized by
the square of the shear modulus μ1), for an axial stretch λz = 1.1, β = π/4, k1 = μ1/100, and for three swelling ratios v = 1 (no
swelling), v = 1.1, and v = 1.2. The solid lines represent results for k̄1 → 0 and the dashed lines represent results for k̄1 = 0.4. b
shows different combinations for λz and λ that fulfill the condition f I1 + f I4 = 0 for β = π/4, k1 = μ1/100, and for three swelling
ratios v = 1, v = 1.1, and v = 1.2. The different line styles represent the results for different values of k̄1

3.2.1 Fiber behavior in terms of I4 (k1 �= 0, k2 = 0 in (18))

Let us consider a neo-Hookean matrix (μ2 = 0) with embedded fibers and k1 �= 0, k2 = 0, for which the strain
energy density (18) becomes

W (I1, I4, v) = μ1

2

(
I1 − 3v−2/3

)
+ k1

k̄1

[
exp

(
k̄1 [I4 − 1]2

) − 1
]
. (29)

The contribution of the fibers to the strain energy density function is described by the exponential term and the
invariant I4. This model has gained some popularity in the modeling of mechanical behavior of arteries (see, e.g.,
[27,35]). The exponential form is motivated by the observation that many biological materials have a common
“exponential-shaped” stress–strain curve [36]. Some aspects of the bulging bifurcation for (29) have been studied
in [26]. This article continues that investigation of the bulging bifurcation, which will then also serve as a reference
for the other models analyzed in what follows in this article.

For the strain energy density function (29), (20) becomes f I1 + f I4 = 0, where f I1 is given by Eq. (21a) and f I4
is given by Eq. (22).

Some conditions for bulging are studied in the two panels of Fig. 3, in which the results for the three swelling
ratios v = 1, v = 1.1, and v = 1.2 are shown using different line colors.

Figure 3a shows the function (20), which is f = f I1 + f I4 (normalized by μ2
1), for an axial stretch λz = 1.1,

β = π/4, and k1 = μ1/100. Increasing values for k̄1 or v lead to larger values of f . The solid lines represent results
for k̄1 → 0, which corresponds to the mechanical response of (27) for μ2 = k2 = 0. The dashed lines represent
the results for k̄1 = 0.4. When k̄1 = 0.4 bulging may occur for v = 1, while if k̄1 = 0.4 and v = 1.2 bulging will
not occur because f remains positive.

Figure 3b shows different combinations for λz and λ that fulfill the condition f I1 + f I4 = 0 for β = π/4 and
k1 = μ1/100. The different line styles represent the results for different values of k̄1. This diagram shows that as
k̄1 → 0 the curves are decreasing so that for an axial stretch λz we find a unique value of the azimuthal stretch λ on
the depicted range. On the other hand, when k̄1 > 0 a value of the axial stretch may have multiple corresponding
values of the azimuthal stretch λ associated with bulging.

The examples of Fig. 3 are restricted to a fixed value β = π/4 and the impact of the fiber orientation on the
bulging for a fiber-reinforced neo-Hookean material (29) is studied in Fig. 4.

Figure 4a shows the function (20) for f = f I1 + f I4 (normalized by μ2
1) for an axial stretch λz = 1.1,

k1 = μ1/100, v = 1, k̄1 = 0.4, and for different values for β on different ranges for f/μ2
1. In the case β = 0 the

fibers are parallel to the the axial direction of the cylinder, M1 = M2 = ez , and in the case β = π/2 the fibers are
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Fig. 4 Impact of the fiber orientation on bulging for a fiber-reinforced neo-Hookean material (29).a shows the function (20) f = f I1 + f I4
(normalized by the square of the shear modulus μ1) for an axial stretch λz = 1.1, k1 = μ1/100, v = 1, k̄1 = 0.4, and for different
values for β on different ranges for f/μ2

1. The polar diagram of b shows different combinations for β (circumferential orientation) and
λ (radial values) that fulfill the condition f I1 + f I4 = 0 for k1 = μ1/100, k̄1 = 0.4, and λz = 1 for the three swelling ratios v = 1,
v = 1.1, and v = 1.2

oriented in the circumferential direction of the cylinder, M1 = −M2 = eθ . The different curves show that if β is
sufficiently close to π/2, then bulging will not occur.

The polar diagram of Fig. 4b shows different combinations for β (circumferential orientation) and λ (radial
values) that fulfill the condition f I1 + f I4 = 0 for k1 = μ1/100, k̄1 = 0.4, and λz = 1 and the three swelling ratios
v = 1, v = 1.1, and v = 1.2. This diagram shows that the smallest values of λ that fulfill the bulging condition
f I1 + f I4 = 0 occur for β = 0 (β = ±π ), while the largest values of λ that fulfill this condition occur for β = ±π/2.
The figure shows symmetries with respect to horizontal and vertical axes of the polar diagram.

3.2.2 Fiber behavior in terms of I5 (k1 = 0, k2 �= 0 in (18))

Let us now consider a neo-Hookean matrix with embedded fibers and k1 = 0, k2 �= 0, for which the strain energy
density function (18) becomes

W (I1, I5, v) = μ1

2

(
I1 − 3v−2/3

)
+ k2

k̄2

[
exp

(
k̄2 [I5 − 1]2

) − 1
]
. (30)

In this model, the contribution of the fibers to the strain energy density function is described in exponential form
by the invariant I5. For this strain energy density function the bulging condition (20) becomes f = f I1 + f I5 = 0,
where f I1 is given in Eq. (21a) and f I5 is given in Eq. (22).

Figure 5 shows the bulging condition for three swelling ratios, which are highlighted by different line colors. In
particular, Fig. 5a shows the function (20) for f = f I1 + f I5 (normalized by μ2

1) for an axial stretch of λz = 1.1,
β = π/4, and k1 = μ1/100. The solid lines represent results for k̄2 → 0, and the dashed lines represent the results
for k̄2 = 0.001.

Figure 5b shows different combinations for λz and λ that fulfill the condition f I1 + f I5 = 0 for β = π/4,
k2 = μ1/100, k̄2 → 0, and for the three swelling ratios v = 1, v = 1.1, and v = 1.2.

Figure 6 depicts the impact of fiber orientation on bulging for the fiber-reinforced neo-Hookean material (30).
Figure 6a shows the function (20) for f = f I1 + f I5 (normalized by the square of the shear modulus μ1) for an

axial stretch of λz = 1.1, k2 = μ1/100, v = 1, k̄2 = 0, and for different values β.
The polar diagram of Fig. 6b shows different combinations for β (circumferential orientation) and λ (radial

values) that fulfill the condition f I1 + f I5 = 0 for λz = 1.00, k2 = μ1/100, k̄2 = 0.0, and two swelling ratios
v = 1 and v = 1.2. This diagram shows the following for values π/2 ≥ β ≥ 0. As β increases from β = 0, the
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Fig. 5 Bulging for a fiber-reinforced neo-Hookean material (30). a shows the function (20) for f = f I1 + f I5 (normalized by μ2
1) for

an axial stretch of λz = 1.1, β = π/4, k2 = μ1/100, and for the three swelling ratios v = 1, v = 1.1, and v = 1.2. The solid lines
represent results for k̄2 → 0, and the dashed lines represent the results for k̄2 = 0.001
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Fig. 6 Impact of fiber orientation on bulging for a fiber-reinforced neo-Hookean material (30). a Shows the function (20) for f =
f I1 + f I5 (normalized by the square of the shear modulus μ1) for an axial stretch of λz = 1.1, k2 = μ1/100, v = 1, k̄2 = 0, and for
different values for β. The polar diagram of b shows different combinations for β (circumferential orientation) and λ (radial values)
that fulfill the condition f I1 + f I5 = 0 for λz = 1.00, k2 = μ1/100, k̄1 = 0.0, and for the two swelling ratios v = 1 and v = 1.2

values of λ associated with bulging increase until β reaches an angle close to π/6 from which as β increases the
values of λ associated with bulging decrease.

3.2.3 Fiber behavior in terms of both I4 and I5

As a last example of this section, we now consider a swellable neo-Hookean matrix containing two families of
symmetric fibers, for which the strain energy density is given by (27) with μ2 = 0. In this case, the strain energy
density function is formulated in terms of both I4 and I5.

Figure 7 shows combinations for k1 ≥ 0 and k2 ≥ 0 that fulfill the bulging condition (20) for λ = 2 with f I1
given by (21a), f I2 = 0, and f I4 and f I5 given by (25) and (26), respectively, with λz = 1.1, three swelling values
v = 1, v = 1.1, and v = 1.2 and different values of β. Fiber winding angle values β = π/6 and β = π/4 are used
in Fig. 7a and b, respectively. Under these conditions there is only one solution. This is not the same for β = π/3.
Under these circumstances, there are two positive roots fulfilling the bulging condition(20), which are shown in
Fig. 7c and d.
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Fig. 7 This figure shows combinations for k1 ≥ 0 and k2 ≥ 0 that fulfill the bulging condition (20) for λ = 2 with f I1 given by (21a),
f I2 = 0, and f I4 and f I5 given by (25) and (26), respectively, where k1 and k2 are normalized by μ1. These figures take λz = 1.1 and
swelling ratios v = 1, v = 1.1, and v = 1.2 for the matrix. a is for β = π/6 and b is or β = π/4. There is a unique solution under
these circumstances. On the other hand, c and d show solutions for β = π/3

4 Axial propagation of bulging under swelling

Axial, quasi-static propagation of a bulging instability in thick-walled cylinders may be subdivided into two stages.
In the first stage, the inner pressure remains constant during the ensuing propagation of the bulging instability mode
beyond the onset of bifurcation until a suitable configuration is obtained. In the second stage, in a subsequent motion,
for an ongoing axial propagation of the bulging the inflation pressure has to be increased. These configurations
can be described by two uniform cylinders, one that is characterized by the pair of azimuthal and axial stretches
(λθ1, λz1) and other that is characterized by the pair (λθ2, λz2), and by a transition zone between these cylinders
(see Fig. 8). Furthermore, it shall be noticed that radial expansion of bulging is related to a decrease of pressure
beyond the onset of bulging. These two pairs (λθ1, λz1) (λθ2, λz2) fulfill the conditions [12]

∂Ŵ

∂λz

∣∣∣
λθ=λθ2

λz=λz2
− λ2

θ2 − λ2
θ1

2λθ1λz1

∂Ŵ

∂λθ

∣∣∣
λθ=λθ1

λz=λz1
− ∂Ŵ

∂λz

∣∣∣
λθ=λθ1

λz=λz1
= 0, (31a)

Ŵ
∣∣∣
λθ=λθ2

λz=λz2
− λz2

∂Ŵ

∂λz

∣∣∣
λθ=λθ2

λz=λz2
− Ŵ

∣∣∣
λθ=λθ1

λz=λz1
+ λz1

∂Ŵ

∂λz

∣∣∣
λθ=λθ1

λz=λz1
= 0, (31b)

λθ2λz2
∂Ŵ

∂λθ

∣∣∣
λθ=λθ1

λz=λz1
− λθ1λz1

∂Ŵ

∂λθ

∣∣∣
λθ=λθ2

λz=λz2
= 0, (31c)

that can be derived after some manipulations from either [2] or [11]. While the works [2,11] do not include swelling,
the system of Eq. (31) has been studied for an swellable fiber-reinforced matrix in [12], where the material has been
taken to remain incompressible at all instants of swelling.
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Fig. 8 Cylindrical membrane under a constant inner pressure: bulge in equilibrium after bifurcation. Two uniform cylinders are shown,
one that is characterized by the pair of azimuthal and axial stretches (λθ1, λz1) and other that is characterized by the pair (λθ2, λz2).
These cylinder are connected by a transition zone between these cylinders

In what follows, we study axial propagation of bulging by means of some numerical examples. Results are
presented in the different parts of Table 1.

Consider a swellable Mooney–Rivlin material with a strain energy density given by Eq. (28). Table 1a shows
results for axial propagation of bulging under swelling. This table shows the pairs (λθ1, λz1) and (λθ2, λz2) for
λz1 = 1.1 and different values for the swelling v that are determined from system of Eq. (31). The results are shown
for μ2 = 0 (neo-Hookean specialization) and for μ2 = −μ1/2.

We now consider a neo-Hookean matrix with embedded fibers and k1 �= 0, k2 = μ2 = 0, for which the strain
energy density function (18) takes the form (29). Table 1b shows the pairs (λθ1, λz1) and (λθ2, λz2) for λz1 = 1.1,
and for the material parameters k1 = 0.05μ1 and k̄1 = 0.1, and for different values of the swelling v that are
determined from system of Eq. (31).

In a last example, let us now turn to study a neo-Hookean matrix with embedded fibers and k2 �= 0, k1 = μ2 = 0,
for which the strain energy density function (18) takes the form (30). Table 1c shows the pairs (λθ1, λz1) and
(λθ2, λz2) for λz1 = 1.1, and for the material parameters k2 = 0.01μ1 and k̄2 = 0.01, and for different values of
the swelling v that are determined from system of Eq. (31).

5 Concluding remarks

This article studies the effect of swelling, as well as other factors, on bulging initiation and propagation of pressurized
membranes under axial loading. The material is taken to be hyperelastic and reinforced by two fiber families in
helical arrangements.

In our present modeling, the fibers are taken to be parallel to each other within a fiber family. The article [12]
studies bulging bifurcation for a fiber-reinforced cylinder, in which the fiber dispersion is quantified by the so-called
κ-model [37]. Modeling of fiber dispersion has been beyond the scope of this article, and for different modeling
techniques that account for fiber dispersion we refer to the review [38]. The mechanical properties of the constituents
have been taken to be time-independent, and for example viscoelastic behavior has been neglected. In biological
soft tissue, collagen fiber undergoes remodeling processes that are related to different biochemical and physical
effects such as their stretch history [39]. The interplay of inflation behavior and their instabilities in combination
with fiber remodeling has been studied in [40]. In this work, the hollow cylinder has been studied in the membrane
treatment. The recent article studies the inflation of thick-walled cylinders with mechano-sensitive fiber remodeling
[41].
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Table 1 Panel (a): Axial propagation of bulging under swelling for the Mooney–Rivlin material (28) The table shows the pairs (λθ1, λz1)

and (λθ2, λz2) for λz1 = 1.1 and different values for the swelling v that are determined from system of Eq. (31). The results are shown
for μ2 = 0 (neo-Hookean specialization) and for μ2 = −μ1/2. Panel (b) studies axial propagation of bulging under swelling for a
neo-Hookean matrix and fiber behavior in terms of I4 (29). It shows the pairs (λθ1, λz1) and (λθ2, λz2) for λz1 = 1.1, for the material
parameters k1 = 0.05μ1 and k̄1 = 0.1, and for different values of the swelling v that are determined from system of Eq. (31). The results
are consistent with those that have been obtained by Demirkoparan & Merodio [12] and Alhayani et al. [11]. Panel (c) studies axial
propagation of bulging under swelling for a neo-Hookean matrix and fiber behavior in terms of I5 (30). It shows the pairs (λθ1, λz1)

and (λθ2, λz2) for λz1 = 1.1, for the material parameters k2 = 0.01μ1 and k̄2 = 0.01, and for different values of the swelling v that are
determined from system of Eq. (31)

(a)

v μ2 = 0 μ2=−μ1/2

λz2 λθ1 λθ2 λz2 λθ1 λθ2

1.00 1.1021 1.6120 1.6160 1.1012 1.1908 1.1921

1.10 1.1017 1.6836 1.6869 1.1031 1.2333 1.2363

1.20 1.1014 1.7520 1.7549 1.1012 1.2743 1.2754

(b)

v k1=0.05μ1, k̄1 = 0.1

λz2 λθ1 λθ2

1.00 1.1675 1.8450 1.9451

1.01 1.1565 1.8630 1.9464

1.02 1.1449 1.8815 1.9477

1.03 1.1328 1.9008 1.9489

1.04 1.1199 1.9210 1.9501

(c)

v k2=0.01μ1, k̄2 = 0.01

λz2 λθ1 λθ2

1.00 1.1007 2.4779 2.4781

1.01 1.1014 2.4796 2.4801

1.02 1.1013 2.4808 2.4813

1.03 1.1011 2.4817 2.4821

1.04 1.1010 2.4829 2.4833

The herein presented results may have implications in the initiation and propagation of aneurysms in the different
layers of arterial tissue.
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