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Abstract In this work, an eco-epidemic predator–prey model with media-induced response function for the inter-
action of humans with adulterated food is developed and studied. The human population is divided into two main
compartments, namely, susceptible and infected. This system has three equilibria; trivial, disease-free and endemic.
The trivial equilibrium is forever an unstable saddle position, while the disease-free state is locally asymptotically
stable under a threshold of delay parameter τ as well as R0 < 1. The sufficient conditions for the local stability of
the endemic equilibrium point are further explored when min{R0,R∗

0} > 1 . The conditions for the occurrence of
the stability switching are also determined by taking infection delay time as a critical parameter, which concludes
that the delay can produce instability and small amplitude oscillations of population masses via Hopf bifurcations.
Further, we study the stability and direction of the Hopf bifurcations using the center manifold argument. Further-
more, some numerical simulations are conducted to validate our analytical findings and discuss their biological
inferences. Finally, the normalized forward sensitivity index is used to perform the sensitivity analysis of R0 and
R∗

0.

Keywords Hopf bifurcation · Media awareness · Sensitivity analysis · SI Model · Stability switches · Time delay
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1 Introduction

In our daily life, there are many unhygienic and contaminated things which affect our health. The fruits and
vegetables, which we eat now, also became adulterated and may have a severe effect on human health. The interaction
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between adulterated foods and human is similar to a prey–predator interaction. This interaction may be decreased
exponentially with the spreading of media awareness.

In a recent scenario, adulteration is a serious concern and normally applies to supplementing adulterated matter
to the drink or food, which is intended to be sold to increase the quantity of the product, which is done either for
earning more money in short time or by carelessness in protection, processing, storing, transportation, marketing,
etc. The adulteration in fruits or vegetables increases the impurities in it, which will be hazardous for human health.
Our body needs a continuous supply of calories and nutrients for the healthy growth of cells, tissues, and organs,
and for this purpose, we use adulterated vegetables or fruits continuously. The presence of adulterants in fruits and
vegetables, like arsenic, lead, copper, calcium carbide, malachite green, wax coating, washing powder, and brick
powder, causes several deadly diseases, like cancer, brain hemorrhage, hormonal imbalances, appendicitis, liver
disorder, digestive problems, and gastric problems as cited in [1,2]. Some of them are already present in our body
in balanced measure, but in excess, it will become poisonous. Thus, adulteration in fruits and vegetables becomes
a paramount problem for our society.

Many provisions have been made by the government to control the problem of adulteration in fruits and vegetables
and to control the disease spread by them, but whether these are being followed or not remains uncertain. However,
the media has played an essential role in the promotion of these provisions and making conscious people aware
of this problem. Media, being the best source of information, can not only change the individuals’ role but also
increases the governmental health administration engagement to regulate the diseases spread by the consumption
of adulterated food. The most prominent source of knowledge about food adulteration is mass media, especially
television (65%). The public obtained many food scandals proved by media rather than supervision officials, which
seems to be playing an increasingly essential role in exposing food-safety problems [3]. Media also makes people
acquainted with the diseases and preventive practices, and informed population start practices like social distancing,
vaccination, etc. and try to minimize their risks of becoming infected. These behavioral shifts triggered by media
may happen in an unanticipated epidemic pattern [4]. Recent studies recommended that education and watching
TV have a meaningful impact in restricting the spread of HIV/AIDS among married couples in Bangladesh [5,6].
For other diseases like childhood diseases, Malaria, Cholera, and Pandemic influenza, propagation can be limited
media-induced awareness (e.g., social networking sites, newspaper, TV) and further interpersonal conversation
can modify the response of population in the presence of the prevailing disease [7,8]. Thus, the media play an
important role in reducing the problem of food adulteration and in controlling the diseases spread by adulteration.
In last decade, several mathematical models have been developed in controlling of infectious diseases with media
awareness [9–12], but no one has paid attention to mathematical models for the dynamics of diseases spread by the
consumption adulterated foods.

Naturally, the diseases can be spread when the human population come into contact with adulterated food
and eat it. This types of interaction in the literature are commonly known as prey–predator interaction. The first
prey–predator model was introduced by Lotka and Volterra [13,14]; after that many prey–predator models have
been formulated by ecologists and mathematicians to understand the dynamics of interacting populations [15–18].
Dynamics of prey–predator models are generally delineated by a functional response, which is the number of prey
successfully attacked by a per predator as a function of prey density [19]. Skalski and Gilliam [20] suggested
that there are only three primary functional responses which can provide better descriptions of the dynamics of
predator–prey interaction by presenting statistical evidence.

Here, we will study a new response function other than these, which will be influenced by media and known as
media-induced response function. In this study, we have taken adulterated food as prey, while the human population
as a predator population. Further, the human population is classified into two classes, namely susceptible and
infected. The propaganda of interaction mainly affects the effective contact rate of susceptible individuals, and it
can increase the awareness of prevention and reduce the number of contact of susceptible by adjusting the media
awareness. Hence, the media-induced response function is defined as a functional response, which is the number
of prey successfully attacked by a per susceptible predator in the presence of infected predator with media effect
as a function of prey and infected predator densities. In the absence of media effect, the response function will be
linear, and once the outbreak of adulteration increases, the number of infections also increases. So in the presence
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of media, the susceptible persons restrict themselves from eating adulterated food. Hence the response function
exponentially decreases. Thus the media-induced response function is more suitable and realistic to study the effect
of food adulteration on the human population.

The susceptible person may become infected by eating adulterated food. Thus conversion from susceptible to
infected is not instantaneous, and actually, it requires a period, after that the susceptible may become infected. So,
based on this concept, we consider an eco-epidemic model, where the delay period partitioned the human population
into two stages: the early and later stages. Assume that the individuals in the early stage can transfer to the later
stage. When susceptible human population eats the adulterated food, it will be counted in the early stage as it takes
a constant time to develop the infection inside the susceptible population and then transfers into the later stage, i.e.,
infected individual class through a delay term. In the last decade, several researchers have increased their attention
on the epidemic models with multiple phases of infections, where infectivity passes through consecutive phases
of infection [21–24]. Thus, we believe that this is the first time where an eco-epidemic prey–predator model with
media-induced response function and multiples stages through time delay is considered to study the dynamics of
diseases spread by food adulteration.

The paper is organized as follows: Sect. 2 deals with the development of a mathematical model. The system
dynamics and the existence of equilibria are discussed in Sect. 3. The stability analysis is determined in Sect. 4. The
stability and direction of Hopf bifurcation are studied in Sect. 5. Further, the numerical simulations and discussion
are given in Sect. 6. Sensitivity analysis of the thresholdR0 is performed in Sect. 7. Finally, a conclusion is presented
in the last section.

2 Model development

In this section, we will develop a prey–predator model with media-induced interaction of adulterated food and human
population, where the adulterated food will be used as a prey population while human as a predator population.
Further, the predator will be divided into two compartments, namely susceptible/latently infected and infected. Here
it is assumed that all the newborns are susceptible/latently infected and can be infected through the consumption
of adulterated food, and this will be the only source of infection in the human population. Moreover, it is assumed
that the infected predator population is only infected, but not infectious, and they cannot spread any disease. Let
x(t), y(t), and z(t) be densities of prey, latently infected and infected human/predator population, respectively, at
time t . The basic assumptions of our model are as follows:

(A1) The prey population is growing in a logistic manner with an intrinsic growth rate r and carrying capacity K .
(A2) The predation of adulterated foods by the susceptible human is influenced through the information spread

by media, which is represented in terms of the media-induced response function βe−mz(t)x(t), where β is
the predation rate and m is the density of media awareness corresponding to the predator population. This
term represents the predation, which influences through the information spread by media in proportion to
the infected person. Thus, when the media increases awareness, the predation rate exponentially decreases.
Hence, media-induced response function is exponentially decreasing due to media awareness in the presence
of infective person (as suggested in [25]).

(A3) In this paper, we discussed about only those susceptible human population, whose growth is completely
dependent on adulterated food. Hence the growth of this susceptible population is proportional to the predation
rate β f (x(t), z(t))y(t)), with proportionality constant k as conversion rate. The same population dies out
naturally with mortality rate d1.

(A4) The term βe−mz(t)x(t)y(t) does not represent the incidence or disease transmission. It shows the predation,
where kβe−mz(t)x(t)y(t) represents the growth of susceptible predator in form of energy conversion. Also,
a fraction of this population dies out naturally with the rate d1 and the remaining part of susceptible human
population becomes infected after a time period τ as the conversion from one stage to another is not instan-
taneous (similar to that considered by several researchers in [26–28], where the predator has two stages:
immature and mature). Hence the term kβe−d1τ f (x(t − τ), z(t − τ))y(t − τ) represents the total number
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Table 1 Parameters descriptions of the proposed system (2.1)

Parameter Description Unit

r Intrinsic growth rate of prey time−1

K Carrying capacity of prey ind

β Predation rate ind−1time−1

m Coefficient of media awareness –

k Conversion rate –

d1 Death rate of susceptible predator time−1

d2 Death rate of infected time−1

τ Time period to occur infection time

of infected persons, who joined the susceptible predator at the time t − τ , where 0 < e−d1τ ≤ 1. If we put
τ = 0 in the model, the susceptible population becomes extinct and it immediately becomes infected. In this
case, we have to considered only two-dimensional system, i.e., adulterated food and infected human.

(A5) The infected predator dies out naturally with mortality rate d2.

Keeping the above assumptions in mind, our proposed mathematical model is ruled by the following system of
differential equations:

dx(t)

dt
= r x(t)

(
1 − x(t)

K

)
− βe−mz(t)x(t)y(t),

dy(t)

dt
= kβe−mz(t)x(t)y(t) − d1y(t) − kβe−d1τ e−mz(t−τ)x(t − τ)y(t − τ),

dz(t)

dt
= kβe−d1τ e−mz(t−τ)x(t − τ)y(t − τ) − d2z(t).

(2.1)

All the system parameters are positive and their description is given in Table 1.
The initial population densities for system (2.1) take the form:

x(t) = φ(t), y(t) = ψ1(t), z(t) = ψ2(t), t ∈ [−τ, 0],
φ(t) ≥ 0, ψ1(t), ψ2(t) ≥ 0, φ(0) > 0, ψ1(0), ψ2(0) > 0,

(2.2)

where φ, ψ1, ψ2 ∈ C([−τ, 0], R3+). From the second equation of system (2.1), we get

y(t) =
∫ 0

−τ

kβed1se−mz(t+s)x(t + s)y(t + s)ds.

Thus, we can impose the following continuity condition:

ψ1(0) =
∫ 0

−τ

kβed1se−mψ2(s)φ(s)ψ1(s)ds. (2.3)

Assume the continuous solution of (2.1) is X (t) = (x(t), y(t), z(t))T, is defined as X : R+ → R3+ and is also
Lipschitzian in a compact set R+ with initial conditions (2.2) and (2.3). Therefore, [29, Theorem 2.3] ensures that
the system (2.1) with initial conditions (2.2) and (2.3) has a unique solution in R3+.

3 Positivity, Boundedness, and existence of equilibria

The positivity indicates that species are persistent and boundedness means a natural restriction to growth because
of limited resources. Hence, we can establish the following lemma:
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Lemma 3.1 All solutions of set of equations (2.1) along with (2.2) are positive for all t ≥ 0.

Proof Suppose (x(t), y(t), z(t)) is any solution of system (2.1) with initial conditions (2.2). For 0 ≤ t ≤ τ , the
last equation of (2.1) gives

dz

dt
≥ −d2z(t).

Clearly z(t) ≥ z(0)e−d2t � z∗(t) > 0 for all t ≥ 0. Now first differential equation of (2.1), ∀t ≥ t0 for some
t0 > 0, we get

dx

dt
≥ r x(t)

(
1 − x(t)

K

)
− βe−mz∗(t)x(t)y(t),

which gives

x(t) ≥ x(0) exp

(∫ t

0

[
r

(
1 − x(u)

K

)
− βe−mz∗(u)y(u)

]
du

)
≥ 0.

For 0 ≤ t ≤ τ , the second equation of system (2.1) can be written as

dy

dt
≥ −d1y(t) − kβed1τ f (x(t − τ), z(t − τ)) y(t − τ).

Let v(t) be the solution of

dv

dt
= −d1v(t) − kβed1τ f (x(t − τ), z(t − τ)) v(t − τ), v(0) = y(0).

We have y(t) ≥ v(t) on 0 ≤ t ≤ τ , clearly,

v(t) = e−d1t
[
y(0) −

∫ t

0
kβed1(s−τ) f (x(s − τ), z(s − τ))y(s − τ)ds

]
.

Hence

v(τ) = e−d1τ

[∫ 0

−τ

kβed1ξ f (x(ξ), z(ξ))y(ξ)dξ −
∫ τ

0
kβed1(s−τ) f (x(s − τ), z(s − τ))y(s − τ)ds

]
.

We thus have v(τ) = 0, and therefore y(t) ≥ 0 for t ∈ [0, τ ]. By induction, we can show that y(t) ≥ 0 for all
t ≥ 0. �	
Lemma 3.2 The solutions of set of equations (2.1) along with (2.2) and (2.3) are bounded.

Proof Let V (t) = kx(t) + y(t) + z(t) and d̄ = min{1, d1, d2}, we have

dV

dt
= rk

(
1 − x(t)

K

)
x(t) − d1y(t) − d2z(t) ≤ (r + 1)kx(t) − rkx2(t)

K
− d̄V (t).

This gives

dV

dt
+ d̄V (t) ≤ (r + 1)kx(t) − rkx2(t)

K
≤ M0,

where M0 = [(r + 1)2kK ]/4r . Thus V (t) ≤ M0/d̄ + (
V (0) − M0/d̄

)
e−d̄t → M0/d̄ := M as t → ∞, i.e.,

x(t) ≤ M, y(t) ≤ M, z(t) ≤ M for sufficiently large t and hence the system (2.1) is bounded. �	
Now, we find all biologically as well as feasibly relevant equilibria admitted by the system. There are three possible
equilibria for the model (2.1):

(i) Trivial equilibrium E1 = (0, 0, 0), which always exists.
(ii) Disease-free or human-free equilibrium E2 = (K , 0, 0), which also always exists.
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(iii) Endemic equilibrium E3 = (x∗, y∗, z∗) exists whenever min{R0,R∗
0} > 1, where

R0 = kKβ(1 − e−d1τ )/d1, (3.1)

and

R∗
0 = 8d2ed1τ /mrkK . (3.2)

The existence of E1 and E2 is trivial, hence omitted. Here, we discuss only the existence of endemic equilibrium
in detail. If endemic equilibrium point E3(x∗, y∗, z∗) exists, it must satisfy the equations:

r x
(

1 − x

K

)
− βe−mzxy = 0,

kβe−mzxy − d1y − kβe−d1τ e−mzxy = 0,

kβe−d1τ e−mzxy − d2z = 0.

(3.3)

Clearly, if there exists a positive equilibrium, it is a positive solution of

y = r

βe−mz

(
1 − d1

kKβe−mz(1 − e−d1τ )

)
:= G(z),

y = d2z(1 − e−d1τ )

d1e−d1τ
:= H(z). (3.4)

To find sufficient conditions for the uniqueness of a positive solution of (3.4), we follow the work of Lie et al. cited
in [30], which provides that

G(0) = r

β

(
1 − 1

R0

)
, H(0) = 0 and G(0) > H(0) if R0 > 1.

Thus, the two curves G(z) and H(z) have at least one positive intersection. In order to determine the number of
other positive intersections, we consider the tangency of the above two curves G(z) and H(z). If the two curves
intersect, it must have G(z) = H(z) and G ′(z) = H ′(z), i.e.,

r

βe−mz
− r

βe−2mzR0
= d2z(1 − e−d1τ )

d1e−d1τ
, (3.5)

and

r

βe−mz
− 2r

βe−2mzR0
= d2(1 − e−d1τ )

md1e−d1τ
. (3.6)

The difference of equations (3.5) and (3.6) provides

r

βe−2mzR0
=

(
z − 1

m

)
d2

(
1 − e−d1τ

)
d1e−d1τ

. (3.7)

Substituting the above value in (3.5), we obtain that

r

βe−mz
− (z − 1

m
)
d2(1 − e−d1τ )

d1e−d1τ
= d2z(1 − e−d1τ )

d1e−d1τ
, (3.8)

which implies that(
2z − 1

m

)
d2(1 − e−d1τ )

d1e−d1τ
= r

βe−mz
. (3.9)

Squaring both sides of (3.9), we get
(

2z − 1

m

)2 d2
2 (1 − e−d1τ )2

d2
1 e−2d1τ

= r2

β2e−2mz
. (3.10)
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From (3.7) and (3.10), we get
(

2z − 1

m

)2

= re−d1τ kK

d2

(
z − 1

m

)
. (3.11)

Let α = 1/m, δ = (rkK e−d1τ )/d2, then we have

z = (4α + δ) ± √
δ(δ − 8α)

8
. (3.12)

Let m0 = (8d2ed1τ )/(rkK ). It can be simply determined that (3.12) has no root for 0 < m < m0, and hence the
system (2.1) has a unique endemic equilibrium. For m = m0, (3.12) has one unique root and the system (2.1) has
one endemic equilibrium point of multiplicity at least two. Again, if m > m0, then (3.12) has two roots and hence
the system (2.1) has three endemic equilibria. Thus, the existence of unique endemic equilibrium is stated in the
following:

Lemma 3.3 If R0 > 1 and 0 < m < m0 (i.e., R∗
0 > 1) or min{R0,R∗

0} > 1, then the system (2.1) has a unique
endemic equilibrium point E3(x∗, y∗, z∗).

The above lemma suggests that a unique endemic equilibrium point exists whenever the delay parameter crosses a
threshold (i.e., τ > τ∗ := max{ τ1, τ2}), where

τ1 = 1

d1
log

(
1 + d1

kKβ − d1

)
, τ2 = 1

d1
log

(
mrkK

8d2

)
.

4 Stability analysis

In this part, we perform the local stability analysis and existence of the Hopf bifurcation for the model (2.1), which
is governed by a crucial threshold R0. Clearly the characteristic equation of trivial equilibrium E1(0, 0, 0) takes
the form (λ − r)(λ + d1)(λ + d2) = 0, and hence E1 is an unstable saddle. Further the characteristic equation for
E2(K , 0, 0) is given as

(λ + r)(λ + d2)
(
λ − kKβ(1 − e−d1τ e−λτ ) + d1

)
= 0.

It is clear that λ = −r and λ = −d2 are always two negative eigenvalues. All other eigenvalues are given by the
solutions of equation λ − kKβ(1 − e−d1τ e−λτ ) + d1 = 0. If kKβ(1 − e−d1τ ) − d1 < 0, i.e., R0 < 1, one can
easily check that the graph f1(λ) = λ and f2(λ) = kKβ(1 − e−d1τ e−λτ ) − d1 must intersect at a negative value
of λ, and hence the predator-free equilibrium E2 is locally asymptotically stable provided that R0 < 1, i.e., for all
τ ∈ (0, τ1).

Now the characteristic equation of endemic equilibrium E3(x∗, y∗, z∗) takes the form

λ3 + a2(τ )λ2 + a1(τ )λ + a0(τ ) +
[
b2(τ )λ2 + b1(τ )λ + b0

]
e−λτ = 0, (4.1)

where

a0(τ ) = d2kβx
∗e−mz∗

[
βy∗e−mz∗ − r x∗

K
e−d1τ

]
,

a1(τ ) = kβx∗e−mz∗
[
βy∗e−mz∗ − r x∗

K
e−d1τ

]
− d2e−d1τ + r x∗d2

K
,

a2(τ ) = r

K
x∗ + (d1 + d2) − kβx∗e−mz∗ ,

b0(τ ) = kβx∗e−mz∗e−d1τ (d2 + d1my∗)
[
r x∗

K
− βy∗e−mz∗

]
,
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b1(τ ) = kβx∗e−mz∗e−d1τ (1 + my∗)
[
r x∗

K
− βy∗e−mz∗ + d2 + d1my∗

1 + my∗

]
,

b2(τ ) = kβx∗e−mz∗e−d1τ (1 + my∗).

The above equation can be rewritten as

P(λ, τ ) + Q(λ, τ )e−λτ = 0, (4.2)

where

P(λ, τ ) = λ3 + a2(τ )λ2 + a1(τ )λ + a0(τ ), Q(λ, τ ) = b2(τ )λ2 + b1(τ )λ + b0(τ ). (4.3)

Lemma 3.3 ensures the existence of a unique endemic equilibrium for τ > τ∗. Therefore, existence of purely
imaginary roots of the characteristic equation (4.1) is established for τ > τ∗ by using the geometric criterion for
delay-dependent coefficients [31], which is stated as follows:

Lemma 4.1 Equation (4.2) has a pure imaginary root λ = iω (ω > 0) for τ ∈ I with I defined in (4.6), if all the
properties given in [31] are satisfied.

Proof For τ ∈ I , it is clear that

(i) P(0, τ ) + Q(0, τ ) = (rd1d2x∗)/K + d1mkβx∗y∗e−mz∗
[
(r x∗)/K − rβy∗e−mz∗

]
= 0.

(ii) P(iω, τ) + Q(iω, τ) = −(a2 + b2)ω
2 + a0 + b0 + i[−ω3 + (a1 + b1)ω] = 0.

(iii) The definitions of P(λ, τ ) and Q(λ, τ ) suggest that

lim sup{|Q(λ, τ )/P(λ, τ )| : |λ| → ∞, Re λ ≥ 0} = 0 < 1.

(iv) Let F be defined as F(ω, τ) = |P(iω, τ)|2 − |Q(iω, τ)|2, where

|P(iω, τ)|2 = ω6 +
(
a2

2 − 2a1

)
ω4 +

(
a2

1 − 2a0a2

)
ω2 + a2

0 ,

|Q(iω, τ)|2 = b2
2ω

4 +
(
b2

1 − 2b0b2

)
ω2 + b2

0.

We have

F(ω) = ω6 + A(τ )ω4 + B(τ )ω2 + C(τ ) = 0, (4.4)

with

A(τ ) = a2
2 − b2

2 − 2a1,

B(τ ) = a2
1 − b2

1 − 2a0a2 + 2b0b2,

C(τ ) = a2
0 − b2

0.

Let χ = ω2, then (4.4) is rewritten as follows:

χ3 + Aχ2 + Bχ + C = 0. (4.5)

Let D = ( g
2

)2 + ( h
3

)3
, where h = B − 1

3 A
2, g = 2

27 A
3 − 1

3 AB + C . Thus, there are three cases for the existence
of solution of (4.5).

(a) Equation (4.5) has a pair of complex roots and a real root when D > 0. The positivity condition of the real root
is given by

χ1 = 3

√
−g

2
+ √

D + 3

√
−g

2
− √

D − A

3
.
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(b) Again for D = 0, (4.5) has all real roots, with two being equal. Moreover, if A > 0, it has only one positive

real root, χ1 = 2 3
√

− g
2 − A

3 . Otherwise for A < 0, there exists a positive root χ1 = 2 3
√

− g
2 − A

3 for 3
√

− g
2 > A

3 ,

and there exist three positive roots for A
6 < 3

√
− g

2 < − A
3 , given by

χ1 = 2 3

√
−g

2
− A

3
, χ2 = − 3

√
−g

2
− A

3
.

(c) If D < 0, there are three distinct real roots given as

χ1 = 2

√ |h|
3

cos
(ϕ

3

)
− A

3
,

χ2 = 2

√ |h|
3

cos

(
ϕ + 2π

3

)
− A

3
,

χ3 = 2

√ |h|
3

cos

(
ϕ + 4π

3

)
− A

3
,

where ϕ = arccos (−g/2
√

(|h|/3)3) has to be calculated in radians. Furthermore, if A > 0, there exists only
one positive root. Otherwise, if A < 0, there may exist either one or three positive real roots. If there is only
one positive real root, it is equal to max{χ1, χ2, χ3}.

Hence, the sign of the discriminant D of (4.5) determines the number of positive roots. Hence, the existence of at
least one positive real root is given in the following region:

I = {τ > τ∗ : χ(τ) > 0 is a root of (4.5)} . (4.6)

Thus (4.4) has at least two real roots ω±(τ ) = ±√
χ(τ) for all τ ∈ I . Since the function F(ω) is a sixth-degree

polynomial, it has at most six real zeros for all τ ∈ I .

(v) From implicit function theorem each root of F(ω, τ) = 0 is continuous and differentiable in I , because F(ω, τ)

is differentiable with respect to ω and continuous in ω and τ .

Hence, all the conditions given in [31] are satisfied, and thus the Lemma 4.1 ensures the existence of purely imaginary
roots of characteristic equation (4.2) for all τ ∈ I . �	

Now assume that λ = iω (ω > 0) is a purely imaginary characteristic root of (4.2). By substituting λ = iω into
(4.2) and separating real and imaginary parts, we obtained the following transcendental equations:

a2ω
2 − a0 = (b0 − b2ω

2) cos ωτ + b1ω sin ωτ,

ω3 − a1ω = b1ω cos ωτ − (b0 − b2ω
2) sin ωτ. (4.7)

It follows from (4.7) that

cos(ωτ) = (a2ω
2 − a0)(b0 − b2ω

2) + (ω3 − a1ω)(b1ω)

(b0 − b2ω2)2 + (b1ω)2 ,

sin(ωτ) = (a2ω
2 − a0)(b1ω) − (ω3 − a1ω)(b0 − b2ω

2)

(b0 − b2ω2)2 + (b1ω)2 . (4.8)

As cited in [31], a well and unique θ(τ ) ∈ [0, 2π ], ∀τ ∈ I , is defined by

cos θ±(τ ) = b1ω±(ω3± − a1ω±) + (a2ω
2± − a0)(b0 − b2ω

2±)

(b1ω±)2 + (b0 − b2ω
2±)2

,

sin θ±(τ ) = b1ω±(a2ω
2± − a0) − (ω3± − a1ω±)(b0 − b2ω

2±)

(b1ω±)2 + (b0 − b2ω
2±)2

. (4.9)
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One can check that iω∗ with ω∗ = ω(τ ∗) > 0 is a purely imaginary root of (4.2) if and only if τ ∗ is a roots of Sn
defined by following map:

S±
n (τ ) = τ − θ±(τ ) + 2nπ

ω±(τ )
, n ∈ N .

Following Beretta and Kuang [31], we can state a theorem as given below:

Theorem 4.2 The characteristic equation (4.1) has a pair of simple pure imaginary roots λ = ±iω(τ ∗) at τ ∗ ∈ I ,
provided Sn(τ ∗) = 0 for some n ∈ N0. This pair of simple conjugate pure imaginary roots crosses the imaginary
axis from left to right if δ(τ ∗) > 0, and right to left if δ(τ ∗) < 0, where

δ(τ ∗) = sign

{
dRe(λ)

dτ

∣∣∣∣
λ=iω+(τ∗)

}
= sign

{
dSn(τ )

dτ

∣∣∣∣
τ=τ∗

}
.

Here, we can easily find that Sn(0) < 0 and Sn(τ ) > Sn+1(τ ) ∀τ ∈ I , n ∈ N0. Thus, if S0 has no zero in I , the
function Sn also has no zero in I and if the function Sn has positive zeros, denoted by τ

j
n for some τ ∈ I, n ∈ N0,

then without loss of generality, we may assume that dSn(τ
j
n )/dτ = 0 with Sn(τ

j
n ) = 0 and applying the similar

logic as in [31], it is obtained that the stability switches occur at the zeros of S0(τ ), denoted by τ
j

0 . Thus using [29],
we can conclude the dynamics of stability switches in the following theorem:

Theorem 4.3 The local behavior of the system (2.1) at endemic equilibrium E3 is described as follows:

1. If the function S0(τ ) has no positive zero in I , then the endemic equilibrium E3(x∗, y∗, z∗) is locally asymptot-
ically stable for all τ > τ∗ or R0 > 1, 0 < m < m0.

2. If the function Sn(τ ) has some positive zeros at τ ∗
1 , τ ∗

2 , τ ∗
3 . . . in I for some n ∈ N0, then E3 is locally

asymptotically stable for τ ∈ (τ∗, τ ∗
1 ) ∪ (τ ∗

2 , τ ∗
3 ) ∪ . . . and unstable with existence of a Hopf bifurcation for

τ ∈ (τ ∗
1 , τ ∗

2 ) ∪ (τ ∗
3 , τ ∗

4 ) ∪ . . ., i.e., stability switching occurs from stability–instability–stability and so on.

5 Criticality and stability of Hopf bifurcation

In the previous section, we have got some sufficient conditions under which a class of periodic solutions bifurcated
from the steady state of the system (2.1), when the delay is more than the critical level τ ∗. Now we shall study the
direction of these Hopf bifurcations and stability of bifurcated periodic solutions using the method discussed in
[32]. Using Appendix A, we can compute the following values:

C1(0) = i

2ω∗τ ∗

(
g20g11 − 2|g11|2 − |g02|2

3

)
+ g21

2
,

μ2 = Re{C1(0)}
Re{λ′(τ ∗)} , β2 = 2 Re{C1(0)}, T2 = Im{C1(0)} + μ2 Im{λ′(τ ∗)}

ω∗τ ∗ ,

(5.1)

which determine the behavior of periodic solution in the center manifold at τ ∗, i.e., again if μ2 > 0 (μ2 < 0), then
the Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solution exists for τ > τ ∗ (τ < τ ∗);
β2 determines the stability of the bifurcating periodic solution: the bifurcating periodic solution is stable (unstable)
if β2 < 0 (β2 > 0) and, finally, the period increases (decreases) if T2 > 0 (T2 < 0).
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Fig. 1 Time series plot for
τ = 1.48 < τ1 for
R0 = 0.990496 < 1

6 Numerical simulations and discussions

Our analytical results indicate that the time delay must be accountable for the observed regular cycles of disease
occurrence. To examine the effect of time delay on the system (2.1), let us consider the following model:

dx(t)

dt
= 0.4x(t)

(
1 − x(t)

10

)
− βe−mz(t)x(t)y(t),

dy(t)

dt
= kβe−mz(t)x(t)y(t) − 0.1y(t) − kβe−d1τ e−mz(t−τ)x(t − τ)y(t − τ),

dz(t)

dt
= kβe−d1τ e−mz(t−τ)x(t − τ)y(t − τ) − d2z(t).

(6.1)

Here, some numerical results of system (6.1) will be discussed at different parametric values of τ, m, β, k, d2.
Let m = 2, β = 0.24, k = 0.3, d2 = 0.2, then it is clear that all the solutions of (6.1) are positive and bounded.
A disease-free or human-free equilibrium point E2(10, 0, 0) exists and it is locally asymptotically stable for all
τ < τ1 = 1.49532 or R0 < 1. If we choose τ = 1.48 < τ1, then R0 = 0.990496 < 1, and hence the equilibrium
point E2(10, 0, 0) satisfies usual analytical criteria for stable equilibrium points (see Fig. 1). The equilibrium point
E2(10, 0, 0) is not feasible for the society, as the human population may never be extinct in reality. Hence our main
objective in this paper is to determine the situation where the human population will survive with minimal effect of
adulterated foods on his health. Let us take τ∗ = max{τ1, τ2}, where

τ1 = 1

d1
log

(
1 + d1

kKβ − d1

)
and τ2 = 1

d1
log

(
mrkK

8d2

)
.

We can see that all the key parameters including predation rate β, media effect m, carrying capacity K , growth rate
r , death rates d1, d2, and conversion rate k are involved in the above threshold condition. This allows us to address
the effect of controlling parameter τ as well as adulterated food on human health. For m = 2; τ2 = 4.05465, in
this case a unique endemic equilibrium E3(x∗, y∗, z∗) exists for all τ > 4.05465. Moreover, all the conditions
of the Lemma 4.1 are satisfied for all τ ∈ (4.05465 23.3547] and at least one pair of pure imaginary roots of
characteristic equation (4.2) exists, for which S0 has four zeros at τ ∗

1 = 5.083, τ ∗
2 = 10.197, τ ∗

3 = 13.168 and
τ ∗

4 = 22.838. Thus Theorem 4.3 ensures the switching of stability of endemic equilibrium point E3(x∗, y∗, z∗)
at τ ∗

1 = 5.083, τ ∗
2 = 10.197, τ ∗

3 = 13.168 and τ ∗
4 = 22.838. The endemic equilibrium is locally asymptotically

stable for all τ ∈ (4.05465 5.083) ∪ [10.197 13.168) ∪ [22.838 23.3547] and unstable with existence of a Hopf
bifurcation in [5.083 10.197) ∪ [13.168 22.838). Choosing τ = 4.4 > τ∗ = 4.05465, endemic equilibrium
E3(8.8040, 0.4498, 0, 4069) exists and locally asymptotically stable for R0 = 2.56294 > 1 (see Fig. 2).

Further, the periodic fluctuations in disease occurrence arise for a different range of delay parameter τ , which
ensure that the stability of endemic equilibrium is switching from stability–instability–stability–instability–stability
(see Fig. 3).
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Fig. 2 The trajectory is
approaching to the endemic
equilibrium
E3(8.8040, 0.4498, 0, 4069)

for τ = 4.4 > τ∗ and
R0 > 1
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Fig. 3 The periodic fluctuations in disease occurrence for delay parameter τ in (τ∗ 23.3547], a–c represent stability switching from
stability–instability–stability at τ = 5, τ = 5.5 and τ = 10.5, respectively, d–f represent stability switching from instability–stability–
instability at τ = 13.1, τ = 13.3, and τ = 23, respectively

Fig. 4 Approaching
towards the periodic
fluctuations in disease
occurrence with predation
rate β = 0.25
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Similarly, it is observed that the predator coefficient β, and the coefficient of media effect m can influence the
dynamics of the system (2.1). Figures 4 and 5, respectively, show the effect of predation rate and media coefficient
on destabilization of endemic equilibrium E3 (Fig. 6).

Thus the above numerical simulations suggest that the usually delay parameter destabilized the steady state,
whereas substantial delays have a stabilizing one. On the other hand, high predation and media awareness can
destabilize the steady state. As the spread of infections depends on different factors, therefore, real-time information
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Fig. 5 Approaching
towards the periodic
fluctuations in disease
occurrence with media
awareness coefficient
μ = 2.2
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Fig. 6 Declination of
infected population with
increasing media effect for
τ = 4.4

diffusion about the risk factors of disease through media has a positive impact on controlling the transmission of
infectious diseases because of behavior, making them aware of the condition.

7 Sensitivity analysis

For real-life application, more attention should be paid towards highly sensitive parameters because these type of
parameters will produce significant qualitative changes by a slight variation in their respective values. Thus, in
this section, we discuss the sensitivity analysis of R0 and R∗

0 using normalized forward sensitivity index, which is
defined as follows:

Definition (see [33]) The normalized forward sensitivity index of a variable, x , which depends upon a parameter,
y, is defined as

γ x
y = δx

δy
× y

x
.

By taking the numerical values of all the parameters, the normalized forward sensitive indices for R0 and R∗
0

are calculated in Table 2.
From the above, it reveals that the parameters K , β, k, and τ have a positive impact on R0, which means that

when these parameters increase (or decrease) by keeping the others are constant, then the value of R0 will also
increase (or decrease). Similarly, the parameter d1 has a negative impact on R0, i.e., when the value of d1 increases
(or decreases) while others are being constant, then the value of R0 decreases (or increases). On the other hand,
parameters r , K , m, and k have negative impact on R∗

0 while d1, d2, and τ have positive impact. For example, 10%
increase (or decrease) in τ will produce 9.278% increase (or decrease) in R0, and 10% increase (or decrease) in
d1 will produce 0.722% decrease (or increase) in R0. Moreover, it can be easily seen that the parameters, which
have either a positive or a negative impact on R0 and R∗

0, are most sensitive. Therefore, these parameters should
be dealt very carefully as they play an adaptive role in disease outbreak.
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Table 2 The sensitivity indices for R0 and R∗
0

Parameter Value Sensitivity index of R0 Sensitivity index of R∗
0

r 0.4 0 −1

K 10 + 1 −1

β 0.24 + 1 0

m 2 0 −1

k 0.3 + 1 −1

d1 0.1 −0.0722 + 0.1480

d2 0.2 0 +1

τ 1.48 + 0.9278 + 0.1480

8 Conclusions

Over the last few decades, it has been observed that food adulteration has a severe effect on human health. The
adulteration is applying not only in the food but also in all things. Hence humans have nothing else to eat except adul-
terated items. Therefore, we have proposed an eco-epidemic prey–predator model for contaminated food and human
with media awareness in the form of media-induced response function, where the growth of human is completely
dependent on adulterated foods and due to consumption of these adulterants, human is assumed to be infected, and
thus the predator population was divided into two compartments: susceptible and infected. The conversion from
the susceptible to infected cannot be instantaneous. It requires a period, after that the susceptible become infected.
In the analysis, it has obtained that the system has three equilibria, namely, trivial, boundary, and interior. The
trivial equilibrium is an unstable saddle point, while the boundary equilibrium point is locally asymptotically stable
for R0 < 1, i.e., for τ < τ1, which shows that due to adulterants if the conversion of the susceptible population
into infected is in short time, then both the populations will become extinct. In the next, by taking the delay as a
bifurcation parameter, we have obtained certain sufficient conditions on the existence of the switching stability of
the positive steady state. It shows that the delay can induce a small amplitude oscillations of population densities,
i.e., Hopf bifurcations, by applying the geometric approach for stability switches on the characteristic equation
with delay-dependent parameters. It has been recognized that the time-varying delay-dependent parameters play
an important role in the dynamics of disease propagation and the endemic steady state has a periodic fluctuation
in disease occurrence arise for different ranges of delay parameter τ , which ensure that the stability of endemic
equilibrium is switching, whereas large delays have a stabilizing effect. Furthermore, by employing the center
manifold argument, the Hopf bifurcations’ direction and stability have ascertained. Finally, the sensitivity analysis
of threshold R0 and R∗

0 is performed, which shows that media helps in lowering the predation rate of adulterated
foods as the predation rate is highly sensitive. Thus, when predation is reduced, the conversion rate of k will also
be reduced.

Moreover, we have proposed a new media-induced response function in the form of media awareness to represent
the interaction between adulterated food and human, which is exponentially decreasing with the increase of media
awareness, as in the presence of media, the susceptible persons restrict themselves from eating the adulterated food.
This response function is beneficial to know the various effects of food adulteration either by the predation or media
awareness. The thresholds of predation rate β and media effect coefficient m suggest to consume adulterated food
at a low quantity, otherwise due to higher quantity the system may destabilize. Since adulteration in fruits and
vegetables is a paramount problem for our society, the present work can be helpful in terms of showing the impact
of media awareness on adulteration along with the behavioral change in population.

Acknowledgements The first author would like to acknowledge and extend heartfelt gratitude to the Science and Engineering Research
Board, New Delhi, India, for the financial support.
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Appendix A

By the change of variables x1(t) = x(t) − x∗, x2(t) = y(t) − y∗, x3(t) = z(t) − z∗, x̄i (t) = xi (τ t), τ = τ ∗ + μ

and dropping the bars for simplifications of notations, system (2.1) is transformed into a functional differential
equation in C = C([−1, 0], R3) as

ẋ(t) = Lμ(xt ) + F(μ, xt ), (A.1)

where x(t) = (x1(t), x2(t), x3(t))T ∈ R3 and for φ = (φ1, φ2, φ3)
T ∈ C , Lμ : C → R, F : C × R → R,

respectively, are given by

Lμ(φ) = (τ ∗ + μ)

⎛
⎝ r(1 − 2x∗

K ) − βe−mz∗ y∗ −βe−mz∗x∗ mβe−mz∗x∗y∗
kβe−mz∗ y∗ kβe−mz∗x∗ − d1 −mkβe−mz∗x∗y∗

0 0 −d2

⎞
⎠

⎛
⎝φ1(0)

φ2(0)

φ3(0)

⎞
⎠

+ (τ ∗ + μ)

⎛
⎝ 0 0 0

−ζ y∗ −ζ x∗ mζ x∗y∗
ζ y∗ ζ x∗ −mζ x∗y∗

⎞
⎠

⎛
⎝φ1(−1)

φ2(−1)

φ3(−1)

⎞
⎠ ,

and

F(μ, φ) = (τ ∗ + μ)

⎛
⎝Δ1

Δ2

Δ3

⎞
⎠ + H.O.T .,

where

ζ = kβe−d1(τ+μ)e−mz∗ ,

Δ1 = −rφ2
1(0)

K
+ βe−mz∗ [my∗φ1(0)φ3(0) + mx∗φ2(0)φ3(0) − φ1(0)φ2(0)],

Δ2 = kβe−mz∗(φ1(0)φ2(0) − my∗φ1(0)φ3(0) − mx∗φ2(0)φ3(0))

+ζ(my∗φ1(−1)φ3(−1) + mx∗φ2(−1)φ3(−1) − φ1(−1)φ2(−1),

Δ3 = −ζ(my∗φ1(−1)φ3(−1) + mx∗φ2(−1)φ3(−1) − φ1(−1)φ2(−1).

By the Riesz representation theorem, there exists a 3 × 3 matrix η(θ, μ) : [−1, 0] → R3 whose elements are of
bounded variation such that

Lμφ =
∫ 0

−1
φ(θ)dη(θ, μ), θ ∈ C. (A.2)

In fact, we can choose

η(θ, μ) = (τ ∗ + μ)

⎛
⎜⎝
r
(

1 − 2x∗
K

)
− βe−mz∗ y∗ −βe−mz∗x∗ mβe−mz∗x∗y∗

kβe−mz∗ y∗ kβe−mz∗x∗ − d1 −mkβe−mz∗x∗y∗
0 0 −d2

⎞
⎟⎠ δ(θ)

−(τ ∗ + μ)

⎛
⎝ 0 0 0

ζ y∗ −ζ x∗ mζ x∗y∗
ζ y∗ ζ x∗ −mkζ x∗y∗

⎞
⎠ δ(θ + 1), (A.3)

where δ is a Dirac delta function. For φ ∈ C1([−1, 0], R3), let us define

A(μ)φ =
{ dφ(θ)

dθ
, θ ∈ [−1, 0),∫ 0

−1 φ(s)dη(s, μ), θ = 0,
(A.4)

and

R(μ)φ =
{

0, θ ∈ [−1, 0),

F(μ, φ), θ = 0.
(A.5)
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Then the system (A.1) is equivalent to the following operator equation:

u̇(t) = A(μ)ut + R(μ)ut , (A.6)

where u = (x1, x2, x3)
T and ut = u(t + θ) for θ ∈ [−1, 0].

For ψ ∈ C1([−1, 0], (R3)∗), define

A∗ψ(s) =
{ −dψ(s)

ds , s ∈ [−1, 0),∫ 0
−1 ψ(−t)dηT(t, 0), s = 0,

(A.7)

and a bilinear form

〈ψ(s), φ(θ)〉 = ψ̄(0)φ(0) −
∫ 0

−1

∫ θ

ξ=0
ψ̄(ξ − θ)dη(θ) φ(ξ)dξ, (A.8)

where η(θ) = η(θ, 0). Then A(0) and A∗ are adjoint operators. From the discussion in previous section, we know
that ±iω∗τ ∗ are eigenvalues of A(0) and therefore they are also eigenvalues of A∗, corresponding to iω∗τ ∗ and
−iω∗τ ∗, respectively.

Suppose that q(θ) = (1, α, γ )Teiθω∗τ∗
is the eigenvector of A(0) corresponding to iω∗τ ∗, then A(0)q(θ) =

iω∗τ ∗q(θ). It follows from the definition of A(0) and η(θ, μ) that

τ ∗
⎛
⎝ iω∗ + βe−mz∗ y∗ − r(1 − 2x∗

K ) βe−mz∗x∗ p1

kβe−mz∗ y∗(e−d1τ
∗−1) iω∗ + kβe−mz∗x∗(e−d1τ

∗−1) + 1 p2

−kβe−d1τ
∗
e−mz∗ y∗ −kβe−d1τ

∗
e−mz∗x∗ p3

⎞
⎠ q(0) = 0,

where

p1 = −mβe−mz∗x∗y∗,
p2 = −mkβe−mz∗x∗y∗(e−d1τ

∗−1)

p3 = iω∗ + mkβe−d1τ
∗
e−mz∗x∗y∗ + d2.

Then, we can easily obtain q(0) = (1, α, γ )T, where

α = γ (iω∗ + mkβe−d1τ
∗
e−mz∗x∗y∗ + d2) − (kβe−d1τ

∗
e−mz∗ y∗)

kβe−d1τ∗e−mz∗x∗y∗ ,

γ = ke−d1τ
∗
(r(1 − 2x∗

K ) − iω∗)
d2 + iω∗ .

Again, let q∗(θ) = D(1, α∗, γ ∗)e−iθω∗τ∗
be the eigenvector of A∗ corresponding to −iω∗τ ∗, then similarly we can

obtain that

α∗ = γ ∗(−iω∗ + mkβe−d1τ
∗
e−mz∗x∗y∗ + d2) − mkβe−mz∗x∗y∗

mkβe−mz∗x∗y∗(e−d1τ∗ − 1)
,

γ ∗ = mx∗(r(1 − 2x∗
K ) + iω∗)

d2 − iω∗ .

By (A.8), we get

〈q∗(s), q(θ)〉 = D̄(1, ᾱ∗, γ̄ ∗)(1, α, γ )T −
∫ 0

−1

∫ θ

ξ=0
D̄(1, ᾱ∗, γ̄ ∗)e−iω∗τ∗(ξ−θ)dη(θ)(1, α, γ )Teiω∗τ∗ξ dξ

= D̄

[
1 + αᾱ∗ + γ γ̄ ∗ − (1, ᾱ∗, γ̄ ∗)

∫ 0

−1
φ(θ)dη(θ)(1, α, γ )T

]

= D̄[1 + αᾱ∗ + γ γ̄ ∗ + τ ∗(γ̄ ∗ − ᾱ∗)(y∗ + αx∗ − mγ x∗y∗) kβe−d1τ
∗
e−mz∗e−iω∗τ∗ ].

Then we choose

D̄ = 1

1 + αᾱ∗ + γ γ̄ ∗ + τ ∗(γ̄ ∗ − ᾱ∗)(y∗ + αx∗ − mγ x∗y∗)kβe−d1τ∗e−mz∗e−iω∗τ∗ ,
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such that 〈q∗(s), q(θ)〉 = 1 and 〈q∗(s), q̄(θ)〉 = 0. In the following, we use the ideas in Hassard et al. [32] to
compute the coordinates describing center manifold C0 at μ = 0. Define

z(t) = 〈q∗, xt 〉, W (t, θ) = xt (0) − 2 Re[z(t)q(θ)], (A.9)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ) = W20(θ)
z2

2
+ W11(θ)zz̄ + W02

z̄2

2
+ · · · , (A.10)

where z and z̄ are local coordinates for C0 in C in the direction of q∗ and q̄∗. Note that W is real if xt is real. We
deal only with the real solution. For solution xt ∈ C0 of (A.6), since μ = 0, we have

ż(t) = iω∗τ ∗z + q̄∗(0)F(0,W (z, z̄, 0) + 2 Re{zq(0)}) def= iω∗τ ∗z + q̄∗(0)F0(z, z̄) = iω∗τ ∗z + g(z, z̄),

where g(z, z̄) = q̄∗(0), and

F0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2 z̄

2
+ · · · . (A.11)

From (A.9) and (A.10), we have

xt (θ) = (x1t (θ), x2t (θ), x3t (θ)) = W (t, θ) + zq(θ) + ¯zq(θ),

and

q(θ) = (1, α, β)Teiθω∗τ∗
.

Thus, we can easily obtain that

x1t (0) = z + z̄ + W (1)
20 (0)

z2

2
+ W (1)

11 (0)zz̄ + W (1)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x2t (0) = αz + ᾱz + W (2)
20 (0)

z2

2
+ W (2)

11 (0)zz̄ + W (2)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x3t (0) = γ z + γ̄ z + W (3)
20 (0)

z2

2
+ W (3)

11 (0)zz̄ + W (3)
02 (0)

z̄2

2
+ O(|(z, z̄)|3),

x1t (−1) = ze−iθω∗τ∗ + z̄eiθω∗τ∗ + W (1)
20 (−1)

z2

2
+ W (1)

11 (−1)zz̄ + W (1)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3),

x2t (−1) = αze−iθω∗τ∗ + ᾱzeiθω∗τ∗ + W (2)
20 (−1)

z2

2
+ W (2)

11 (−1)zz̄ + W (2)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3),

x3t (−1) = γ ze−iθω∗τ∗ + γ̄ zeiθω∗τ∗ + W (3)
20 (−1)

z2

2
+ W (3)

11 (−1)zz̄ + W (3)
02 (−1)

z̄2

2
+ O(|(z, z̄)|3).

From the definition of F(μ, xt ), we have

g(z, z̄) = τ ∗ D̄(1, ᾱ∗, γ̄ ∗)

⎛
⎝Δ11

Δ22

Δ33

⎞
⎠

= τ ∗ D̄
{
z2

[
− r

K
+ βγmy∗e−mz∗(1 − kᾱ∗) + αβγmx∗e−mz∗(1 − kᾱ∗)

−αβe−mz∗(1 − kᾱ∗) + mkβγ y∗e−d1τ
∗
e−mz∗e−2iθω∗τ∗

(ᾱ∗ − γ̄ ∗)
+mkαβγ x∗e−d1τ

∗
e−mz∗e−2iθω∗τ∗

(ᾱ∗ − γ̄ ∗) −kαβe−d1τ
∗
e−mz∗e−2iθω∗τ∗

(ᾱ∗ − γ̄ ∗)
]

+zz̄z1 + z̄2z2 + z2 z̄z3,

where

Δ11 = − r

K
x2

1t (0) + βe−mz∗(my∗x1t (0)x3t (0) + mx∗x2t (0)x3t (0) − x1t (0)x2t (0)),
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Δ22 = kβe−mz∗(x1t (0)x2t (0) − my∗x1t (0)x3t (0) − mx∗x2t (0)x3t (0))

+kβe−d1τ
∗
e−mz∗(my∗x1t (−1)x3t (−1) + mx∗x2t (−1)x3t (−1) − x1t (−1)x2t (−1)),

Δ33 = −kβe−d1τ
∗
e−mz∗(my∗x1t (−1)x3t (−1) + mx∗x2t (−1)x3t (−1) − x1t (−1)x2t (−1)),

z1 = −2r

K
+ β(γ + γ̄ )my∗e−mz∗(1 − kᾱ∗) + β(αγ̄ + ᾱγ )mx∗e−mz∗(1 − kᾱ∗)

−(α + ᾱ)βe−mz∗(1 − kᾱ∗) + (γ + γ̄ )mkβy∗e−d1τ
∗
e−mz∗(ᾱ∗ − γ̄ ∗)

+(αγ̄ + ᾱγ )mkβx∗e−d1τ
∗
e−mz∗(ᾱ∗ − γ̄ ∗) − (α + ᾱ)kβe−d1τ

∗
e−mz∗(ᾱ∗ − γ̄ ∗),

z2 = − r

K
+ βγ̄my∗e−mz∗(1 − kᾱ∗) + βᾱγ̄mx∗e−mz∗(1 − kᾱ∗) − ᾱβe−mz∗(1 − kᾱ∗)

+mkβγ̄ y∗e−d1τ
∗
e−mz∗e2iθω∗τ∗

(ᾱ∗ − γ̄ ∗) + mkβᾱγ̄ x∗e−d1τ
∗
e−mz∗e2iθω∗τ∗

(ᾱ∗ − γ̄ ∗)
−kᾱβe−d1τ

∗
e−mz∗e2iθω∗τ∗

(ᾱ∗ − γ̄ ∗),

z3 = − r

K
(2W (1)

11 (0) + W (1)
20 (0)) + βmy∗e−mz∗(1 − kᾱ∗)(W (3)

11 (0) + γW (1)
11 (0)

+1

2
W (3)

20 (0) + γ̄

2
W (1)

20 (0)) + βmx∗e−mz∗(1 − kᾱ∗)(αW (3)
11 (0) + γW (2)

11 (0)

+ ᾱ

2
W (3)

20 (0) + γ̄

2
W (3)

20 (0)) − βe−mz∗(1 − kᾱ∗)(W (2)
11 (0) + αW (1)

11 (0)

+1

2
W (2)

20 (0) + ᾱ

2
W (1)

20 (0)) + mkβy∗e−d1τ
∗
e−mz∗(ᾱ∗ − γ̄ ∗)(e−iθω∗τ∗

W (3)
11 (−1)

+γ e−iθω∗τ∗
W (1)

11 (−1) + 1

2
eiθω∗τ∗

W (3)
20 (−1) + γ̄

2
eiθω∗τ∗

W (1)
20 (−1))

+mkβx∗e−d1τ
∗
e−mz∗(ᾱ∗ − γ̄ ∗)(αe−iθω∗τ∗

W (3)
11 (−1) + γ e−iθω∗τ∗

W (2)
11 (−1)

+ ᾱ

2
eiθω∗τ∗

W (3)
20 (−1) + γ̄

2
eiθω∗τ∗

W (2)
20 (−1)) − kβe−d1τ

∗
e−mz∗(ᾱ∗ − γ̄ ∗)

(eiθω∗τ∗
W (2)

11 (−1) + αe−iθω∗τ∗
W (1)

11 (−1) + 1

2
eiθω∗τ∗

W (2)
20 (−1) + ᾱ

2
eiθω∗τ∗

W (1)
20 (−1)).

On comparing the coefficients with (A.11), we obtain that

g20 = 2τ ∗ D̄z2, g11 = 2τ ∗ D̄z1, g02 = 2τ ∗ D̄z2 g21 = 2τ ∗ D̄z3.

In order to determine g21, we need to compute W20(θ) and W11(θ). From (A.6) and (A.9), we have

Ẇ = ẋt − żq − ˙̄zq =
{
AW − 2 Re[q̄∗(0)F0q(θ)], θ ∈ [−1, 0),

AW − 2 Re[q̄∗(0)F0q(θ)] + F0, θ = 0,

def= AW + H(z, z̄, θ), (A.12)

where

H(z, z̄, θ) = H20(θ)
z2

2
+ H11(θ)zz̄ + H02(θ)

z̄2

2
+ · · · . (A.13)

Note that on center manifold C0 near the origin Ẇ = Wzż + Wz̄ ˙̄z, and thus we obtain

(A − 2iω∗τ ∗)W20(θ) = −H20(θ), AW11(θ) = −H11(θ). (A.14)

Comparing the coefficients with (A.13), we obtain the following:

H20(θ) − g20q(θ) − ḡ02q̄(θ), H11(θ) = −g11q(θ) − ḡ11q̄(θ). (A.15)

From (A.14), (A.15) and the definition of A, we have

Ẇ20(θ) = 2iω∗τ ∗W20(θ) + g20q(θ) + ḡ11q̄(θ).

Noting that q(θ) = q(0)eiω∗τ∗θ , hence

Ẇ20(θ) = ig20

ω∗τ ∗ q(0)eiω∗τ∗θ + iḡ02

3ω∗τ ∗ q̄(0)e−2iω∗τ∗θ + E1e2iω∗τ∗θ , (A.16)
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where E1 = (E (1)
1 , E (2)

1 , E (3)
1 ) ∈ R3 is a constant vector.

Similarly, from (A.14) and (A.15), we obtain

W11(θ) = − ig11

ω∗τ ∗ q(0)eiω∗τ∗θ + iḡ11

ω∗τ ∗ q̄(0)e−iω∗τ∗θ + E2, (A.17)

where E2 = (E (1)
2 , E (2)

2 , E (3)
2 ) ∈ R3 is also a constant vector.

In the following we shall find out E1 and E2. From the definition of A and (A.14), we can obtain∫ 0

−1
W20(θ)dη(θ) = 2iω∗τ ∗W20(0) − H20(0), (A.18)

and∫ 0

−1
W11(θ)dη(θ) = −H11(0), (A.19)

where η(θ) = η(0, θ). From (A.12) and (A.13), we have

H20(0) = −g20q(0) − ḡ02q̄(0) + 2τ ∗
⎛
⎝ H1

H2

H3

⎞
⎠ , (A.20)

H11(0) = −g11q(0) − ḡ11q̄(0) + 2τ ∗
⎛
⎝ H4

H5

H6

⎞
⎠ , (A.21)

where

H1 = −r

K
+ βγmy∗e−mz∗ + αβγmx∗e−mz∗ − αβe−mz∗ ,

H2 = −kβγmy∗e−mz∗ − kαβγmx∗e−mz∗ + kαβe−mz∗

+mkβγ y∗e−d1τ
∗
e−mz∗e−2iθω∗τ∗ + mkαβγ x∗e−d1τ

∗
e−mz∗e−2iθω∗τ∗ − kαβe−d1τ

∗
e−mz∗e−2iθω∗τ∗

,

H3 = −mkβγ y∗e−d1τ
∗
e−mz∗e−2iθω∗τ∗ − mkαβγ x∗e−d1τ

∗
e−mz∗e−2iθω∗τ∗ + kαβe−d1τ

∗
e−mz∗e−2iθω∗τ∗

,

H4 = −2r

K
+ 2Re(γ )βmy∗e−mz∗ + 2βRe(αγ̄ )mx∗e−mz∗ − 2βRe(α)e−mz∗ ,

H5 = −2kβRe(γ )my∗e−mz∗ − 2kβRe(αγ̄ )mx∗e−mz∗ + 2kβRe(α)e−mz∗

+2 Re(γ )mkβy∗e−d1τ
∗
e−mz∗ + 2 Re(αγ̄ )mkβx∗e−d1τ

∗
e−mz∗ − 2 Re(α)kβe−d1τ

∗
e−mz∗ ,

H6 = −2 Re(γ )mkβy∗e−d1τ
∗
e−mz∗ − 2 Re(αγ̄ )mkβx∗e−d1τ

∗
e−mz∗ + 2 Re(α)kβe−d1τ

∗
e−mz∗ .

Substituting (A.16) and (A.17) into (A.18) and noticing that(
iω∗τ ∗ I −

∫ 0

−1
e2iω∗τ∗θ dη(θ)

)
q(0) = 0,

and(
−iω∗τ ∗ I −

∫ 0

−1
e−iω∗τ∗θdη(θ)

)
¯q(0) = 0,

we obtain
(

2iω∗τ ∗ I −
∫ 0

−1
e2iω∗τ∗θdη(θ)

)
E1 = 2τ ∗

⎛
⎝ H1

H2

H3

⎞
⎠ ,

which leads to⎛
⎝σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ31 σ33

⎞
⎠ E1 = 2

⎛
⎝ H1

H2

H3

⎞
⎠ ,
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where

σ11 = 2iω∗ − r(1 − 2x∗

K
) − βe−mz∗ y∗,

σ12 = βe−mz∗x∗,
σ13 = −mβe−mz∗x∗y∗,
σ21 = −kβe−mz∗ y∗(1 + e−(d1+2iω∗)τ∗

),

σ22 = 2iω∗ + d1 − kβe−mz∗x∗(1 + e−(d1+2iω∗)τ∗
),

σ23 = mkβe−mz∗x∗y∗(1 + e−(d1+2iω∗)τ∗
),

σ31 = kβe−mz∗ y∗e−(d1+2iω∗)τ∗
,

σ33 = 2iω∗ + d2 − mkβe−mz∗x∗y∗e−(d1+2iω∗)τ∗
.

It follows that

E1 = 2

⎛
⎝σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ31 σ33

⎞
⎠

−1

×
⎛
⎝ H1

H2

H3

⎞
⎠ .

Similarly, substituting (A.17) and (A.18) into (A.19), we can get

E2 = 2

⎛
⎝ δ11 βe−mz∗x∗ σ13

δ21 d1 − kβe−mz∗x∗(1 + e−d1τ
∗
) mkβe−mz∗x∗y∗(1 + e−d1τ

∗
)

δ31 kβe−mz∗x∗e−d1τ
∗

d2 − mkβe−mz∗x∗y∗e−d1τ
∗

⎞
⎠

−1

×
⎛
⎝ H4

H5

H6

⎞
⎠ ,

where

σ11 = −r(1 − 2x∗

K
) − βe−mz∗ y∗,

σ21 = −kβe−mz∗ y∗(1 + e−d1τ
∗
),

σ23 = kβe−mz∗ y∗e−d1τ
∗
.

Thus, we can determine W20 and W11 from (A.16) and (A.17).
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