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Abstract When a transversely isotropic circular cylindrical tube is subject to axial extension and inflation, the
governing equations of equilibrium can lose ellipticity under certain combinations of deformation and direction
of transverse isotropy. In this paper, it is shown how the inclusion of an axial shear deformation moderates the
loss of ellipticity condition. In particular, this condition is analysed for a material model consisting of an isotropic
neo-Hookean matrix within which are embedded fibres whose properties are characterized by the addition to the
strain-energy function of a reinforcing model depending on the local fibre direction.

Keywords Loss of ellipticity · Axial shear · Finite deformations · Fibre kinking · Fibre splitting

1 Introduction

Motivated by instability phenomena in fibre-reinforced compositematerials, this paper is concernedwith an analysis
of the loss of ellipticity of the equations governing the equilibrium of a transversely isotropic elastic material. The
analysis is applied to a thick-walled circular cylindrical tube which is subject to the combination of axial extension,
radial inflation and axial shear set in the context of the more general helical shear (which itself combines axial
and azimuthal shear). In particular, the concern is with the transition from strong ellipticity to loss of ellipticity,
which is associated with the emergence of surfaces of discontinuity, interpreted as relating to fibre kinking and
fibre splitting. For a special material model consisting of an isotropic neo-Hookean matrix together with a standard
reinforcing model depending on the stretch in the direction of transverse isotropy, this problem has been treated by
El Hamdaoui et al. [1], and for some pointers to the literature on the helical shear problem, we refer to this paper. We
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mention below only the limited list of works concerned with the analysis of ellipticity and associated discontinuous
solutions for various specializations of the tube problem considered here, and its variations.

Fosdick and MacSithigh [2] studied the helical shear problem for an incompressible isotropic elastic material
with an emphasis on the structure of the energy function, with particular reference to its non-convexity and the
related emergence of equilibrium states with discontinuous deformation gradients. The azimuthal shear problem
for an incompressible isotropic elastic material was studied by Abeyaratne [3] with a focus on loss of ellipticity and
the emergence of discontinuous solutions, while for the anti-plane shear problem Silling [4] considered numerically
the passage from ellipticity to hyperbolicity of the governing equations resulting from deformation of an incom-
pressible isotropic material containing a crack or a screw dislocation. For an incompressible transversely isotropic
elastic material associated with a single family of fibre directions, the problem of loss of strong ellipticity for the
azimuthal shear problem was first studied by Kassianidis et al. [5], who examined, in particular, the emergence and
disappearance of non-uniqueness of solution. This was extended to the case of two symmetrically arranged fibre
families by Dorfmann et al. [6] and El Hamdaoui and Merodio [7].

In the present work, while we adopt the neo-Hookean model for the matrix material, in contrast to the analysis
in [1], we consider a different reinforcing model for the description of the anisotropy, which leads to quite different
results in general compared with those in [1]. The following sections contain a general set-up of the problem in
Sect. 2, including the description of the considered geometry and deformation, the constitutive equations and loss
of ellipticity condition. Then, in Sect. 3, the constitutive law is specialized and the effect of axial shear on the loss
of ellipticity is analysed in some detail for the separate cases of radial and axial transverse isotropy. Finally, some
concluding remarks are provided in Sect. 4.

2 Basic equations

2.1 Geometry and kinematics

In an undeformed and stress-free reference configuration, the geometry of a circular cylindrical tube may be defined
in terms of cylindrical polar coordinates (R,Θ, Z) by

A ≤ R ≤ B, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L , (1)

where A, B, respectively, are its internal and external radii and L its length. Material points in the reference
configuration are labelled by their position vector X, which is defined by X = RER + ZEZ , where (ER,EZ ) are
the unit basis vectors associated with (R, Z).

The cylinder is subject to a uniform axial extension and purely radial deformation, superimposed on which is a
helical shear composed of a combination of azimuthal shear and axial shear. Described in terms of cylindrical polar
coordinates (r, θ, z), this results in a deformation given by the equations

r = r(R), θ = Θ + g(R), z = λz Z + w(R), (2)

whereλz is the (constant) axial stretch of the cylinder and r(R), g(R) andw(R) are unknown functions corresponding
to radial deformation, azimuthal rotation and axial displacement, respectively. In principle, these can be determined
from the solution of the equilibrium equations and boundary conditions. The corresponding position vector x in the
deformed configuration is given by x = rer + zez , where (er , ez) are the unit basis vectors associated with (r, z).
In the following we use the notations

a = r(A), b = r(B), (3)

for the inner and outer deformed radii.
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The gradient of the deformation fromX to x is denoted by F and is the second-order tensor given by ∇Xx, where
∇X is the gradient operator with respect to X. Here we adopt the incompressibility constraint

det F = 1. (4)

With respect to the chosen axes, the matrix of components of F is denoted by F and given by

F =
⎛
⎝

λr 0 0
γθ λθ 0
γz 0 λz

⎞
⎠, (5)

where λr = r ′(R) is the radial stretch, λθ = r/R is the azimuthal stretch and the shear components γθ and γz are
defined by

γθ = rg′(R), γz = w′(R), (6)

the prime signifying differentiation with respect to R. Then, by (4),

λrλzλθ = 1, r2 = a2 + λ−1
z (R2 − A2), (7)

so r(R) is determined explicitly and the two functions g(R) and w(R) remain to be determined.
With T signifying the transpose of a second-order tensor, the Cauchy–Green deformation tensors C = FTF

(right) and B = FFT (left) have matrices of components, denoted by C and B, respectively, given by

C =
⎛
⎝

λ2r + γ 2
θ + γ 2

z λθγθ λzγz
λθγθ λ2θ 0
λzγz 0 λ2z

⎞
⎠, B =

⎛
⎝

λ2r λrγθ λrγz
λrγθ λ2θ + γ 2

θ γθγz
λrγz γθγz λ2z + γ 2

z

⎞
⎠. (8)

The only principal invariants of either C or B when the incompressibility constraint is in force are denoted by I1
and I2 and defined by

I1 = trC, I2 = 1

2

[
I 21 − tr

(
C2)], (9)

noting that, by incompressibility, I3 = detC = 1. Separately from these (isotropic) invariants, transverse isotropy
requires two independent invariants associated with the direction of transverse isotropy. This direction is referred
to as a preferred direction, defined in the reference configuration and denoted here by the unit vector A, in general
dependent on X. The (transversely isotropic) invariants are denoted here by I4 and I5 and defined by

I4 = A · CA = a · a, I5 = A · (C2A
) = a · (Ba), (10)

where a = FA is the push forward ofA from the reference to the deformed configuration.Note that in the undeformed
configuration I1 = I2 = 3 and I4 = I5 = 1.

2.2 Constitutive equations and equilibrium

The properties of an incompressible elastic material are described in terms of a strain-energy function W (F) (per
unit volume), associated with which are the nominal and Cauchy stress tensors, denoted by S and σ , respectively,
and given by
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S = ∂W

∂F
− pF−T, σ = F

∂W

∂F
− pI, (11)

where p is a Lagrange multiplier associated with the constraint (4), I is the identity tensor and F−T = (F−1)T =
(FT)−1.

We now specialize these equations by considering a transversely isotropicmaterial with the direction of transverse
isotropy identified locally by A. Then W depends on F and A through the combined invariants of C and A given in
(9) and (10). Thus, W = W (I1, I2, I4, I5) and, from (11)2, it follows that

σ = F
5∑

m=1

∂W

∂ Im

∂ Im
∂F

− pI, m �= 3, (12)

and then, by using standard expressions for the derivatives ∂ Im/∂F, it expands fully into the form

σ = 2W1B + 2W2(I1I − B)B + 2W4a ⊗ a + 2W5(a ⊗ Ba + Ba ⊗ a) − pI, (13)

whereWm = ∂W/∂ Im, m = 1, 2, 4, 5. The corresponding expression for the nominal stress tensor can be obtained
from the connection S = F−1σ , but is not needed here.

Since the reference configuration is here considered to be stress-free it follows from (13) that

2W1 + 4W2 = p0, W4 + 2W5 = 0, for I1 = I2 = 3, I4 = I5 = 1, (14)

p0 being the appropriate value of p. These restrictions were originally given in [8].
When no body forces are present the nominal and Cauchy stress tensors, respectively, satisfy the equilibrium

equations

∇X · S = 0, ∇x · σ = 0, (15)

where ∇X and ∇x are the divergence operators with respect to X and x, respectively. The first of these will be
considered in the following subsection in connection with the concept of ellipticity, while, for the deformation
defined in Sect. 2.1, the second has radial, azimuthal and axial components that specialize to

d

dr
(σrr ) + 1

r
(σrr − σθθ ) = 0,

d

dr
(r2σrθ ) = 0,

d

dr
(rσr z) = 0. (16)

Once the constitutive equation and boundary conditions are made explicit, the radial equation can be used to deter-
mine the stress component σrr , and hence σθθ and p. The azimuthal and axial equations are integrated immediately
to give

σrθ = τθb2

r2
, σr z = τzb

r
, (17)

where τθ and τz are the azimuthal and axial shear stress components on the deformed boundary r = b. Explicit
expressions for σrθ and σr z obtained from a given constitutive equation, coupled with (17), can in principle be
used to obtain two algebraic formulas (in general implicit and coupled) for γθ and γz in terms of the stretches and
other parameters of the problem. In general, the solutions for γθ and γz may not be unique, as exemplified in the
azimuthal shear problem discussed in [5] and [9].
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2.3 Ellipticity

Returning to the equilibrium equation (15)1, we note that in terms of rectangular Cartesian components it can be
expressed as

∂

∂Xα

(
∂W

∂Fiα

)
− ∂p

∂Xα

F−1
αi ≡ Aαiβ j x j,αβ − p,i = 0, (18)

where Greek and Roman indices relate to the reference and deformed configurations, respectively, so that X has
components Xα and x has components xi , α, i = 1, 2, 3, F has components Fiα = xi,α and F−1

αi is defined as
(F−1)αi , which satisfies the identity (F−1

αi ),α = 0. We have also used the convention that an index following a
comma indicates differentiation with respect to the relevant coordinate, while the summation convention applies to
repeated indices. Also,

Aαiβ j = ∂2W

∂Fiα∂Fjβ
, (19)

defines the components of the elasticity tensor.AssociatedwithAαiβ j is the acoustic tensor Q(n), whose components
are defined by

Qi j = FpαFqβAαiβ j n pnq . (20)

The ellipticity status of the equilibrium equation depends on the properties of Q(n), and, in particular, it is said to
be strongly elliptic if

[Q(n)m] · m > 0 for all non-zero m and n such that m · n = 0. (21)

We have a special interest in situations where strong ellipticity just fails, i.e.

[Q(n)m] · m ≥ 0 for all non-zero m and n such that m · n = 0, (22)

with equality holding for at least one non-zero pair of vectorsm and n. Configurations in which (22) holds are those
for which (strong) ellipticity is lost and which are identified by the (zero) eigenvalue problemQ∗m = 0, whereQ∗
is defined by Q∗ = Q(n) − n ⊗ Q(n)n and is in general non-symmetric.

Since the material is incompressible, the latter forms a two-dimensional problem in the plane normal to n and we
therefore project Q∗ onto this plane as Q̄ = ĪQ∗Ī = ĪQĪ, which is symmetric, by means of the projection operator
Ī = I − n ⊗ n, leading to the two-dimensional eigenvalue problem

Q̄(n)m = 0, (23)

in the plane normal to n. In the context of incompressible isotropic elasticity, the projected acoustic tensor was
introduced by Scott and Hayes [10].

The equation

det Q̄ = 0, (24)

determines possible values of the vector n, which, without loss of generality, may be taken as a unit vector. Surfaces
with local unit normal n are considered as surfaces of discontinuity, across which the deformation is continuous
and the deformation gradient is discontinuous (in the case of a so-called strong discontinuity) or the deformation
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gradient is continuous but its gradient is discontinuous (a weak discontinuity). The possible emergence of such a
surface as the deformation proceeds is associated with the loss of (strong) ellipticity.

3 Application to I5 reinforcement

Wenow specialize the formof strain-energy function in order to illustrate the loss of ellipticity. In a previous paper [1]
we examined the influence of an energy function based on the use of the invariant I4 and independent of I5. The effect
of I5, however, is in general quite different and hence the focus of the remainder of this paper concerns the inclusion
of I5 in the strain-energy function in the absence of I4. We then specialize the constitutive law so that the strain
energy depends only on I1 and I5, i.e.W = W (I1, I5). This difference inW is significant since, while I4 is the square
of the stretch in the preferred direction, the invariant I5 involves not only the stretch but also shears in directions
perpendicular to the preferred direction. The expression (13) for the Cauchy stress tensor then specializes to

σ = 2W1B + 2W5(a ⊗ Ba + Ba ⊗ a) − pI, (25)

and the restrictions (14) in the reference configuration reduce accordingly to

2W1 = p0, W5 = 0. (26)

For the analysis of ellipticity, we require the second derivative of W with respect to the deformation gradient F
in (19). This is given by

∂2W

∂FiαFjβ
= 2W1δi jδαβ + 2W5

∂Hiα

∂Fjβ
+ 4W11FiαFjβ + 4W15(FiαHjβ + FjβHiα) + 4W55HiαHjβ, (27)

where

Hiα = ai (CA)α + (Ba)i Aα, (28)

∂Hiα

∂Fjβ
= δi j [Aα(CA)β + Aβ(CA)α] + AαAβBi j + δαβaia j + Aαa j Fiβ + Aβai Fjα, (29)

Wm = ∂W/∂ Im and Wmn = ∂2W/∂ Im∂ In, m, n ∈ {1, 5}.
By making use of (20), we obtain the corresponding acoustic tensor in the form

Q = 2W1n · (Bn)I + W11(Bn) ⊗ (Bn) + 2W5
[
2(Bn) · a(n · a)I

+n · (Bn)(a ⊗ a) + (n · a)(a ⊗ Bn) + (n · a)(Bn ⊗ a) + (n · a)2B]

+ 4W15[(n · a)(Bn ⊗ Ba + Ba ⊗ Bn) + (Bn) · a(Bn ⊗ a + a ⊗ Bn)]
+ 4W55{[(Bn) · a]a + (n · a)Ba} ⊗ {[(Bn) · a]a + (n · a)Ba}. (30)

A particular context that this theory relates to is that of an isotropic elastic material reinforced by a single family
of fibres aligned locally in the direction A. To be more specific, we now specialize further and consider W (I1, I5)
to have the simple form

W (I1, I5) = 1

2
μ

[
I1 − 3 + ρ

(
I5 − 1

)2]
, (31)
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χ

S

Fibre
er

ez

m
n

Fig. 1 Depiction of the deformed configuration in the (er , ez) plane of a single kinked fibre that was in the ER direction in the reference
configuration. The local line across which ellipticity is lost is denoted by S, which is aligned with the unit vectorm = cosχ er +sin χ ez
and has unit normal n = − sin χ er + cosχ ez , with χ ∈ [0, π ]

for which (26) is satisfied with p0 = μ. This consists of an isotropic neo-Hookean base (matrix) material, with
positive shear modulus μ, combined with a so-called standard reinforcing model that accounts for both fibre exten-
sion/contraction and shearing via I5. The parameter ρ > 0 is used to regulate the degree of anisotropy associated
with the fibres. Then (30) simplifies accordingly with

2W1 = μ, W11 = W15 = 0, W5 = μρ(I5 − 1), W55 = μρ. (32)

We note in passing that the counterpart of (30) in [1] (Eq. (33) therein), for which W = W (I1, I4), was
specialized prematurely with W1 = constant.

3.1 Radial fibres

We now consider the fibres to be purely radial, so that A = ER . Figure 1 illustrates the deformed configuration of a
single fibre when the deformation (2) creates fibre contraction for the situation in which m and n lie in the (er , ez)
plane.

In this case, the invariants I4 and I5 are given by

I4 = λ2r + γ 2
z + γ 2

θ , I5 = I 24 + γ 2
θ λ2θ + γ 2

z λ2z , (33)

and their dependence on λz for different values of λθ , γθ , γz is illustrated in Fig. 2. The values of each of I4 and I5
are increased by the inclusion of one or both of γθ and γz , so it is clear that when loss of ellipticity is associated
with I4 < 1, for example, in the absence of shear, then shear will delay the loss of ellipticity. The details of this
effect are studied in this and the following subsection.

The components of σ in (25) are then easily obtained, and we note, in particular, that

σrθ = μλrγθ

[
1 + 2ρ

(
I 24 + γ 2

θ λ2θ + γ 2
z λ2z

)(
2I4 + λ2θ

)]
,

σr z = μλrγz

[
1 + 2ρ

(
I 24 + γ 2

θ λ2θ + γ 2
z λ2z

)(
2I4 + λ2z

)]
. (34)

In the absence of shear, these two stress components vanish. In this case, with χ = π/2 (n = −er ), Q̄ has only
diagonal components

Q̄θθ = μλ2r

[
1 + 2ρ

(
λ4r − 1

)(
2λ2r + λ2θ

)]
, Q̄zz = μλ2r

[
1 + 2ρ

(
λ4r − 1

)(
2λ2r + λ2z

)]
, (35)
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(b)(a)

I4 I5

λz λz

γθ = γz = 0.7

γθ = γz = 0
γθ = γz = 0

γθ = γz = 0.4

Fig. 2 Representative plots of the invariants a in I4 and b in I5 as functions of λz for λθ = 0.85, 1.0, 1.15, the short dashed, continuous
and long dashed curves, respectively, and the indicated values of (γθ , γz). In particular, (b) illustrates the non-monotonicity of I5. Note
that fibre contraction (I4 < 1) is only possible for relatively small values of the shear components γθ and γz , and that I5 < 1 implies
I4 < 1

and the loss of ellipticity condition (24) is satisfied with Q̄zz = 0 and m = ez in (23). Expressed in terms of the
two stretches λθ and λz , this is

λ6θλ
6
z − 2ρ

(
λ4θλ

4
z − 1

)(
λ2θλ

4
z + 2

)
= 0. (36)

This loss of ellipticity is associated with a discontinuity surface locally perpendicular to the radial direction, and
the relevant failure mechanism is fibre kinking.

In a similar analysis for χ = 0 (n = ez), Q̄ has only components

Q̄rr = μλ2z

[
1 + 2ρ

(
λ4r − 1

)
λ2r

]
, (37)

and Q̄zz = μλ2z , in which case failure of ellipticity corresponds to

λ6θλ
6
z − 2ρ

(
λ4θλ

4
z − 1

)
= 0, (38)

and is associated with a discontinuity surface locally parallel to the radial direction, the failure mechanism then
being interpreted as fibre splitting.

In each case, the dependence of λz on ρ is illustrated in Fig. 3 for λθ = 1. For the considered simple strain-
energy function, the deformation admits loss of ellipticity for all ρ > 0 in the case of χ = π/2 (Fig. 3a) and for all
ρ � 1.299 in the case of χ = 0 (Fig. 3b). The strong ellipticity region is below and to the left of the curve in each
plot. Note that for a given value of ρ within the considered range, ellipticity is always lost in the case of χ = π/2
prior to that for χ = 0 as λz increases its initial value 1.

Next, we analyse how the loss of ellipticity surface changes under an applied axial shear. For this purpose, we also
illustrate this surface in the absence of any shear deformation (γz = γθ = 0) for specific values of the reinforcing
parameter ρ, as a reference for comparing the solutions obtained when the shear deformation γz is involved.

Without specializing the value of χ , the loss of ellipticity condition is obtained from (24) for the deformation
(2), the strain-energy function (31) and A = ER . This yields the equation

2ρ
(
λ4r − 1

) [
2λ4r sin

2 χ
(
3 cos2 χ + sin2 χ

)
+ λ2rλ

2
z cos

2(2χ)
]

+16ρλ8r sin
2 χ cos2 χ + λ2r sin

2 χ + λ2z cos
2 χ = 0. (39)
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(b)(a)

λz λz

ρρ

Fig. 3 Plots of the stretch λz corresponding to loss of ellipticity as functions of the reinforcing parameter ρ for λθ = 1 from a in (36)
and b in (38)

(b)(a)

χχ

λz λr

Fig. 4 a Plots of the angle χ against λz from (39) with λθ = 1 and values of the reinforcing parameter ρ = 1, 2, 3, the light dashed,
dashed and continuous curves, respectively; b plots of χ against λr , which are equivalent to those in (a) for λr ∈ [1/3, 1]

The results with χ plotted against λz and λr are illustrated in Fig. 4 for λθ = 1, so that, by the incompressibility
condition (7)1, λrλz = 1 and the deformation is homogeneous. Results are similar for other values of λθ , but then
the loss of ellipticity condition depends on R. Some comments on this non-homogeneous deformation are reserved
for the concluding remarks in Sect. 4. Note that (36) and (38) are special cases of (39).

In Fig. 4a, the value of χ obtained from (39) is plotted against λz for three values of ρ. For each ρ, as λz is
increased from 1 ellipticity is lost at a value of λz very close to 1 and for χ = π/2, so that the discontinuity surface
is perpendicular to the fibre, this being interpreted as fibre kinking. As λz increases there could in principle be two
(symmetric) discontinuity surfaces in the (r, z) plane, one with χ > π/2 and the other with χ < π/2. Also, a
discontinuity surface parallel to the fibre with χ = 0 (or π ) is possible, which is interpreted as corresponding to
fibre splitting, but, as already mentioned, loss of ellipticity with χ = π/2 always occurs before that with χ = 0.
Note that Fig. 4b is equivalent to Fig. 4a for λr ∈ [1/3, 1] and shows χ plotted against λr = λ−1

z instead of λz .
Figure 5 illustrates how non-zero shear γz affects the onset of loss of ellipticity for ρ = 1, 2, 3. As is clear from

Fig. 5, themain effect of introducing γz �= 0 is to delay the onset of loss of ellipticity with respect to λz and to change
the angle χ corresponding to loss of ellipticity from χ = π/2 to a pair of values symmetrically disposed about
χ = π/2. For larger values of |γz |, loss of ellipticity is totally ruled out. The loss of ellipticity curves for γz = 0
are shown for reference. Increasing values of γz also have the effect of counteracting the influence of increasing
values of ρ shown in Fig. 4 which advance the onset of loss of ellipticity.

Figure 6 provides a selected alternative view of the results in Fig. 5 for λz = 1.2, and illustrates the symmetry
(γz, χ) ↔ (−γz, π − χ). For sufficiently large |γz| the deformation is strongly elliptic, but as the value of |γz | is
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(c)(b)(a)

(f)(e)(d)

(i)(h)(g)

χχχ

χχχ

χχχ

λz λz λz

λz λz λz

λz λz λz

Fig. 5 Plots of the angle χ against λz based on (23) and (24) for λθ = 1 and γθ = 0 with ρ = 1 (a–c row 1), ρ = 2 (d–f row 2), ρ = 3
(g–i row 3), γz = ±0.19 (a, d, g column 1), γz = ±0.25 (b, e, h column 2), γz = ±0.31 (c, f, i column 3). The positive (negative)
values correspond to the continuous (dashed) curves. The curves for γz = 0 (light dotted) are included for reference in each of (a)–(i)

reduced ellipticity is lost for two values of χ , one for positive γz and one for the negative value of equal magnitude,
and the associated values of χ are symmetric with respect to χ = π/2. It is clear that a non-zero γz delays the
onset of ellipticity loss, with the fibre splitting mode (χ = 0 or χ = π ) possible at a smaller value of |γz | than fibre
kinking (χ = π/2). This effect is shown in Fig. 5.

Note that we have set γθ = 0 throughout. Indeed, with the choice we have made that m and n lie in the (r, z)
plane, it can be shown that γθ = 0 is a necessary consequence of (23) except for very special values of χ and/or
the deformation. This can be shown by expressing Q̄ in the form

Q̄ = αm ⊗ m + β(m ⊗ eθ + eθ ⊗ m) + γ eθ ⊗ eθ , (40)
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– –

χ

γz

χ

S

Fibre

er

ez

m

n

Fig. 6 Plots of χ against γz based on (23) and (24) for γθ = 0,
λθ = 1 and λz = 1.2, with ρ = 1, 6, 40, the light dashed, dashed
and continuous curves, respectively

Fig. 7 Depiction in the deformed configuration in the (er , ez)
plane of a single kinked fibre that was in the EZ direction in the
reference configuration. The local line across which ellipticity is
lost is denoted by S, which is aligned with the unit vector m =
cosχ er − sin χ ez and has unit normal n = sin χ er + cosχ ez ,
with χ ∈ [−π/2, π/2]

whereα,β and γ are lengthy expressions depending on the deformation, the reinforcing parameterρ and the angleχ .
For convenience, the expressions forα,β and γ are given in the appendix, although γ is not needed here.Wemention
here, though, that β has the form β = μργθ f (χ, λθ , λz, γθ , γz), where f is a known function of its arguments.

Using (40), Eqs. (23) and (24) yield

αm + βeθ = 0, αγ − β2 = 0. (41)

From the first of these,α = β = 0, and the second is then automatically satisfied. Vanishing ofβ requires either γθ =
0 or thatχ is independent of the reinforcing parameterρ. The latter is inconsistentwith the loss of ellipticity condition
α = 0, from which χ depends on ρ, so it is therefore necessary to set γθ = 0, which has been done in Figs. 5 and 6.

3.2 Axial fibres

In this subsection, we consider the fibres to be purely axial, so that A = EZ . Figure 7 illustrates the deformed
configuration of a single fibre when the deformation (2) creates fibre contraction, again with m and n lying in the
(er , ez) plane.

In this case, the σrθ and σr z components of σ in (25) simplify to

σrθ = 2W1γθλr , σr z = 2
(
W1 + W5λ

2
z

)
γzλr , (42)

with the invariants I4 and I5 given by

I4 = λ2z , I5 = λ4z + γ 2
z λ2z . (43)

In contrast to the previous section, the deformed fibre length
√
I4 is not affected by either the axial or azimuthal

shear, and the expressions for I4 and I5 are simpler.
In the absence of shear deformation (γz = γθ = 0), the loss of ellipticity condition can be obtained from (39)

by interchanging the roles of λr and λz , and, bearing in mind the different ranges of values of the angle χ , plots
equivalent to those in Figs. 3 and 4 can be obtained but are not included here.
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Fig. 8 Plots of the angle χ against λz based on (45) for λθ = 1 and ρ = 1 (a–c row 1), ρ = 2 (d–f row 2), ρ = 3 (g–i row 3),
γz = ±0.5 (a, d, g column 1), γz = ±0.65 (b, e, h column 2), γz = ±1.25 (c, f, i column 3). The positive (negative) values correspond
to the dashed (continuous) curves. The curves for γz = 0 (light dotted) are included for reference in each of (a)–(i)

As in the previous section, withm and n in the (r, z) plane, it follows that Q̄ can be written in the form (40), but
in this case the coefficients α, β and γ are somewhat simpler. In particular, β is given by

β = 2μρλ2zγθ cosχ
{(

I5 + 2λ2zγ
2
z − 1

)[
λr cos 2χ − γz sin 2χ

] − 2λ4zγz sin 2χ
}
. (44)

It follows, again as in the previous section, with the same conclusions, that β = 0 requires γθ = 0 or that χ is
independent of ρ. This is in contrast to the result in [1] where γθ = 0 is not required, although the loss of ellipticity
condition therein is independent of γθ .
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Fig. 9 Plots of χ against γz
based on (45) for λθ = 1
and λz = 0.9 with
ρ = 1, 3, 6, corresponding
to the light dashed, dashed
and continuous curves,
respectively

– –
–

χ

γz

The explicit loss of ellipticity condition α = 0 is independent of γθ and yields (with the factor μ omitted)

(λr sin χ + γz cosχ)2 + λ2z cos
2 χ + 2ρλ2z (I5 − 1)

[
λ2r cos

2 2χ

+
(
λ2z + γ 2

z

)
(1 + cos 2χ)(2 − cos 2χ) + λrγz sin 2χ(1 − 2 cos 2χ)

]

+ 4ρλ4z

[
λrγz cos 2χ −

(
λ2z + γ 2

z

)
sin 2χ

]2 = 0. (45)

Fibre contraction in this case requires λz < 1, and the next two figures illustrate the change in the loss of ellipticity
curves under the applied axial shear deformation γz for specific values of the reinforcing parameter ρ based on (45).

In Fig. 8, for ρ = 1, with λz decreasing from 1, only the fibre kinking failure mode arises, and non-zero γz delays
the onset of loss of ellipticity, which disappears altogether for γz of sufficiently large magnitude. A similar trend
can be seen for ρ = 2 and ρ = 3, with both kinking and splitting modes being possible for small values of γz for
ρ = 3. In Fig. 9, some plots of χ against γz corresponding to loss of ellipticity are shown for specific values of ρ,
analogously to those of Fig. 6, and the interpretation is similar to that in Fig. 6.

4 Concluding remarks

The results in Sect. 3 serve to illustrate how axial shear affects the onset of loss of ellipticity when superimposed
on axial extension and radial deformation in a fibre-reinforced elastic solid for the situations in which the fibre
direction is either radial or axial and there is no azimuthal shear. Very similar results can be obtained for the case of
azimuthal shear in the absence of axial shear with the vectorsm and n in the (r, θ) plane instead of the (r, z) plane.
For other fibre orientations, the resulting loss of ellipticity condition is quite complicated, and its analysis requires
a separate and purely numerical approach.

The model for the fibre reinforcement adopted here was taken to depend on the invariant I5 and leads to results
that are significantly different from those in [1], where an I4-based model was used. In particular, while the loss
of ellipticity associated with the I4 model admits only discontinuities related to fibre kinking, the I5 model may be
related to both fibre kinking and fibre splitting, and, in the case of kinking, the discontinuities here develop differ-
ently from those in [1]. The main difference between the I4 and I5 invariants themselves, which influences the loss
of ellipticity results through the strain-energy function, is that the former involves only fibre stretch while the latter
relates to both fibre stretch and, in general, shearing, although it may be misleading to suggest that fibre splitting
is directly related to shearing alone. Consideration of a strain-energy function which combines I4 and I5 would
provide an obvious extension of the analysis considered here and in [1], although necessarily more complicated,
and it would be of interest to investigate this further.
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In the numerical examples in Sect. 3 we have assumed that λθ = 1, i.e. r = R, which means that, in the absence
of shear, the deformation of the tube is homogeneous.When an axial shear is in place it depends on r and, depending
on the constitutive law, it may result in the loss of ellipticity surface located at different values of r ∈ (a, b), with
γz having different values on either side and part of the tube in the strongly elliptic regime. This effect is modified
to some extent when λθ �= 1 and the deformation is inhomogeneous in the absence of shear.
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Appendix: Expressions for α and β from Sect. 3.1

The formulas for α and β in (40) are explicitly

α = μ
[
(a · n)2 + λ2z c

2
]

+ 2μρ(I5 − 1)
{
4(a · m)2(a · n)2 + 2I4(a · n)2

+ 2(a · n)λ2zγzc + [(a · m)c + (a · n)s]2
}

+ 4μρ
{
2I4(a · m)(a · n) + [(a · m)c + (a · n)s]λ2zγz

}2
,

β = 2μργθ (I5 − 1)
{
4(a · m)(a · n)2 + [(a · m)c + (a · n)s]λ2z c

}

+ 4μργθ

{
2I4(a · m)(a · n) + [(a · m)c + (a · n)s]λ2zγzs

}

×
[
2I4(a · n) + (a · n)λ2θ + λ2zγzc

]
,

and

γ = μ
[
(a · n)2 + λ2z c

2
]

+ 2μρ(I5 − 1)
[
(a · n)2

(
2I4 + λ2θ + 4γ 2

θ

)

+ 2(a · n)λ2zγzc + λ2zγ
2
θ c

2
]

+ 4μργ 2
θ

[
(a · n)

(
2I4 + λ2θ

)
+ λ2zγzc

]2
,

within which

I4 = λ2r + γ 2
z + γ 2

θ , I5 = I 24 + γ 2
θ λ2θ + γ 2

z λ2z ,

a · m = λr c + γzs, a · n = −λr s + γzc, c = cosχ, s = sin χ.
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